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PREFACE 

Administration of above-ambient oxygen tensions, necessary for treatment of severe 

hypoxemia caused by respiratory failure or acute lung injury, is potentially toxic for 

the lungs. This thesis is based on six articles dealing with this topic: one review article 

and five articles describing original experimental work. 

The literature review (Chapter 1) aims to put the five original studies in a 

broader perspective. Chapters 2, 3 and 4 are based on studies to analyze endotoxin's 

mechanism of action: endotoxin is reported, in rats, to be the most effective 

pharmacologic agent for increasing oxygen tolerance. 

Working under the supervision of Professor Dr. B. Lachmann, one of the 

leading experts on the pulmonary surfactant system, Chapters 5 and 6 investigate the 

role of surfa.ctant in pulmonary oxygen toxicity. 

Although the five original studies have their own Discussion and Conclusion 

sections, some aspects are elaborated upon in the literature review (Chapter 1) and, 

consequently, there is no separate Discussion chapter in this thesis. 

1 





ABBREVIATIONS 

atm 

8AL 

FOR 

5-HETE 

12-HETE 

15-HETE 

HHT 

HPLC 

IP 

6kPGF1a 

L-ASA 

LT84 

NS 

PGDH 

PGE2 

PGI2 

PMN 

P-V 

RDS 

SH 

SOD 

TxA2 

Tx82 

vc 

xo = 

Atmosphere 

8roncho-alveolar lavage 

Free oxygen radicals 

5-hydroxy-6,8, 11, 14-eicosa tetraenoic acid 

12-hydroxy-5,8, 10, 14-eicosa tetraenoic acid 

15-hydroxy-5,8, 11, 13-eicosa tetraenoic acid 

12(S)-hydroxy-5,8, 1 0-heptadeca trienoic acid 

High performance liquid chromatography 

Intraperitoneal 

6-keto-prostaglandin F1a 

Lysine salt of acetylsalicylic acid 

Leukotriene 84 

Natural surfactant 

Prostaglandin dehydrogenase 

Prostaglandin E2 

Prostacyclin 

Polymorphonuclear leukocytes 

Pressure-volume 

Respiratory distress syndrome 

Sulfhydryl 

Superoxide dismutase 

Thromboxane ~ 

Thromboxane 82 

Vital capacity 

Xanthine oxidase 

3 





CHAPTER 1 

NORMOBARIC PULMONARY OXYGEN TOXICITY 

This review article has been published before in: Anesth Analgesia 1990; 

70: 195-207 
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NORMOBARIC PULMONARY OXYGEN TOXICITY 

Jan Klein 

Department of Anesthesiology, Erasmus University Rotterdam, The Netherlands. 

INTRODUCTION 

At the time of the discovery of oxygen (02) Joseph Priestley speculated that it might 

prove of benefit in the treatment of some disease. At the same time he warned that the 

effects of 0 2 might not be uniformly beneficial: "From the greater strength and vivacity of 

the flame of a candle, in this pure air, it may be conjectured, that it might be peculiarly 

salutary to the lungs in certain morbid cases, when the common air would not be sufficient 

to carry off the phlogistic putrid effluvium fast enough. But, perhaps, we may also infer from 

these experiments, that though pure dephlogisted air might be very useful as a medicine, it 

might not be so proper for us in the usual healthy state of the body: for, as a candle burns 

out much faster in dephlogisticated than in common air, so we might, as may be said, live 

out too fast, and the animal powers be too soon exhausted in this pure ldnd of air. A 

moralist, at least, may say, that the air which nature has provided for us is as good as we 

deserve." [1] 

The classic nineteenth-century experiments of Paul Bert and Lorraine Smith 

proved that 0 2 in high concentration was indeed toxic to healthy mammalian lungs 

[2,3]. Bert demonstrated that it was the increase in partial pressure rather than 

concentration of 0 2 in the inspired atmosphere that was responsible for these 

deleterious effects. In recent years, a biochemical mechanism involving cellular 

production of partially reduced metabolites of 0 2 has been proposed as a basis for 0 2 

toxicity. The importance of enzymatic and other intracellular antioxidant defenses 

against pulmonary 0 2 toxicity is now appreciated. Experimental animal models of 

increased 0 2 tolerance have been extensively investigated but, as yet, there is no 

clinically useful means of reducing or preventing 0 2-induced lung injury in humans. 

Although this review article presents information on the clinical manifestations, 

pathology, mechanism and prevention of pulmonary 0 2 toxicity, recent developments 

concerning the mechanisms and prevention of hyperoxic damage in animal models will 

be emphasized because an increased understanding of these mechanisms may lead 
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to a more rational basis for the clinical use of 0 2 and the development of therapeutic 

measures effective in preventing or decreasing the effects of 0 2 toxicity. Data 

presented here on mechanisms of hyperoxic injury and protection are obtained from 

experiments done at normobaric conditions and elevated partial pressures of 0 2 • The 

reader is also referred to other reviews [4,5,6,7,8,9] where certain aspects of the 

subject may be covered in more detail. 

CLINICAL MANIFESTATIONS 

With exposure to hyperoxia at 1 atmosphere (atm) of pressure, the lung is the organ 

most severely damaged because pulmonary tissue P02 is the highest in the body. As 

pulmonary tissue P02 is directly determined by the alveolar P02 [10], arterial 

hypoxemia does not delay the development of pulmonary 0 2 toxicity at 1 atm of 

pressure [11]. Exposure to 0 2 at a partial pressure in excess of 2 atm of pressure also 

damages the central nervous system and may result in convulsions (the Paul Bert 

effect) due to sharply increased brain tissue p02 [10]. The rate at which 0 2 toxicity 

develops is directly related to the partial pressure of inspired 0 2• Until the Apollo fire 

of 1967 American astronauts breathed 100% 0 2 at a pressure of one-third of an 

atmosphere without showing any sign of pulmonary 0 2 toxicity. Hence, a high 

concentration of 0 2 may be less damaging at high altitude where the atmospheric 

pressure is reduced than is the same concentration at normobaric pressure [10]. 

The precise concentration of 0 2 that is toxic to humans has, for obvious 

reasons, been difficult to establish. Most data regarding the tolerable limits of 0 2 

breathing have been obtained from normal, healthy, young subjects. Thus, the effects 

of underlying disease and other factors such as age, nutritional status, endocrinologic 

status and the history of previous exposures to oxidants or other substances that may 

alter protective mechanisms against 0 2 toxicity are largely unknown. 

The onset of 0 2 toxicity may occur after an asymptomatic period, during which 

no physiologic changes are detectable. In nine young men who breathed 100% 0 2 for 

6-12 h, no abnormality could be detected in the alveolar-arterial 0 2 gradient, 

pulmonary-artery pressure, total pulmonary resistance, cardiac output or pulmonary 

extravascular water volume; in addition, there were no symptoms and no x-ray 

changes [12]. 
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In conscious subjects, the earliest manifestations of 0 2 toxicity are symptoms 

of tracheobronchial irritation like cough and substernal discomfort. The onset of 

symptoms of tracheobronchial irritation, roughly 4-22 h after the start of 0 2 breathing 

[13], parallels the occurrence of tracheitis and decreased tracheal clearance of mucus 

[14]. The symptoms of this 0 2-induced tracheobronchitis precede changes in 

pulmonary function tests, but the rate of development of these symptoms is so variable 

as to be a poor index of 0 2 tolerance. 

The most widely applied index of 0 2 toxicity in humans has been the vital 

capacity (VC), as early respiratory physiologists reported that subjects who breathed 

90%-100% 0 2 for 25-30 h had a decreased VC [13, 15]. In 1970 it was suggested that 

decreases in VC could be used to predict the onset, rate of development, and degree 

of severity of the toxic process in the lung caused by 0 2 exposure [16]. Subsequently, 

a mathematical description was developed [17] and named the "unit pulmonary toxicity 

dose". The unit pulmonary toxicity dose is still used as a guideline for 0 2 exposures by 

the U.S. Navy [18] and others [19,20]. Recently, however, the available data set was 

updated and a quantitative statistical analysis was performed to evaluate VC as an 

index of pulmonary 0 2 toxicity [21]. As previously noted by others [4,22], it showed 

that a decrease in VC is not an ideal index of 0 2 toxicity development. The VC 

measurement requires a trained subject, is effort-dependent and does not take into 

account the recovery periods as during intermittent exposure; moreover the response 

varies between individuals. As the index is based on the response of an individual of 

median susceptibility, more susceptible individuals would be at increased risk. 

In four healthy subjects, decreases in vital capacity were followed by small 

decreases in both static compliance and carbon monoxide diffusing capacity after 

breathing 0.98 atm of 0 2 for 48 h [15]. 

Pulmonary physiologic changes observed and reproduced in normal subjects 

exposed to 0 2 under experimental conditions may be obscured in the clinical setting. 

For example, patients exposed to 100% 0 2 for 21-44 h, compared with a control group 

exposed to less than 42% 0 2, had no detectable physiologic alterations following 

cardiac surgery [23]. Similarly, there was no evidence of pulmonary 0 2 toxicity, judged 

by respiratory function, in 41 patients having high-frequency jet ventilation of the lungs 

with at least 80% 0 2 for up to 12 days [24]. On the other hand, increased ratios of 

dead space to tidal volume and increased arteriovenous shunting have been reported 
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in patients with irreversible brain damage after ventilation with 100% 0 2 for 40 h [25]. 

However, the patients in this study received steroid therapy which may have affected 

the outcome. 

Although physiologic changes attributable to 0 2 breathing include decreases 

in VC, pulmonary compliance, and diffusing capacity, together with increases in 

arteriovenous shunting and ratio of dead space to tidal volume, early detection of 0 2 

toxicity requires more sensitive and specific tests. 

Using a bronchoalveolar lavage (BAL) technique in volunteers exposed to 

more than 95% 0 2 for 17 h, a significant alveolar-capillary leak expressed by the 

presence of increased plasma albumin and transferrin in lavage fluid was detected 

[26]. Similarly, increases of albumin in BAL fluid occurred in a dose-dependent manner 

in subjects inhaling 30-50% 0 2 for a mean of 45 h [27]. In the same study, clearance 

of inhaled technetium-labeled diethylenetriamine pentaacetate, a measure to assess 

lung epithelial permeability, was increased in subjects inhaling 50%02 • Quantitation of 

hydrocarbons such as pentane or ethane in expired alveolar gas is another direction 

in the development of possible indices of early oxidant damage. Because ethane and 

pentane are volatile hydrocarbons formed during free-radical induced lipid peroxidation, 

the presence of these gases indicates ongoing free radical formation in lung tissue 

[28]. Although in humans pentane production increases within 30-120 minutes of 

breathing 100% 0 2 [29], a dose relationship between inspired 0 2 concentration and 

ethane or pentane excretion is not yet established. In the future, it may be possible to 

develop a metabolic index for detection of hyperoxic pulmonary damage. The fact that 

the lungs' ability to metabolize biogenic amines, polypeptides, and prostaglandins 

[30,31 ,32] decreases soon after hyperoxic exposure might also be used to develop an 

"early warning" test of 0 2 toxicity. To date, use of the tests described above to detect 

pulmonary 0 2 toxicity in the clinical setting in an early phase has been limited for 

reasons including lack of specificity, problems with reproducibility and the need for 

sophisticated equipment. 

The above studies, however, do indicate that although early (reversible) 

physiologic, anatomic and biochemical changes can be detected after short exposure 

to hyperoxia using sensitive tests, humans can tolerate 100% 0 2 at sea level for 24-

48 h without serious pulmonary injury. Pulmonary damage results only with longer 

periods of exposure in normal subjects (but pulmonary tolerance to hyperoxia may be 
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altered by the underlying disease and other physiologic factors). Inspired 0 2 in 

concentrations of 50-100% over long periods of time carries a risk of lung damage, 

and the duration of exposure required to produce damage seems to be proportional 

to the concentration of inspired 0 2• The "safe" level of inspired 0 2 is not established, 

but we know that less than 50% 0 2 can be tolerated for extended periods of time 

without serious deleterious effects [4]. 

PATHOLOGY OF PULMONARY OXYGEN TOXICITY 

Most studies of pulmonary 0 2 toxicity, including ultrastructural morphometry, have 

been conducted in experimental animals. Few studies have been performed in human 

subjects; those that have been done have typically been done at autopsy after severe 

illnesses requiring high concentrations of 0 2 (usually delivered by mechanical 

ventilation). Consequently, although the details and time- course of pulmonary 0 2 

toxicity are well documented in experimental animals, only the end stages of 0 2 toxicity 

have been studied in humans. However, the sequence of morphologic changes that 

occurs in the lungs in response to pulmonary 0 2 toxicity seems to be quite similar in 

different animal species [4,33,34,35,36] and humans [37], but the duration and relative 

severity of each phase of the process show species variability. 

In most species, exposure to 100% 0 2 at 1 atm for 24-72 his associated with 

an initial phase of injury during which no significant evidence of morphologic injury is 

apparent. This phase is characterized by augmentation in the production rates of 

partially reduced 0 2 species [38] due to increased intracellular metabolism of 0 2 [39]. 

These free radicals are associated with alterations in cell metabolism that are not 

initially associated with changes in lung structure or ultrastructure. 

The earliest morphologic changes seen in the inflammatory phase involve 

subtle changes in endothelial cell structure, which result in pericapillary accumulation 

of fluid [33,37,40]. This stage of lung injury is associated with, or rapidly followed by, 

accumulation of thrombocytes, macrophages and neutrophils in the lung and the 

release of soluble mediators of inflammation [40,41,42,43]. 

After exposure of rats to 0 2 for 36 h neutrophils are rapidly recruited to the lung 

[43], and after 48 h, the volume of platelets retained in the pulmonary capillary bed 

almost doubles [41]. The appearance of neutrophils in the lung is associated with a 

rapid increase in the extent of morphologic lung injury [33,40]. Neutrophils probably 
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initiate the final stage of lethal pulmonary 0 2 toxicity by releasing further mediators of 

inflammation and, once activated, by producing toxic 0 2 species via oxidases on their 

plasma membranes [7,44]. Recently, it was suggested that one of these mediators, 

leukotoxin [9,10-epoxy-12-octadecenoate), plays an important role in the genesis of 

acute edematous lung damage in pulmonary 0 2 toxicity [45]. However, the exact role 

of the neutrophil as a primary mediator of hyperoxic lung injury is under debate. 

