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CHAPTER 1 

GENERAL INTRODUCTION 
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1.1. HEMOPOIESIS 

1.1.1. Pluripotent stem cells 

Most of the mature blood cells have a limited lifespan and need to be replaced 

constantly throughout life. This process of blood cell formation, termed hemopoiesis, 

is enormous in scale. Some 2 x 1011 erythrocytes and 1.2 x 1011 neutrophils are 

produced each day. Apart from this large production hematopoiesis has to render 

cells of eight distinct cell lineages, i.e.: erythrocytes, platelets, neutrophils, eosinophils, 

basophils, monocytes, B- and T-lymphocytes. It is generally accepted that all mature 

blood cells, including lymphocytes, originate from common pluripotent hemopoietic 

stem cells (PHSC) located in the bone marrow in man and also in the spleen in mice. 

(Till JE & Me Culloch 1961, Van Bekkum, 1977, Quesenberry et al., 1979; Ogawa et 

al, 1983)(fig 1). Apart from PHSC and their progeny, precursors of tissue mast cells 

(Kitamura et al., 1971), osteoclasts (Ash et al., 1980), Kupffer cells (Van Furth, 1980) 

and dendritic cells (Steinman et al., 1974) are present in the bone marrow. Attempts 

to purify stem cells have led to the recognition of subpopulations of stem cells with 

different self-renewal, proliferation and differentiation capacities (Visser et al., 1984, 

Ploemacher and Brons 1988). The stem cell compartment is heterogeneous with 

regard to self-renewal and proliferation capacity (Simonovitch, 1963; Worton et al, 

1969) and there is a hierarchy of stem cells depending on the number of previous 

divisions. In later publications evidence came available that after a higher division 

rate the cells become more committed to differentiation, whereas the stem cells with 

a low division rate still have the largest proliferative capacity (Rosendaal et al., 1979; 

Mauch et al, 1980; Hodgson et al, 1984). The self-renewal capacity of the stem cell 

compartment is extensive and probably does not decline during the normal life-span, 

but may decrease following extensive stress to the marrow (Mauch et al, 1988). 

1.1.2. Models of stem cell renewal and commitment 

Several models have been proposed for the mechanism of stem cell self-renewal and 

commitment. Till and McCulloch (1964) postulated a stochastic model in which the 

decision of a stem cell to either renew itself, or yield daughter cells committed to 

differentiation, is governed by probability rules. Trentin (1970) introduced the 

hemopoietic inductive microenvironment (HIM) model implying that commitment of 
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Figure 1. Scheme of normal hemopoiesis and interactions of the colony stimulating 
factors and interleuldns with hemopoietic cells. CFU = colony forming unit; BFU = 

burst forming unit; IL = interleuldn; CSF = colony stimulating factor; Epa = erythro
poietin. Adapted from Clark SC and Kamen R The human hematopoietic colony
stimulating factors. Science 1987; 236: 1229. 
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pluripotent hemopoietic stem cells to monopotent progenitors is determined by a 

specific inductive microenvironment surrounding the stem cell. However, the obser

vations by Magli et al. (1982) on the transient nature of early colonies have presented 

the need for reinterpretation of the experimental data on which the IDM model was 

established. In a third model it was proposed that the regulation of differentiation is 

controlled by humoral factors. The "stem cell competition" model by Van Zant and 

Goldwasser (1977,1979) is an example of this hypothesis. Their data suggested that 

humoral factors play an active role in stem cell commitment. However, this model has 

not gained much support. Therefore, the nature of stem cell commitment remains 

obscure. Evidence exists indicating that under stress situations, such as bacterial 

infections or blood loss, mono- and bipotential progenitor cell populations amplify 

and show higher than normal levels of proliferative activity (Schooly et al, 1965; 

Lange et al, 1969), whereas the early pluripotent progenitor cells are not triggered 

into cell cycle (Bruce et al. 1964; Hara et al, 1977). It has been shown that under 

these conditions humoral factors with stimulatory activity on the proliferation of 

hematopoietic cells are produced (Watari et al., 1989). The first humoral factors that 

were reported to stimulate the proliferation of stem cells were 13-adrenergic agents 

(Byron et al, 1972). More recently it has been shown that the colony stimulating 

factors, described in more detail below, regulate hemopoiesis not only in vitro but 

also in vivo (Donahue et al, 1986), indicating that also in vivo stem cells can respond 

to specific hormonal signals. 

1.1.3. In vitro clonogenic assays 

The identification of the hemopoietic progenitor cells still depends on in vitro 

clonogenic assays developed more than twenty years ago. Pluznik and Sachs (1966) 

and Bradley and Metcalf (1966) discovered independently that suspensions of 

individual cells from mouse bone marrow could be induced to form colonies of 

mature granulocytes and macrophages. Each of the colonies consists of one cell clone. 

In 1970 Pike and Robinson adapted this culture system for the use of human marrow 

cells. Whereas at first only the growth of granulocyte-macrophage colonies could be 

induced, improvement of the colony culture system made it possible to grow erythroid 

and mixed colonies as well. The cell producing a colony is called a colony forming 
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unit (CFU). The most primitive in vitro colony forming cell is the CFU-blast (Naka

hata and Ogawa 1982; Suda et al., 1983), which appears to be more primitive than the 

CFU-GEMM, a pluripotent cell rendering mixed granulocyte-erythrocyte-macrophage

megakaryocyte colonies (Johnson and Metcalf, 1977; Hara et al., 1981; Fauser et al., 

1979; Johnson et al, 1980). Recently, using a miniaturized stroma-dependent bone 

marrow culture assay, various progenitor cell types have been identified in the mouse, 

which are more primitive than the CFU-GEMM and the CFU-blast. This cobblestone 

area-forming cell (CAFC) includes primitive precursor cells resposible for long term 

in vivo repopulation of a depleted hemopoietic system (Ploemacher et al, 1989). The 

progeny of the CFU-GEMM, the committed progenitor cells produce either granulo

cyte-macrophage colonies (CFU-GM) (Bradley and Metcalf, 1966; Ichikawa et al., 

1966; Pike et al., 1970), or colonies of only neutrophilic granulocytes (CFU-G), 

macrophages (CFU-M), eosinophils (CFU-Eo) (Chervenick et al., 1971; Johnson and 

Metcalf, 1980), erythroid cells (BFU-E and more mature CFU-E) (Stephenson et al., 

1971; Axelrad et al., 1973; Tepperman et al., 1974) or megakaryocytes (CFU-Meg) 

(Metcalf et al., 1975; Vainchenker et al., 1979) (Fig.1). In most of the culture systems 

feeder layers were included with leucocytes or cells from an in vitro established cell 

line. Later it was found that the conditioned medium of the feeder cells contained 

substances capable to induce colony growth. These substances have become known as 

the colony stimulating factors. 

1.1.4. In vitro clonogenic assays in acute myeloblastic leukemia 

Shortly after the development of culture techniques for normal hemopoietic 

progenitor cells these methods were applied in acute myeloblastic leukemias 

(Robinson et al., 1971; Moore et al., 1973 and 1974). It was found that despite the 

apparent homogeneity of most populations of acute myelogenous leukemia (AML) 

cells, only a small fraction of cells had the capacity to proliferate in vitro. These 

clonogenic leukemic cells possibly act as stem cells in vivo to maintain the rest of the 

leukemic cell population. The normal clonogenic assays were often found to be 

insufficient to induce the formation of AML colonies. The growth of AML clonogenic 

cells in vitro is characterized by micro- (less than 20 cells) and macro-cluster (20 - 40 

cells) formation with defective maturation or persistent blasts within the clusters, a 
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high cluster colony ratio, singly persisting blasts, or a very low colony formation ( <2 

colonies/105 marrow cells) (Moore et al., 1974). It was concluded that specific 

clonogenic assays were required to induce more efficient AML colony growth. 

Exposure of the cells to phytohemaglutinin (PHA) during a 15-hour preincubation in 

suspension and subsequent culture in soft agar with a leukocyte feeder resulted in the 

formation of significant numbers of AML clonies of more than 50 cells in the majority 

of AML patients (Dicke et al., 1976). 

In subsequent modifications of the technique, PHA was added directly to cultures 

containing irradiated leukocytes or cell-line conditioned medium in the agar under

layer and the AML target cells in a liquid overlayer (LOwenberg and Hagemeijer, 

1977 and 1980, Schipperus et al., 1988). In these modified cultures it was possible to 

induce AML colony formation in 80-90% of cases (Swart et al., 1982). The colonies 

are composed of morphologically identifiable blast cells carrying abberant karyotypes, 

typical for the AML clone (LOwenberg and Hagemeijer, 1977 and 1980). 

1.1.5. Immunological phenotype of clonogenic cells 

Hemopoietic cells express many glycoproteins on their surface membrane. Monoclo

nal antibodies (McAbs) have been raised against many of these glycoprotein antigens. 

Expression of a set of antigens designates a cell to a particular differentiation stage 

and McAbs can be used for the identification of the cells wich express the antigens. 

In order to classify the large number of McAbs against immunologic markers, an 

international nomenclature has been developed (Bernard et al., 1984; Reinherz et al., 

1986; McMichael et al., 1987; Knapp et al., 1989). The various McAbs (and the 

recognized immunologic markers) are classified in clusters of differentiation (CD). 

Recently, considerable progress has been made in the identification of normal 

progenitor cell surface antigens, and different stages of normal progenitor cells can 

now be recognized by their immunological phenotypes. CFU-GEMMs express HLA

DR, CD33 and CD34. The CFU-GM, CFU-G, CFU-M express CD13, CD15, 

CDw17, CD31, CDw32, CD33 and CD34 (Van Dongen et al., 1987; Vander Schoot 

et al., 1989). Studies on the phenotype of the AML-clonogenic cell (AML-CFU) 

revealed data suggesting that AML-CFU phenotypes vary among different patients. 

About 1/3 of cases showed phenotypes comparable to CFU-GEMM (or more 
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primitive) cells, while the other 2/3 expressed phenotypes of committed progenitor 

cells (Griffin et al., 1986) and therefore representing the neoplastic counterpart of 

different normal bone marrow progenitor cells. The double expression by one cell of 

antigens for different lineages can be used as a tumor marker (Smith et al., 1983), 

although in normal hemopoiesis such double positive cells can also arise in extremely 

low numbers. Terminal deoxynucleotidyl transferase (TdT) is found on the nuclear 

membrane of normal precursor B and T cells as well as of their malignant counter

parts (i.e. acute lymphoblastic leukemia and some malignant lymphoma cells). 

However in a majority of AML cases also a subpopulation of the leukemic cells are 

TdT positive (Bradstock et al., 1981; Jani et al., 1983; Adriaansen et al., 1990). These 

TdT-positive AML cells may be used to monitor the disease and to detect minimal 

residual disease (MRD). 
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1.2. THE HEMOPOIETIC COLONY STIMULATING FACTORS 

1.2.1. The effect of colony stimulating factors on progenitor cells 

The development of semisolid culture systems necessary to grow bone marrow cells in 

vitro led to the identification of hemopoietic growth factors (HGF) or hemopoietins; 

of these erythropoietin (Epo ), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony 

stimulating factor (M-CSF), and interleukin-3 (ll-3) have been purified and cloned. At 

present they can be produced on a large scale through recombinant DNA technology 

and their biological activities have subsequently been defined (Table 1). 

Erythropoietin was the first human hematopoietic growth factor to be identified. The 

renal origin of erythropoietin was demonstrated by Jacobson (1957). It was originally 

purified to homogeneity from human urine (Miyake, 1977), and a complementary 

DNA (eDNA) was later identified and brought to expression in mammalian cells 

(Jacobs et al., 1985; Lin et al., 1985; Browne et al., 1986). Erythropoietin stimulates 

the formation of CFU-E (Metcalf and Johnson, 1979), does not support the survival 

and/or proliferation of BFU-E or any other progenitor cell (Metcalf et al., 1980), 

although, some effect on the CFU-Meg is reported (Vainchenker et al., 1979; 

Kawakita et al., 1983; Dessypris et al., 1987; Ishibashi et al., 1987). 

Granulocyte colony-stimulating factor (G-CSF) and macrophage colony stimulating 

factor (M-CSF) are relatively lineage specific hemopoietins which directly support the 

proliferation of the CFU-G (Nagata et al., 1986; Souza et al., 1986) and CFU-M 

(Stanley and Guilbert, 1981) respectively. ll-3 and GM-CSF are multipotential 

hematopoietic growth factors with overlapping but distinct activities (Emerson et al., 

1988). ll-3, however, is more effective in stimulating early multipotential progenitors 

as the CPU-blast and the CFU-GEMM (Leary et al., 1987; Sonada et al., 1988). ll-3 

is reported to be more effective than other colony stimulating factors in stimulating 

long-term maintenance of progenitor cells in vitro (Kobayashi et al., 1989) and acts 

not by direct stimulation of stem cell self-renewal (Zipori and Lee, 1988) or by 

triggering early progenitor cells into active cell proliferation, but it is necessary for 

their continuance of proliferation (Suda et al., 1985). More recent studies indicate 

that ll-3 stimulates CFU-GEMM, BFU-E, and CFU-Eo directly, whereas the 
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Table 1. Biological actions of the colony stimulating factors. 

Growth 
Factor 

Il-3 

GM-CSF 

G-CSF 

M-CSF 

Epo 

Progenitor cell 
Target 

CPU-blast, CFU-GEMM, CFU-GM, 
CFU-G, CFU-M, CFU-Eo, CFU-Meg, 

CFU-Baso, BFU-E. 

CPU-Blast, CFU-GEMM, CFU-GM, 
CFU-G, CFU-M, CFU-Eo, CFU-Meg. 

CFU-G 

CFU-M 

CFU-E, late BFU-e, CFU-Meg 

Mature-Cell 
Target 

Eosinophils, 
Basophils, 
rnonocytes 

Granulocytes, 
Eosinophils, 
rnonocytes 
Basophils 
Granulocytes, 

Monocytesj
Macrophages 

None 

stimulation of CFU-GM, CFU-G and CFU-M requires the presence of monocytes or 

the addition of GM-CSF (Bot et al., 1989). This suggests that some of the effects of 

IL-3 are mediated by GM-CSF, produced by accessory cells. Similarly, G-CSF and M

CSF can synergize with GM-CSF in the stimulation of CFU-G and CFU-M respec

tively (Caracciolo et aL, 1987; Leary et al., 1987; Sonada et al., 1988; Ferrero et al., 

1989; Namiki and Hara, 1989). These observations are in accordance with the 

hypothesis of a hierarchy of colony-stimulating factors in hemopoietic development, 

with the sequence: ll-3, GM-CSF followed by G-CSF, M-CSF or Epo (Metcalf, 1984). 

1.2.2. The related interleukins 

Most of the interleukins act on lymphoid cells, but some also stimulate, either directly 

or indirectly, the proliferation and differentiation of other cell types. Il-l (a and 13) 

has been shown to regulate the cell growth of fibroblasts (Dukovich et al., 1986), 

epithelial cells, hemopoietic cells (Sieff et al., 1987, Broudy et al., 1987; Bagby et al., 

1986) and lymphoid cells (Tartakovsky et al., 1988; Jelinek et al., 1987; Freedman et 

al., 1988). Il-2 is a growth and differentiation factor for T-cells (Robb, 1984), Il-4 for 

resting B-cells (Sanderson et al., 1986), Il-5 for activated B-cells and a growth and 
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differentiation factor for eosinophils (Kinashi et al., 1986). Interleukin-6 has been 

reported to be involved in the induction of immunoglobulin production in activated B 

cells (Hirano et al., 1985, 1986), induction of 11-2 production, cell growth, and 

cytotoxic T-cell differentiation of T-cells (Garman et al., 1987, Okado et al., 1988), 

induction of proliferation of hybridomajplasmacytomamyeloma cells (Van Snick et 

al., 1986, 1987; Nordan and Potter 1986; VanDamme et al., 1987; Kawano et al., 

1988), stimulation of colony formation of multipotential hemopoietic cells (Ikebuchi 

et al., 1987), regulation of acute phase response (Andus et al., 1987) and induction of 

neural differentiation (Satoh et al., 1988). 11-7 is active on immature B cells (Namen 

et al., 1988). IL-8 is a neutrophil chemotactic factor (Yoshimura et al., 1987; Mat

sushima et al., 1988). The two most recently defined growth factors are ll-9, which 

stimules erythroid colony formation in vitro (Y and et al., 1989; Donahue et al., 1989) 

and ll-10, which is an inhibitor of cytokine synthesis (Moore et al., 1990). 

1.2.3. The effect of colony stimulating factors on mature cells 

In addition to the effect on progenitor cell proliferation and differentiation, hemopo

ietic growth factors may act on mature blood cells (Table 1). GM-CSF and G-CSF 

sustain the viability of neutrophils. They enhance their ability to produce superoxide 

anions in response to the bacterial peptide f-Met-Leu-Phe, to kill tumor targets 

through antibody-dependent cellular cytotoxity, and to phagocytize particles (Platzer 

et al., 1985; Lopez et al., 1986; Klausmann et al., 1988). GM-CSF also regulates the 

survival and function of eosinophils and macrophages and it is a potent inhibitor of 

neutrophil migration (Vadas et al., 1983; Gasson et al., 1984; Lopez et al., 1986; 

Metcalf et al., 1986; Silberstein et al., 1986; Arnaout et al., 1986; Socinski et al.,1988). 

M-CSF increases the tumoricidal activity of monocytes (Mufson and Ahgajanian, 

1987). 11-3 can act as a functional regulator of mature eosinophils, and monocytes 

(Cannistra et al., 1988; Rothenberg et al., 1988), and is reported to induce basophil 

histamine release (Haak-Frendscho et al., 1988). 
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1.2.4. The effect of colony stimulating factors on leukemic and non-hemopoietic cells 

Apart from their effect on normal hemopoietic cells the colony-stimulating factors are 

able to stimulate the proliferation of myeloid and erythroid leukemic cell lines and of 

myeloid leukemia blast cells in vitro. GM-CSF, G-CSF and Il-3, but less frequently 

M-CSF, stimulate AML growth in vitro (Hoang et al., 1986; Delwel et al., 1987; 

Griffin et al., 1986b; Mitjavila et al., 1987; Vellenga et al., 1987; Delwel et al., 1988). 

The response pattern of cells of different AML cases have been shown to be 

heterogeneous. Probably different subsets of cells exist in AML with distinct abilities 

to respond to CSFs (Delwel et al., 1988). Differentiation induction of leukemic blast 

cells, especially by G-CSF, has also been reported (Souza et al., 1986; Miyauchi et al., 

1988). More recently the hemopoietic growth factors have been reported to act also 

on non-hemopoietic cells. For instance, they may induce human endothelial cells to 

migrate and proliferate (Bussolino et al, 1989), and may stimulate the growth and/ or 

differentiation of non-hemopoietic tumor cell lines (Ruff et al., 1986; Baldwin et al., 

1989; Berdel et al., 1989). 

1.2.5. The production of colony stimulating factors. 

The colony stimulating factors can be produced by a variety of cells (table 2); Il-3 and 

GM-CSF by activated T-cells and monocytes (Wong et al., 1985; Otsuka et al., 1988; 

Sieff et al., 1988; Ernst et al., 1989), whereas fibroblasts, monocytes and endothelial 

cells can be induced to synthesize GM-CSF and G-CSF (Bagby et al., 1986; Horiguchi 

et al., 1987; Oster et al., 1987; Yang et al., 1988a; Kaushansky et al., 1988; Vellenga 

et al., 1988). Fibroblasts and endothelial cells appear to synthesize M-CSF constituti

vely (Sieff et al., 1988). Only erythropoietin and M-CSF are present in the serum in 

biologically active concentrations (Garcia et al., 1982; Das et al., 1981; Hanamura et 

al., 1988). G-CSF can be detected transiently following intensive chemotherapy or in 

disorders associated with neutropenia and in approximately 10% of normal sera 

(Watari et al., 1989). Il-3 and GM-CSF are not detectable as a circulating molecule. 

These growth factors seem to act locally in a paracrine fashion. In this respect it is of 

interesst that GM-CSF has been reported to become compartmentalized in the 

extracellular matrix of the bone marrow stroma (Gordon et al., 1987; Roberts et al., 

1988). 
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Figure 2. Cytokine cascades involving macrophage production of IL-l, interactions with T 
cells and stromal cells, and the production of different colony stimulating factors and 
interleukins that influence bone marrow progenitor cell proliferation and differentiation. 
According to Moore MAS. Role of interleukin-1 in hemopoiesis. Immunol Res 1989; 8: 
165. 

1.2.6. Synergistic and additive effects between colony stimulating factors. 

Synergism with hemopoietic growth factors was first described by Stanley et al. (1986) 

for an activity called hemopoietin-!. Hemopoietin-1 has now been demonstrated to be 

ll-1 (Mochizuki et al., 1987). It has been shown that ll-1 produced in response to 

inflammatory stress can stimulate the proliferation and differentiation of myeloid 

progenitor cells. ll-1 is a potential stimulator of the production of G-CSF and GM

CSF by endothelial, stromal and fibroblast cells, of G-CSF, GM-CSF and gamma

interferon by macrophages, and ll-3 and GM-CSF by T cells (Bagby et al., 1986; 

Bagby, 1987; Sieff, 1987; Broudy et al., 1987; Fibbe et al., 1988) (Fig.2). Furthermore 

it has been demonstrated that the expression of the genes for G-CSF, GM-CSF, ll-6 
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Figure 3. Growth factor dependence in the neutrophil lineage, depicting the target cells for 
competence, progression and differentiation factors. IL = interleukin; CSF = colony
stimulating factor. (Ikebuchi et al. 1985; Caracciolo et al. 1989). 

and Il-l itself can be induced by Il-l (Zsebo et al., 1988; Broudy et al., 1987; Sieff et 

al., 1988; Lee et al., 1987; Kaushansky et al., 1988). 

Vice versa, the CSFs are able to induce the elaboration of cytokines, e.g. Il-l by 

granulocytes (Lindemann et al., 1988) and mononuclear cells (Sisson and Dinarello, 

1988), whereas ll-3 and GM-CSF recruit monocytes to express and secrete G-CSF 

(Oster et al., 1989). 

The action-mechanism of these synergistic effects has not been elucidated yet. One 

hypothesis postulates that Il-l induces the expression of hemopoietic growth factor 

receptors on progenitor cells (Stanley et al., 1986), suggesting a direct effect of Il-l on 

progenitor and stem cells. Another possibility is that Il-l recruits quiescent progenitor 

cells into cell cycle (Ikebuchi et al., 1987; Leary et al., 1988) resulting in a priming for 

the action of hemopoietic growth factors. More recently it has been postulated that Il

l increases the stability of the mRNA of hemopoietic growth factors (Bagby, 1989) 

produced by accessory cells, suggesting that the effect of Il-l is indirect through 

augmenting growth factor production. The action of Il-l might be even more complex, 
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since it has been shown that some of the effects of Il-l are mediated by other factors, 

for instance Il-6 (Helle et al., 1988). All these data point to the existence of a 

cytokine network consisting of reciprocal induction of cytokines, transmodulation of 

cytokine cell surface receptors and synergistic, or additive interactions with cell 

function. Theoretically the hemopoietic growth factors may be grouped on the basis 

of these functions. The competence factors prime progenitor cells to make them 

responsive or more responsive to the activities of other factors. Examples of such 

factors are Il-l and Il-6. Subsequently, a progression factor like Il-3 or GM-CSF 

provides the second signal, after which a lineage specific factor like G-CSF, M-CSF or 

Epo stimulates terminal differentiation and maturation of the hemopoietic cells. The 

role of G-CSF and Il-6 in this model is still somewhat controversial, since both 

cytokines enhance proliferation of primitive stem cells (Ikebuchi et al., 1987; Ikebuchi 

et al., 1988) and also induce differentiation of committed granulocYtic progenitor 

cells, (Caracciolo et al., 1989), acting therefore both as a competence and a differen

tiation factor (Fig 3). 

1.2.7. Inhibitory effects of cytokines. 

All the cytokines described above have growth factor activity. The ability to inhibit 

cell growth or directly kill cells is limited to T-interferon (IFNT) (Raefsky et al., 1985: 

Mamus et al., 1985), tumor necrosis factor (TNF) (Degliantoni et al., 1985; Brox

meyer et al., 1986), lymphotoxin (LT) (Murphy et al., 1986), and transforming growth 

factor 13 (TGF13) (Espevik et al., 1987; Hino et al., 1988). It was recently appreciated 

that some of the cytokines ( TNFa) (Ishikura et al., 1989), Il-l (Santoli et al., 1987; 

Gasparetto et al., 1989) and Il-4 (Rennick et al., 1987) may act as a stimulator in one 

context, but as an inhibitor in another. This dual action depends either on the 

presence of other cytokines and the differentiation stage of the target cell or their 

concentration. Evidence of antagonistic competition between CSFs has been docu

mented by Metcalf (1988). When M-CSF and G-CSF act in combination on bipoten

tial progenitor cells there appears to be an element of competition in the commit

ment to the formation of granulocytic or macrophage progeny. However, if G-CSF is 
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Table 2. Main characteristics of the hemopoietic growth factors. 

Factor Molecular Chromosomal Cellular 
Mass (kD) location sources 

Il-3 14-28 5g23-31 T-cells, monocytes 

GM-CSF 14-35 5g21-32 T-cells, monocytes, 
fibroblasts, 
endothelial cells 
macrophages 

G-CSF 18-22 17q11.2-q21 Monocytes, fibroblasts, 
endothelial cells. 

M-CSF 40-90(dimer) 5g33.1 Monocytes, fibroblasts, 
Endothelial cells. 

Il-laj,B 17.5 2g12-21 Monocytesjmacrophages, 
Fibroblasts, 
Endothelial cells, 
Smooth muscle cells 

Il-6 26 7p21 Fibroblasts, monocytes, 
T-cells 

Epo 34-39 7qll-22 Peri tubular cells of the 

kidney, Kupffer cells. 

combined with low concentrations of M-CSF, there is also enhancement of the 

number and size of granulocytic colonies, demonstrating a delicate balance between 

antagonism and enhancement. 

1.2.8. Biochemistry of the colony stimulating factors. 

The CSF's are low molecular weight proteins ( < 80 KDa), which are variably 

glycosylated. Therefore each natural CSF occurs in different molecular weight forms 

(Clark and Kamen 1987; Sieff et al., 1988) (table 2). For the function of most of the 

hemopoietic growth factors glycosylation is not essential, but it has been reported that 

glycosylated GM-CSF is less active in vitro than non-glycosylated GM-CSF (Moonen 

et al., 1987). Moreover, the biological activity of erythropoietin in vivo is dependent 
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on proper glycosylation (Browne et al., 1986). The presence of cysteine residues 

suggests that disulphide bonds may be structural features of the molecules. The CSF's 

contain at least four cysteine residues, except Il-3 which contains only two cysteines 

(Yang et al., 1986). There is no significant sequence homology among these proteins. 

However, Il-6 was recently reported to show homology with G-CSF in a specific 

region where four cysteine residues reside. Moreover, the genes of both Il-6 and G

CSF, consisting of four introns and five exons, exhibit similar genomic organization 

(Hirano et al., 1986). Il-l has two structurally different forms, a and B, which are 

products of separate genes on chromosome 2 (Modi et al., 1988). Il-18 is the predo

minantly secreted form, and Il-1a is predominantly membrane bound. Both Il-la and 

B bind to the same receptor (Oppenheim et al., 1986). 

It is interesting that in man the genes for Il-3, Il-4, Il-5, GM-CSF, and M-CSF are 

clustered in the same band on the long arm of chromosome 5 (Yang et al., 1988b; 

Wong et al., 1985; Pettenati et al., 1987) (table 2). This region has also been shown to 

contain the proto-oncogen c-fms, encoding the M-CSF receptor , the gene for the en

dothelial cell growth factor (ECGF) and the gene for the platelet derived growth 

factor (PDGF) receptor (Le Beau et al., 1986; Sherr et al., 1985). This is especially 

intriguing since deletions of the long arm of chromosome 5 (5q-) are frequently 

observed in patients with a myelodysplastic syndrome or acute myeloid leukemia 

secondary to chemotherapy. The gene for G-CSF has been localized on chromosome 

17 (Simmers et al., 1987), whereas the erythropoietin (Law et al., 1986) and Il-6 

(Bowcock et al., 1988) gene are being mapped on chromosome 7. 

The CSFs have high specific biological activity, stimulating cell proliferation in the 

1010 
- 1012 M range. Their effects are mediated through a limited number (only a few 

hundred for each type of CSF) of specific receptors present on cell membranes, yet 

signalling is achieved by CSFs with low receptor occupancy (Park et al., 1986; Gasson 

et al., 1986; Dipersio et al., 1988). The receptors comprise an extracellular, transmem

brane and intracellular domain. Their binding leads to changes in the intracytoplas

matic domain and activation of a cascade of biochemical responses eventually 

resulting in stimulation of DNA synthesis. A description of this cascade of responses 

lies beyond the scope of this thesis. 
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1.3. THE MYELODYSPLASTIC SYNDROMES 

1.3.1. History 

The current concept of the myelodysplastic syndrome (MDS) emerges from studies on 

apparently two different diseases ; refractory anaemia on the one hand and preleuke

mia on the other. The refractory anemias were recognized in the 1930's, when it 

became apparent that these anemias were refractory to treatment with all known 

hematinics. In addition no specific metabolic defects could be identified. Roads and 

Halsey Barker (1938) described 100 cases of refractory anemia, which was often 

associated with leukopenia and trombocytopenia. 

The observation that acute myeloid leukemia can be preceded by a refractory anemia 

with also dysplastic features of the bone marrow, was first made at the beginning of 

this century (Von Leube, 1900; Parkes-Weber, 1904). Hamilton-Paterson (1949) 

described three patients who presented with refractory anemia and subsequently 

developed an acute myeloid leukemia, indicating that at least some of the refractory 

anemias should be considered to be preleukemic. The term 'preleukemia' was 

introduced by Block et al. in 1953, who observed 12 patients for as long as 27 months 

prior to the development of acute myelogenous leukemia. In the following years 

apparently similar conditions were described (Meacham and Weisberger, 1954; 

Bjorkman, 1956). Prospective studies performed more recently show an evolution 

pattern from normal hemopoiesis through a clinically recognizable dysplastic syn

drome to overt leukemia (Nowell et al., 1986; Todd and Pierre, 1986). Dameshek 

(1965) was the first to link the refractory anemias to the Di-Guglielmo's erythro

leukemia. He proposed that the two were different phases of the same disease and 

called it the Di-Guglielmo's syndrome. At about the same time a distinct group of 

refractory anemias was recognized having a prominent population of bone-marrow 

erythroblasts with perinuclear iron deposits or siderotic granules, the ringed sidero

blasts. This subgroup presently known as the acquired idiopathic sideroblastic anemia 

(AISA) (Bjorkman, 1956), is usually characterised by a insidious clinical course (Beris 

et al., 1983). Saarni and Linman (1973) and later Linman and Bagby (1978) develo

ped the concept of 'the preleukemic syndrome', defined by dysplastic features of the 

megakaryocytes and granulocytes as well as dyserythropoiesis, with no more than 5% 

blast cells detectable in the bone marrow. Concurrently Dreyfus et al (1970) and 
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Dreyfus (1976) described patients with 'refractory anemia with excess of myeloblasts' 

with identical morphological abnormalities as noted by Linman. In 1982 the French

American-British (FAB) co-operative group (Bennett et al., 1982) proposed the 

unifying concept of the myelodysplastic syndrome, subdivided in five separate entities: 

1. refractory anemia (RA); 

2. refractory anemia with ring sideroblasts (RARS) 

3. refractory anemia with excess of blasts (RAEB); 

4. chronic myelomonocytic leukemia (CMML). 

5. refractory anemia with excess of blasts in transformation (RAEBt). 

These different groups of the F AB classification are described in more detail below. 

With cytogenetic analysis of the bone marrow cells and glucose-6-phosphate dehydro

genase isoenzyme studies in female heterozygotes it was possible to demonstrate that 

MDS is a clonal disease of the pluripotent hemopoietic stem cell (Fialkow et al., 

1981; Raskind et al., 1984). Disease progression in MDS may be due to the gradual 

clonal expansion of the abnormal population with suppression of the normal hemopo

iesis (Abkovitch et al., 1984). More recent reports, presenting data on X-linked 

restriction fragment length polymorphism, provide evidence that MDS is a clonal 

disorder of the pluripotent stem cell, which clone has totally replaced the normal 

hemopoiesis (Janssen et al., 1989; Tefferi et al., 1990). 

1.3.2. Morphological characteristics of the MDS 

In order to describe the morphological features underlying refractory anemia, Lewis 

and Verwilghen (1972) introduced the term "dyshematopoiesis". Dyshematopoiesis 

may be observed in one or more hemopoietic cell lines (Table 3): 

Dyserythropoiesis: 

The presence of ringed sideroblasts, multinuclearity, nuclear fragments, Howell-Jolly 

bodies and nuclear-cytoplasmic asynchrony with intense cytoplasmic basophilia are 

morphological features in the bone marrow. In the peripheral blood basophilic 

stippling and fragmentation of the erythrocytes with moderate anisocytosis and 

poikilocytosis are usually seen. 
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Table 3.Qualitative abnormalities in the myelodysplastic 
syndromes 

Cell lineage 

Erythroid 

Peripheral blood 

Macrocytes; dimorphic 
picture; anisopoikilo
cytosis 
polychromatic cells; 
normoblasts (often dys
erythropoietic) 

Bone marrow 

Erythroid hyperplasia 
ring sideroblasts 
dyserythropoisis 
Megaloblasts 
Cytoplasmic vacuo 
lization 

Megakaryocytic Giant platelets; 
megakaryocyte fragments 

Small megakaryocytes 
with one or two small 
round nuclei; larger 
forms with single large 
ovoid nucleus; 
polynuclear forms 

Granulocytic 

Monocytic 

Blasts 

Dysgranulopoiesis: 

Hypo- or agranular 
neutrophils; speudo
pelger-Huet neutrophils 

Mature forms sometimes 
with multiple elongated 
lobes, some with fine 
azurophilic granules 

Promyelocytes with 
sparse azurophilic 
hypo- or agranularity 
of myelocytes, meta
myelocytes and 
neutrophils 

Promonocytes 
sometimes present 

Usually small mononuclear blasts with scanty 
agranular (type I) or sparsely granular (type II) 
blasts. 