Depletion of neutrophils decreases the toxic effects of hyperoxia [46], but neutropenia 

induced in rabbits by the administration of nitrogen mustard does not prevent 

development of lung microvascular injury and pulmonary edema caused by exposure 

to hyperoxia [47]. Moreover, the presence of pre-existing lung damage with 

accumulation of neutrophils in the lung is generally associated with decreased rather 

than increased sensitivity to 0 2 toxicity. Examples include increased 0 2 tolerance in 

animals following preexposure to sublethal doses of 0 2 [33] or pretreatment with 

Bacille de Calmetter et Guetin (BCG) [48], endotoxin [49], oleic acid [50], phosgene 

[51] or a-naphthylthiourea [52]. These observations suggest that the neutrophil may 

contribute to but is not essential for the development of pulmonary 0 2 toxicity. 

The contribution of alveolar macrophages to pathologic effects in the lung is 

not clear. Oxygen in vivo appears to increase the number of macrophages in sections 

of rat lung but may not increase the number of cells obtainable with standard methods 

of lung lavage [53]. It is suggested that the macrophage is responsible for the influx 

of neutrophils into the lung by the release of chemotactic factors under hyperoxia [54]. 

Bacterial clearance in animal lungs in vivo decreases after exposure of animals to 

1 00% 0 2 [55]. Although bactericidal dysfunction of alveolar macrophages of neonatal 

rabbits exposed to hyperoxia has been reported [56,57], phagocytotic ability of 

pulmonary macrophages isolated from adult rats exposed to hyperoxia is normal [58], 

and the impaired bacterial clearance seen may be due to impaired mucociliary 

clearance [14]. Production of factors such as 0 2 radicals and eicosanoids by alveolar 

macrophages probably contributes to the pathology of lung damage in hyperoxia 

[59,60], but such an effect has not yet been shown directly. 

In the final phase, overt destruction of the capillary endothelium takes place. 

In rats exposed to lethal hyperoxia approximately 50% of capillary endothelial cells are 

destroyed in the few hours preceding the death of the animal [33]. However, this 

destruction of endothelial cells does not result in overt lung edema; a pleural effusion, 
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nearly equal in volume to the total lung capacity, and associated plasma volume 

depletion leading to respiratory or perhaps cardiovascular failure probably constitute 

the immediate cause of death in 0 2-poisoned rats [61,62,63,64]. Although the 

mechanism of this effusion deserves further study, the pleural effusion is the hallmark 

of 0 2 toxicity in the rat. 

At time of death in rats exposed to a lethal dose high concentration of 0 2 there 

is no significant change in the number of type 1 or type 2 alveolar epithelial cells, even 

though some ultrastructural changes occur, including ruffling of the membranes of 

alveolar type 1 cells and blunting of the microvilli on alveolar type 2 cells. A significant 

epithelial cell proliferative response or frank epithelial cell destruction has not been 

documented [33]. 

In primates, including humans, there appears to be proportionally greater injury 

to the alveolar epithelium during the destructive phase of 0 2 toxicity. In monkeys, the 

alveolar type 1 epithelium is almost completely destroyed after 4 days in 100% 0 2 • 

Hyperplasia of type 2 alveolar epithelial cells leads to almost total replacement of the 

alveolar epithelial lining with type 2 cells by the seventh day of exposure [35,40]. 

With discontinuation of exposure to hyperoxia, or during chronic exposure to 

sublethal hyperoxia, at least three events may develop as a result of the exposure. The 

first is the proliferation of type 2 alveolar cells that appears to constitute a restructuring 

of the alveoli of the lung. The second is a fibroblastic proliferation that may lead to an 

interstitial fibrosis, one that does not seem to have any utility in recovery and may 

simply be a manifestation of the aberrant proliferation of a cell type (the fibroblast) that 

is relatively insensitive to hyperoxia [33,36]. The third event is the development of 

pulmonary hypertension with major restructuring of the walls of large and small 

pulmonary arteries. Obliterative and restrictive rather than constrictive changes of the 

precapillary alveolar unit due to fibrosis and extension of the muscle in the 

microcirculation appear to be the basis for pulmonary hypertension induced by 

hyperoxia [65,66]. 

IN VITRO MODEL SYSTEMS 

In cell cultures individual cells exposed to hyperoxia can be damaged without 

interaction with other cells. This is most extensively demonstrated in endothelial cells. 

Aortic endothelial cells show evidence of impaired uptake of serotonin after 24 h of 
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exposure to 95% 0 2 [67], possibly due to decreased fluidity of the plasma membranes 

of these cells [68]. Although endothelial cells show morphologic changes within 24 h 

of exposure to 80% 0 2 [69], increased albumin permeability of cultured endothelial 

monolayers becomes detectable only after exposure to 95% 0 2 for 3 days [70]. 

In addition to cell cultures, organ cultures and lung explants have been used 

to evaluate the effects of 0 2 on the lung. Ciliary activity ceases in organ cultures of 

tracheal epithelium after 2-6 days of exposure to 60-80% 0 2 [71]. The exposure of 

tissue slices of rat lungs to hyperoxia results in a degradation of collagen [72]. 

Damage due to hyperoxia has also been reported in explants of parenchymal tissues 

from rat and rabbit lung [71 ,73]. Release of chromium 51 indicator from labeled lung 

tissue in culture showed that significant cell damage occurs within 18 h of exposure 

to 95%02 • 

A third in vitro model, the perfused lung has proven to be a sensitive model for 

detection of early functional damage to the pulmonary alveolar endothelium. Hyperoxia 

impairs the ability of pulmonary capillary endothelium in the perfused lung to remove 

various compounds, including serotonin and prostaglandins, from the pulmonary 

circulation [30,74,75]. 

MECHANISMS OF PULMONARY OXYGEN TOXICITY 

BIOCHEMISTRY OF OXYGEN TOXICITY 

The mechanism of 0 2 toxicity at the molecular level is now generally attributed to 0 2 

free-radical reactions with cellular components. Oxygen free radicals are highly reactive 

0 2 metabolites which have an unpaired orbital electron. The so-called "free radical 

theory of 0 2 toxicity" attributes the damaging effects of hyperoxia to these highly 

reactive metabolites of molecular 0 2 • These 0 2 free radicals are products of normal 

cellular oxidation-reduction processes. Under conditions of hyperoxia, their production 

increases markedly. The sources of 0 2 free radicals in hyperoxia are unknown but may 

be the accelerated oxidative processes in pulmonary parenchymal cells and 

phagocytes [38]. The enzyme xanthine oxidase, present in endothelial cells, has also 

been implicated as a source of toxic 0 2 metabolites during hyperoxia [76, 77]. 

The 0 2 molecule is normally susceptible to univalent reduction reactions in the 

cell to form a superoxide anion (02-) and hydrogen peroxide (H20 2) [39,78]. Although 
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it is likely that both the superoxide anion and hydrogen peroxide have direct toxic 

effects, they interact to produce even more dangerous species [79]. Figure 1 shows 

the Fenton reaction, which is catalyzed by metals, particularly ferrous iron, and which 

results in the formation of the harmless hydroxyl ion together with two extremely 

reactive species, the hydroxyl free radical (OH") and singlet 0 2 C02]. Although all 0 2 

radicals are capable of various toxic activities, including lipid peroxidation, 

depolymerisation of mucopolysaccarides, protein sulfhydryl oxidation, cross linking that 

can lead to enzyme inactivation, and nucleic acid damage, it seems likely that the 

hydroxyl free radical and singlet 0 2 are mainly responsible for the toxic effects of 0 2 

[80]. 

Much evidence has recently appeared concerning endogenous defense 

systems evolved by organisms to protect their biologic integrity from destruction by 

free radicals. As 0 2 free radicals are products of normal cellular oxidative processes, 

a multilayered biochemical defense system exists that protects organisms against 

excessive free radical damage (Fig. 1 ). 

r---------------------------------~ 

~ Lipid, protein, DNA reactions 

Toxic products of oxygen reduction 
02- OH • ,02 H202 

1 -~~ction ~ Quenhing reactions 

~~~c ~ ""~·r-_____ c_ru_a_la_se ______ ~ 
Superoxide ' 

02+HP2 HP+02 
dis mutase 

Glutathione peroxidase 

~ 
GSH Gl t th· GSSG 

~ 
Fig. 1: Scheme of free radical reactions and defense systems. 
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These biochemical defenses, which probably began evolving as soon as the first 

photosynthetic organisms began discharging 0 2 into the atmosphere, an event that 

can be dated to about 2 billion years ago [81], include both complex enzyme systems 

and low-molecular-weight free radical scavengers and are a prerequisite for aerobic 

life. Prototypes of these antioxidant enzymes are the metalloproteins, termed 

superoxide dysmutases (SODs), which neutralize superoxide by conversion to 

hydrogen peroxide [82]. Two enzymes subsequently guard against damage from 

hydrogen peroxide: catalase and glutathione peroxidase, both of which are capable 

of degradating intracellular hydrogen peroxide to water; glutathione peroxidase has a 

more general action and catalyzes the reduction of many hydroperoxides. 

The cytoplasmatic enzyme glutathione reductase participates in antioxidant 

defense by reforming reduced glutathione to glutathione. Glutathione, a preferential 

substrate for many oxidizing agents, is of primary importance sparing protein sulfhydryl 

(SH) groups from oxidation. 

The low-molecular-weight free radical scavengers include a-tocopherol, 

ascorbate and B-carotene, a variety of molecules that preferentially partition into 

membranes and function by reducing lipophilic free-radical species to less toxic forms. 

Any molecule that reacts with a free radical can be termed "scavenger"; thus cell 

components such as sugars, unsaturated amino acids, sulfur-containing amino acids, 

and unsaturated fatty acids can also scavenge free radicals. 

ROLE OF ARACHIDONIC ACID METABOLITES 

Arachidonic acid metabolites have biologic properties that can mimic the pulmonary 

changes produced by hyperoxic exposure. They have potent vasoactive, 

bronchoactive, and chemoattractant properties, and can increase . vascular 

permeability; all of these are features of hyperoxic lung injury. 

Mounting evidence suggests that reactive 0 2 metabolites can initiate the 

release and metabolism of arachidonic acid [60,83,84,85]. Increases in levels of 

cyclooxygenase as well as lipoxygenase pathway products in BAL fluid have been 

associated with hyperoxic lung injury [49,86,87,88], but the administration of a 

cyclooxygenase inhibitor to block the synthesis of prostaglandins does not result in a 

decrease but rather an increase in hyperoxic lung injury [87]. The early increases in 

prostaglandin levels in BAL fluid that have been documented [ 49,86,87], therefore, may 
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rather reflect an overall increase in arachidonic acid metabolism, with the increase in 

lipoxygenase pathway products being at least as important or, perhaps, having a more 

primary role in mediating the hyperoxic lung injury. Recent reports show reduced 

mortality, inhibition of neutrophil influx and a reduction in the increase of BAL 

leukotriene 84 levels in a rat hyperoxia model after treatment with the lipoxygenase 

inhibitor AA861 [89], and attenuation of rat and rabbit lung injury induced by hydrogen 

peroxide or an oxidant lipid peroxide using various leukotriene antagonists and 

inhibitors [83,90]. A primary etiologic role for lipoxygenase pathway products would 

provide an explanation for the seemingly contradictory results of studies in which the 

use of a cyclooxygenase inhibitor resulted in exacerbation of prostaglandin-associated 

lung injury [87,91]. Blockade of just the cyclooxygenase pathway probably results in 

shunting of arachidonic acid metabolism to the lipoxygenase pathway [92] (Fig. 2). 

This shunting would result in increased production of lipoxygenase products and, as 

a consequence, increased lung injury [83,93,94]. A complete understanding of this 

seemingly paradoxical effect of cyclooxygenase inhibitors and the role of lipoxygenase 

pathway products as mediators of hyperoxic lung injury awaits studies in which 

measurements of both prostaglandins and leukotrienes in BAL fluid can be performed 

and the effects of selective inhibitors can be determined. 
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Fig. 2: Arachidonate pathway. 
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ROLE OF PULMONARY SURFACTANT 

The change in lung compliance in animals exposed to high concentrations of 0 2 

suggests involvement of the surfactant system. Although most investigators report that 

surface activity of the material lining the alveoli is reduced by exposure to 0 2 at 

increased partial pressures [61 ,95,96,97], others found normal or increased surface 

activity, even in the presence of severe pulmonary 0 2 intoxication [98]. 

Increases as well as decreases in surfactant-associated protein synthesis and 

decreased rates of incorporation of radiolabeled precursors into surfactant 

phospholipid have been reported [96,99]. There are many possible reasons for such 

inconsistency. One is the large species and age differences in susceptibility to 0 2 

toxicity; another is the intensity of hyperoxia used and the stage at which animals were 

studied. Nevertheless, it appears to be reasonably well established that the surface 

activity of the alveolar lining material is significantly decreased in the lungs of animals 

exposed to hyperoxia until death from pulmonary 0 2 intoxication. Whether the 

reduction of pulmonary surfactant function occurs as a direct toxic effect of 0 2 or as 

a consequence of other adverse effects of pulmonary 0 2 poisoning (for instance, 

inactivation of surfactant by intra-alveolar edema [1 00], remains to be determined. In 

either case, reduced surfactant function contributes to the pathophysiological changes 

found during the terminal stages of 0 2 intoxication (Fig. 3). 

lung hyperoxia 
. ~ 

/ ;~:;~=::'~~ 
~ ..... ' 

neutrophil recruitment -.... -.... ..... "" 
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damage release * mediators of - - - _ercosan.or 
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~ *lysosomal enzyyes 
~ * orgen free radicals 

endothelial and epithelial 
destruction 

~ 
impaired surfactant system 

~ 
edema 

~ . 
death 

Fig. 3: Summary of events leading to hyperoxic death. 
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TOLERANCE AND FACTORS INFLUENCING TOLERANCE TO PULMONARY 

OXYGEN TOXICITY 

Susceptibility of animals to 0 2-induced lung injury varies widely among species [4], 

which may in part be based on differences in metabolic rate, including the degree of 

cytochrome P-450 inducibility [101]. The response to 0 2 is also age-dependent: 

immature animals are less sensitive to 0 2 toxicity than adult animals [53]. The 

increased threshold of young animals to 0 2 toxicity appears to be correlated with their 

ability to increase concentrations of protective enzymes described above in response 

to exposure to 0 2 [1 02]. 

Several constitutional and environmental factors may also influence tolerance 

to hyperoxia. Among factors best explored experimentally are metabolic alterations, 

diet, administered medications and chemicals, and prior exposure to hyperoxia or 

hypoxia. 

Because hyperoxic damage is dependent on the rate of free-radical production 

by intracellular metabolic processes, factors that increase cell metabolism, such as 

epinephrine [1 03], hyperthermia [1 04], testosterone [1 05] and thyroid hormones [1 06], 

exacerbate 0 2 toxicity in experimental animals and may have similar effects in humans. 

Dexamethasone treatment of rats exposed to hyperoxia also increases 0 2-induced 

injury and decreases survival, but this effect seems to be dependent on the time of 

dexamethasone administration; if given when pulmonary inflammation due to hyperoxia 

is marked, dexamethasone improves survival and decreases lung damage [1 07]. 

Deficiencies of vitamins or trace metals in diets increase the susceptibility of the 

experimental animal to hyperoxia. The adverse effects of vitamin E and A deficiency 

in hyperoxic exposure have been especially well documented [52, 108,1 09]; while 

selenium- or copper-deficient diet also lead to increased mortality of rats under 

hyperoxic conditions [11 0,111]. 

Dietary deficiency of protein in rats potentiates toxicity to exposure to 

hyperoxia due to a lack of sulfur-containing amino acids, which are critical for 

glutathione synthesis [112]. A negative nitrogen balance and deprivation of protein may 

make patients in the intensive care unit more susceptible to 0 2 toxicity. Administration 

of sulfur-containing amino acids may protect against this possible potentiation of lung 

injury. 
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Many compounds used therapeutically are metabolized with the production of 

free-radical intermediates (these may be 0 2-derived) and may worsen 0 2-induced lung 

injury. A prominent example is the glycoprotein antibiotic bleomycin, which is used 

clinically in treatment of squamous-cell and germ-cell carcinomas. In animal models, 

the toxic effects of hyperoxia and bleomycin are synergystic, resulting in more 

extensive lung injury and fibrosis [113]. Exacerbations of recognized or occult 

pulmonary fibrosis may also occur as a result of the therapeutic use of other 

antineoplastic agents (including busulfan, methotrexate, cyclophosphamide) and 

fortified inspired 0 2 concentrations during, for example, anesthesia and the immediate 

postoperative period [114, 115]. The mechanism of bleomycin-induced lung injury 

involves the formation of a DNA-bleomycin-Fe+2 complex that has oxidase-like activity, 

producing a superoxide anion after binding to nuclear DNA [116, 117]. Disulfiram and 

nitrofurantoin are similarly metabolized with intermediate production of superoxide or 

hydroxyl radicals and 0 2 expectedly increases its cytotoxicity [ 44, 118]. Paraquat, a 

herbicide which occasionally causes human poisoning, is also more toxic to lungs 

under hyperoxic conditions [119]. Herbicides initiate plant death in. a variety of ways, 

but in many instances they do so by overtaxing or destroying the protective 

mechanisms which control toxic 0 2 species and free radicals [120]. 

To date there are no studies available on the effects of general anesthesia on 

pulmonary 0 2 toxicity apart from studies in which patients have been described who 

showed an increased susceptibility to 0 2-induced lung injury after the use of fortified 

0 2 concentrations during general anesthesia due to drug treatment or herbicide 

intoxication. This could be due to the fact that, generally, anesthesia procedures are 

too brief to induce pulmonary 0 2 toxicity. 

The rat is capable of responding to 80-85% 0 2 by increasing concentrations 

of SOD and the glutathione-related protective enzymes within 3-5 days of exposure 

[121]. Animals pre-exposed to a sublethal concentration of 0 2 are able to tolerate 

prolonged exposures to 100% 0 2 • Pre-adaptation of adult rats to hypoxia (10% 0 2 for 

7 days) also results in tolerance to 0 2-induced lung injury and is associated with an 

increase in SOD concentration [122]. On the other hand, pre-exposure of rats to 40-

60% 0 2 does not increase protective- enzyme concentrations and decreases tolerance 

to subsequent exposure to 100% 0 2 [123]. These findings suggest that almost lethal 

levels of superoxide radical production or cell damage are required to increase 
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protective-enzyme concentrations by hyperoxia or hypoxia. 

THERAPEUTIC APPROACHES TO PROTECTION FROM PULMONARY OXYGEN 

TOXICITY 

Many animal models of increased 0 2 tolerance have been investigated, but to date no 

clinically useful means of reducing 0 2-induced lung injury in humans exists. Some 

experimental models will be discussed here because therapeutic measures effective 

in preventing or decreasing the effects of 0 2 toxicity, based on the results of these 

animal studies, may be introduced to clinical practice in the near future. 

To this point, the most effective pharmacologic agent described for increasing 

0 2 tolerance in rats is bacterial endotoxin. The protection provided by endotoxin is 

species-specific (rats and lambs develop 0 2 tolerance, but mice and hamsters do not; 

primates have not been tested) [1 09,124, 125]. The mechanism of endotoxin protection 

against hyperoxic injury is not known. The improved tolerance has been associated 

with increases in lung SOD and other antioxidant enzymes during hyperoxic exposure 

[42, 123, 126]. However, the protective effect of endotoxin is blocked by acetylsalicylic 

acid [91] which interferes with prostaglandin metabolism. Although production of 

lipoxygenase metabolites by BAL lavage cells is not inhibited by endotoxin [127], 

inhibition of in vivo free-radical release by lung neutrophils has been proposed as the 

mechanism by which endotoxin protects rats from 0 2 toxicity [128]. Endotoxin 

treatment stimulates the production of at least three potent cytokines: tumor necrosis 

factor jcachectin, interleukin 1, and interferon. All three factors have been implicated 

as playing an important role in endotoxin's protective action; pretreatment of rats with 

either tumor necrosis factor j cachectin and interleukin 1 [129], interferon inducers 

[130], or simply serum of endotoxin-protected rats [131] decreases lung injury and 

mortality in hyperoxia. Endotoxin also protects against hyperoxic injury to porcine 

endothelial cells [132]. It has been suggested that endotoxin protects these cultured 

endothelial cells by prevention of the hyperoxia-induced decrease in plasma membrane 

fluidity [133]. Currently, there is great interest in the attempt to modify the endotoxin 

molecule to produce protective substances which have low inherent toxic action, so

called endotoxoids [134]. 

Difficulties arise with the therapeutic use of SOD or catalase because they are 

intracellular enzymes with very short half-lives in plasma. There is, therefore, little scope 
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for their use by direct intravenous injection. However, it is possible for these enzymes 

to enter cells if they are administered in liposomes and their plasma half-life may also 

be extended by conjugation with polyethylene glycol. Experimental use of SOD and 

catalase in these forms results in a substantial protection [135, 136,137,138, 139]. 

Polyethylene glycol conjugation with antioxidants may be more effective than liposome 

encapsulation [140]. Delivery of antioxidants conjugated to polyethylene glycol is 

improved and their half-lives prolonged compared with liposome encapsulation. 

Instillation of exogenous surfactant in rabbits exposed to 100% 0 2 for 64 h 

prevents the development of abnormal lung mechanics and alveolar collapse and 

mitigates the degree of lung edema, once animals are returned to room air; at least 

part of this beneficial effect appears to be related to the action of exogenous surfactant 

in preventing an increase in alveolar surface tension [141]. 

The leukotriene synthesis blocker AA861 significantly reduces mortality of rats 

caused by 0 2 toxicity when administered intraperitoneally [89]. AA861 inhibits 