This is characterized by hypogranulation and hyposegementation of the granulocytic 

cells. Excessive chromatin condensation (pseudo-Pelger-Huet anomaly), but also 

hypersegmentation with unequally sized lobes can be seen. Additionally persistent 

basophilia and excess azurophilic of the promyelocytes may be prominent in the bone 

marrow. 

Dysmegakacyocytopoiesis: 

Micromegakaryocytes, multiple small hypersegmented nuclei and large mononuclear 

forms are typical features of the bone marrow. The platelet production may appear 

normal, increased or decreased. In the peripheral blood abnormal platelets, especially 

giant forms are often present. 
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1.3.3. Classification 

Although the FAB entities are defined by arbitrary criteria (Table 4), it is usually 

possible to classify them according to the following crititeria: 

1. Refractozy anemia (RA) 

The anemia is frequently accompanied by some neutropenia and trombocytopenia. 

The peripheral blood containes less than 1% blast cells and the bone marrow less 

than 5%. The bone marrow is normo- to hypercellular. Erythroid hyperplasia with 

dyserythropoiesis is a common feature. Some degree of dysgranulopoiesis or dys

megakaryopoiesis may be present. 

2. Refractozy anemia with ringed sideroblasts (RARS) (acquired idiopatic sideroblas

tic anemia. AISA): 

The morphological features resemble those of RA, but dysgranulopoiesis and 

dysmegakaryopoiesis are not as common. The major marrow characteristic is a high 

number of ringed sideroblast of at least 15% of the nucleated cells. 

3. Refractozy anemia with excess of blasts (RAEB): 

Some degree of peripheral cytopenia is usually seen in all three lineages. Dyseryth

ropoiesis as well as prominent dysgranulopoiesis are present. Blast counts may 

amount to 5% in the peripheral blood and to 5- 20% in the bone marrow. The bone 

marrow is normocellular and or often hypercellular, with erythroid and myeloid 

hyperplasia. 

4. Chronic myelomonocytic leukemia (CMML): 

The major feature of CMML is the presence of monocytosis in the peripheral blood 

and the bone marrow. The minimal number of peripheral monocytes required for this 

MDS entity is 1 x 10 9/1. The morphological features of the bone-marrow resemble 

RAEB in some cases and RA in others. 

20 



5. RAEB in transformation (RAEBt): 

This MDS category fills in the the gap between RAEB and AML. Bone marrow blast 

counts amount from 20- 30% and more than 5% circulating blast cells may be 

present. Auer rods are seen occasionally. 

Table 4.Classification of the myelodysplastic syndrome 

FAB 
type 

Refractory 
anemia (RA) 

RA with ring
sideroblasts 
(RARS) 

RA with excess 
of blasts 
(RAEB) 

RAEB in trans
formation 
(RAEBt) 

Chronic myelo
monocytic leukemia 
(CMML) 

1.3.4. Clinical features 

Peripheral 
blood 

< 1% blasts 

< 1% blasts 

< 5% blasts 

< 5% blasts 
± Auer rods 

< 5% blasts 
> 1 X 109/1 
monocytes 

Bone marrow 

Dyshemopoiesis in one 
or more lineages 
< 5% blasts 

As RA with >15% ring
sideroblasts 

As RA with 5-20% blasts 

As RA with 20-30% blasts 
± Auer rods 

As any of the above 
+ promonocytes 

Usually the patients with a myelodysplastic syndrome are older than 50 years. Most 

patients present with anemia. Infections or sometimes bleeding may also be the first 

symptoms. Infection are usually bacterial, respiratory or septicemic. Splenomegaly 

occurs almost exclusively in CMML. 

The natural history of MDS is a transition to overt non-lymphocytic leukemia in 

approximately half of the patients. However, most patients die of the consequences of 

marrow failure, i.e., bleedings or infections. Three patterns of evolution based on 

sequential determinations of bone marrow blasts can be observed in MDS (Tricot et 

al., 1985 and as illustrated in figure 4: 1) an apparently stable disease with no or a 

minimal increase of bone marrow blasts 2) initially a morphologically stable disease, 
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diagnosis AML 

Figure 4. Hypothetical model of evolation patterns in patients with MDS. 1, stable clone, 
with low proliferative capacities; 2, stable clone, with a more pronounced proliferative 
capacities; 3, instable clone, with initially a stable disease, but with a high probability of 
transformation to a clone with a high proliferative capacity. Adapted from Tricot G, et al. 
1985. 

comparable with pattern 1, but changing into a progressive disease with a rapid 

increase in blast cells and a rapid transformation to acute leukemia and 3) with a 

gradual increase in bone marrow blasts. The majority of these patients eventually 

developed overt myeloid leukemia. 

1.3.5. Cytogenetics 

Karyotypic abnormalities have been detected in 40-60% of the MDS patients using 

conventional cytogenetic banding techniques (Jacobs et al., 1986; SIWCL, 1981). 

Refined high-resolution chromosome analysis has resulted in the detection of non

random cytogenetic abnormalities in 79% of the MDS cases (Yunis et al., 1986; Yunis 

et al., 1988). The commonest abnormalities in MDS are deletions, rather than 

reciprocal translocations or inversions. Chromosomal deletions, such as monosomy 5 

(-5), 5q-, monosomy 7 (-7), 7q-, -Y, 20q- or trisomy 8 ( +8) or complex defects, often 

including one or more of the above abnormalities mentioned; represent the main 

chromosomal abnormalities in MDS . These are, however, not specific for MDS 

because they may also be seen in AML. There is also no apparent correlation 

between a particular chromosomal abnormality and any of the F AB subtypes of MDS 

(Knapp et al., 1985; Yunis et al., 1986; Yunis et al., 1988). However, the deletion of 
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the long arm of chromosome 5 (Sq-), when present as a sole defect, is associated with 

RA or RAEB, female sex, macrocytic anemia, normal or raised platelet counts, and 

erythroid hyperplasia with mononuclear megakaryocytes in the bone marrow 

(Kerkhofs et al., 1982; Van den Berghe, 1986). Monosomy 7 (-7) often goes with 

hypocellular marrow, pancytopenia and defective neutrophil functions (Pederson

Bjergaard et al., 1982). The presence or absence of chromosomal abnormalities has 

prognostic significance. Certain chromosomal abberations are predictive for an 

unfavorable prognosis. The Sq- syndrome usually runs a benign clinical course, 

whereas -7, and 7q- is frequently associated with a rapid progresion and a high 

probability of leukemic transformation (Anderson and Bagby, 1982; Nowell et al., 

1986). The presence of complex cytogenetic abnormalities, an unfavorable prognostic 

feature, is often found in MDS cases secondary to chemotherapy. 

1.3.6. In vitro marrow cultures 

The use of in vitro clonogenic or colony assays has provided methods to analyze the 

hemopoietic progenitor compartments and the hemopoietic colony stimulating factors 

or cytokines involved in the regulation of cell proliferation and cell differentiation. As 

described above, it has been shown that MDS is a clonal disease of the hemopoietic 

stem cell and that the abnormal clone is already fully established in a relatively early 

stage of the disease. Moreover it was demonstated that both the BFU-E as well as 

the CFU-GM derived colony cells contain the same cytogenetic abnormality, indica

ting that they stem from the same abnormal progenitor cell (Abkowitz et al., 1984). 

Therefore it appears to be likely that the in vitro growth characteristics of MDS bone 

marrow in clonogenic assays may reflect the functional abnormalities of the hemo

poietic progenitor cells in MDS. 

The colony forming capacities of all different committed progenitor cells (CFU

GEMM, BFU-E, CFU-E, CFU-GM, CFU-Meg) are usually decreased in MDS 

patients (Greenberg et al., 1983; Greenberg and Mara, 1979; Chiu and Clark, 1982; 

Juvonen et al., 1986; Swanson et al., 1986), as in AML patients. A defective matura

tion of the colony cells is frequently observed (Golde and Cline, 1973; Spitzer et al., 

1979; Verma et al., 1979). Generally two growth patterns of the CFU-GM may be 

discerned: a 'leukemic' and a 'non-leukemic'type (Greenberg and Mara, 1979; Verma 
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et al., 1979; Spitzer et al., 1979; Gold et al., 1983). A non-leukemic type of growth is 

most frequently observed in the RARS (MDS 2) subgroup of MDS, which fits with 

the observation that RARS is less often accompanied by dysgranulopoiesis (Green

berg and Mara, 1979; Greenberg, 1981). A leukemic type of growth is seen sometimes 

in RA, but most often in RAEB and RAEBt. In some cases of CMML the marrow 

culture shows growth of clusters as well as colonies as in CML. A leukemic growth 

pattern seems to be associated with a higher transformation rate to AML as com

pared with a non-leukemic growth pattern (Verma et al., 1979). The erythroid burst 

and colony formation in MDS has been investigated less extensively. However, it has 

become evident that the formation of both BFU-E and CFU-E is defective in a 

majority of the MDS patients (Hutcheson et al., 1979; Chui and Clark, 1982; Amato 

and Khan, 1983; Ruutu et al., 1984). Information on the growth of megakaryocyte 

colonies is even more limited. Juvonen et al. (1989) found a defective CFU-Meg and 

BFU-E growth in all 10 patients studied, but only four had abnormal CFU-GM 

growth. Also in long-term marrow cultures the hemopoiesis can rarely be sustained 

beyond 2-4 weeks, while the cells retain their dysplastic features (Bourbenyi et al., 

1987). Attempts to correlate the in vitro growth patterns with the F AB classification 

have rendered different results. Ruutu et al., (1984) reported a correlation between 

normal CFU-GM numbers and RARS, whereas May et al., (1985) found no cor

relation between FAB type and colony growth pattern. Oscier et al. (1989) found sig

nificantly higher CFU-GM numbers in CMML than in RAEB and RAEBt in a large 

series of MDS patients, low or absent BFU-E growth in the majority of the patients 

with RARS, CMML, RAEB and RAEBt, but normal growth in 10 of the 22 RA 

patients (Table 5). 

Table 5. In vitro colony formation in the myelodysplastic 
syndromes 

Type CFU GEMM CFU-GM BFU-E CFU-E CFU-Meg 

RA Nj~ Nj~ N/~ Nj~ N/~ 
RARS N N N N N 
RAEB ~ ~ ~ ~ ~ 
RAEBt ~ ~ ~ ~ ~ 
CMML Njt t ~ ~ 

N,normal; t, increased; ~, decreased numbers of colonies 
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The nature of the defect leading to abnormal in vitro colony formation of the 

hemopoietic progenitor cells in MDS is not known. The abnormalities may be either 

an intrinsic progenitor cell defect, i.e. abnormal growth factor responsiveness, or an 

environmental one, i.e an abnormal growth factor production. The results obtained 

with in vitro bone marrow cultures, described above, are not capable to discriminate 

between these two possibilities, since the marrow cells are not fractionated and 

therefore contain many accessory cells, which can produce hemopoietic growth 

factors. Furthermore, all these studies were performed with crude sources of colony 

stimulating activity. Recently some results have been reported on the response to 

recombinant hemopoietic growth factors by purified MDS progenitor cells (Carlo

Stella et al., 1989; Schouten et al., 1989), suggesting the presence of an intrinsic 

progenitor cell abnormality. However, also growth factor production abnormalities by 

bone marrow accessory cells was recently reported (Merchav et al., 1989). 

1.3.7. Prognostic factors 

Prognosis in MDS is extremely variable. The F AB classification has some prognostic 

significance, with a better prognosis for RA and RARS than RAEB and RAEBt. The 

most important factor in prognosis is the number of blast cells in blood and bone

marrow. (Kerkhofs et al., 1986). The Boumemouth score (Mufti et al., 1985) allocates 

one point for each of the following features: an Hb concentration < 100g/l, for 

neutrophil count <2.5 x 109/1 or > 15 x 109 in CMML, for a platelet count < 100 x 

109 and for a bone marrow blast count > 5%. Patients with a score of 0 or 1 have 

the best prognosis with a median survival of 62 months; patients with a score of 2 or 

3 have a median survival of 22 months and patients with a score of 4 have a poor 

prognosis with a median survival of 8 months. A further prognostic factor has been 

described by Tricot et al., (1984). He designated clusters of myeloblasts abnormally 

localized in the central marrow as ALIPs (abnormal localization of immature 

precursors). ALIPs seen in some cases of RA are a independent indicator of a poor 

prognosis. The importance of karyotype and of the growth pattern of in vitro cultured 

bone marrow cells for prognosis are described above. 
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1.3.8. Treatment 

Since MDS patients are usually elderly, often only symptomatic treatment can be 

aplied. Intensive chemotherapy is eligible in patients not older than 50, in which a 

complete remission rate of 86% can be achieved with conventional chemotherapy 

(anthracycline and cytosine arabinoside (ARA-C)) or high dose ARA-C (Tricot et al., 

1986). In younger patients (<50 years), with HLA-compatible siblings, results of 

bone-marrow transplatation are encouraging and should be seriously considered as 

the treatment of choice (Appelbaum et al., 1987; Baines et al., 1988). In older 

patients some favourable results with low-dose ARA-C have been reported 

(Chomienne et al., 1987). MDS patients have been treated with G-CSF and GM-CSF 

(Vadhan-Raj et al.,1987; Antin et al., 1988; Ganser et al., 1989; Negrin et al., 1989). 

The majority of these patients have shown marked improvement of blood neutrophil 

counts after G-CSF and GM-CSF treatment but without improvement in platalet 

counts. In a low proportion of patients improved reticulocyte and hemoglobin levels 

occurred. Marrow myeloid maturation was better enhanced by G-CSF than by GM

CSF. Caution must be taken with CSF treatment because there is a possibility of 

accelerating the proliferation of the leukemic clones. However, several investigators 

recently demontrated that treatment with GM-CSF altered cell growth kinetics 

(Herrmann et al., 1989) sensitizing leukemic blasts to cytotoxic drugs as shown by 

enhanced cell-kill in vitro. Studies of cell-kinetics and cytosine-arabinoside metabo

lism proved that GM-CSF- induced recruitment of quiescent leukemic cells primed 

them to become more sensitive to cell-cycle specific cytotoxic drugs (Tafuri et al., 

1988; Cannistra SA et al., 1988; Andreeff M et al., 1989). Clinical trials with the 

combination of GM-CSF and ARA-C are presently performed in MDS. 
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1.4. INTRODUCTION TO THE EXPERIMENTAL WORK 

In this thesis studies were performed to characterize the abnormal hemopoiesis in 

MDS by using immunofluorescence analysis and in vitro colony assays in order to 

investigate the presence of intrinsic abnormalities of myelodysplastic progenitor cells, 

i.e. to detect immunophenotypicly abnormal subpopulations and abnormal respon

siveness of progenitor cells to the various hemopoietic growth factors. 

In chapter 2, six patients with MDS (three with RARS, two with RAEB and one with 

RAEBt) were studied using double immunofluorescence analysis for the presence of 

terminal deoxynucleotidyl transferase (TdT) and myeloid-antigen (MM) expression. 

MM + /TdT + subpopulations occur in the majority of AMLs and these TdT-positive 

cells belong to the AML cell-population. The objectives of the experiments described 

in this chapter were to determine whether MM + /TdT + cells are detectable in MDS 

as well and TdT-positivity of myeloid cells is an useful marker for the abnormal 

granulopoiesis in MDS. 

In the following chapters the characteristics of colony formation by low-bouyant 

density bone marrow cells, depleted of T-cells and adherent cells, were studied. 

Colony growth patterns were studied in the PHA-clonogenic assay, which is also used 

for the growth of AML-CFU (Chapter 3). Subsequently the colony formation and 

growth kinetics of MDS bone marrow myeloid progenitor cells stimulated with 

recombinant 11-3, GM-CSF and G-CSF were studied and compared with the growth 

kinetics of normal myeloid progenitor cells and bone marrow cells cultured after 

exposure to 4-hydropero:xy-cyclophosphamide (4-HC)(Chapter 4). Primitive progenitor 

cells will be spared during in vitro 4-HC treatment. Therefore, 4-HC exposure will 

consequently result in a relative enrichement for early progenitor cells. Since the in 

vitro growth abnormalities of MDS bone marrow may be due to a relative left shift in 

the progenitor cell compartment, the objective of the 4-HC experiments was to 

compare the growth kinetics of MDS marrow with those of normal bone marrow 

relatively enriched for early progenitor cells. In these investigations a semi-solid 

colony assay was used in order to exclude possible cell-cell interactions and induce 

clonal growth of stem cell progeny. Since in vitro colony formation of MDS bone 

marrow stimulated with single CSF was found to be decreased, it was investigated 

whether combinations of 11-3, GM-CSF and G-CSF could enhance the growth of 
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MDS myeloid and erythroid progenitor cells, in other words, whether MDS progeni

tors needed more CSFs for clonal expansion than their normal counterparts (Chapter 

5). Finally, the effects of competence factors such as IL-l and more extensively of Il-6 

on the GM-CSF induced colony formation of MDS and normal marrow cells were 

studied (Chapter 6). 