leukotriene 84 production, a chemotactic agent for neutrophils and, thus, AA861 would 

reduce the accumulation of neutrophils in the lung. 

Intact erythrocytes placed in the tracheobronchial tree of hyperoxic rats 

dramatically improves their chances for survival [142]. Lungs from erythrocyte

protected rats show almost none of the morphologic damage suffered by untreated 

animals. These protective effects of insufflated erythrocytes would be based on their 

recyclable glutathione. An ironic connotation of these experiments is that small 

amounts of spontaneous alveolar hemorrhage, a common feature in respiratory 

distress situations, may actually be beneficial in patients ventilated with 0 2 at high 

inspired tensions. 

Continuous infusion of the sulfhydryl compounds cysteamine or N

acetylcysteine in rats exposed to 100% 0 2 results in a reduced mortality and lung 

edema caused by hyperoxia [143]. As sulfhydryl compounds are among the most 

important endogenous antioxidant agents, administration of these cell-permeable 

sulfhydryl compounds probably prevents the oxidation of lung nonprotein sulfhydryls 

such as glutathione [144]. 

Desferioxamine is an iron-chelating agent that may prove to have a therapeutic 

role, as ferrous iron is both a potent source of electrons for conversion to the 

superoxide anion and a catalyst in the Fenton reaction. In rats, the administration of 

22 



desferioxamine provides partial protection against hyperoxic lung damage [145]. 

Pretreatment of rats by inducers of pulmonary cytochrome P-450 results in a 

marked protection against pulmonary 0 2 toxicity. This protection is associated with a 

substantial increase in the components of the pulmonary cytochrome P-450 system, 

its peroxidase activity and an increased response to hyperoxia by lung antioxidant 

enzyme activities [146]. 

Although dietary supplementation of vitamins, proteins and trace metals 

provides only partial protection in animals with a deficiency of these factors, dietary 

supplementation of polyunsaturated fatty acids in newborn rats results in increased 

lung polyunsaturated fatty acid content and improved hyperoxic survival [147]. How 

lung lipid composition works to influence tolerance to pulmonary 0 2 toxicity is not yet 

known. 

CONCLUSION 

The last 25 years have seen major progress in our understanding of the mechanisms 

and pathophysiology of pulmonary 0 2 toxicity and, in particular, the elucidation of the 

role of free radicals. Important problems that remain include methods for early 

detection of hyperoxic damage and the means to augment antioxidant defenses. With 

solution of these problems it should be possible to expand significantly the value and 

indications for the therapeutic use of 0 2 • 

REFERENCES 

1. Priestley J. Experiments and observations on different kinds of air. Vol 2. 1775, 
London. 

2. Bert P. Barometric pressure: researches in experimental physiology. Hitchcock 
MA, Hitchcock FA, translators. Columbus, Ohio: College Book Company, 1943. 

3. Smith JL. The pathological effects due to increase of oxygen tension in the 
air breathed. J Physiol (London) 1899;24:19-35. 

4. Clark JM, Lambertsen CJ. Pulmonary oxygen toxicity: a review. Pharmacal 
Rev 1971;23:37-133. 

5. Deneke SM, Fanburg BL. Oxygen toxicity of the lung: an update. Br J Anaesth 
1 982;54:737 -49. 

6. Deneke SM, Fanburg BL. Normobaric oxygen toxicity of the lung. N Engl J 
Med 1980;303:76-86. 

23 



7. Frank L, Massaro D. Oxygen Toxicity. Am J Med 1980;69:117-26. 

8. Jackson RM. Pulmonary oxygen toxicity. Chest 1985;88:900-5. 

9. Winter PM, Smith G. The toxicity of oxygen. Anesthesiology 1972;37:210-4. 

10. Nunn JF. Applied respiratory physiology. 3rd ed. London: Butterworths, 
1987:492. 

11. Miller WW, Waldhausen JA, Rashkind WJ. Comparison of oxygen poisoning 
of the lung in cyanotic and acyanotic dogs. N Engl J Med 1970;282:943-7. 

12. Van de Water JN, Kagey KS, Miller IT, et al. Response of the lung to six to 12 
hours of 100 percent oxygen inhalation in normal man. N Engl J Med 
1970;283:621-6. 

13. Comroe JH, Dripps RD, Dumke PR, Deming M. Oxygen toxicity. The effect of 
inhalation of high concentrations of oxygen for twenty-four hours on normal 
men at sea level and at a simulated altitude of 18,000 feet. JAMA 
1945;128:710-7. 

14. Sackner MA, Landa J, Hirsch J, Zapata A Pulmonary effects of oxygen 
breathing; a 6-hour study in normal men. Ann Intern Med 1975;82:40-3. 

15. Caldwell PRB, Lee WL, Schildkraut HS, Archibald ER. Changes in lung volume, 
diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol 
1966;21 :1477-83. 

16. Clark JM, Lambertsen CJ. Pulmonary oxygen tolerance in man and deviation 
of pulmonary oxygen tolerance curves. Philadelphia: lnst Environ Med., Univ 
of Pennsylvania, 1970. (lnst Environ Med Reprint 1-70). 

17. Bardin H, Lambertsen CJ. A quantative method for calculating cumulative 
pulmonary oxygen toxicity. Use of the Unit Pulmonary Toxicity Dose (UPTD). 
Philadelphia:lnst Environ Med, Univ of Pennsylvania, 1970. 

18. Flynn ET, Catron PW, Bayne CG. Diving medical officer: students' guide. Naval 
technical traning command, by direction of chief of technical training. 
September 1981 (course A-6A-0010). 

19. Edmunds C, Lowry C, Pennefather J. Diving and Sub-Aquatic Medicine. Seafort 
Australia: Diving Medical Centre, 1984:244-6. 

20. Lemaire C. Physiologie et plonge'e profonde La recherche Franchaise en 1981. 
Brest, France: Centre national pour I' exploration des oceans. 1981:13. 

21. Harabin AL, Homer LD, Weathersby PK, Flynn ET. An analysis of decrements 
in vital capacity as an index of pulmonary oxygen toxicity. J Appl Physiol 
1987;63:1130-5. 

22. Widell PJ, Bennet PB, Kivlin P, Gray W. Pulmonary oxygen toxicity in man at 
2 ATA with intermittent air breathing. Aerosp Med 1974;45:407-10. 

24 



23. Singer MM, Wright F, Stanley LK, Roe BB, Hamilton WK, Oxygen toxicity in 
man: a prospective study in patients after open heart surgery. N Engl J Med 
1970;283:1473-8. 

24. Smith E, Scott PV, Fischer HB, Johnston P. Absence of pulmonary oxygen 
toxicity in association with high-frequency jet ventilation (letter). Lancet 
1984;i:505. 

25. Barber RE, Lee J, Hamilton WK. Oxygen toxicity in man. A prospective study 
in patients with irreversible brain damage. N Engl J Med 1970;283:1478-84. 

26. Davis WB, Rennard Sl, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity. 
Early reversible changes in human alveolar structures induced by hyperoxia. 
N Engl J Med 1983;309:878-83. 

27. Griffith DE, Holden WE, Morris JF, Min LK, Krishnamurthy GT. Effects of 
common therapeutic concentrations of oxygen on lung clearance of 99mTc 
DTPA and bronchoalveolar lavage albumin concentration. Am Rev Respir Dis 
1986;134:233-7. 

28. Reily CA, Cohen G, Lieberman M. Ethane evolution: a new index of lipid 
peroxidation. Science 1974;183:208-10. 

29. Morita S, Snider MT, lnada Y. Increased N-pentane excretion in humans: a 
consequence of pulmonary oxygen exposure. Anesthesiology 1986;64:730-3. 

30. Block ER, Fisher AB, Depression of serotonin clearance by rat lungs during 
oxygen exposure. J Appl Physiol1977;42:33-8. 

31. Dobuler KJ, Catravas JD, Gillis CN. Early detection of oxygen induced lung 
injury in conscious rabbits. Reduced in vivo activity of angio-converting enzyme 
and removal of 5-hydroxytryptamine. Am Rev Respir Dis 1982;126:534-9. 

32. Toivonen H, Hartiala J, Bakhle YS. Effects of high oxygen tension on the 
metabolism of vasoactive hormones in isolated perfused rat lungs. Acta Physiol 
Scand 1981 ;111 :185-92. 

33. Crapo JD, Barry BE, Foscue HA, Shelbourne J. Structural and biochemical 
changes in rat lungs occurring during exposures to lethal and adaptive doses 
of oxygen. Am Rev Resp Dis 1980;122:123-43. 

34. Crapo JD. Morphologic changes in pulmonary oxygen toxicity. Ann Rev Physiol 
1986;48:721-31. 

35. Kapanci Y, Weibel ER, Kaplan HP, Robinson FR. Pathogenesis and reversibility 
of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and 
morphometric studies. Lab Invest 1969;20:101-17. 

36. Thet LA, Parra SC, Shelburne JD. Sequential changes in lung morphology 
during the repair of acute oxygen-induced lung injury in adult rats. Exp Lung 
Res 1986;11 :209-28. 

25 



37. Kapanci Y, Tasca R, Eggerman J, Gould VE. Oxygen pneumonitis in man: 
Light- and electron-microscopic and morphometric studies. Chest 1 972;62: 162-
9. 

38. Jamieson D, Chance B, Cadenas E, Boveris A. The relation of free radical 
production to hyperoxia. Ann Rev Physiol1986;48:703-19. 

39. Freeman BA, Toppolsky MK, Crapo JD. Hyperoxia increases oxygen radical 
production in rat lung homogenates. Arch Biochem Biophys 1982;216:477-84. 

40. de los Santos R, Seidenfeld JJ, Anzueto A, Collins JF, Coalson JJ, Johanson 
WG Jr, Peters Jl. One hundred percent oxygen lung injury in adult baboons. 
Am Rev Respir Dis 1987;136:657-61. 

41. Barry BE, Crapo JD. Patterns of accumulation of platelets and neutrophils in 
rat lungs during exposure to 100% and 85% oxygen. Am Rev Respir Dis 
1985;132:548-55. 

42. Fox RB, Hoidal JR, Brown DM, Repine JE. Pulmonary inflammation due to 
oxygen toxicity: Involvement of chemotactic factors and polymorphonuclear 
leukocytes. Am Rev Respir Dis 1981 ;123:521-3. 

43. Rinaldo JE, English D, Levine J, Stiller R, Henson J. Increased intrapulmonary 
retention of radiolabeled neutrophils in early oxygen toxicity. Am Rev Respir Dis 
1988;137:345-5. 

44. Forman HJ, York JL, Fisher AB. Mechanism for the potentiation of oxygen 
toxicity by disulfiram. J Pharmacal Exp Ther 1 980;212:452-5. 

45. Ozawa T, Sugiyama S, Hayakawa Metal. Existence of leukotoxin 9, 10-epoxy-
12-octadecenoate in lung lavages from rats breathing pure oxygen and from 
patients with adult respiratory distress syndrome. Am Rev Respir Dis 
1988;137:535-40. 

46. Shasby DM, Fox RB, Harada RN, Repine JE. Reduction of the edema of acute 
hyperoxic lung injury by granulocyte depletion. J Appl Physiol1 982;52: 1237-44. 

47. Laughlin MJ, Wild L, Nickerson PA, Matalon S. Effects of hyperoxia on alveolar 
permeability of neutropenic rabbits. J Appl Physiol1986;61 :1126-31. 

48. Fisher AB, Diamond S, Mellen S. Effect of 0 2 exposure on metabolism of the 
rabbit alveolar macrophage. J Appl Physiol1974;37:341-5. 

49. Klein J, Zijlstra FJ, Vincent JE, van Strik R, Tak CJAM,van Schalkwijk WP. 
Cellular and eicosanoid composition of broncho-alveolar lavage fluid in 
endotoxin protection against pulmonary oxygen toxicity. Grit Care Med 
1989;17:247-50. 

50. Smith B, Winter PM, Wheelis RF. Increased normobaric oxygen tolerance of 
rabbits following oleic acid-induced lung damage. J Appl Physiol1973;35:395-
400. 

26 



51. Ohlsson WTI. A study on oxygen at atmospheric pressure. Acta Med Scand 
1947;190(suppl):1-93. 

52. Tierney DF, Ayers L, Lasuyama RS. Altered sensitivity to oxygen toxicity. Am 
Rev Respir Dis 1977;115:59-65. 

53. Frank L, Bucher JR, Roberts RJ. Oxygen toxicity in neonatal and adult animals 
in various species. J Appl Physiol1978;45:699-704. 

54. Harada RN, Vatter AE, Repine JE. Macrophage effector function in pulmonary 
oxygen toxicity: hyperoxia damages and stimulates alveolar macrophages to 
make and release chemotaxins for polymorphonuclear leukocytes. J Leukocyte 
Biol1984;35:373-83. 

55. Huber GL, Porter SL, Burley SW, La Force FM, Mason RJ. The effect of oxygen 
toxicity on the inactivation of bacteria by the lung. Chest 1974;66:(supp1):4s-7s. 

56. Sherman MP, Condiotti R. Hyperoxia damages phagocytic defenses of 
neonatal rabbit lung. J Appl Physiol 1987;62:684-90. 

57. Suttorp N, Simon LM. Decreased bactericidal function and impaired respiratory 
burst in lung macrophages after sustained in vitro hyperoxia. Am Rev Respir 
Dis 1983;128:486-90 

58. Jacquet B, Gougerot-Pocidalo MA. Functional activities of alveolar 
macrophages in rat exposed to hyperoxia (normobaric 0 2). Ann lmmunol 
(Paris) 1983;134C:93-104. 

59. Forman HJ, Nelson J, Harrison G. Hyperoxia alters effect of calcium on rat 
alveolar macrophage superoxide production. J Appl Physiol1986;60:1300-5. 

60. Sporn HS, Peters-Golden M, Simon RH. Hydrogen-peroxide-induced 
arachidonic acid metabolism in rat alveolar macrophage. Am Rev Respir Dis 
1988;137:49-56. 

61. Armbruster S, Klein J, Stouten EM, Erdmann W, Lachmann B. Surfactant in 
pulmonary oxygen toxicity. Adv Exp Med Biol1987;215:345-9. 

62. Bernaudin JF, Theven D, Pinchen MC, Brun-Pascaud M, Bellon B, Pocidalo 
JJ. Protein transfer in hyperoxic induced pleural effusion in the rat. Exp Lung 
Res 1986;10:23-38. 

63. Smith RM, Rogers RM, Horton FO, McCallum RE. Lung mechanics and a 
simultaneous comparison of alveolar, pleural and peritoneal phagocytic cells 
lavaged from fasted infection-free oxygen toxic rats. Chest 1981 ;80 (sup pi): 15s-
18s. 

64. Theven D, Brun-Pascaud M, Pocidalo JJ. Hypovolemia in the course of 
pulmonary edema in rats exposed to normobaric oxygen. C R Seances Acad 
Sci (Ill) 1981;293(15):797-9. 

27 



65. Coflesky JT, Jones RC, Reid LM, Evans JN. Mechanical properties and 
structure of isolated pulmonary arteries remodeled by chronic hyperoxia. Am 
Rev Respir Dis 1987;136:388-94. 

66. Shaffer SG, O'Neill D, Bradt SK, Thibeault DW. Chronic vascular pulmonary 
dysplasia associated with neonatal hyperoxia exposure in the rat. Pediatr Res 
1987;21 :14-20. 

67. BlockER, Stalcup SA. Depression of seretonin uptake by cultured endothelial 
cells exposed to high 0 2 tension. J Appl Physiol 1981 ;50: 1212-9. 

68. BlockER, Patel JM, Angelides KJ, Sheridan NP, Garg LC. Hyperoxia reduces 
plasma membrane fluidity: a mechanism for endothelial cell dysfunction. J Appl 
Physiol 1986;60:826-35. 

69. Lee SL, Douglas WH, Deneke SM, Fanburg BL. Ultrastructural changes in 
bovine pulmonary artery endothelial cells exposed to 80% 0 2 in vitro. In Vitro 
1983;19:714-22. 

70. Phillips PG, Tsan MF. Hyperoxia causes increased albumin permeability of 
cultured endothelial monolayers. J Appl Physiol1988;64:1196-1202. 

71. Boat TF. Studies of oxygen toxicity in cultured human neonatal respiratory 
epithelium. J Pediatr 1979;95:916-9. 

72. Kerr JS, Chae CU, Nagase H, Berg RA, Riley DJ. Degradation of collagen in 
lung tissue slices exposed to hyperoxia. Am Rev Respir Dis 1987;135:1334-9. 

73. Martin WJ, Gadek JE, Hunninghake GW, Crystal RG. Oxidant injury to lung 
parenchymal cells. J Clin Invest 1981; 68:1277-88. 

74. Klein LS, Fisher AB, Soltoff S, Coburn RF. Effect of 0 2 exposure on pulmonary 
metabolism of prostaglandin E2 • Am Rev Respir Dis 1978;118:622-5. 

75. Newman JH, McMurtry IF, Reeves JT. Blunted pulmonary pressor responses 
to hypoxia in blood perfused, ventilated lungs isolated from oxygen toxic rats: 
possible role of prostaglandins. Prostaglandins 1981 ;22: 11-20. 

76. Rodell TC, Cheronis JC, Ohnemus CL, Piermattei DJ, Repine JE. Xanthine 
oxidase mediates elastase-induced injury to isolated lungs and endothelium. 
J Appl Physiol1987;63:2159-63. 

77. Saugstad OD, Hallman M, Abraham JL, Epstein B, Conchrane C, Gluck I. 
Hypoxanthine and oxygen induced lung injury: a possible basic mechanism 
of tissue damage? Pediatr Res 1984;18:501-4. 

78. Freeman BA, Toppolsky MK, Crapo JD. Hyperoxia increases oxygen radical 
production in rat lungs and lung mitochondria. J Bioi Chem 1981 ;256:10986-92. 

79. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals 
and disease. Biochem J 1984;219:1-14. 

28 



80. Johnson KJ, Fantone JC, Kaplan J, Ward PA. In vivo damage of rat lungs by 
oxygen metabolites. J Clin Invest 1981 ;67:983-93. 

81. Nunn JF. The evolution of atmospheric oxygen. Ann R Coli Surg 1968;43:200-
217. 

82. Freeman BA, Crapo JD. Biology of disease: Free radicals and tissue injury. Lab 