In chapter 7 the presented work is discussed in the context of the literature. 
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Abstract 

Six patients with a myelodysplastic syndrome (MDS) (three with refractory anemia 

with ringsideroblasts (RARS), two with RA with excess of blasts (RAEB) and one 

with RAEB in transformation (RAEBt)) were studied by double immunofluoresence 

(DIF) analysis for the presence of terminal desoxynucleotidyl transferase (TdT) and 

myeloid-antigen (MM), such as CD13, CD14, CD15 and CD33, expression. TdT 

expression was found in 0.1 - 11% of the cells. In four cases ( 1 RAEBt, 2 RAEB and 

1 RARS) 58 - 99% of the TdT+ cells expressed the panmyeloid markers CD13 

and/or CD33, whereas the precursor antigen CD34 was present in 26 - 99% of the 

TdT + cells. Follow up studies performed in two patients, that evolved into an acute 

myeloid leukemia (AML), showed in one patient an increase of MM+/TdT+ cells 

from 11% in RAEBt to 25% in AML-M2. In the other patient the percentage of 

MM + /TdT + cells was 0.1% at diagnosis, decreased during remission and increased 

to 0.2% before relapse RAEB and finally to 35% when AML-M2 emerged. These 

data indicate that the detection of MM + /TdT + cells in MDS may facilitate the 

detection of abnormal myeloid cells and may be useful to monitor these cells during 

disease progression. No MM + /TdT + cells were found in 2/3 RARS patients. In 

these two patients no features of dysgranulopoiesis were found. Moreover the latter 

two RARS cases had a low Boumemouth score, which indicates a good prognosis. In 

the other RARS patient 5% MM+/TdT+ cells were detected in parallel with 

dysgranulopoietic features and a high Boumemouth score, suggesting that DIF 

staining can discriminate between RARS cases with and without an abnormal 

granulopoiesis. 
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Introduction 

The enzyme terminal deoxynucleotidyl transferase (TdT) is expressed on the nuclear 

membrane of normal precursor B and T cells as well as their malignant counterparts, 

i.e., acute lymphoblastic leukemias and some lymphoblastic lymphomas (1,2). TdT 

positivity has also been found in acute myeloid leukemia (AML) (3,4,5). This has 

initially been ascribed to a 'mixed', 'biclonal' or 'biphenotypic' cell population in these 

leukemias (6). However, the simultaneous demonstration of TdT and Sudan black or 

myelo-peroxidase positivity in single blast cells proved the existence of 'TdT-positive 

leukemic myeloblasts' (4,7). Recently, we have demonstrated by double immunofluor

escence (DIF) analysis that a TdT-myeloid-antigen double-positive (MM + /TdT +) 

leukemic subpopulation occurs in the majority of AMLs (8). 

The myelodysplastic syndrome (MDS) is a clonal disease of the hemopoietic stem cell 

characterized by an ineffective hemopoiesis resulting in a cytopenia of one or more 

cell lineages (9,10). The French-Americam-British (FAB) co-operative group has 

defined criteria for the classification of MDS (11), comprising 5 different entities, i.e., 

refractory anemia (RA), RA with ring-sideroblasts (RARS), RA with excess of blasts 

(RAEB), chronic myelomonocytic leukemia (CMML) and RAEB in transformation 

(RAEBt). Up to 40% of MDS cases evolve in an AML during the course of their 

disease (9). In MDS TdT-positivity has also been cited as an example of mixed

lineage expression (12). However, no DIF analysis has been performed in these cases, 

and therefore the TdT-positive cells may belong to the myeloid differentiation 

lineage. We performed DIF analysis for TdT and differentiation markers for the 

myeloid and lymphoid lineage in six MDS patients (two with RARS, three with 

RAEB and one with RAEBt) in order to investigate the presence MM + /TdT + cells. 

In addition, we applied double marker analysis to monitor the MM + /TdT + sub

population in two MDS patients during the course of their disease. 
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Patients and Methods 

Six patients with MDS were investigated; three females and three males, with a 

median age of 65 year (16-89 y). The clinical and hematological features of the 

patients are summarized in Table 1. Presenting symptoms were anemia in all cases, 

infection in two and bleeding in one. The diagnosis MDS was assessed according to 

the criteria, as defined by the FAB cooperative group (11,13,14), in films of peri

pheral blood and bone-marrow stained with May-GrUnwald Giemsa. 

Prognostic scores were given to each patient according to the Bounemouth system 

(15), which allocates one point for each of the following features: an Hb of less than 

6.5 mmoljl, for a white blood cell-count of less than 2.5 x 109/1, for a platelet count 

of less than 100 x 109/1 and for a bone marrow blast count of more than 5%. Patients 

with a score of 0 or 1 have the best prognosis with a median survival of 62 months, 

patients with a score of 2 or 3 have a median survival of 22 months and patients with 

a score of 4 have a poor prognosis with a median survival of 8 months. 

Chromosomal analyses were performed at diagnosis and during the course of the 

disease according to a standard technique (16) and chromosomal abnormalities were 

described according to the ISCN (17). 

Immunological marker analyses were performed as described before (8). The 

expression of a series of immunological markers was tested, including terminal 

desoxynucleotidyl transferase (TdT), the B cell markers CD10 (VIL-A1; Dr. W. 

Knapp, Vienna, Austria) and CD19 (B4; Coulter Clone, Hialeah, FL, USA) the T-cell 

markers CD2 (Tll; Coulter Clone), CD3 (Leu-4; Becton Dickinson, San Jose, CA, 

USA) and CD7 (3A1; American Type Culture Collection, Rockville, MD, USA), the 

myeloid markers CD13 (My7; Coulter Clone), CD14 (My4; Coulter Clone), CD15 

(VIM-D5; Dr. W. Knapp) and CD33 (My9; Coulter Clone), the HLA-DR antigen 

(L243; Becton Dickinson), the precursor antigen CD34 (BI-3C5; Seralab, Crawley 

Down, UK) and glycophorin A (GpA) (VIE-G4; Dr. W. Knapp). The TdT-IF assay 

was performed by use of rabbit anti-TdT antiserum and a FITC-conjugated goat anti

rabbit (Ig) antiserum (Supertechs, Bethesda, MD, U.S.A). DIF analysis for the 

differentiation markers CD2, CD7, CD10, CD19, CD13, CD14, CD15, CD33 and 

CD34 and for TdT were performed as described before (8). 
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Table 1 Features of patients with MDS at the time of diagnosis 

bone marrow peripheral blood bournemoU1h score 

sexjage Dx EB% MB% Hb mmol/1 ret% MCVfl WBC 10"9 Pl10"9 

1. M.M. M/17 RAEBt 62.4 8.8 4.1 40 100 2.9 14 3 

2. S.M. F/16 RAEB 47.6 7.2 3.9 24 111 3.0 36 3 

~ 3. J.N. F/87 RAEB 22.8 13.6 4.1 nd 95 1.6 52 4 
\0 

4. H.F. M/76 RARS 42.0 0.4 5.7 9 114 5.7 588 

5. H.B. F/65 RARS 57.6 1.2 5.7 10 112 4.8 345 

6. N.K. M/89 RARS 40.7 1.7 3.7 nd 89 1.9 59 3 

median 65 52.6 4.0 4.1 17 106 3.0 56 

Ox, diagnosis according to the FAB criteria; EB, erythroblasts; MB, myeloblasts; Hb, hemoglobin concentration; ret, reticulocytes; MCV, mean corpuscular volume; 

WBC, white blood ceii-<:Ount; PI, platelet count. 



Results 

Patients 

According to the F AB criteria patient 1 was classified as RAEBt, patients 2 and 3 as 

RAEB and patients 4, 5 and 6 as RARS. The median myeloblast cell count was 4.0% 

(0.4-13.6), erythroblast count 52.6% (22.8-62.4), hemoglobin concentration 4.1 

mmol/1, MCV 106 £1, reticulocyte count 17%, white blood cell-count 3.0 x 109/1 and 

platelet count 56 x 109 /1. Patients 1,2,3 and 6 had a Boumemouth score of 3 or 4, 

whereas in patients 4 and 5 a score of 1 was found (Table 1). 

Patients 1 and 2 progressed to an AML-M2 during their clinical course, within 2 and 

15 months respectively. Complete remission was achieved in patient 1 after one 

course of chemotherapy and in patient 2 after two courses of chemotherapy. Remis

sion duration was 5 and 7 months respectively. 

Cytogenetics 

Chromosomal analysis was performed at diagnosis in cases 1 and 2. No chromosomal 

abnormalities were found, in the 32 metaphases investigated in each case. During the 

course of the disease chromosomal abnormalities could be detected in patient 1, in 

which the relapse (RAEBt) bone marrow cells contained a previously absent abnor

mality i.e.: t(1;2), t(7;13) in 20% of the metaphases. 

Immunologic marker analysis 

The results of the immunological marker analyses, which were performed at the time 

of diagnosis, are given in Table 2. Low percentages of cells expressing the T-cell 

markers CD2 and CD3 were found in all cases except in case 3, in which 47% CD2 

and 41% CD3-positive cells were detected. In all cases low percentages of the B-cell 

markers CDlO and CD19 and the monocytic marker CD14 were found. The majority 

of the mononuclear cells expressed the pan-myeloid markers CD13 and/or CD33. 

The precursor antigen CD34 was present in < 1 - 22% of the cells. Less than 5% 

CD34-positivity was found in cases 3 and 4 (both RARS), whereas a percentage of 

above 10% was found in cases 1, 2 and 3 (RAEB and RAEBt cases). Expression of 

TdT was found in 0.1 - 11% of the cells . 
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Table 2: Immunological marker analysis of patients with MDS at the time of diagnosis 

Percentage of MNC and TdT + cells positive for surface marker 

Patient Stage TdT C02 CD3 CD7 CD10 CD19 CD13 CD14 CD15 CD33 CD34 HLADR GpA 

1. M.M.b RAEBt 11 9(0.5} 10 10(5} <1(0.5} 8(0} 2(39} 2(0} 38(0} 57(97} 22(88} 32(26} 13 

2. S.M. RAEB 0.1 8(1} 6 10(21} < 1 (11) 3(0} 4(45} 8(0} 21 (1} 79(87} 10(93} 19(73} 29 
Ut 

""' 2. S.M. AML 29 8 1 67(63} 4 27 80(99} 55 

3. J.N. RAEB 2.5 47 41 43 <1(6} 6 7 <1 19 37(58} 15(99} 47 2 

4. H.F. RARS 0.1 8 12 11 <1(5} 5 26 2 46 50(9} 4(38} 16 8 

5. H.B. RARS 0.1 18 14 16 < 1 (53} 3 20 7 48 32(2} <1 (11} 25 <1 

6. N.K. RARS 5 12 12 10 <1 (9} 2 32 23 10 48(93} 8{68} 9 2 

a. Percentages positivity for surface membrane marker per TdT-positive cells as determined by DIF staining. 
b. At end stage disease, diagnosed as AML-M2, 25% CD33+,TdT+ cells were detected. 
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Using DIF staining it was found in 4 cases (1-3 and 6) that the majority (58 - 99%) of 

the TdT+ cells were positive for CD13 and/or CD33, but negative for CD10 

(MM + jTdT +) and 68 - 99% of the TdT + cells were positive for the precursor 

antigen CD34. However, in cases 4 and 5, in which 0.1% TdT + cells were detected, 

only 9.3 and 2.0% of the TdT+ cells were CD33 positive, whereas 11 and 38% of the 

cells were found to have the CD34+ /TdT+ phenotype. 
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Figure 1: Follow-up of BM samples of patient 2 by use of DIF staining for TdT and 
the myeloid marker CD33. Clinical phase is based on both clinical observation and 
cytomorphology of BM (closed circles) and PB samples (open circles). PR =partial 
remission, CR = complete remission, Re = relapse, Rx = start chemotherapy, Stop 
Rx = end of chemotherapy. GM-CSF = granulocyte-macrophage colony-stimulating 
factor, LD Ara-C = low dose cytosine arabinoside, HU = hydroxyurea. 

Follow-up studies of two MDS patients 

In order to monitor the MM + /TdT + subpopulation follow-up DIF studies were 

performed in patients 1 and 2. In patient 1 the CD33 + /TdT + population increased 

from 11% in the RAEBt to 25% in the AML-M2 stage of the disease. As depicted in 
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figure 2, in patient 2 the CD33+ /TdT+ subpopulation, which made up 0.1% of the 

cells in the RAEB phase, gradually decreased to below detection at the end of 

induction therapy when this patient was in complete remission, subsequently 

CD33 + /TdT + cells became detectable again 6 months before relapse RAEB. This 

MM + /TdT + subpopulation rapidly expanded to 35% in the terminal AML-M2 

phase. 

Discussion 

The objective of this study was to determine whether MM + /TdT + cells are detec

table in MDS. We therefore analysed by DIP stainings six MDS cases ( one RAEBt, 

two RAEB and three RARS ), and performed follow up studies in two cases, which 

eventually evolved in an AML. TdT-positivity was found in 0.1 - 11% of the cells. In 

the two RAEB cases and the RAEBt case the majority of the TdT + cells were 

positive for CD13 and/or CD33, which are myeloid surface-antigens that have not 

been found on normal T or B lymphocytes (18), indicating that the TdT + cells belong 

to the myeloid differentiation lineage. Interestingly, CD34 expression was found in 

88 - 99% of the TdT + cells in these three cases. CD34 is expressed by progenitor 

cells in normal bone marrow as well as immature acute leukemias (19). Therefore, it 

is likely that the CD34+ /TdT+ represent a immature subpopulation within the MDS. 

It is unlikely that TdT + cells expressing CD 13 and/ or CD33 are residual normal 

elements within the bone marrow, since MM + /TdT + is detected in normal bone 

marrows in extreemly low fequency, if detected at all (20,21). Moreover, in patients 1 

and 2 MM + /TdT + cells could be detected in MDS and AML phase of the disease. 

In patient 1 the percentage of MM + /TdT + cells increased from 11% in MDS to 

25% in AML. In patient 2 the MM+/TdT+ subpopulation was 0.1% at diagnosis, 

markedly reduced during remission and rapidly increased before relapse RAEB and 

further increased to 35% in parallel with progression to AML. These data strongly 

suggest that MM + /TdT + cells represent an abnormal myeloid subpopulation, which 

might belong to the leukemic clone and is already detectable in MDS. Furthermore, 

double marker analysis for a myeloid marker and TdT may be useful to monitor this 

abnormal subpopulation during disease progression. 

In two of the three RARS cases only a minority of the TdT + cells were found to be 
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CD33 positive. The percentage MM + /TdT + cells in these two RARS cases did not 

exceed the percentages that are found in normal bone marrows (20,21). 

This is in agreement with the observation that RARS is less often accompanied by 

dysgranulopoiesis (22,23). Gatterman et al. (24) have recently distinguished on 

cytomorphologic grounds between pure sideroblastic anemia (PSA), which is confined 

to dyserythropoiesis and RARS, which is characterized by additional dysplastic 

features of granulopoiesis and/or megakaryopoiesis. Both PSA and RARS are 

diagnosed in the same MDS group (MDS 2 or RARS), but the authors found striking 

differences in the risk of leukemic transformation and survival. In this respect it is of 

interest that we found 5% MM + /TdT + cells in the RARS case with an abnormal 

granulopoiesis (case 6), suggesting that the presence of MM + jTdT + cells can 

discriminate between RARS cases with and without an abnormal granulopoiesis. 

Remarkebly, in the latter case a high Boumemouth score was found, indicating a 

worse prognosis than the former two RARS cases with low Bounemouth scores. 

These preliminary results suggest that the presence of MM + jTdT + cells may 

correlate with prognosis. Further studies, however, are required to determine the 

prognostic significance of MM + jTdT + cells in MDS. 

In conclusion our results demonstrate that MM + jTdT + subpopulations occur in 

MDS cases, with an abnormal granulopoiesis and the size of this subpopulation 

increases in parallel with progression of MDS to AML. These results suggests that 

MM + jTdT + cells represent abnormal myeloid cells in MDS. Follow-up studies in 

two cases demonstrated the feasability to monitor this abnormal subpopulation by 

DIF staining during the course of the disease. 
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SUMMARY 

In an agar-liquid double-layer colony assay in which myeloid leukemia colony forming 

cells require the presence of both the lectin PHA and colony stimulating factor ( CSF) 

for in vitro proliferation, colony formation of bone marrow cells derived from patients 

with a myelodysplastic syndrome (MDS) was studied. 

In five of 14 MDS and all five leukemic transformed MDS cases, colony formation was 

found to require both PHA and CSF. Three of these five PHA dependent MDS cases 

progressed to overt leukemia within 1 year, one progressed from RA to RAEB, one 

patient received AML chemotherapy. PHA-dependent colony formation was associated 

with higher bone marrow blast counts, but not directly to F AB type or cytogenetic 

abnormalities. In nine other MDS cases only CSF was required for colony formation. In 

these PHA-independent cases the course of the disease was stable during the observation 

time (5-17 months). Two types of colonies were observed in this in vitro system: colonies 

adherent and colonies nonadherent to the agar under layer. The former consisted of 

terminally differentiated myeloid cells, and the latter comprised immature cells. This 

suggests that the percentage adherent colonies formed in vitro may be used as a measure 

for the maturation defect in MDS. However, no correlation was found between the 

percentage adherent colonies and progression to leukemia of the MDS cases. Our 

findings suggest that the dependency on PHA for in vitro colony formation of colony

forming cells in MDS is predictive for the progression to leukemia. However, the in vitro 

differentiation capacity has no apparent prognostic significance. 
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INTRODUCTION 

The MDS has been subdivided into five clinical entities on morphological criteria by the 

French-American-British (FAB) cooperative group (1,2). Patients suffering from MDS 

have a variable clinical course. The high mortality rate results form the complications 

associated with persistent cytopenias, as well as from leukemic transformation (3). 

Prognosis has been associated with the percentage of blast cells in bone marrow and 

blood ( 4), cytogenetic abnormalities (5), and in vitro growth patterns of bone marrow 

cells (6,7). 

The formation of granulocyte-macrophage colonies in the Robinson assay system (8) has 

been reported to be abnormal in fifty to ninety per cent of the MDS patients. The 

abnormal in vitro colony growth of MDS bone marrow (i.e. absent or severely reduced 

colony formation, or an increased cluster/colony ratio) resembles that of AML (9-13). 

An abnormal in vitro growth pattern tends to be correlated with poor prognosis (12,13). 

In vitro maturation defects are observed both in semi-solid and liquid culture (14,15). 

Since colony formation of AML bone marrows in standard semisolid assays is very poor, 

two types of colony culture assays for AML-CFCs have been developed (16,17). Both in 

the PHA-leukocyte feeder layer assay and the PHA assay described by Dicke et al. (16) 

the AML-CFCs were found to be of a low boyant density. In addition, it is suggested that 

AML cells giving rise to colonies in a PHA assay and the Robinson assay represent 

distinct leukemic subpopulations (18). Spitzer et al. (19) have studied a small series of 

oligoblastic leukemia patients at diagnosis with a two-step PHA assay. In a group of 10 

patients those with PHA colonies appeared to follow a more rapid clinical course than 

those without PHA colonies. This finding suggests that the assay detects a leukemic 

subpopulation with greater proliferative potential than the majority of the leukemia (19). 
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No reports, that we have knowledge of, describe the characteristics of colony formation 

of MDS bone marrow in a PHA assay. We used a modified one-step PHA assay to 

investigate the growth and differentiation of this specific subset of progenitors in MDS 

and LT-MDS bone marrow and compared this with the morphological classification 

according the criteria of the F AB group, bone marrow blast counts, the presence of 

cytogenetic abnormalities and the relation to the clinical course of the disease during the 

follow-up period. 

MATERIAL AND METHODS 

Patients 

Seventeen patients (ages 17-84 years) with a primary myelodysplastic syndrome, four 

patients with leukemic transformation of a MDS, five de novo AML patients and seven 

normal controls were studied at diagnosis. Follow-up culture studies were performed in 

two MDS cases (24 and 28), and two leukemic transformed MDS cases before and after 

relapse (31 and 32). Informed consent was obtained according the Helsinki convention. 

Relevant clinical and hematological data are given in Table 1. The MDS and AML were 

classified according the F AB nomenclature (1,2). Controls had no hematological 

malignancy and had normal bone marrow morphology. 

Bone marrow cells 

Bone marrow of patients was aspirated from the posterior iliac spine as part of diagnostic 

investigations. Aspirates were collected in glass tubes containing preservative-free 

heparin. Mononuclear cells with a density less than 1.077 gjml were prepared by layering 

the bone marrow cells on Ficoll-isopaque and subsequent centrifugation (20 min, 1000 

g). T cell depletion of the mononuclear cells was performed by E-rosette Ficoll 

separation. Rosettes were prepared by incubating the mononuclear cell suspensions (2 

x 106
) with 1% v jv 2-aminoethylisothioranium bromide treated sheep erythrocytes for 5 

min. This mixture was layered on Ficoll (1.077 g/ml) and centrifugated for 20 min, 1000 

g. Subsequently, the interphase fraction, now depleted of rosette forming cells, was 

collected. In addition, adherent cells were removed from the T cell depleted 
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Table 1. Clinical, Hematological, and Cytogenetic Data at Time of Study and Results of C.olony Assays in Individual Patients 

Age Bone Marrow Colony Formation 
Type of Case Pt. no ... Sex 

(yr) 
FAB0 

%Blasts Cytogenetics +PHAc -PHAd %Adh.0 

NBM 1 F 78 1.0 NO' 528 304 97 
2 F 39 1.0 NO 1271 1302 65 
3 F 26 0.3 NO 99 116 91 
4 M 33 0.5 NO 255 174 90 
5 F 32 0.2 NO 450 432 100 
6 F 32 0.8 NO 337 NO 100 
7 F 71 0.2 NO 671 NO 89 

AML 8 M 66 M4 68 n' 547 0 3 
9 M 47 M1 81 inv.16(pl3-q22) 3 0 0 

10 M 20 M4 89 t(8;13;17) 86 0 0 
11 M 51 M4 64 59 7 8 
12 M 45 M2 72 n 11 4 20 

MOS during 13 F 84 RAEB 6.6 NO 140 NO 74 
stable course 14 F 79 RAEB 5,2 n 201 NO 79 

15 M 78 CMML 0.4 -y/-y, +8 (10%) 402 NO 98 
16 F 74 RAEBt 24.0 n 202 122 12 
17 M 53 RARS 0.2 n/+8 (3%) 483 453 41 
18 M 65 RARS 5.0 n 84 116 4 
19 M 82 RARS 1.2 NO 142 145 26 
20 F 77 RA 2.4 NO 89 120 97 
21 M 81 RAEB 11.2 nldel(7), del 53 40 8 

(20)/t(3;17), 
del(?), del(20) 

22 M 77 RAEB 15.0 n 76 67 25 
23 M 72 RAEB 5.2 n/45 XO (13%) 81 33 54 
24a M 73 CMML 0.4 419 360 87 
24b CMML 5.8 87 20 37 
24c CMML 1.0 407 275 50 

MOS with 25 M 83 RAEB 20.0 n 123 9 99 
progresston 26 M 35 RAEB 20.0 nl-7 (7%)1 180 0 26 

+8 (66%) 
27 M 71 RA 5.0 117 0 82 
28a M 37 RAEB 13.0 32 2 32 
29 M 17 RAEBt 23.4 n 11 0 79 

LT-MOS 30 M 40 M2 42.0 t(8;21) 441 NO 51 
31a F 38 M5 66.0 n/+8 (10%) 363 9 36 
31b M2 40.4 n/+8 (4%) 7 0 79 
32a F 40 M7 50.3 60 3 51 
32b M2 33.0 n 47 0 0 
33 M 78 M2 60.0 complex tetraploid 156 0 41 
28b M 37 M2 31.6 NO 240 3 80 

o'JPt. no., patient numbers: each number indicates _a patient. a, b, and c indicate follow-up culture studies during the course of the disease. 
°Ciassifications not defined here are either listed in the text abbreviations footnote or else are standard abbreviations. RAEBt, RAEB in transformation. 
cMean number of colonies of three counted dishes per 105 plated cells in the presence of 10% GCT-CM and 1% PHA. 
dMean number of colonies formed in the presence of 10% GCT-CM. 
"% Ad h., mean percentage of adherent colonies formed in the presence of 1 0%· GCT -CM and 1% PHA. 
1ND, not determined. 
on, normal karyotype 46, XY or 46,XX. 
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mononuclear cells by incubating the cell suspensions for 2 hr at 37°C, in a fully 

humidified atmosphere with 5% C02 in air in plastic culture flasks (Costar, 75 cm2
, 1 x 

106 nucleated cells/ml in culture medium with 10% serum). 

Colony assay 

Myeloid colonies were grown in a liquid agar double-layer culture. T cell depleted, 

nonadherent mononuclear bone marrow cells (1 x 105
) were cultured in a 0.4 mlliquid 

upper-layer in the presence or absence of 1% (vjv) PHA. The 0.5% agar under-layer 

contained various concentrations (1 - 20%, but 10% when not specified) of conditioned 

medium of the giant tumor cell line (Gibco Cat. no. 680-1000) as a source of CSF in a 

volume of 1 ml in plastic culture dishes (Costar diameter 35 mm). The culture medium 

consisted of the a-modification of Dulbecco's modified Eagle's MEM, 20% human AB 

serum (a constant pool) and 10% of a mixture composed of 10% BSA (Fraction 5), egg 

lecithin (3.75 x w-3 M), Na2Se03 (1.25 x 10-5 M), human transferrin (9.62 x 104 M) in a 

FeC13 solution (1.92 x 10-3 M) and ,8-mercaptoethanol (10"1 M) in ratios of respectively 

75:8:8:8:1. The culture dishes were incubated in a fully humidified atmosphere of 5% 

C02 in air at 37°C for 7 days. Colonies of more than 50 cells were scored using an 

inverted microscope. The total number of colonies were counted and subsequently 

colonies adherent to the agar underlayer were identified and counted after removal of 

the non-adherent colonies with a Pasteur pipet. Mter counting, the adherent colonies 

were mass harvested with a Pasteur pipet. Aliquots of single cell suspensions of both 

non-adherent and adherent colony cell suspensions were used for the preparation of 

cytospin slides. Mter metachromatic staining (May-Griinwald Giemsa ), the morphological 

maturation stage of the colony cells was determined. In some cases, intact colonies were 

plucked for assessment of the morphological maturation stage of single colonies. The 

presence of T cells in colonies was tested by E-rosette formation. 

Cytogenetics 

Cytogenetic analyses of patients bone marrow cells were done according to our standard 

technique (20) as part of the diagnostic investigation. Chromosomes were always 

identified by banding techniques (R-, Q- and G-bands) and according to the ISCN (21). 
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RESULTS 

Dependency on PHA for colony formation 

All 17 MDS bone marrows formed colonies in the presence of PHA and GCT-CM. The 

mean number of colonies was 176 ± 140 (mean ± 1 SD)/ 1 x 105 cells plated. A 

representative GCT-CM dose response curve is shown in Figure 1. The 5 LT-MDS cases 

formed an average of 188 ± 155 colonies under the same culture conditions, whereas the 

seven normal and the five AML bone marrows formed respectively 516 ± 353 and 141 

± 205 colonies/105 plated cells. Colony cells contained always less than 1% E-rosette 

forming cells. 
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Figure I. Dose response curve of colony fonnation stimulated with 
increasing concentrations of GCT-CM in the presence of 1% PHA. 
Each point represents the mean of triplicate counts ( + I SD) of 
colony culture of bone marrow derived from patient no. 18. 

In the absence of PHA, but in the presence of GCT-CM, very few or no colonies were 

formed in all AML, all LT-MDS cases and five of 14 MDS cases. In seven MDS cases 

no enhancing effect of PHA on colony formation was observed. In two cases (16 and 23) 

an increase of colony numbers was found in the presence of PHA, but these cases were 

not classified as PHA-dependent because a substantial number of colonies (> 10) was 

formed in the absence of PHA. 

63 



Follow-up culture studies of individual cases showed no alterations in the growth 

patterns. Hence, colony formation remained PHA independent (case 24), or was PHA 

dependent before and after progression to leukemia (cases 28a and 28b ), or was PHA 

dependent on two different time points in the leukemic phase (i.e. before and after 

relapse) of the disease (cases 31, 32). No cases were observed where the colony 

formation pattern changed from a PHA independent to a PHA dependent one during 

the observation time. 

Colony adherency 

Two types of colonies were observed in this colony assay: those that were adherent to 

the agar underlayer, and those that were nonadherent. Colonies that were adherent to 

the agar underlayer consisted of terminally differentiated myeloid cells (Table 2). 

Invididual adherent colonies were found to contain either macrophages, or a mixture of 

granulocytes and 

Table 2: 

non-adherent 

adherent 

The average percentages mature cells present in non-adherent and 
adherent colonies and the granulocyte-macrophage ratio of the mature 
cells 

NBM (n=4) MDS (n=8) 

% maturation1 G/M ratio % maturation G/M ratio 

100 3.3 32.2 0.87 
(99-100) (2.6-4.3) (1.3-59.6) (0-2.0) 

97 0.8 92.4 0.2 
(94-99) (0.42-1.2) (83-100) (0-0.9) 

I. Mature cells are defined as bands, PMN granulocytes or macrophages. 

macrophages. Non-adherent colonies ofMDS cultures were predominantly composed of 

immature cells (Table 2). In the AML group virtually no adherent colonies were found. 
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The nonadherent colonies consisted of blast cells, whereas in normal bone marrow 

cultures these colonies contained predominantly mature granulocytes (bands and PMN 

cells). The differentiation stage of the majority of the non-adherent colony cells in MDS 

was intermediate to that of NBM and AML (i.e., promonocytes, promyelocytes, meta

and myelocytes). A dose response relation was found between the percentage adherent 

colonies and the concentration GCT-CM (Table 3). PHA did not have an enhancing 

effect on the formation of adherent colonies (Table 3). These results indicate that the 

percentage adherent colonies formed in this assay may be used as a measure of the in 

vitro maturation of the colony cells. 

Table 3: Percentage adherent colonies 
formed in the presence of 
increasing concentrations of 
GCT-CM 

% 
PHA 

1 
1 
1 

0.1 
0.0 

I. 

2. 

% 
GCT-CM 

1 

3 
10 

10 
10 

Culture1 

24a 24b 24c 

8 7 17 
23 6 70 
87 37 50 

81 nd2 nd 
74 25 79 

colony assays were perfonned at three 

different times with bone marrow cells of 

patient no. 24 (see Table 1). 

nd = not detennined. 

In the presence of 10% GCT-CM and 1% PHA, the mean percentage adherent colonies 

formed in the MDS group was 53% (range 4-99%) and 48% (0-80%) in the LT-MDS, 

versus 90% (65-100%) in the NBM and 6% (3-20%) in the AML group (Fig. 3). With 

1% GCT-CM the mean percentage adherent colonies in the MDS group was 28% (range 
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1-100%), whereas in the NBM group this figure was 75% (range 49-100%). These results 

suggest that in MDS both the in vitro maturation capacity and the maturational 

responsiveness upon the GM-CSF stimulus are reduced. 
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Figure 2. Percentage colonies adherent to the agar under 

layer in the presence of 10% GCT-CM as a source of 

GM-CSF and 1% PHA. Horizontal lines indicate the 

averages of each group. 
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Relation of colony formation pattern and the evolution to overt leukemia 

A positive correlation was found between PHA dependency for colony formation and the 

progression to overt leukemia in three cases (cases 25, 26 and 28). One of the five MDS 

cases that had a PHA-dependent colony formation pattern, progressed from RA to 

RAEB (case 27), and one had originally been classified as M6 (case 29), but was later 

reclassified as a RAEBt. This last patient received chemotherapy, but did not reach 

complete remission. The bone marrow morphology after chemotherapy met again the 

criteria for RAEBt. 

In all 14 PHA-independent cases the course of the disease was stable during the 

observation time of 5-17 months. 

PHA-dependent colony formation in MDS cases was related to a higher bone marrow 

blast count as compared to PHA-independent cases (mean 16.3 versus 7.1). However, no 

obvious relationship was observed between the FAB type and colony formation pattern. 

No PHA-dependent cases were present in the RARS or CMML groups. The incidence 

of progression to leukemia in RA and RAEB varies considerably. In these prognostic 

heterogenous MDS subgroups, the PHA-dependency for colony formation may separate 

patients with a better or worse prognosis. Only in one of the PHA dependent MDS cases 

an abnormality was found during the karyotype analysis at the time of culture (case 26). 

Compared with NBM, the mean percentage adherent colonies was decreased both in the 

MDS and the LT-MDS group. Progression to leukemia occured in cases with a high 

(cases 25, 27 and 29) and a low (cases 26, 28a) percentage adherent colonies. Hence, no 

apparent correlation exists between the percentage adherent colonies and the progression 

to leukemia. 

DISCUSSION 

The presented results indicate that MDS patients may be classified, irrespective of the 

F AB class, on the basis of the PHA dependency for in vitro colony formation, in a group 

with a low risk and a group with a high risk for progression to leukemia. PHA 

dependency correlates with a higher average bone marrow blast count, but not directly 

with the F AB type or the presence of cytogenetic abnormalities. 
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The number of blast cells in bone marrow and blood is reported to be an important 

prognostic parameter ( 4). In the RA case (no. 27), however, PHA dependent colony 

formation was found, whereas the bone marrow blast count was low (5%). In this case 

we observed progression to RAEB, indicating that the PHA dependent in vitro growth 

pattern precedes the in vivo accumulation of blasts in the bone marrow, rather than 

being the result of increased numbers of blast cells in the cultured cell suspension. 