Invest 1982;47:412-26. 

83. Farrukh IS, Michael JR, Peters SP, et al. The role of cyclooxygenase and 
lipoxygenase mediators in oxydant-induced lung injury. Am Rev Respir Dis 
1988;137: 1343-9. 

84. Jackson RM, Chandler DB, Fulmer JD. Production of arachidonic acid 
metabolites by endothelial cells in hyperoxia. J Appl Physiol 1986;61 :584-91. 

85. Tate RM, Morris HG, Schroeder WR, Repine. Oxygen metabolites stimulate 
thromboxane production and vasoconstriction in isolated saline-perfused rabbit 
lungs. J Clin Invest 1984;74:608-13. 

86. Hageman JR, Babler S, Lee SC, et al. The early involvement of pulmonary 
prostaglandins in hyperoxic lung injury. Prostaglandins Leukotrienes Med 
1986;25:105-22. 

87. Smith LJ, Sommers E, Hunt CE, Pachman L. Hyperoxic lung injury in mice: a 
possible protective role for prostacyclin. J Lab Clin Med 1986;108:479-88. 

88. Smith LJ, Shamsuddin M, Anderson J, Hsueh W. Hyperoxic lung damage in 
mice: appearance and bioconversion of peptide leukotrienes. J Appl Physiol 
1988;64:944-51. 

89. Taniguchi H, Taki F, Takagi K, Satake T, Sugiyama S, Ozawa T. The role of 
leukotriene B4 in the genesis of oxygen toxicity in the lung. Am Rev Respir 
Dis 1986;133:805-8. 

90. Burghuber 0, Strife R, Zirrolli J, et al. Leukotriene inhibitors attenuate rat lung 
injury induced by hydrogen peroxide. Am Rev Respir Dis 1985;131 :778-85. 

91. Klein J, Trouwborst A, Salt PJ. Endotoxin protection against oxygen toxicity 
and its reversal by acetylsalicylic acid. Crit Care Med 1986;14:32-3. 

92. Higgs GA, Vane JR. Inhibition of cyclooxygenase and lipoxygenase. Br Med 
Bull 1983;39:265-70. 

93. Malik AB, Perlman MB, Cooper JA, Noonan T, Bizios R. Pulmonary 
microvascular effects of arachidonic acid metabolites and their role in lung 
vascular injury. Fed Proc 1985;44:36-42. 

94. Voelkel NF, Stenmark KR, Reeves JT, Mathias MM, Murphy RC. Actions of 
lipoxygenase metabolites in isolated rat lungs. J Appl Physiol 1984;57:860-7. 

29 



95. Gross NJ, Smith DM. Impaired surfactant phospholipid metabolism in hyperoxic 
mouse lungs. J Appl Physiol1981 ;51 :1198-203. 

96. Holm BA, Notter RH, Siegle J, Matalon S. Pulmonary physiological and 
surfactant changes during injury and recovery from hyperoxia. J Appl Physiol 
1985;59:1402-9. 

97. Ward JA, Roberts RJ. Hyperoxia effects on pulmonary pressure: volume 
characteristics and lavage surfactant phospholipid in the newborn rabbit. Bioi 
Neonate 1984;46:139-48. 

98. Brooksby GA, Staley RW. Static volume-pressure relations in lungs of rats 
exposed to 100 percent oxygen. Physiologist 1966;9:144. 

99. Grim C, Simon R. Effects of oxygen metabolites on rat alveolar type II cell 
variability and surfactant metabolism. Lab Invest 1988:58;428-37. 

100. Ennema JJ, Kobayashi T, Robertson B, Curstedt T. Inactivation of exogenous 
surfactant in experimental respiratory failure induced by hyperoxia. Acta 
Anaesthesia! Scand 1988;32:655-71. 

101. Gonder JC, Proctor RA, Will JA. Genetic differences in oxygen toxicity are 
correlated with cytochrome P-450 inducibility. Proc Natl Acad Sci USA 
1985;82:6315-9. 

102. Yam J, FrankL, Roberts RJ. Oxygen toxicity: comparison of lung biochemical 
responses in neonatal and adult rats. Pediatr Res 1975;12:115-9. 

103. Gerschman R, Gilbert D, Nye S, Price W, Fenn W. Effects of autonomic drugs 
of adrenal glands on oxygen poisoning. Proc Soc Exp Bioi Med 1955;88:617-
21. 

104. Campbell J. Effects of oxygen pressure as influenced by external temperature, 
hormones, and drugs. J Physiol (London) 1938;92:29-31. 

105. Neriishi K, Frank L. Castration prolongs tolerance of young male rats to 
pulmonary 0 2 toxicity. Am J Physiol 1984;247(3 Part 2):475-81. 

106. Bean J, Bauer R. Thyroid in pulmonary injury induced by 0 2 in high 
concentration at atmospheric pressure. Proc Soc Exp Bioi Med 1952;81 :693-4. 

107. Koizumi M, Frank L, Massaro D. Oxygen toxicity in rats. Varied effect of 
dexamethasone treatment depending on duration of hyperoxia. Am Rev Respir 
Dis 1985;131:907-11. 

108. Cohen-Add ad N, Bollinger R, Chou J, Poland R. Vitamin A deficiency and 
pulmonary oxygen toxicity: morphometric studies in the murine lung. Pediatr 
Res 1988;23:76-80. 

109. Frank L, Neriishi K. Endotoxin treatment protects vitamin E-deficient rats from 
pulmonary oxygen toxicity. Am J Physiol1984;247(3 Part 2):R520-6. 

30 



110. Deneke SM, Gershoff SN, Fanburg BL. Potentiation of oxygen toxicity in rats 
by dietary protein or amino acid deficiency. J Appl Physiol 1983;54:147-51. 

111. Jenkinson SG, Lawrence RA, Grafton WD, Gregory PE, Me Kinney MA. 
Enhanced pulmonary toxicity in copper-deficient rats exposed to hyperoxia. 
Fundam Appl Toxicol 1984;4(2 Part 1):170-7. 

112. Deneke SM, Lynch BA, Fanburg BL. Effects of low protein diets or feed 
restriction on rat lung glutathione and oxygen toxicity. J Nutr 1985; 115:726-32. 

113. Tryka AF, Godleski JJ, Brain JD. Differences in effects of immediate and 
delayed hyperoxia exposure on bleomycin-induced pulmonary injury. Cancer 
Treat Rep 1984;68:759-64. 

114. Cooper JA jr, White DA, Matthay RA. Drug-induced pulmonary disease. Part 
I. Cytotoxic drugs. Am Rev Respir Dis 1986;133:321-40. 

115. Klein DS, Wilds PR. Pulmonary toxicity of antineoplastic agents: anaesthetic 
and postoperative implications. Can Anaesth Soc J 1983;30:399-405. 

116. Martin WJ II, Kachel DL. Bleomycin-induced pulmonary endothelial cell injury: 
evidence for the role of iron-catalyzed toxic oxygen-derived species. J Lab Clin 
Med 1987;110:153-8. 

117. Trush MA, Mimnaugh EG, Ginsburg E, Gram TE. Studies on the interaction 
of bleomycin A with rat lung microsomes. II. Involvement of adventitious iron 
and reactive oxygen in bleomycin-mediated DNA chain breakage. J Pharmacal 
Exp Ther 1982;221:159-65. 

118. Martin WJ II, Powis GW, Kachel DL. Nitrofurantion-stimulated oxidant 
production in pulmonary endothelial cells. J Lab Clin Med 1985;105:23-9. 

119. Smith LL. Mechanism of paraquat toxicity in lung and its relevance to treatment. 
Hum Toxicol1987;6:31-6. 

120. Dodge AD. Oxygen radicals and herbicide action. Biochem Soc Trans 
1982;10:73-75. 

121. Kimball RE, Reddy K, Peirce JH, Schwartz LW, Mustafa MG, Cross CE. Oxygen 
toxicity: augmentation of antioxydant defence mechanisms in rat lung. Am J 
Physiol1976;230:1425-31. 

122. Sjostrom K, Crapo JD. Structural and biochemical adaptive changes in rat 
lungs after exposure to hypoxia. Lab Invest 1983;48:68-79. 

123. Frank L. Endotoxin reverses the decreased tolerance of rats to greater than 
95% 0 2 after preexposure to lower 0 2 • J Appl Physiol 1981 ;51 :577-83. 

124. Frank L, Roberts RJ. Endotoxin protection against oxygen-induced acute and 
chronic lung injury. J Appl Physiol1979;47:577-81. 

31 



125. Hazinski TA, Kennedy KA, France ML, Hansen TN. Pulmonary 0 2 toxicity in 
lambs: physiological and biochemical effects of endotoxin infusion. J Appl 
Physiol 1988;65: 1579-85. 

126. Frank L, Summerville J, Massaro D. Protection from oxygen toxicity with 
endotoxin. Role of the endogenous antioxidant enzymes of the lung. J Clin 
Invest 1980;65:1104-10. 

127. Klein J, Vermeer MA, Zijlstra FJ, Vincent JE, Tak CJAM. Endotoxin protection 
against pulmonary oxygen toxicity and its reversal by acetyl salicylic acid: role 
of eicosanoid production by broncho-alveolar lavage cells. Agents and Actions 
1989;26:246-8. 

128. Berg JT, Smith RM. Endotoxin protection of rats from 0 2 toxicity: 
chemiluminescence of lung neutrophils. Res Commun Chern Pathol Pharmacal 
1984;44:461-76. 

129. White CW, Ghezzi P, Dinarello CA, Caldwell SA, McMurtry IF, Repine JE. 
Recombinant tumor necrosis factor jcachectin and interleukin 1 pretreatment 
decreases lung oxidized glutathione accumulation, lung injury, and mortality 
in rats exposed to hyperoxia. J Clin Invest 1987;79:1868-73. 

130. Kikkawa Y, Yano s, Skoza L. Protective effect of interferon inducers against 
hyperoxic pulmonary damage. Lab Invest 1984;50:62-71. 

131. Berg JT, Smith RM. Protection against hyperoxia by serum from endotoxin 
treated rats: absence of superoxide dismutase induction. Proc Soc Exp Bioi 
Med 1988;187:117-22. 

132. BlockER, Patel JM, Sheridan NP. Effect of oxygen and endotoxin on lactate 
dehydrogenase release, 5-hydroxytryptamine uptake, and antioxidant enzyme 
activities in endothelial cells. J Cell Physiol 1985;122:240-8. 

133. Block ER, Patel JM, Sheridan NP. Endotoxin protects against hyperoxic 
decrease in membrane fluidity in endothelial cells but not in fibroblasts. Lab 
Invest 1986;54:146-53. 

134. FrankL. Extension of oxygen tolerance by treatment with endotoxin: means 
to improve its therapeutic safety in man. Exp Lung Res 1988;14(suppl):987-
1003. 

135. Freeman BA, Young Sl, Crapo JD. Liposome-mediated augmentation of 
superoxide dismutase in endothelial cells prevents oxygen injury. J Bioi Chern 
1983;258: 12534-42. 

136. Freeman BA, Turrens JF, Mirza Z, Crapo JD, Young SL. Modulation of oxidant 
lung injury by using liposome-entrapped superoxide dismutase and catalase. 
Fed Proc 1985;44:2591-5. 

137. Padmanabhan RV, Gudapaty R, Liener IE, Schwartz BA, Hoidal JR. Protection 
against pulmonary oxygen toxicity in rats by the intratracheal administration of 

32 



liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis 
1985;132:164-7. 

138. Turrens JF, Crapo JD, Freeman BA. Protection against oxygen toxicity by 
intravenous injection of liposome-entrapped catalase and superoxide 
dismutase. J Clin Invest 1984;73:878-95. 

139. Walther FJ, Gidding CE, Kuipers IM, Willebrand D, Bevers EM, Abuchowski 
A, Viau AT. Prevention of oxygen toxicity with superoxide dismutase and 
catalase in premature lambs. J Free Radicals Bioi Med 1986;2:289-93. 

140. McDonald RJ, Berger EM, White CW, White JG, Freeman BA, Repine JE. 
Effect of superoxide dismutase encapsulated in liposomes or conjugated with 
polyethylene glycol on neutrophil bactericidal activity in vitro and bactericidal 
clearance in vivo. Am Rev Respir Dis 1985;131 :633-7. 

141. Matalon S, Holm BA, Notter RH. Mitigation of pulmonary hyperoxic injury by 
administration of exogenous surfactant. J Appl Physiol 1987;62:756-61. 

142. van Asbeck BS, Hoidal J, Vercellotti GM, Schwartz BA, Moldow CF, Jacob 
HS. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: 
role of red cell glutathione. Science 1985;227:756-9. 

143. Patterson CE, Butler JA, Byrne FD, Rhodes ML Oxidant lung injury: 
intervention with sulfhydryl reagents. Lung 1985;163:23-32. 

144. Moldeus P, Cotgreave lA, Berggren M. Lung protection by a thiol-containing 
antioxidant: N-acetylcysteine. Respiration 1986;50(Suppl1):31-42. 

145. Boyce NW, Campbell D, Holdsworth SR. Modulation of normobaric pulmonary 
oxygen toxicity by hydroxyl radical inhibition. Clin Invest Med 1987;10:316-20. 

146. Mansour H, Brun-Pascaud M, Marquetty C, Gougerot-Pocidalo MA, Hakim J, 
Pocidalo JJ. Protection of rat from oxygen toxicity by inducers of cytochrome 
P-450 system. Am Rev Respir Dis 1988; 137:688-94. 

147. Sosenko IRS, Innis SM, Frank L. Polyunsaturated fatty acids and protection 
of newborn rats from oxygen toxicity. J Pediatr 1988;112:630-7. 

33 





CHAPTER 2 

ENDOTOXIN PROTECTION AGAINST OXYGEN TOXICITY AND 

ITS REVERSAL BY ACETYLSALICYLIC ACID 

This article has been published before in: Crit Care Med 1986; 14: 

32-33 

35 





ENDOTOXIN PROTECTION AGAINST OXYGEN TOXICITY AND ITS REVERSAL 

BY ACETYLSALICYLIC ACID 

Jan Klein, MD; Adrian us Trouwborst MD, PhD; Patrick J. Salt1
, MB, PhD, FFARCS 

Depts. of Anesthesiology, Erasmus University Rotterdam, The Netherlands and 
1Queen Elizabeth Hospital, Birmingham, UK. 

ABSTRACT 

This study investigated the involvement of substances derived from arachidonic acid 

in the mechanism of endotoxin's protective action against pulmonary oxygen toxicity. 

Eighty-three percent of rats treated with a small dose of endotoxin (1 mgjkg) survived 

exposure to over 95% oxygen for 7 days. In contrast, all control rats exposed to the 

same oxygen concentration died within 3 days. When the endotoxin-treated rats were 

a/so treated with the soluble lysine salt of acetylsalicylic acid (100 mgjkg), 7-day 

survival decreased to 25%. This suggests that prostaglandin metabolism may play an 

important role in the protective action of endotoxin during hyperoxia. 

INTRODUCTION 

Despite the potential dangers of hyperoxia on the lung, administration of above

ambient oxygen tensions is necessary for treatment of severe hypoxemia caused by 

respiratory failure or acute lung injury. 

Small doses of bacterial endotoxin markedly increase the survival rate of adult 

rats exposed to 98% oxygen for periods that are normally lethal (60-72 h) [1 ,2]. Details 

concerning the mechanism and even the cellular site(s) of endotoxin's action are not 

yet known, but there is evidence that the pulmonary responses after bacterial 

endotoxin administration are due to release of substances derived from arachidonic 

acid [3] and that these responses can be prevented by concurrent treatment with 

various cyclooxygenase inhibitors [4]. We investigated the involvement of arachidonic 

acid derivatives in the mechanism of endotoxin's protective action against pulmonary 

toxicity, by combined treatment with endotoxin and the soluble lysine salt of 

acetylsalicylic acid (L-ASA). 
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METHODS 

Forty-eight male Sprague-Dawley rats (TNO, Rijswijk, NL) weighing 250-300 g and 

maintained on a standard laboratory diet were assigned at random to four different 

treatment groups: an endotoxin group, a control group, an endotoxin with L-ASA 

group, and an L-ASA group. Each group had 12 rats. 

Endotoxin-treated rats were given a single intraperitoneal (ip) injection of 1 

mgjkg endotoxin (Salmonella typhimurium lipopolysaccharide, phenol water extraction: 

Sigma Chemical Co, London, UK) dissolved in normal saline. Control rats received an 

equal volume of ip normal saline. L-ASA treated rats received 100 mgjkg L-ASA 

subcutaneously (sc), 30 min before the ip endotoxin or saline administration, and every 

24 h thereafter. 

Directly after endotoxin or saline administration, half of the rats in each group 

(chosen at random) were exposed to compressed air at 1 atm of pressure, while the 

other half were exposed to 100% oxygen at 1 atm of pressure. Exposures lasted a 

maximum of 7 days and were performed in special airtight cages with an overflow hole; 

each cage contained 12 rats. Oxygen concentration was continuously measured 

(oxygen monitor, Instrumentation Laboratories, Lexington, MA) and was constantly 

higher than 95% in the oxygen-perfused cages. The C02 concentration was held 

constant at a level similar to that of room air (0.033%) by means of a high oxygen flow 

(7 -8 complete gas changes per hour) and by placing containers of soda lime chips in 

the cage. The cage temperature was held constant between 23° and 26°C. Water and 

food were provided ad libitum. The cages were opened once a day for a 10-15 min 

period to facilitate injection, replenishment of food and water, and waste removal. 

Survival was monitored on a daily basis. Changes in duration of survival were reflected 

by a shift of the survival curve to the right or left. We used the Wilcoxon test to 

determine whether such shifts were statistically significant at a level of 0.05. 

RESULTS 

Although the saline-treated rats and the L-ASA-treated rats exposed to 100% oxygen 

all died within 3 days, 83% of the endotoxin-treated rats survived for 7 days (Fig. 1). 

Of the rats treated with endotoxin plus L-ASA, 25% survived 7 days of oxygen 

exposure. By contrast, there were no deaths in identically treated groups exposed to 