PHA independent growth with a high percentage adherent colonies was related to a 

normal growth pattern in the Robinson assay (data not shown). Both PHA independent 

cases with a low maturation capacity and PHA dependent cases were found to have an 

abnormal growth pattern in the Robinson assay. This indicates that a further discrimina

tion on the basis of PHA dependency is possible of cases with abnormal growth in the 

standard colony assay. 

The presence of cytogenetic abnormalities is also valued to be an important prognostic 

parameter in MDS (13). However, we found no direct relationship between karyotype 

and in vitro growth pattern. This could indicate that growth characteristics of the MDS 

progenitor cells do not causally relate to the cytogenetic abnormalities found in MDS. 

The reduced differentiation capacity of MDS CFCs, as measured by the percentage 

adherent colonies, may reflect the in vivo maturation disorder in MDS. The mean 

percentages of adherent colonies of the MDS and LT-MDS groups are comparable, 

whereas this figure is much lower in the AML group. Three of the five PHA-dependent 

MDS cases (cases 25, 27 and 29) have a high percentage adherent colonies (Table 1). 

Moreover, sequential studies do not show a consistent decrease in percentage adherent 

colonies before progression to overt leukemia or during the leukemic phase of MDS 

(Table 1). It is therefore unlikely that the reduced maturation capacity in MDS is directly 

related to the progression to leukemia. 

Recently, it has been reported that patients with apparently de novo AML with features 

of trilineage MDS differ from those without associated trilineage MDS (22). 

Biologically, this newly defined group is comparable to the LT-MDS group described 

here. It is therefore of interest that we found a higher maturation capacitiy in the 

LT-MDS group as compared to the AML group, suggesting that also on basis of in vitro 

growth pattern the former may be separated from the latter. 
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The implications of our findings for an understanding of MDS and its progression to 

acute leukemia may be as follows. One possible explanation for the leukemic 

transformation is the intensification of the maturation block, but our results do not 

support this, since the differentiation capacity of the CFCs before and after progression 

to leukemia is comparable. Apparently, more important is the PHA dependency for 

colony formation. This growth pattern seems to be directly related to the progession to 

leukemia. It is therefore of interest to investigate the nature of this PHA effect. It has 

been reported that leukemic blast progenitor cells require the presence of CSF and cell 

to cell interactions for exponential growth (23). PHA may very well induce cell-cell 

interactions and subsequently proliferation in the presence of CSF. Preliminary results 

in our laboratory are in support of this view. However, PHA may be a message on its 

own or may induce the release of soluble factors by accessory cells. Another question to 

address is whether this is a a unique "leukemic" feature or whether a similar type of cell 

exists in normal bone marrow. Normal multipotent stem cells have been described that 

only respond to M-CSF when concommitantly cultured in the presence of IL-l (24). IL-l 

is reported to exhibit lectin- like specificity (25). PHA may therefore induce similar 

effects in this culture assay. It is tempting to speculate that the normal biological 

counterpart of the PHA dependent CFC is the multipotential stem cell. 

Our results show that MDS and LT-MDS have a comparable reduced in vitro 

differentiation capacity. The maturation capacity is not further altered when progression 

to leukemia occurs. But PHA dependency is clearly related to an impending progression 

to leukemia. Further studies are required to reveal the mechanism of action of PHA and 

to determine the prognostic value of PHA dependency for colony formation. 
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ABSTRACT 

In order to obtain more insight into the nature of the abnormal in vitro colony 

formation in Myelodysplastic syndromes (MDS) we investigated the kinetics of the 

colony formation of 23 MDS cases in response to recombinant human 11-3 (11-3), 

granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony 

stimulating factor (G-CSF) and giant cell tumor cell line conditioned medium (GCT

CM). The kinetics of GCT-CM induced colony formation were comparable to that of 

G-CSF-induced colony growth, both in MDS and in normal bone marrow cultures. 

Colony formation was found to be delayed in MDS. The delay in colony formation 

was most apparent in the GCT-CM responsive progenitor cell compartment. In MDS 

cases with clinical features of high risk disease this delay was more pronounced as 

compared to low-risk cases ( 7 and 3 days respectively, in response to GCT-CM). The 

delay in colony formation was found to be caused by an increase in the time interval 

before progenitor cells begun to divide. These results suggest that a prolongation of 

the time spend in Go of myeloid progenitor cells in MDS may be the cause of the 

indolent in vitro colony formation observed in this disease. 
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INTRODUCTION 

The myelodysplastic syndrome is a clonal disorder of the hemopoietic stem cell (1) 

resulting in cytopenias of one or more cell lineages. In vitro a reduced myeloid and 

erythroid colony formation is observed (2,3). The reduced colony formation may be 

due to intrinsic abnormalities of the progenitor cells such as an altered re~ponsiveness 

for hemopoietic growth factors caused by abnormalities of the growth factor receptors 

or of the signal transduction system. We (4) and others (5) have previously reported 

that the responsiveness for hemopoietic growth factors is indeed altered in MDS. 

Experiments performed by Francis et al. (6) suggest that mature progenitor cells are 

more sensitive to hemopoietic growth factors than immature progenitor cells. Suda et 

al. reported (7) that in mice multipotential stem cells are in Go for varying periods of 

time, whereas the doubling time is constant. Furthermore, recent investigations 

suggest that only the early G1 phase of the cell cycle is permissive for the stimulation 

with colony stimulating factors (8). Hence, alterations in the cell cycle status of 

progenitor cells may result in an alteration in the responsiveness for hemopoietic 

growth factors. 

The aim of the present experiments is to investigate the kinetics of colony formation 

in MDS in response to recombinant human hematopoietic growth factors. We 

therefore compared the colony formation kinetics of MDS bone marrow in response 

to recombinant human interleukin-3 (Il-3), granulocyte-macrophage colony- stimula

ting factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF) and the 

conditioned medium of the giant cell tumor cell line (GCT-CM) with normal bone 

marrow cells (NBM) and NBM cells depleted of committed progenitor cells by in 

vitro exposure to 4-hydroperoxycyclophosphamide. 
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MATERIALS AND METHODS 

Normal donors. Normal marrow samples were obtained from six healthy volunteers 

upon informed consent by posterior iliac crest puncture. The marrow was collected in 

glass tubes containing Hanks/Hepes with preservative-free heparin. 

Patients. Seventeen patients with MDS and six patients with leukemic transformation 

of MDS (LT-MDS) were studied. The MDS cases were classified according the FAB 

nomenclature (9). Relevant clinical and hematological data are given in Table 1. 

On the basis of clinical, cytogenetic and hematological data, patients were divided 

into a MDS low risk and a MDS high risk group. Criteria for the high risk MDS 

group were: the presence of more than 10% blast cells in the bone marrow or the 

presence of blast cells in the periferal blood, complex cytogenetic abnormalities or 

transformation to overt leukemia during the observation time. The low risk MDS 

group did not have these features and had a stable clinical course during the obser

vation time. 

Preparation of cell suspensions. Bone marrow cells of patients and normal donors 

were separated over Ficoll-Isopaque (1.077 gjml, 1,000 g, 20 min); T cell depletion of 

the mononuclear cells was performed by E-Rosette Ficoll separation. Rosettes were 

prepared by incubating the mononuclear cell suspension (2 x 106 jml) with an equal 

volume of 1% (v/v) 2-aminoethylisothiouroniumbromide (Sigma) treated sheep 

erythrocytes for 5 minutes. Rosettes were centrifuged through Ficoll (1.077 gjml, 20 

min 1,000 g). Subsequently, the interphase fraction was collected and washed in 

Hanks/Hepes. In addition adherent cells were removed by incubating the cell 

suspension ( 1 x 106
/ ml in o:-Dulbecco's modified Eagle's medium (o:-DMEM) with 

10% fetal calf serum (FCS)) for 1 hour at 37 °C, 5% C02 in air in a fully humidified 

atmosphere. Non-adherent cells were collected and washed twice in Hanks/Hepes. 

Exposure to 4-hydropero:xycyclophosphamide (4-HC). 1 x 107 Light-density, T-cell 

depleted, non-adherent cells were incubated with 60 p.gjml 4-HC (Asta-Werke, 

F.R.G) for 30 minutes at 37°C, washed twice in cold Hanks/Hepes and assayed for 

the recovery of colony forming cells. 
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Table 1. Relevant clinical, haematogical and cytogenetic data of 
patients studied at time of in vitro study 

Patient Bone marrow 
-------------- -------------------------

Group No· Sex Age Dxa % blasts cytogenetics 

Low risk 1 M 17 RA 2.6 not done 
2 F 78 RA 0.4 n 
3 M 73 CMML 0.4 nb 
4 M 68 RARS 0.4 njhypodiploid(17%) 
5 M 60 CMML 1.2 n/46 XY t(1;19) 

(p22;q13) (12.5%) 
6 M 73 RARS 0.6 not done 
7 M 77 RAEB 7.6 46 XY, del (11) 

(q21q24) 
8 M 68 RA 1.5 n 

High risk 9 M 18 RAEB 15.6 n 
10 M 78 RAEB 6.8c n 
11 M 65 RAEBt 21.8 n 
12 M 83 RAEBt 20.0 n 
13 F 38 LT-MDS 40.0 n/47 XX,+8(4%) 
14 M 40 LT-MDS 34.2 nj46X,-Y,t(8;21) 

(20%) 
15 F 75 LT-MDS 30.4 njcomplexd(58%) 
16 F 78 RA_,.L 4.2 n 
17 M 70 RAEB_,.L 8.6 n 
18 F 17 RAEB_,.L 7.2 n 
19 M 68 LT-MDS 77.0 n 
20 M 66 LT-MDS 82.4 n 
21 F 53 RAEB 16.4 n/47 XX,5q-,+21 

(78%) 
22 M 60 RAEBt 20.0 not done 
23 M 56 LT-MDS 38.4 njcomplexe(62%) 

a) RA = Refractory anaemia; RARS = RA with ringsideroblasts, RAEB = RA excess of 
blasts; RAEBt = RAEB in transformation; CMML = chronic myelomonocytic leukemia; 
LT-MDS = MDS after evolution to frank leukemia. RA-+L or RAEB-+L = transformati
on to overt leukemia occurred in the observation time following bone marrow culture. b) 
Normal karyotype, i.e., 46,XX or 46,XY c) periferal blood blast count = 5.5% d) 43-45, 
XX der(2) t(2;17)(p24;qll), -5,del(7)(q21),-13,16q+,-17, 20p-, +]-markers. MDS 
secondary to intravesical chemotherapy. e) 44,XY,Mar(3),5q-,-7,-12,-16, +dic.Mar
(16p-+11::7q21-+7pter). 
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Recombinant human colony-stimulating factors. Recombinant GM-CSF was gene

rously made available by Schering (Kenilworth, NJ) and was used at a concentration 

of lOng/mi. Recombinant G-CSF was purchased from Genzyme (Sanbio bv, Uden, 

The Netherlands) and was used at 100 U/rnl. Recombinant 11-3 was a generous gift 

from Dr G. Wagemaker (Erasmus University, Rotterdam, The Netherlands) and was 

produced by Gist-brocades (Delft, The Netherlands) and used at a concentration of 

10 ng/rnl. All applied concentrations of colony stimulating factors were optimal 

concentrations, as determined by dose-response studies using clonogenic assays on 

normal light-density, T-cell depleted, non-adherent bone marrow cells. 

Giant Cell Tumor-Conditioned Medium (GCT-CM). GCT-CM was prepared by 

culturing the confluent growing GCT cell line (obtained from the American Type 

Culture Collection, ATCC TIB 223) for 7 days with cx-DMEM with 10% FCS (10 rnl 

per 75 cm3
) and was used as a source of colony stimulating activity at a concentration 

of 10% v/v. 

Colony assay. Cultures were performed in a-DMEM containing 0.9 % methylcellulose 

(Fluka Methocell MC 4000 mPa's), and supplemented with 20 % FCS, 1% dialyzed 

bovine serum albumin (BSA), 30 JLM egg lecithine, 0.1 JLM Sodiumselenite, 7.7 JLM 

fully iron-saturated human transferrin, 100 JLM mercaptoethanol. Cultures were 

performed in 24-wells plates (Costar), 250 JLl per well containing 2.5 x 104 bone 

marrow cells. The cultures were incubated at 37°C in a fully humidified atmosphere 

of 5% C02 in air. Colonies of more than 50 cells were counted after 7, 10, 14, 18, and 

22 days of culture using an inverted microscope. In selected cases colonies were 

picked from the well for staining with the May-Grunwald-Giemsa technique and 

subsequent morphological examination. 

Cytogenetics. Cytogenetic analyses of bone marrow cells obtained from patients were 

done using a standard technique (10), as part of the diagnostic investigation. Chromo

somes were always identified by banding (R-, Q-, G-bands). The karyotypes were 

reported according to the "International System for Human Cytogenetic Nomenclatu

re" (11). In four cases cytogenetic analyses of the colony cells were performed on 

pooled colony cells. 
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Statistics. The Fischer exact test and the two tailed Mann-Whitney test were used to 

statistically evaluate the differences in frequency distribution of the day of maximal 

colony formation. 

Figure I. Distribution in time of the number of cases with maximal colony numbers. 
Values represent the number of cases that were observed to have attained maximum 
colony numbers in response to GCT-CM, GM-CSF and Il-3 at day 7, 10, 14, 18 and 22 
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RESULTS 

Kinetics of colony formation in response to GCT-CM. In normal bone marrow 

cultures all cases reached a maximum number of colonies at day 7 (Fig.1). In MDS 

maximum colony numbers were attained at day 7 of culture in two of the eight (25%) 

low risk cases and one of the fifteen (6.7%) high risk cases, which were found to be 

significant differences as compared with the control group (Fisher exact: p < 0.007 and 

p<0.001 respectively). Four of the eight (50%) cases in the MDS group with low risk 

features were found to have reached maximum numbers of colonies at day 10 and 

two of the eight (25%) cases on day 18 of culture. In the MDS group with high risk 

features, 93.3% of the cases had attained the maximum number of colonies on day 10 

or later (i.e day 7: 1, day 10: 2 day 14: 8, day 18: 3 and day 22: 1 of the 15 cases) 

( Fig.1 ). The differences between the two MDS groups did not reach significance. 

Colony numbers were comparable to normal bone marrow in the low risk MDS 

group, but decreased in the high risk MDS group (Table 2). Since GCT-CM was 

found to stimulate a late progenitor cell and the colonies had a granulocytic ap

pearance, we compared the colony formation kinetics of GCT-CM with that of 

recombinant G-CSF. An identical growth pattern was observed with either GCT-CM 

or G-CSF in normal bone marrow and MDS (Table 3). 

Kinetics of colony formation in response to GM-CSF. As compared with normal bone 

marrow, the number of cases that attained a maximum number of colonies at day 14 

of culture was decreased in both MDS groups: i.e., from three of the five in NBM to 

three of the seven in the low risk and three of the 12 in the high risk group. Two of 

the seven (28.6%) of the low risk and seven of 12 (58%) of the high risk cases 

reached maximum colony numbers after day 14 of culture in response to GM-CSF 

(Fig. 1). No statistical significant differences were found between the different groups. 

Colony numbers formed in response to GM-CSF were identical to normal bone 

marrow in the low risk MDS group and decreased in the high risk group (table 2). 

Kinetics of colony formation in response to Il-3. A low number of myeloid colonies 

were formed following stimulation with 11-3 in normal bone marrow, low and high risk 

MDS (Table 2). However, in case 15 and 19 a large number (105 and 196 per 105 

cells, respectively) of myeloid colonies were formed in response to 11-3, with a 
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Table 2. Time course of colony formation in response to colony 
stimulating factors 

patient Day Numbers of colonies /105 plated cells 
group 

GCT-CM GM-CSF IL-3 
(10% vjv) (10 ngjml) (10ngjml) 

7 114.9 ± 22.3 7.2 ± 3.0 1.3 ± 0.6 
NBM 10 66.9 ± 13.9 17.5 ± 3.8 9.1 ± 3.9 
(n=6) 14 32.7 ± 7.5 39.5 ± 6.8 9.4 ± 2.2 

18 31.8 ± 12.7 24.2 ± 8.5 16.3 ± 5.6 
22 8.7 ± 2.4 24.6 ± 6.1 12.1 ± 3.0 

7 73.0 ± 40.0 12.6 ± 8.8 0.6 ± 0.3 
Low Risk 10 100.8 ± 24.9 31.7 ± 16.5 4.9 ± 1.8 
MDS 14 49.9 ± 12.2 40.5 ± 15.5 11.8 ± 5.0 
(n=7) 18 52.7 ± 21.4 26.6 ± 10.0 13.3 ± 6.6 

22 30.8 ± 10.7 26.4 ± 12.0 14.3 ± 8.4 

7 0.7 ± 0.5 0.9 ± 0.5 0.0 ± 0.0 
High 10 27.3 ± 16.4 3.4 ± 1.6 0.0 ± 0.0 
Risk MDS 14 37.8 ± 9.4 15.7 ± 5.1 15.0 ± 8.4 
(n=12) 18 17.3 ± 4.1 17.3 ± 3.9 16.8 ± 6.9 

22 10.5 ± 3.6 15.8 ± 6.5 16.2 ± 8.6 

maximum number of colonies on day 14 of culture. No apparent differences in colony 

formation kinetics between the different groups were observed. 