compressed air. The survival curve for rats pretreated with endotoxin was significantly 
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(p < 0.01) to the right of the survival curve for saline-treated rats. This prolonged 

survival was partly reversed by concurrent treatment with L-ASA (p < 0.05). 
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Fig. 1: Survival of rats of exposed to over 95% oxygen for 7 days. The 

survival curve for rats pretreated with endotoxin is significantly (p 

< 0.01) to the right of the survival curve for saline-treated rats. This 

prolonged survival was partly reversed by concurrent treatment with L

ASA (p < 0.05). 
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DISCUSSION 

According to the free-radical theory of oxygen toxicity, exposure to hyperoxia elevates 

the intracellular oxygen concentration and increases the production of highly reactive 

oxygen species such as superoxide anion (02-) and hydrogen peroxide (HP2) [5]. 

The possible relationship between free-radical reactions and the microcirculation stems 

from work revealing the dependency of a patent microcirculation on the continuing 

balanced production of prostaglandin 12 (PG12) [6]. PGI2 , which is produced by blood 

vessel walls, is essential to keep the endothelial surface free of platelets and other 

adhering blood elements. Platelets and lung parenchyma are constantly producing 

thromboxane ~ (T~), a potent vasoconstrictor which has marked pro-aggregating 

and pro-adhering effects on platelets. The continuing synthesis of PGI2 by blood vessel 

walls constantly opposes the effects of T~; this synthesis is inhibited by lipid 

hydroperoxide products of free-radical reactions, but can be stimulated by a single 

dose of endotoxin [7]. Thus, it seems likely that endotoxin protects the pulmonary 

microcirculation from hyperoxic injury [8]. 

We found that repeated administration of L-ASA partly reversed endotoxin

induced protection. Frank and Roberts [1] also administered a cyclooxygenase 

inhibitor (ip indomethacin) to endotoxin-treated rats exposed to over 95% oxygen 

concentrations, but they did not find any detrimental effect on endotoxin-induced 

protection expressed as survival. Although this discrepancy is difficult to interpret, it 

is possible that the single 3-mgjkg dose of indomethacin was not sufficient to block 

the cyclooxygenase enzyme for the total period of endotoxin-induced activation, 

whereas repeated doses of 100 mgjkg L-ASA inhibited cyclooxygenase throughout 

the exposure to high oxygen concentrations [9]. 
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ABSTRACT 

Endotoxin protects against pulmonary oxygen toxicity in rats, and both prostaglandins 

and polymorphonuclear leukocytes (PMN) are implicated as playing an important role 

in this protective action. In this study, a bronchoalveolar lavage (8AL) technique was 

used to analyze cellular and eicosanoid composition of the lavage fluid of endotoxin

protected oxygen-exposed rats. The 8AL fluid of the endotoxin-protected oxygen

exposed rats contained the highest number of PMN, while the 8AL fluid of the 

nonprotected oxygen-exposed rats contained the highest number of macrophages. 

Thus, morbidity due to pulmonary oxygen toxicity was correlated with the number of 

macrophages but not with the number of PMN present in the 8AL fluid. Leukotriene 8"' 

thromboxane 8 21 and prostaglandin E2 levels were significantly higher in the lavage 

fluid of nonprotected oxygen-exposed rats compared to the levels in the lavage fluid 

of air-exposed rats. Eicosanoid levels in the 8AL fluid of endotoxin-protected oxygen

exposed rats did not differ significantly from the levels found in air-exposed control 

rats. These findings suggest that endotoxin protects against hyperoxia-induced 

changes in eicosanoid metabolism. 

INTRODUCTION 

Prolonged exposure to hyperoxia can cause extensive lung injury in many mammalian 

species. Small doses of endotoxin protect rats from the lung damage and edema of 

oxygen toxicity [1]. We reversed the protective action of endotoxin by concomitant 

administration of the lysine salt of acetyl salicylic acid [2]. This could indicate that 

prostaglandins play an important role in endotoxin protective action. 
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Polymorphonuclear leukocytes (PMN) have been implicated as playing an 

important role in acute lung edema resulting from hyperoxic exposure [3]. Several 

arachidonic acid metabolites (eicosanoids) are thought to have an effect on PMN 

adherence [4] and ability to produce superoxide radicals [5]. More recently, it has 

been suggested that leukotriene 84 (LTB.) mediates the recruitment of PMN in the 

lung and that PMN recruitment contributes to lung injury during hyperoxia [6]. In 

addition to their effect on PMN adherence, chemotaxin, and function, eicosanoids 

may also contribute to the increased vascular permeability found in pulmonary oxygen 

toxicity [7]. In this randomized comparative study, a bronchoalveolar lavage (BAL) was 

performed to determine the number and type of cells and eicosanoid levels in the 

lavage fluid of endotoxin-protected oxygen-exposed rats and control rats, respectively. 

MATERIALS AND METHODS 

Experimental Design 

Male Sprague Dawley rats weighing 200 to 250 g and maintained on a standard 

laboratory diet were treated in randomized blocks according to three different 

treatment regimes: oxygen exposure after endotoxin treatment, oxygen exposure after 

saline pretreatment, and air exposure after saline pretreatment. Each group consisted 

of nine rats. Endotoxin-treated rats were given a single intraperitoneal (ip) injection of 

1 mgjkg endotoxin (Salmonella typhimurium lipopolysaccharide, phenol water 

extraction Sigma Chemical, London, UK) dissolved in normal saline. Saline-treated rats 

received an equal volume of ip normal saline. Directly after endotoxin or saline 

administration, the rats were exposed to air or 100% oxygen at 1 atm of pressure. 

Exposures lasted 48 h and were performed in special airtight cages with an overflow 

hole; each cage contained a maximum of six rats housed in separate compartments. 

Oxygen concentration was measured continuously with an oxygen monitor 

(Instrumentation Laboratories, Lexington, MA) and was constantly >95% in the 

oxygen-perfused cages. The C02 concentration was held constant at a level similar to 

that of room air (0.033%) by means of a high oxygen flow (seven to eight complete 

gas changes per hour) and by placement of soda lime chip containers in the cage. The 

cage temperature was held constant between 23° and 26°C. Water and food were 

provided ad libitum. 
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Blood Sampling 

After exposure for 48 h, the rats were anesthetized with sodium pentobarbital (60 

mgjkg ip). The abdomen was opened and the animals were exsanguinated via a 

puncture of the abdominal aorta. Heparinized blood was collected for estimation of 

Hct and plasma protein content (Biuret method [8]). 

Bronchoalveolar Lavage 

A thoracotomy was performed and the volume of pleural fluid was measured by careful 

suction with a syringe. Total protein content of the pleural effusion fluid was measured 

(Biuret method [8]). After an anterior neck incision, the trachea was cannulated with 

a polyethylene catheter. BAL was performed by infusion of 6-ml aliquots of phosphate

buffered saline. The procedure was performed five times so that a total volume of 30 

ml was installed and >80% was recovered. After lavage, all aliquots were centrifuged 

at 450 rpm for 10 min. The supernatant fraction was decanted for analysis of the 

eicosanoid and albumin content. The lowest detectable albumin concentration was 0.2 

mgjml (Biorad method [9]). 

Cell Counts 

Amounts of cells present in the lavage fluid were counted by a standard 

hemacytometer. The number of PMN, macrophages and lymphocytes were determined 

from Wright-Giemsa-stained differential counts of centrifuged preparations. 

Assay of Eicosanoids 

The lavage fluid was applied to a column consisting of a Sep-pak C 18 and a silica 

cartridge (Waters Assoc., Etten-Leur, The Netherlands) which had previously been 

washed with 10 ml of absolute ethanol and 10 ml of distilled water. The column was 

rinsed with 2 ml of distilled water and the eicosanoids eluted with 2 ml of absolute 

ethanol. Radioimmunoassay was used to detect LTB4 , 6-keto-prostaglandin F1a (6-

keto-PGF1a), thromboxane B2 (TxBJ and prostaglandin E2 (PGE2) levels. 

Anti-LTB. and standard were obtained from Wellcome Research Laboratories 

(Dartford, UK), anti-6-keto-PGF1a from Seragen (Boston, MA), antisera to TxB2 and 

PGE2 from l'lnstitut Pasteur (Paris, France). Prostaglandin standards were obtained 

from Sigma Chemical. Tritiated antigens were purchased from the Radiochemical 
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Centre of Amersham (Amersham, UK). Cross reactivities for relevant compounds were 

<2% at 50% boundjboundo [10]. 

Statistical Analysis 

Analysis of variance was used to establish proper error variances and to test the 

statistical significance of differences between group means. Student's two-sample t

test and Spearman rank correlation test were applied in appropriate situations. Level 

of significance was set at p < 0.05. 

RESULTS 

Volume and Protein Content Pleural Effusion Fluid 

All oxygen-exposed saline-treated rats showed pleural effusion with a mean volume 

of 3.8 ± 0.7 (SD) mi. The total protein content of the pleural effusion fluid was 43.3 ± 

0.5 mgjml, which was almost equal to the protein content of plasma (48.0 ± 1.39 

mgjml). In the oxygen-exposed endotoxin-treated group, only one rat showed pleural 

effusion with a volume of 5.5 ml and a total protein content of 41.7 mgjml. None of the 

air-exposed rats showed pleural effusion. 

Hematocrits 

The Hct values in the saline-treated oxygen-exposed group were significantly higher 

than those in the endotoxin-treated and in the air-exposed groups (0.48 ± 0.01% vs 

0.40 ± 0.01% and 0.40 ± 0.01%, respectively). There was a significant correlation 

between the height of the Hct and the volume of pleural effusion fluid. 

Albumin Content Lavage Fluid 

The albumin content of the lavage fluid of the oxygen-exposed saline-treated rats was 

0.48 ± 0.07 mgjml. This was significantly higher than the albumin content in the other 

two groups (median concentration <0.2 mgjml). The albumin content of the lavage 

fluid showed significant correlation with the volume of pleural effusion fluid. 

Cells Counts and Differential 

Considerable differences were found in the total number of cells present in the lung 

lavage fluid (Table 1). The lavage fluid of the oxygen-exposed groups contained the 
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TABLE 1. Difference in cellular composition of lavage fluid 
(mean± SE) 

Treatment 
Mean(% of 

02 Control 
Endotoxin 

lavaged cells) + Oz 

Number of Cells 
Air control 431 1125 ± 161 a 1303 ± 586° 
Oz control 1556 177 ± 503 
Endotoxin + Oz 1733 

Number ofPMNs 
Air control 1 (0.2) 248 ± 90° 913 ± 443a 
Oz control 249 (17.5) 664 ± 442 
Endotoxin + 02 913 (63.4) 

Number of Macrophages 
Air control 427 (98.8) 715 ± 148a 93 ± 195 
02 control 1142 (80.5) 622 ± 225a 
Endotoxin + Oz 519 (36.0) 

Number of Lymphocytes 
Air control 4 (0.9) 23 ± 7a 3±4 
Oz control 27 (1.9) 20 ± 7a 
Endotoxin + 02 7 (4.9) 

a = p < 0.05. Total number of cells per lavage: number.lO 4 

TABLE 2. Difference in eicosanoid composition of lavage fluid 
(mean± SE) 

Treatment Mean 02 Control Endotoxin 
+Oz 

LTB4 Level 
Air control 2573 2716 ± 807a 1142 ± 807 
0 2 control 5289 1574 ± 807 
Endotoxin + 02 3714 

PGE2 Level 
Air control 57 30 ± 9a 12 ± 9 
02 control 88 19 ± 9a 
Endotoxin + 02 69 

6-keto-PGF1a Level 
Air control 2428 465 ± 748 743 ± 748 
02 control 1963 278 ± 748 
Endotoxin + 02 1685 

TxB2 Level 
Air control 274 167 ± 66a 9 ± 66 
0 2 control 441 176 ± 66a 
Endotoxin + Oz 265 

a = p < 0.05. All eicosanoid levels are shown pgjlavage fluid. 
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highest number of cells. The lavage fluid of the air-exposed rats contained mainly 

macrophages, while there was an influx of neutrophils in the saline-treated oxygen

exposed group which increased in the endotoxin-treated oxygen-exposed group. In 

absolute numbers, the lavage fluid of the endotoxin-treated oxygen-exposed group 

contained mostly neutrophils, while the lavage fluid of the saline-treated oxygen

exposed rats contained mostly macrophages. 

Eicosanoid Content Lavage Fluid 

The eicosanoid levels in the lavage fluid of the endotoxin-protected oxygen-exposed 

rats did not differ significantly from the levels found in the lavage fluid of air-exposed 

controls (Table 2). The lavage fluid of the saline-treated, oxygen-exposed rats 

contained significantly more LTB4 , TxB2 , and PGE2 than the lavage fluid of air-exposed 

rats. There was a clear correlation between the level of 6-keto-PGF1a and TxB2 in all 

three groups. 

Relationship between L TB .. and Number of PMN in Lavage Fluid 

Although there was a significant correlation between the level of LTB4 and the number 

of PMN present in the lavage fluids of the air-exposed group, no correlation could be 

found in the other two groups. 

DISCUSSION 

Although hyperoxic lung injury is well recognized pathologically, its pathogenesis has 

not been fully elucidated. It has been postulated that the source of oxygen-derived 

radicals associated with oxygen toxicity may be the PMN [3]. A close temporal 

association between the appearance of PMN in the lung lavage fluid and death of 

animals exposed to hyperoxia has been reported [11]. Endotoxin protects against 

pulmonary damage due to oxygen toxicity [12]. The albumin content of the lavage fluid 

and the amount of pleural effusion are good indications of the extent of pulmonary 

damage [13]. Although the numbers of neutrophils present in the lavage fluid of the 

endotoxin-protected rats were at least as high as the numbers found in the lavage fluid 

of the nonprotected oxygen-exposed group, eight of nine animals in the endotoxin 

group showed signs of protection (no pleural effusion and a low albumin content of the 
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lavage fluid). This could be due to a decreased production of free radicals by PMN in 

the endotoxin-treated rats, as suggested by Berg and Smith [14]. 

The numbers of macrophages in the lavage fluid of the oxygen-exposed saline

treated group were significantly higher than the numbers found in the endotoxin

protected, oxygen-exposed group and the air-exposed group. These findings resemble 

the observations of Glass et al. [15], who found that in rats the lethality of oxygen 

exposure correlated with the number of mononuclear cells, but not with the number 

of PMN present in BAL fluid. 

Recently, Taniguchi et al. [6] were able to improve survival of oxygen-exposed 

rats using a leukotriene synthesis blocker. They suggested that L TB4 is responsible for 

the accumulation of PMN in the lung and that this PMN recruitment contributes to 

hyperoxic lung injury. In the air-exposed group, there was a significant correlation 

between the number of neutrophils (although very small) and the concentration of LTB4 

on the lavage fluid. In the other two oxygen-exposed groups, no correlation could be 

found. This could be due to the fact that neutrophils themselves, present in abundancy 

in these two groups, break down L TB to degradation products which could be 

detected in this study, or it could indicate that in these two groups LTB4 is not 

responsible for the attraction of PMN to the lungs. 

Thromboxane ~ (T~) stimulates PMN adherence while prostacyclin (PGIJ 

opposes this effect [4]. We found a clear correlation between the level of the hydration 

product of PGI2 (6-keto-PGF1a) and the level of the hydration product ofT~ (Tx82) in 

each group. The fact that TxB2 levels were significantly higher in the oxygen-exposed 

group could indicate that the leukoadherent effect of T~ dominates in the oxygen

exposed, saline-treated group. We found the highest concentration of PGE2 in the 

oxygen-exposed, saline-treated group. This could be due to a decreased activity of the 

enzyme prostaglandin dehydrogenase (PGDH) which is responsible for the 

degradation of PGE2• The PGDH activity in lung homogenates from guinea pigs 

exposed in vivo to 100% oxygen was found to be decreased [16]. In perfused rat 

lungs, a decrease in PGE2 inactivation has been correlated with the duration of 

exposure to high oxygen concentrations [17]. PGE2 is reported to inhibit the ability of 

PMN to release LTB4 and oxygen-free radicals [6]. Toxic oxygen metabolites are 

thought to play an important role in pulmonary oxygen toxicity. Reactive oxygen 
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derivatives, including hydrogen peroxide (H20J and superoxide (02l may themselves 

influence arachidonic acid metabolism. H20 2, the predominant dismutation product of 

0 2-, has been shown to stimulate both PGE and prostaglandin F production after its 

degradation to an oxygen-centered radical [18]. Organic hydroperoxides, products of 

oxygen-induced lipid peroxidation of cell membranes, stimulate prostaglandin synthesis 

by accelerating the release of arachidonate from lipid stores [19]. 

We found no significant differences in eicosanoid levels between the air

exposed and oxygen-exposed endotoxin-treated groups. This could indicate that 

endotoxin protects against hyperoxia-induced changes in eicosanoid metabolism and 

may be explained by either a prevention of the hyperoxia-induced increase in 

eicosanoid production or a protection against hyperoxia-induced inhibition of 

eicosanoid degradation [16]. Similar endotoxin action has been described concerning 

serotonin and norepinephrine degradation [20]. Eicosanoid metabolism may play an 

important role in the protective action of endotoxin during hyperoxia [2]. Further 

studies are needed to elucidate the role of eicosanoids in endotoxin-induced protection 

against pulmonary oxygen toxicity. 
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CHAPTER 4 

ENDOTOXIN PROTECTION AGAINST PULMONARY OXYGEN TOXICITY 
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EICOSANOID PRODUCTION BY BRONCHO-ALVEOLAR LAVAGE CELLS 

This article has been published before in: Agents and Actions 1989; 

26: 246-248 

55 
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ABSTRACT 

Small doses of endotoxin markedly increase the survival rate of adult rats exposed to 

98% oxygen for periods that are normally lethal. The lysine salt of acetyl salicylic acid 

(L-ASA) partially reverses this protective effect of endotoxin. In this pilot study we 

investigated the level of eicosanoid production by broncho-alveolar lavage (BAL) cells 

and found that BAL cells of endotoxin protected rats, present in abundancy, have an 

equal or increased capacity of HHT, 15-HETE, 12-HETE, LTB4 and 5-HETE production. 

These data suggest that production of the lipoxygenase products by BAL cells does 

not seem to play an important role in the pathogenesis of pulmonary oxygen toxicity. 

We did not find any indication for the occurrence of shunting of arachidonic acid 

metabolism to the lipoxygenase pathway as an explanation for the reversal of 

endotoxin's protective action by L-ASA. 

INTRODUCTION 

Endotoxin protects against the development of pulmonary oxygen toxicity in the rat. 

The lysine salt of acetyl salicylic acid (L-ASA) reverses this effect [1]. In a former study 

[2], we found that inhibition of prostaglandin synthesis does not seem to be 

responsible for this reversal. We also found that the broncho-alveolar lavage (BAL) 

fluid of the endotoxin-protected oxygen-exposed rats contained more cells when 

compared with the BAL fluid of the saline-treated oxygen-exposed rats and the saline

treated oxygen-exposed rats (17.3 x 106 vs 15.6 x 106 and 4.3 x 106 per lavage, 

respectively). 

In this pilot study we measured eicosanoid production by BAL cells after 

calcium ionophore stimulation: 
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1. to test the capacity of eicosanoid production by BAL cells obtained from 

endotoxin-protected oxygen-exposed rats. 

2. to test the hypothesis that the reversal of survival by L-ASA was based on 

shunting of arachidonic acid metabolism to the lipoxygenase pathway. 

METHODS 

Male Sprague Dawley rats weighing 200-250 g and maintained on a standard 

laboratory diet were treated in randomised blocks according to five different treatment 

regimes: air exposure after saline treatment, oxygen exposure after saline treatment, 

oxygen exposure after endotoxin treatment, oxygen exposure after L-ASA treatment 

and oxygen exposure after endotoxin + L-ASA treatment. Each group consisted of 

nine rats. Endotoxin-treated rats were given a single intraperitoneal (i.p.) injection of 

1 mg.kg·' endotoxin (Salmonella typhimurium lipopolysaccharide, phenol water 

extraction: Sigma Chemical Co. London, UK) dissolved in normal saline. Saline-treated 

rats received an equal volume i.p. of normal saline. L-ASA treated rats received 100 

mg.kg·' L-ASA subcutaneously, 30 min before saline administration, and every 24 h 

thereafter. Directly after endotoxin or saline administration, the rats were exposed to 

air, or 100% oxygen at 1 atm of pressure. Exposures were performed in special airtight 

cages. Food and water were provided ad libitum. 

After 48 h of exposure, BAL was performed by infusion of 6 ml aliquots of 

normal saline. The procedure was performed 5 times so that a total volume of 30 ml 

was installed and more than 80% recovered. After lavage, all aliquots were centrifuged 

at 450 x g for 10 min. Numbers of cells were counted by a standard hemacytometer. 

Eicosanoid production by BAL cells was measured after Ca2+ ionophore A23187 

stimulation (final concent. 2 JLM) and a 10 min incubation with 14C-arachidonic acid (1 

JLCi, 58 mCijmmol) and glutathione (final concent. 2 JLM), using a HPLC method. 

RESULTS 

Eicosanoid production by BAL cells is shown in Fig. 1. Other eicosanoids were not 

present in detectable levels. BAL cells of endotoxin-protected oxygen-exposed rats 

produced equal amounts of HHT, 15-HETE and 12-HETE but more (p < 0.05, 

unpaired Student's t-test) L TB4 and 5-HETE when compared with BAL cells of saline

treated oxygen-exposed rats. 
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Fig. 1: Eicosanoid production by BAL cells (mean ± SD). 

A = Air exposure for 48 h 

0 Oxygen exposure for 48 h 

E Oxygen exposure for 48 h + endotoxin 1 mg.kg-1 i.p. 

C Oxygen exposure for 48 h + endotoxin 1 mg.kg-1 i.p. + 

L-ASA 100 mg.kg-1 24 h-1 s.c. 

L Oxygen exposure for 48 h + L-ASA 100 mg.kg-1 24 h-1 s.c. 
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DISCUSSION 

Although hyperoxic lung injury is well recognised pathologically, its pathogenesis has 

not been fully elucidated. The most effective pharmacologic agent yet described for 

increasing oxygen tolerance in rats is bacterial endotoxin. Lipoxygenase products 

may play a role in the pathogenesis of pulmonary oxygen toxicity, although the source 

of these lipoxygenase products is not yet known [3]. Pulmonary macro phages and 

polymorphonuclear leukocytes (PMN) may also play a role in the pathogenesis of 

hyperoxic damage [4]. A close temporal association between the appearance of PMN 

in the lung lavages and death of animals exposed to hyperoxia has been reported. In 

a former study, we found that PMN were present in abundancy in the lavage fluid of 

endotoxin-protected oxygen-exposed rats [2]. We have measured the capacity of 

eicosanoid production of BAL cells from these endotoxin-protected rats after Ca2
+ 

ionophore A23187 stimulation. The results seem to indicate that these BAL cells have 

an equal or increased capacity of 15-HETE, 12-HETE, LTB. and 5-HETE production. 

Assuming that eicosanoid production measured in vitro after Ca2+ ionophore A23187 

stimulation reflects the level of eicosanoid production by BAL cells prior to lavage, the 

data suggest that production of these lipoxygenase products by BAL cells does not 

seem to play an important role in the pathogenesis of pulmonary oxygen toxicity. 

The protective effect of endotoxin is blocked by acetyl salicylic acid. In an 

earlier study we found that inhibition of prostaglandin synthesis does not seem to be 

responsible for this effect [2]. It is possible that blockade of the cyclooxygenase 

pathway results in shunting of arachidonic metabolism to the lipoxygenase pathway 

[5]. Having measured the eicosanoid production by BAL cells after Ca2
+ ionophore 

stimulation in vitro, we did not find any indication for the occurrence of shunting of 

arachidonic acid metabolism to the lipoxygenase pathway. However, since there is 

little information on the source of leukotrienes which may play a role in pulmonary 

oxygen toxicity, there is still a possibility that shunting to the lipoxygenase pathway 

does take place in lung tissue. Future studies will concentrate on this aspect. 
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SURFACTANT IN PULMONARY OXYGEN TOXICITY 

S. Armbruster, J. Klein, E.M. Stouten, W. Erdmann, B. Lachmann 

Department of Anesthesia, Erasmus University Rotterdam, The Netherlands. 

INTRODUCTION 

Prolonged continuous exposure to high concentrations of oxygen can lead to 

respiratory failure and death. However, the exact pathogenesis of respiratory failure 

induced by oxygen toxicity has not yet been fully established. This study was designed 

to investigate the role of pulmonary surfactant in the development of respiratory failure 

induced by high concentrations of oxygen. 

METHODS 

Thirty-two Sprague Dawley rats weighing 250-300 g and maintained on a standard 

laboratory diet were used. Twenty-two rats were exposed to I 00% oxygen at I atm of 

pressure in a specially designed polystyrene chamber. Oxygen concentration was 

continuously monitored (Oxygen Monitor, Instrumentation Labs. Lexington, USA) and 

kept at a level above 95% throughout the study. Carbon dioxide concentration was 

held constant at a level similar to room air (0.33%) by means of a high oxygen flow 

and placement of soda lime chip containers in the chamber; temperature in the 

chamber was maintained between 23-26°C. Survival of animals was checked on an 

hourly basis; all oxygen-exposed rats died within 72 h of exposure. 

Directly after death a thoracotomy was performed and the volume of pleural 

effusion was measured. Lungs were dissected, weighed and the trachea was 

cannulated. Pressure-volume (P-V) diagrams were recorded with a maximum 

insufflation pressure of 40 em H20. Following this procedure, broncho-alveolar lavage 

was performed by infusion and gentle aspiration of 9 ml physiological saline; the 

surface tension activity of the lavage fluid was measured with a Wilhelmy balance 

(Biegler, Mauerbach, Austria). 

In a control group of four air-exposed rats, in vivo broncho-alveolar lavage 

was performed according to the method of Lachmann et al [1980], to produce 

surfactant -deficient lungs. Following this procedure, the lungs were ventilated for 15 
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min; the animals then received a lethal intraperitoneal injection of barbiturate. 

Another untreated control group of six air-exposed rats also received a lethal injection 

of barbiturate. Lung weight and surface tension in both control groups were measured 

and P-V diagrams recorded, following the same procedure as for oxygen-exposed 

animals. 

RESULTS 

Pressure-volume diagrams 

The lungs of all oxygen-exposed rats were completely atelectatic. The P-V curves in 

Fig. 1 show that an opening pressure of more than 10 em H20 was needed to open 

the lung. At an insufflation pressure of 40 em H20, the inflated volume was less than 

50% of that in normal lungs (air-exposed, untreated group; Fig. 2). 

The characteristic deflation limb of the P-V curves recorded in oxygen-exposed 

lungs indicates that these lungs are over-stabilized compared with lungs of the air

exposed group. This was confirmed by the fact that oxygen-exposed lungs did not 

collapse after inflation; they remained completely aerated. 

Lungs in which surfactant deficiency was induced had the same retractive 

forces as oxygen-exposed lungs, with similar opening pressure, but the deflation curve 

was almost linear, an obvious sign of stiffness of the lungs (Fig. 3). 

Surface tension measurements 

No significant difference was found between surface tension activity of lavage fluid 

from oxygen-exposed lungs and air-exposed lungs (Figs. 1, 2 and Table 1). In 

surfactant-deficient, air-exposed lungs, however, surface tension activity was very low 

(Fig. 3 and Table 1). 

Table 1. Surface tension measurements (mean ± SD) 

Air-exposed lungs 

Oxygen-exposed lungs 

Gamma max. mN/m 

51.3 ± 3.2 

51.5 ± 1.6 

Surfactant-deficient lungs 71.6 ± 1.4 
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Gamma min. mNjm 

20.7 ± 1.2 

22.9 ± 3.5 

43.4 ± 5.2 
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Fig. 1. Left: Pressure-volume diagram. Right: Surface tension/ surface 

area diagram. Both diagrams show mean values from 22 rats exposed to 

100% oxygen at 1 atm of pressure. 
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Fig. 2. Left: Pressure-volume diagram. Right: Surface tension/surface 

area diagram. Both diagrams show mean values from 6 air-exposed control 

rats. 
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Fig. 3. Left: Pressure-volume diagram. Right: Surface tension/surface 

area diagram. Both diagrams show mean values from 4 rats following lung 

lavage to produce surfactant-deficient lungs. 
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Wet lung measurements 

The wet weight (x ± SD) of oxygen-exposed lungs was slightly higher than that of air

exposed lungs: 3.05 ± 0.15 gvs 1.9 ± 0.18 g, respectively. Thewetweightofsurfactant

deficient, air-exposed lungs was 5.8 ± 1.3 g. 

Pleural effusion volume measurements 

In the oxygen-exposed group pleural effusion values (x ± SD) were 12.8 ± 2.6 ml with 

a serum protein content of 4.1 ± 0.2 g%. 

DISCUSSION 

Prolonged exposure to high concentrations of oxygen can lead to death from 

respiratory failure. Interestingly, this study revealed that lung failure induced by oxygen 

exposure is not the primary cause of death. This is substantiated by the following 

findings: 

1. the lavage fluid of oxygen-exposed lungs showed normal surface tension 

activity; 

2. the average wet weight of oxygen-exposed lungs was only slightly higher than 

that of air-exposed lungs; 

3. although normal surface tension activity was measured in oxygen-exposed 

lungs, the P-V curves showed high retractive forces. This might be due to 

changes in anatomical structure, but this idea is not supported by pathological 

examination of oxygen-exposed lungs in other studies [Crapo et al, 1980]. 