Morphology of the colony cells. From separate cultures the morphology of the 

colonies on the day of optimal colony formation were assessed. Therefore liquid

nitrogen stored bone marrow of three different normal bone marrows and bone 

marrow of cases 1, 4, 8, 9, 18, 21 and 22 were thawed and cultured for the number of 

the days needed for optimal colony growth (as assessed before). Colonies of NBM 

and low risk MDS cultures (cases 1, 4 and 8) consisted of intermediate and terminally 

differentiated cells (myelocytes, metamyelocytes, bands, polymorphonuclear cells, 

monocytes and macrophages ). In all cases monocytes and macrophages were only 

present in GM-CSF stimulated cultures. Basophilic granulocytes were detected in ll-3 

stimulated colonies in normal bone marrow and in cases 18 and 22. 
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Table 3. 
Comparison of the time course of colony formation in 
response to GCT-CM (10% vjv) and rhG-CSF {100 U/ml) 
expressed as percentage of the maximum number of colonies 
formed. 

NBM 

Day GCT-CM 
7 100 

10 74 
14 41 
18 0 
22 0 

a, one normal control. 
b, patient 22. 

G-CSF 
100 

59 
18 

0 
0 

GCT-CM 
0 

84 
100 
nd 
69 

MDS 

G-CSF 
0 

36 
100 
nd 
40 

Blast cell colonies were only observed in two high risk MDS cases (case 21 and 22). 

In these cases the colonies formed after stimulation with either GM-CSF, G-CSF or 

GCT-CM consisted of myeloblasts and promyelocytes (Sudan black positive, a

naphtylacetate-esterase negative). 

Cytogenetic analysis of the colony cells. In order to determine whether the colonies 

were derived from the abnormal MDS clone, cytogenetic analyses were performed on 

the pooled colony cells of case 4, 7, 21 and 23. No metaphases were obtained in cases 

4 and 7. In case 21, 98% of the 50 metaphases contained the same chromosomal 

abnormality ( 47 XX, Sq-, +21), as had been found in 78% of the metaphases of the 

freshly aspirated bone marrow. In case 23 complex cytogenetic abnormalities were 

found in 62% of the metaphases in the fresh bone marrow, whereas 80% of the 10 

metaphases derived from colony cells showed identical complex abnormalities. 

Colony growth of NBM cells after exposure to 4HC. Figure 2 shows a representative 

example of the growth kinetics of normal bone marrow pretreated with 4-HC for 

depletion of committed progenitors. Colony growth was not observed before day 14 of 

culture. The time sequence of colony growth in response to respectively GCT-CM, 

rhGM-CSF and rhil-3 is identical to nontreated bone marrow, however delayed for 10 

to 14 days. 
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Figure 2. Time course of the colony formation of 4-hydroperoxycyclophosphamide 
pretreated normal bone marrow: A representative example of the colony formation in 
response to GCT-CM (closed circles) GM-CSF (open circles) or Il-3 (triangles) of NBM 
cells after exposure to 4-HC. Symbols represent the number of colonies of triplicate 
cultures (mean ± 1 SEM). 

Identical results were obtained in experiments with bone marrow cells of three other 

normal volunteers; however the day on which colonies were first observed ranged 

from day 10-18. After 22 days of culture, cytological characterization of the colonies 

showed 35 granulocytic colonies following GCT-CM stimulation. After stimulation 

with GM-CSF, two monocytic colonies and 11 blast-colonies were found. The one 

colony that was observed following Il-3 stimulation consisted of blast cells (Table 4). 

Observation of the initial signs of colony formation. In order to determine whether 

the delay in colony formation in MDS is caused by either a delay in the initiation of 

the mitotic cycle of progenitor cells or by a increase in cycling time of the colony cells 

we performed an additional experiment with one normal control, one low risk MDS 

(RA, case 2) and two high risk patients (RAEB: case 10 and RAEBt: case 11). Daily 

inspection of cultures stimulated with GCT-CM showed cluster growth from day 4 

onwards in NBM and the low-risk MDS case (Fig.3, upper panels). In the high risk 
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Table 4. Nature of colony formation by 4HC pretreated 
normal bone marrow cells on day 22 of culture 

type of 
colony 

CFU-G 
CFU-M 
CFU-GM 
CFU-blast 

number of colonies/ 105 plated cells 

GCT-CM 
(10% vjv) 

35 
0 
0 
0 

GM-CSF 
(10 ngjml) 

0 
2 
0 

11 

Il-3 
(10 ngjml) 

0 
0 
0 
1 

cases the first signs of cluster formation was observed on days 6 and 7 (Fig. 3, lower 

panels). When the number of colonies increased the number of clusters decreased, 

indicating that clusters rapidly grew to colonies. 

DISCUSSION 

The data presented here show that in MDS, colony formation of myeloid progenitor 

cells is delayed during and in parallel with the disease progression. The delay is less 

pronounced in the low risk MDS group as compared with the high risk MDS group. 

Differences in the kinetics of colony formation between the low and high risk MDS 

groups were more apparent following stimulation with GCT-CM than with GM-CSF 

or Il-3. GCT-CM was found to stimulate primarily the formation of granulocytic 

colonies. Recombinant G-CSF induced the formation of identical colonies with the 

same growth kinetics in both normal bone marrow and MDS as GCT-CM, indicating 

that the effects of GCT-CM may be primarily due to the colony stimulating activity of 

G-CSF. Since the granulocyte progenitor cell is a relative mature colony forming cell 

it appears that during progression of MDS the late progenitor cells are more affected 

than the more early progenitors, such as the CFU-GMs. 

Disease progression in MDS may be due to the gradual clonal expansion of the 

abnormal population, with suppression of normal haemopoiesis. 
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Figure 3. Time course of cluster and colony formation in response to GCT-CM Cluster 
(more than 8 cells, closed circles) and colony (more than 50 cells, open circles) formation 
of one normal bone marrow (upper left panel:NBM), one low risk MDS patient (upper 
right panel:RA, case 2), and two high risk patients (lower left panel: RAEB, case 10) 
lower right panel: RAEBt, case 11 ). Points represent the mean of triplicate cultures. 

It has been demonstrated by Abkowitz et al., that when this occurs both erythroid and 

granulocyte-macrophage colonies appear to be derived from the abnormal clone (12). 

In our study cytogenetic analyses performed on the colonies of two cases revealed the 

presence of a chromosomal abnormalities typical for the MDS clone, even in a higher 

frequency than found in the fresh bone marrow. In these cases a delayed colony 

formation was observed, indicating that this growth pattern is a characteristic of the 

abnormal clone. Moreover, recently published results on clonal analysis using 

recombinant DNA techniques established a clonal origin of the vast majority of the 

periferal blood and bone marrow cells in almost every MDS patient analyzed (1,13). 

The suppressed normal hemopoiesis appears to regain its place only after eradication 
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of the MDS clone by chemotherapy or differentiation induction therapy (14). Taken 

together, it seems to be likely that the observed delay in colony formation is specific 

for the abnormal clone in MDS. 

Early progenitor cells are considered to be dormant, i.e., in G0 of the cell cycle, 

whereas the more mature progenitor cells are relatively more frequently in active 

cycle (15). Doubling times of murine committed (late) progenitor cells are reported to 

be shorter than the doubling times of pluripotent (early) progenitor cells (7). This 

would imply that the observed delay in colony formation in MDS may be explained by 

a relative increment of early progenitor cells (left shift) as is also suggested by Haak 

et al. (16). However, in this study the delay in colony formation was not associated 

with a relative increase of the GM-CSF responsive compartment, as would be 

expected in case of a relative enlargement of the earlier compartments. Baines et al. 

(17) have reported that the colony formation of purified CD34 positive cells in MDS 

is even decreased as compared to that of CD34 positive normal bone marrow cells. 

These findings do not support the concept of a left shift in the progenitor cell 

compartment as an explanation for altered kinetics of colony formation in MDS. 

The presence of a functional defect of the progenitor cells may be another explana

tion. Tsuda et al. (8) have described that only the early G1 phase of cell cycle is 

permissive for the stimulation with colony stimulating factors. In this concept an 

increment of dormant cells in the late progenitor cell compartment would result in a 

relative decrease of growth factor responsive cells. There is considerable experimental 

evidence that the majority of the hemopoietic stem cells reside in resting state of cell 

cycle (7,15). Since it is reported that primitive progenitor cells will be spared during 

in vitro 4-HC treatment (18, 19,20), exposure of bone marrow cells to 4-HC will conse

quently result in a relative enrichment for non-cycling progenitor cells. Exposure of 

normal bone marrow cells to 4-HC resulted in the absence of colony formation before 

day 14 of culture upon stimulation with GCT-CM. In addition, no clusters could be 

detected before day 7. These findings indicate that all the actively cycling progenitor 

cells in the bone marrow are depleted by the 4-HC exposure. Maximum numbers of 

colonies were observed in an identical sequence as in unexposed bone marrow, i.e., 

first after GCT-CM followed by GM-CSF and 11-3. The delay in colony growth 

indicates that neither GCT-CM (G-CSF), nor GM-CSF or 11-3 triggers dormant cells 
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into cell cycle but rather exert their effects after the cells have initiated to cycle. 

Furthermore, in an additional experiment, daily inspection of untreated cultures 

showed that in MDS the initial signs of cluster formation were observed later as 

compared to NBM. In NBM, clusters could already be detected on day 4 of culture, 

whereas in some MDS cases no sign of growth was observed before day 6 of culture. 

An increase in colony numbers was accompanied by a decrease in the number of 

clusters, indicating that clusters rapidly grew to colonies. These results indicate that 

the observed delay in colony formation in MDS is caused by a greater time-lag before 

MDS progenitors start to cycle, rather than being the result of a increased cycling 

time of the colony cells. A prolongation of the time spend in G0 by MDS progenitor 

cells, may therefore be the most likely explanation for the observed delay in colony 

formation. 

Recent reports indicate that IL-1 and IL-6 may act as co-stimulants for the growth of 

normal primitive hemopoietic progenitor cells (22,23) as well as for leukemic blast

cell progenitors (24). Since our results suggest that the growth factors used in this 

present study are unable to effectively recruit MDS progenitor cells into cell cycle on 

their own, combinations with co-stimulants are probably needed to accomplish this. 

Our findings may have implications for the understanding of the pathogenesis of MDS 

as well as for the application of growth-factor therapy either alone or in combination 

with chemotherapy in MDS. 

REFERENCES 

1. Janssen JWG, Buschle M, Layton M, Drexler HG, Lyous J, Van den Berghe H, Heimpel H, 

Kubanek B, Kleihauer E, Mufti GJ, Bartram CR. Clonal Analysis of Myelodysplastic Syn

dromes: evidence of multipotential stem cell origin . Blood 1989; 73: 243-254. 

2. Verma DS, Spitzer G, Dicke KA, McCredie KB. In vitro agar culture patterns in preleukemia 

and their clinical significance. Leuk Res 1979;3:41-49. 

3. Partanen S, Juvonen E, Ruutu T. In vitro culture of hemopoietic progenitors in myelodysplastic 

syndromes. Scand J Haematol1986; 36 (suppl 45): 98-101. 

4. Schipperus MR, Hagemeijer A, Ploemacher RE, Lindemans J, Voerman JSA, Abels J. In 

myelodysplastic syndromes progression to leukemia is directly related to PHA dependency for 

colony formation and independent of in vitro maturation capacity. Leukemia 1988;2:433-437. 

87 



5. Mayami H, Baines P, Bowen DT, Jacobs A. In vitro growth of myeloid and erythroid progenitor 

cells from myelodysplastic patients in response to recombinant human granulocyte-macrophage 

colony-stimulating factor. Leukemia 1989;3:29-32. 

6. Francis GE, Bol S, Berney JJ. Proliferative capacity, sensitivity to colony stimulating activity and 

buoyant density: linked properties of granulocyte-macrophage progenitors from normal human 

bone marrow. Leuk Res 1981;5: 243-250. 

7. Suda T, Suda J, Ogawa M. Proliferative kinetics and differentiation of murine blast cell colonies 

in culture: evidence for variable G0 periods and constant doubling rates of early pluripotent 

hemopoietic progenitors. J Cell Physiol 1983;117: 308-318. 

8. Tsuda H, Neckers IM, Pluznik DH. Colony stimulating factor induced differentiation of murine 

M1 myeloid leukemia cells is permissive in early G1 phase. Proc Natl Acad Sci USA 

1986;83:4317-4321. 

9. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C. 

Proposals for the classification of the myelodysplastic syndromes. Brit J Haematol 1982;51:189-

199. 

10. Hagemeijer A, Smit EM, Bootsma D. Improved identification of chromosomes of leukemic cells 

in methotrexaat treated cultures. Cytogenet Cell Genet 1979;23:208-212. 

11. Hamden DG and Klinger HP (eds). ISCN (1985): an international system for human cytogenetic 

nomenclature. Published in collaboration with Cytogenet Cell Genet. Basel: Karger, 1985. 

12. Abkowitz JL, Fialkow PJ, Niebrngge DJ, Raskind WH, Anderson JW. Pancytopenia as clonal 

disorder of a multipotent haemopoietic stem cell. J Clin Invest. 1984;73:258-261. 

13. Lyons J, Janssen JW, Bartram C, Layton M, Mufti GJ. Mutation of Ki-ras and N-ras oncogenes 

in myelodysplastic syndromes. Blood 1988;71:1707-1712. 

14. Layton DM, Mufti GJ, Lyons J, Janssen JW, Bartram CR. Loss of ras oncogene mutation in a 

myelodysplastic syndrome after low-dose cytarabinetherapy. N Engl J Med. 1988; 318: 1468-1469. 

15. Lathja LG. Stem cell concepts. Differentiation 1979;14:23-28 

16. Haak HL, Kerkhofs H, van der Linden JS, Schonewille H, van der Sanden-van der Meer, 

Hermans J. Significance of in vitro cultures in myelodysplastic syndromes. Scand J Haematol. 

1986;37:380-389. 

17. Baines P, Mayani H, Baines M, Hoy T, Jacobs A. Eurichment of CD34 (My10) positive 

haemopoietic cells from normal and myelodysplastic human marrow (abstr). Factors and Vectors 

in Haemopoiesis, ZWO/TNO/NlH symposium The Hague: The Netherlands, 1988. 

18. Komatsu N, Suda T, Suda J, Miura Y. Survival of highly proliferative colony-forming cells after 

treatment of bone marrow cells with 4-hydroperoxycyclophosphamide. Cancer Res.1987;47:6371-

6376. 

88 



19. De Jong JP, Nikkels PGJ, Brockbank KGM, Ploemacher RE, Voerman JSA. Comparative in 

vitro effects of cyclophosphamide derivates on murine bone marrow-derived stromal and 

hemopoietic progenitor cell classes. Cancer Res.1985; 45:4001-4005. 

20. Siena S, Castro-Malaspina H, Gulati S, Li Lu, Colvin MO, Clarkson B, O'Rielly RJ, Moore 

MAS. Effects of in vitro purging with 4-hydroperoxycyclophosphamide on the hematopoeitic and 

microenviremental elements of human bone marrow. Blood 1985;65:655-662. 

21. Moore MAS, Warren DJ. Synergy of interleukin 1 and granulocyte colony-stimulating factor: in 

vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil 

treatment of mice. Proc Nat! Sci USA 1987; 84:7134-7138. 

22. Leary AG, lkebuchi K, Hirai Y, Wong GG, Yang YC, Clark SC. Synergism between interleukin-

6 and interleukin-3 in supporting proliferation of human hematopoietic stem cells: comparison 

with interleukin 1a. Blood 1988;6:1759-1763. 

23. Haman THA, Goncalves 0, Wong GG, Clark SC. Interleukin-6 enhances growth factor

dependent proliferation of the blast cells of acute myeloblastic leukemia. Blood;1988;2:823-826. 

24. Hoang T, Haman A, Goncalves 0, Letendie F, Mathieu M, Wong GG, ClarkS. Interleukin 1 

enhances growth-factor dependent proliferation of the clonogenic cells in acute myeloblastic 

leukemia and of normal human primitive progenitors. J Exp Med 1988;168:413-474. 

89 



90 



CHAPTER 5 

THE COMBINED EFFECTS OF IL-3, GM-CSF AND G-CSF ON THE IN VITRO 

GROWTH OF MYELODYSPLASTIC MYELOID PROGENITOR CELLS 

Martin R. Schipperus, Pieter Sonneveld, Jan Lindemans, Nel Vink, Margreet 

Vlastuin, Anne Hagemeijer, Johannes Abels 

Department of Hematology and Cell Biology and Genetics, Erasmus University and 

University Hospital Dijkzigt Rotterdam, The Netherlands 

Published in Leukemia Research, 1990; 14: 1019 - 1025. 