Another explanation could be that high retractive forces are induced by 

dysfunction of the pulmonary surfactant system, probably due to an inhibitor 

which is not yet detectable by surface tension measurements in vitro. 

Stabilization of the deflation limb in these lungs can be explained by the 

presence of fluid with high surface tension in the small airways which leads to 

air trapping [Lachmann, 1988]; 

4. the P-V curves of the oxygen-exposed group, compared to controls, clearly 

showed changes in lung mechanics. Nevertheless, we do not assume that 

these changes in lung mechanics are responsible for the respiratory failure 

and ultimate death. Previous studies have demonstrated that guinea pigs with 

similar P-V curves could survive [Lachmann et al, 1980]. 
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Thus, in accordance with Smith et al [1981] we opine that the large amount of pleural 

effusion found in oxygen-exposed rats, resulting in severe compression of the lung, is 

the only possible explanation remaining as the primary cause of death of rats exposed 

to 100%02 • 
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ACUTE RESPIRATORY FAILURE INDUCED BY TRACHEAL INSTILLATION OF 

XANTHINE OXIDASE, ITS PREVENTION AND THERAPY BY EXOGENOUS 

SURFACTANT INSTILLATION 

B. Lachmann, O.D. Saugstad\ J. Klein and W. Erdmann 
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1Department of Pediatrics, National Hospital Norway, Oslo, Norway. 

INTRODUCTION 

Free oxygen radicals (FOR) play an important role in a variety of diseases. The 

hypoxanthine-xanthine oxidase system, which generates the superoxide radical, exerts 

a damaging effect on several organs, including the lung [review: Saugstad, 1985]. It 

has been shown that intravenous hypoxanthine in rats breathing 1 00% oxygen can 

cause lung damage, in contrast to hypoxanthine alone or oxygen alone [Saugstad et 

al, 1984a]. Further, it has been shown [Johnson et al, 1981] that the hypoxanthine

xanthine oxidase system acutely induces increased capillary permeability in the rat 

lung. We have demonstrated that xanthine oxidase (XO) applied to the trachea of 

guinea-pigs induces dramatic changes in lung-thorax compliance, in the course of a 

few minutes, by destroying the functional integrity of the bronchial and alveolar 

surfactant system, probably by formation of FOR. This effect could be partly prevented 

by superoxide dismutase (SOD) which is a superoxide radical scavenger [Saugstad 

et al, 1984b]. The purpose of this study was to investigate whether it is possible to 

influence the functional changes induced by FOR by tracheal instillation of natural 

surfactant (NS). 

MATERIAL AND METHODS 

Preparation and in vivo characterization of surfactant 

The surfactant used in this study was a natural surfactant isolated from adult rabbit 

lungs in basically the same manner as previously described [Metcalfe et al, 1980] but 

with some modifications. In brief, immediately after the animals received a lethal dose 

of pentobarbital sodium, the lungs were dissected, minced and the tissue washed with 

saline (100 ml/20-25 g tissue) for 30 min, filtered and the filtrates centrifuged at 500 g 

at room temperature to remove cell debris. The supernatant was then centrifuged for 
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one hour at 8000 g at 2-4°C. The surfactant phospholipids were extracted from the 

resulting white pellet with chloroform, methanol, ethanol and acetone. The latter 

procedure was repeated at least twice. 

The resulting surface active material was resuspended in saline so that a 

concentration of 60 mg total phospholipidsjml resulted. The activity of this preparation 

was tested in vivo [Lachmann, 1986] in immature rabbit fetuses from day 27 of 

gestation. In these premature rabbits the instilled surfactant increased lung-thorax 

compliance more than eleven-fold. 

Experimental procedure 

The study was performed using young guinea-pigs, weight range 330-390 g. Following 

anesthesia with pentobarbital sodium (60 mgjkg body weight) the animals were 

tracheotomized. After relaxation with pancuronium (2 mgjkg body weight) animals' 

lungs were ventilated in parallel (6 animals simultaneously) with a Servo ventilator 900 

B (Siemens Elema, Solna, Sweden) according to Lachmann [1985]. The respiratory 

rate was 20 per min, peak pressure 15 em H20, inspiratory time 50% and inspiratory 

oxygen concentration 1 00%. 

One unit XO (Sigma Chemical Co. St. Louis, USA) dissolved in 1 ml saline was 

instilled into the trachea of the animals after a ventilation period of 10 min. 

Simultaneous to the application of the fluid, the peak pressure of the ventilator was 

raised to 35 em H20 and positive end-expiratory pressure of 4 em H20; this was 

necessary to keep the animals alive. This working pressure was maintained in all 

animals throughout the study period, except for the few minutes when pressure-volume 

diagrams were recorded. Pressure-volume diagrams were recorded in each animal by 

placing them alternately into a specially constructed pressure-constant body 

plethysmograph connected to a Servo ventilator 900 B. Volume changes were 

recorded with a Fleisch tube connected to the body plethysmograph via a differential 

transducer (Siemens Elema EMT 34) and amplifier (EMT 31), and an integrator unit 

(Siemens Elema Mingograph 81). 

Five groups of animals were studied: 

1) animals receiving 1 unit XO plus, 35-40 min later, 1.5 ml surfactant (n = 7) 
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2) animals receiving 1 unit XO plus, 35-40 min later, 1.5 ml saline (n=8) 

3) animals receiving nothing, only ventilated (n =4) 

4) animals receiving 1 unit XO followed 1-2 min later by 1.0 ml surfactant plus, 

35-40 min later, additional 1.0 ml surfactant (n = 7) 

5) animals receiving 1 unit XO followed 1-2 min later by 1.0 ml saline plus, 

35-40 min later, 1.0 ml surfactant (n=5). 

RESULTS AND DISCUSSION 

Table 1 shows that the decreased lung-thorax compliance after XO instillation could 

be almost completely restored by tracheal instillation of surfactant (Group 1). 

Table 1. Lung-thorax compliance from the deflation curve of the P-V diagrams. 

Initial 

values 

Group 1 (n=7) 100 ± 26% 

XO + 1.5 ml surf. 

35-40 min later 

Group 2 (n=8) 100 ± 16% 

XO + 1.5 ml saline 

35-40 min later 

(X±SD) 

30 min after 

xo 

31 ± 11% 

33 ± 13% 

15 min after surf. 

or saline 

84 ± 19% 

25 ± 8% 

This effect must be related to the surfactant lipids and not to fluid administration since 

the lung-thorax compliance deteriorated further in those animals receiving saline 

(Group 2) instead of surfactant. In earlier investigations we demonstrated that the 

combination of fluid with artificial ventilation itself leads to damage, mainly of the 

bronchial surfactant system, which results in an increased opening pressure without 

significant restrictive lung volume changes, at a pressure of 30 em [Lachmann, 1985]. 

Similarly in this study, one factor of functional disturbance can be attributed to the fluid 
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administration. However, we observed both an increased opening pressure and a 

significant decrease in volume at a pressure of 30-35 em Hp after XO instillation. In 

those healthy animals which were artificially ventilated only (Group 3, n=4) there was 

no effect on lung-thorax compliance (initial values, 1.11 ± 0.23; after 30 min ventilation, 

1.23 ± 0.22; after 45 min ventilation, 1.21 ± 0.14). 

Tracheal instillation of surfactant 1-2 min after XO instillation partly prevents the effect 

of XO instillation (Table 2). One possible explanation for the latter result could be that 

lipid peroxidation by FOR takes place with exogenous surfactant lipids, thus preventing 

peroxidation of the lipids of the surfactant system, which line the alveoli and airways. 

While surfactant replacement partly prevented and restored the functional changes 

after tracheal XO instillation, it can be concluded from the results that FOR, generated 

by the xanthine oxidase system, also destroy the functional integrity of the bronchial 

and alveolar surfactant system. 

Table 2. Lung-thorax compliance from the deflation curve of the P-V diagrams. 

Initial values 

Group 4 (n = 7) 

XO, 2 min later 100 ± 16% 

1 ml surf; 35-40' 

later 1 ml surf. 

Group 5 (n=5) 

XO, 2 min later 

1 ml sal; 35-40' 

later 1 ml surf. 

(X±SD) 

100 ± 13% 

30 min after 

1st instill. 

(surf. or sal.) 

77 ± 21% 

35 ± 17% 
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15 min after 

2nd instill. 

(surf.) 

92 ± 12% 

84 ± 14% 



CONCLUSION 

The general application of radical scavengers in patients who are at risk of developing 

acute respiratory distress syndrome (RDS) might be one important therapeutic 

approach in the future. However, in all cases where one of the primary causes of 

respiratory failure are free oxygen radicals, additional "local" surfactant replacement 

might be an important step for a successful treatment of RDS. 
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SUMMARY AND CONCLUSIONS 

Prolonged exposure to hyperoxia can cause extensive lung injury in many mammalian 

species (Chapter i). 

It has been shown that small doses of endotoxin protect rats from the lung 

damage and edema caused by oxygen toxicity. The protective action of endotoxin was 

reversed by concomitant administration of the lysine salt of acetylsalicylic acid (L-ASA) 

(Chapter 2). This could indicate that prostaglandins play an important role in 

endotoxin's protective action. 

A subsequent study (Chapter 3) on the cellular and eicosanoid composition of 

broncho-alveolar lavage (SAL) fluid in endotoxin protection against pulmonary oxygen 

toxicity, however, indicated not only that in rats morbidity due to pulmonary oxygen 

toxicity is correlated with the number of macrophages and not with the number of 

leukocytes present in SAL fluid, but also that endotoxin protects against hyperoxia

induced increases in eicosanoid levels in SAL fluid. This makes it unlikely that inhibition 

of prostaglandin synthesis by L-ASA is responsible for the reversal of the protective 

action of endotoxin. 

Blockade of only the cyclooxygenase pathway of arachidonic acid metabolism 

by L-ASA probably results in shunting to the lipoxygenase pathway. Lipoxygenase 

products have potent properties which all are features of hyperoxic injury. Having 

measured eicosanoid production by SAL cells after Ca2
+ ionophore stimulation in vitro 

(Chapter 4) no indication for the occurrence of shunting of arachidonic acid 

metabolism to the lipoxygenase pathway was found. Since the formation of 

lipoxygenase products after Ca2
+ stimulation by SAL cells of endotoxin protected rats 

was equal (15-HETE, i2-HETE) or increased (LTB4 and 5-HETE) when compared with 

the formation of lipoxygenase products by BAL cells of non-protected oxygen-exposed 

rats, the formation of lipoxygenase products by SAL cells does not seem to play an 

important role in the pathogenesis of pulmonary oxygen toxicity. However, there is little 

information on the source of lipoxygenase products which may play a role in 

pulmonary oxygen toxicity, thus the possibility remains that L-ASA induced shunting 

to the lipoxygenase pathway does take place in lung tissue. 

Investigating the role of surfactant in the development of respiratory failure due 

to oxygen exposure in rats (Chapter 5), we found that in rats, lung failure (including 
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failure of the surfactant system) is not the primary cause of death. 

In guinea-pigs, however, induction of free oxygen radical mediated lung 

damage by tracheal instillation of xanthine oxidase and ventilation with 100% 0 2 

resulted in decreased lung-thorax compliances which could almost completely be 

prevented, as well as restored, by instillation of exogenous surfactant (Chapter 6). This 

could indicate that surfactant replacement might be effective in the prevention and 

treatment of pulmonary oxygen toxicity. 
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SAMENVATTING EN CONCLUSIES 

Langdurige blootstelling aan hoge concentraties zuurstof kan uitgebreide long schade 

veroorzaken bij de meeste zoogdieren (hoofdstuk 1). 

Lage doseringen endotoxinen beschermen de rat tegen longbeschadiging en 

longoedeem veroorzaakt door zuurstof toxiciteit. Deze beschermende werking van 

endotoxine kan teniet gedaan worden door de gelijktijdige toediening van het lysine 

zout van acetyl-salicylzuur (L-ASA) (hoofdstuk 2). Dit zou kunnen betekenen dat 

prostaglandines een belangrijke rol spelen bij de beschermende werking van 

endotoxine. 

Een volgend onderzoek echter, (hoofdstuk 3) naar de cellulaire en eicosanoide 

samenstelling van broncho-alveolaire lavage (BAL) vloeistof bij endotoxine 

bescherming tegen pulmonale zuurstof toxiciteit, toonde niet aileen aan dat de 

morbiditeit van ratten ten gevolge van pulmonale zuurstof toxiciteit gecorreleerd is met 

het aantal macrofagen en niet met het aantal leukocyten aanwezig in BAL vloeistof, 

maar oak dat endotoxine beschermt tegen de door hyperoxie veroorzaakte verhoging 

in eicosanoid spiegels in BAL vloeistof. Dit maakt het onwaarschijnlijk dat remming van 

de prostaglandine synthese door L-ASA verantwoordelijk is voor het teniet doen van 

de beschermende werking van endotoxine. 

Remming van aileen de cylcooxygenase route van het arachidonzuur 

metabolisme door L-ASA resulteert mogelijk in shunting naar de lipoxygenase route. 

Lipoxygenase producten hebben eigenschappen welke een rol zouden kunnen spelen 

bij de pathogenese van pulmonale zuurstof toxiciteit. Bij bepaling van de eicosanoid 

productie door BAL cellen na Ca 2
+ ionophoor stimulatie echter, werd geen aanwijzing 

gevonden voor het optreden van een shunt van het arachidonzuur metabolisme naar 

de lipoxygenase route. Omdat de vorming van lipoxygenase producten door BAL 

cellen van de door endotoxine beschermde ratten gelijk (15-HETE, 12-HETE) of grater 

(LTB4 en 5-HETE) was vergeleken met de vorming van lipoxygenase producten door 

BAL cellen van niet beschermde aan zuurstof blootgestelde ratten, lijkt de vorming van 

lipoxygenase produkten door BAL cellen geen belangrijke rol te spelen in de 

pathogenese van pulmonale zuurstof toxiciteit. Daar er weinig bekend is over de 

oorsprong van de lipoxygenase producten welke mogelijk een rol spelen bij pulmonale 

zuurstof toxiciteit, blijft de mogelijkheid bestaan dat door L-ASA veroorzaakte shunting 
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naar de lipoxygenase route plaats vindt in long weefsel. 

Bij onderzoek naar de rol van surfactant bij het ontstaan van respiratoire 

problemen bij ratten blootgesteld aan hoge zuurstof concentraties (hoofdstuk 5), 

vonden wij dat pathofysiologische afwijkingen van de long (waar onder falen van het 

surfactant systeem) niet de primaire oorzaak zijn van de mortaliteit. 

In cavia's daarentegen, resulteerde de inductie van long schade met zuurstof 

radicalen door middel van de intratracheale inspuiting van xanthine oxidase en 

beademing met 1 00% 0 2 in een verminderde long-thorax compliance welke zowel 

voorkomen als teniet gedaan kon worden door de intratracheale inspuiting van 

exogeen surfactant (hoofdstuk 6). Dit zou kunnen betekenen dat de intratracheale 

toediening van surfactant effectief is bij zowel de preventie als de behandeling van 

pulmonale zuurstof toxiciteit. 
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