91 



ABSTRACT 

The decreased or absent in vitro colony formation in response to single recombinant 

hematopoietic growth factors has been reported previously. Here we report on the 

effects of the combination of Interleukin-3 (Il-3), granulocyte-macrophage colony

stimulating factor (GM-CSF) and granulocyte-CSF (G-CSF) and the effect of the 

conditioned medium of the giant tumor cell line (GCT-CM) on the proliferation of 

myelodysplastic (MDS) marrow myeloid progenitor cells and normal bone marrow 

(NBM) controls. Colony growth was most effectively sustained by GCT-CM and G

CSF in normal bone marrow (NBM) cultures. GM-CSF and IL-3 were less effective 

in inducing myeloid granulocytic colony growth, whereas the effects of Il-3 and GM

CSF were found to be approximately additive. The number of NBM granulocytic 

colonies induced by G-CSF and GCT-CM stimulation were comparable, whereas this 

granulocyte colony stimulating activity could be neutralized by anti-G-CSF antibodies. 

In addition GCT-CM was found to contain burst promoting activity, which could be 

neutralized by anti-Il-3 antibodies. Il-3 did not enhance the G-CSF activity in NBM 

cultures. No additive effect of stimulation with the combination of Il-3 and GM-CSF 

was observed in MDS marrow cultures, suggesting that these growth factors act on an 

identical progenitor cell population in MDS. G-CSF stimulated the growth of sig

nificantly lower colony numbers than GCT-CM, in contrast to NBM cultures. The 

decreased granulocytic colony formation of MDS marrow cells could clearly be 

enhanced by co-stimulation with Il-3. These results suggest that MDS myeloid 

progenitor cells require the exposure to both a pluripotent colony stimulating factor, 

like Il-3, and a lineage specific factor, like G-CSF, for optimal proliferation. 
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INTRODUCTION 

The myelodysplastic syndrome (MDS) is a clonal disorder of the multipotential stem 

cell (1) characterized by refractory cytopenia and qualitative and quantitative 

abnormalities of one or more cell lineages in the bone marrow. Up to 40% of the 

patients with MDS eventually develop an acute myeloblastic leukaemia (AML) (2). 

The decreased in vitro colony forming capacities of the MDS bone marrow progeni

tor cells are extensively described (3-6). In all these studies colony formation was 

stimulated by crude sources of colony stimulating activity (CSA). The recent availabi

lity of recombinant human colony-stimulating factors (CSF) made it possible to 

investigate the regulation of normal (7,8) and leukaemic haemopoiesis in vitro (9,10). 

Limited information exists, however, on the responsiveness of MDS colony forming 

cells for the recombinant CSF. Recently Mayani et al.(ll) found subnormal myeloid 

colony numbers in response to GM-CSF at concentrations shown to be optimal for 

colony formation in cultures of normal bone marrow, but supersaturating concentra

tions of GM-CSF were observed to be able to enhance the myeloid colony formation 

of many MDS marrows. Carlo-Stella et al. (12) have also reported a decreased 

myeloid colony growth in response to GM-CSF in a majority of the fractionated, 

accessory cell depleted MDS marrows. However, no effect of high doses of GM-CSF 

was observed. Since Il-3 and GM-CSF have been reported to recruit monocytes to 

express and secrete G-CSF (13), the effect of high GM-CSF doses found by Mayani 

et al. may be indirect. 

We have recently found that the conditioned medium of the giant tumor cell line 

(GCT-CM), produced in our laboratory, stimulates predominantly granulocytic colony 

formation, whereas the growth of MDS bone marrow derived CFU-G was more 

effectively sustained than by single recombinant growth factors (14). Since GCT-CM 

contains various haematopoietic growth factors this effect may be due to additive or 

synergistic effects of these factors. Although, additive and synergistic effects of 

combinations of growth factors on leukemic blast cells (15) and normal multipotential 

haematopoietic progenitors (16) have been reported, their effect on MDS progenitor 

cells has not been addressed. 
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The aim of the present study was therefore to compare the colony stimulating activity 

of GCT-CM with the effects of recombinant human Il-3, GM-CSF and G-CSF, either 

alone or in combination, on MDS marrow myeloid progenitor cells. 

MATERIALS AND METHODS 

Normal donors 

Normal marrow samples were obtained from five healthy volunteers posterior iliac 

crest puncture. The marrow was collected in glass tubes containing Hanks/Hepes with 

preservative-free heparin. 

Patients 

Seventeen patients with MDS (2 RA, 2 RARS, 6 RAEB, 4 RAEBt and 3 CMML) 

and 5 patients with leukemic transformation of MDS (LT-MDS) were studied with 

informed consent. The MDS cases were classified according the F AB nomenclature 

(17). 

Preparation of cell suspensions 

Low-density bone marrow cells of patients and normal donors were obtained by 

Ficoll-lsopaque centrifugation (1.077 gjml, 1000 g, 20 min). T-cell depletion was 

performed by rosette formation with 2-aminoisothiouroniumbromide (AET, Sigma) 

treated sheep erythrocytes and subsequent ficoll separation. In addition adherent cells 

were removed by incubating the cell suspension (1 x 106/ml in a-DMEM with 10% 

Fetal Calf Serum (FCS)) for 1 hour at 37°C, 5% C02 in a fully humidified atmosphe

re. Non-adherent cells were collected and washed twice in HanksjHepes. 

Recombinant human colony stimulating factors and interleukins 

Recombinant granulocyte-macrophage colony stimulating factor (rh-GM-CSF) was 

prepared and generously made available by Schering (Kenilworth, New Yersey, USA) 

and was used in a concentration of 10 ngjml. Recombinant granulocyte colony

stimulating factor (G-CSF) was purchased from Genzyme (Boston, MA, USA) and 

was used at 100 U /ml. The preparation of recombinant Interleukin-3 (11-3), a 

generous gift from Dr. G. Wagemaker (Erasmus University Rotterdam) (18) and 

produced by Gist-Brocades (Rijswijk). 11-3 was used at a concentration of 10 ng/ml. 

Recombinant human erythropoietin (Boehringer, Mannheim F.R.G.) was used in a 
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concentration of 2 U /mi. All applied concentrations of colony stimulating factors 

were optimal concentrations, as determined by dose-response studies using clonogenic 

assays on normal low-density, T-cell depleted, non-adherent bone marrow cells. 

Giant Cell Tumor Conditioned Medium (GCT-CM) 

GCf-CM was prepared by culturing the confluent growing cell-line (obtained from 

the American Type Culture Collection, ATCC TIB 223) for 7 days in a-DMEM with 

10% FCS (10ml per 75 cm3
) and was used as a source of colony stimulating activity at 

a concentration of 10% v jv. 

Antibodies directed against G-CSF and 11-3 

Polyclonal rabbit anti-human granulocyte-CSF was purchased from Genzyme (Boston, 

MA, USA). A concentration of 10 ng/ml neutralizes the bioactivity expressed by 

approximately 100 units of G-CSF. Polyclonal rabbit anti-human interleukin-3 

antibody was purchased from Genzyme. Approximately 1 p.g neutralizes 200 pg of 

human Il-3. Neutralization experiments were performed by incubating different con

centrations of the antibody with an equal volume of GCT-CM or 100 U /ml G-CSF or 

10 ng/ml IL-3 for 1 h at 37°C. 

Colony assay 

Cultures were performed in the a-modification of Dulbecco's modified Eagles 

Medium (a-DMEM, Flow) containing 0.9% methylcellulose (Fluka Methocell MC), 

and supplemented with 20% FCS and 1% dialyzed Bovine Serum Albumin (BSA), 30 

p.M lecithine, 0.1 p.M fully iron-saturated human transferrin, 100 p.M mercaptoethanol. 

Cultures were performed in 24 wells plates (Costar), 250 p.l per well containing 2.5 x 

104 bone marrow cells. The cultures were incubated at 37 oc in a fully humidified 

atmosphere of 5% C02 in air. Myeloid colonies (more than 50 cells) were counted on 

day 7 - 10 for the granulocyte colony forming unit (CFU-G),and day 14 - 18 for the 

granulocyte-macrophage CFU (CFU-GM). Erythroid colonies were counted on day 7 

(CFU-E) and erythroid bursts on day 14 (BFU-E). Of some cultures colonies were 

picked from a well for staining with the May-Grunwald-Giemsa technique and subse

quent morphological examination. 

Statistical analysis 

Data were statistically evaluated with the Wilcoxon's signed-ranks test for two groups. 
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The effect of cxll-3 and cxG-CSF on the activities of GCT-CM 

Since GCT-CM was found to stimulate both granulocytic and erythroid colony 

formation, we investigated as to wether the granulocyte-colony stimulating activity ( G

CSA) and the burst promoting activity (BPA) could be neutralized by antibodies 

directed against G-CSF and Il-3, respectively. Whereas, the G-CSA present in GCf

CM could be neutralized anti-G-CSF antibodies (Fig.1), the BPA present in GCf-CM 

could be neutralized by anti-Il-3 antibodies (Fig. 2). cxll-3 had no effect on either 

GCf-CM or GM-CSF induced myeloid colony formation and cxG-CSF had no effect 

on the GCf-CM induced BFU-E formation of normal bone marrow (data not 

shown). 

Effect of GCT-CM, Il-3 and GM-CSF on MDS bone marrow cultures 

The effect of stimulation on myeloid colony growth by fractionated, accessory cell 

depleted, MDS bone marrow with GCf-CM, GM-CSF and Il-3 is shown in Table 2. 

As in normal bone marrow cultures GCT-CM was found to stimulate predominantly 

granulocytic colonies. GM-CSF and 11-3 either alone or in combination, were sig

nificantly less effective (p <0.01) in inducing myeloid colony formation than GCf-CM. 

In two cases, however (cases 8 and 17), high numbers of myeloid colonies were 

formed in response to 11-3 (i.e 105.2 and 196.0 respectively). The effect of stimulation 

of MDS bone marrow cultures with the combination of GM-CSF and Il-3 was less 

than additive in thirteen, additive in one and more than additive in two of the sixteen 

cases. 

As described above, in most MDS cases neither GM-CSF nor Il-3 nor their combina

tion were found to be more effective than GCT-CM in stimulating the proliferation of 

myeloid progenitor cells. However, in case 5 GM-CSF, in cases 8 and 12 Il-3 and in 

case 18 the combination of 11-3 and GM-CSF induced the formation of more colonies 

than GCf-CM. 

Effects of II-3 and G-CSF in MDS bone marrow cultures 

In contrast to NBM cultures, in MDS marrows G-CSF was less effective in inducing 

the growth of granulocytic colonies than GCf-CM (Table 3). However, Il-3 could 

clearly enhance the G-CSF effect in three of the four cases tested. The effect was 

more than additive in three cases and additive in one. In the former three cases the 
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Table 2, MDS marrow myeloid colony formation in 
response to GCT-CM, GM-CSF, I1-3 and the 
combination of GM-CSF with Il-3. 

1. RA* 
2. RA 
3. RARS 
4. RARS 
5. RAEB 
6. RAEB 
7. RAEB 
8. RAEB 
9. RAEB 

10. RAEB 
11. RAEBt 
12. RAEBt 
13. RAEBt 
14. RAEBt 
15. CMML 
16. CMML 
17. CMML 
18. LTMDs+ 
19. LTMDS 
20. LTMDS 
21. LTMDS 
22. LTMDS 
23. LTMDS 

Mean 
SEM 

GCT-CM 

192.0 
106.8 

82.8 
316.0 

21.2 
20.0 

102.8 
72.0 
64.0 

132.0 
76.0 
53.2 
94.8 
25.2 
14.8 

164.0 
304.0 
26.0 
61.2 
14.8 
2.8 

78.0 
15.0 

88.7 
18.3 

GM-CSF 

46.8 
5.2 

30.8 
133.2 

74.0 
0.0 

18.8 
16.0 
42.8 
26.8 
5.2 

65.2 
8.0 
n.d. 
0.0 

82.0 
138.0 
14.0 
38.4 

6.8 
4.0 

14.0 
n.d. 

36.7 
8.5 

Il-3 

14.8 
2.8 

34.8 
n.d. 3 

44.0 
0.0 

n.d. 
105.2 
n.d. 
54.0 
9.2 

66.0 
4.0 
n.d. 
4.8 
n.d. 

196.0 
18.0 
14.8 
8.0 
1.2 
0.0 
n.d 

31.9 
11.9 

GM-CSF 
+ 

Il-3 

16.0 
0.0 

40.0 
125.2 

77.2 
0.0 

12.0 
100.0 

46.8 
45.6 
14.4 
70.0 

9.2 
n.d. 
4.0 

44.0 
160.0 
48.0 
44.0 
13.2 
1.2 

18.8 
n.d 

42.4 
9.5 

* MDS-subtype according to the FAB classification. 
+ LT-MDS: leukemic transformed MDS. 
n.d. not determined 
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number of colonies formed in response to G-CSF and IL-3 was comparable to the 

number of colonies formed in response to GCf-CM. In two of these four cases 

erythroid burst formation was found in response to either GCT-CM or ll-3, although 

only a few burst were formed in these two cases. No effect of the addition of G-CSF 

to Il-3 was observed on the erythroid burst formation in MDS bone marrow cultures. 

Cytogenetic analysis of the colony cells: 

In order to determine whether the colonies were derived from the abnormal MDS 

clone, cytogenetic analyses were performed on the pooled colony cells of case 3, 9, 10 

and 23. No metaphases were obtained in cases 3 and 9. In case 10, 98% of the 50 

metaphases contained the same chromosomal abnormality ( 47 XX, 5q-, +21), as had 

been found in 78% of the metaphases of the fresh bone marrow. In case 23, a patient 

with leukaemic stage of a trilineage MDS, complex cytogenetic abnormalities were 

found in 62% of the metaphases in the fresh bone marrow, whereas 80% of the 10 

metaphases derived from colony cells showed identical complex abnormalities. 

Table 3, Myeloid colony (CFU-G) and erythroid burst (BFU-E) 
formation in response to GCT-CM, G-CSF, Il-3 and G-CSF with Il-3 
of MDS bone ma=ow. 

case 

GCT-CM 

G-CSF 

Il-3 

Il-3 
+ 

G-CSF 

10 11 

101.0 69.0 

30.0 9.2 

28.6 8.4 

106.7 18.7 

CFU-G* 

13 

26.8 

12.0 

2.0 

34.8 

BFU-E* 

14 10 11 13 14 

25.2 0.0 10.7 12.0 0.0 

o.o n.d. n.d. n.d. n.d. 

5.2 0.0 7.0 3.7 0.0 

20.0 0.0 6.7 2.8 0.0 

* Each value represent the mean of triplicate cultures performed 
wi'C:h low-density, non-adherent, T-cell depleted bone marrow 
cells. 
n.d. not determined. 
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DISCUSSION 

In this study we investigated the response patterns of haematopoietic progenitor cells 

derived from bone marrow of patients with a myelodysplastic syndrome stimulated 

with various recombinant human colony stimulating factors and GCT-CM. In 

particular we addressed the question whether combinations of colony stimulating 

factors were necessary for optimal proliferation of myeloid progenitor cells in MDS. 

In normal bone marrow cultures the effect of the combination of GM-CSF and Il-3 

rendered more colonies than each factor alone, suggesting that their activities are 

partially overlapping. This is in agreement with previous data indicating that Il-3 and 

GM-CSF stimulate overlapping but distinct progenitor cell populations (19,20). As we 

have also reported previously (14) GCT-CM was found to stimulate primarily the 

formation of granulocytic colonies. GM-CSF but not GCT-CM was found to stimulate 

the growth of mixed granulocyte/macrophage colonies. GCT-CM and G-CSF 

induced comparable numbers of colonies and the colonies were identically granulocy

tic of nature. Moreover, the granulocytic colony stimulating activity present in GCT

CM was neutralized by antibodies directed against G-CSF. These results indicate that 

GCT-CM contains G-CSF as a major source of colony stimulating activity. In 

addition, GCT-CM was found to contain BPA as well, which could be neutralized by 

anti-IL-3 antibodies, indicating that the BPA in GCT-CM could be assigned to Il-3. 

The combination of G-CSF and Il-3 did not render more myeloid colonies than G

CSF alone or more erythroid bursts than Il-3 alone, indicating distinct activities of Il-3 

and G-CSF on normal bone marrow progenitor cells. Cytogenetic analyses performed 

on the colonies of two MDS cases revealed the presence of chromosomal abnormali

ties typical for the MDS clone, even in a higher frequency than found in the fresh 

bone marrow, indicating that the colonies are derived from the abnormal clone. 

Apparently the abnormal clone rather than the residual normal haemopoiesis is 

stimulated by haemopoietic growth factors in MDS. These findings can be explained 

by the fact that disease progression in MDS is due to the gradual clonal expansion of 

the abnormal population, with suppression of the normal haemopoiesis, which is 

demonstrated by the findings of Abkowitz et a1.(21), that both erythroid and granulo

cyte-macrophage colonies appear to be derived from the abnormal clone. More recent 

reports, presenting data on X-linked restriction fragment length poly-morphisms, 
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provide evidence that MDS is a clonal disorder of the pluripotent haemopoietic stem 

cell (1,22), which clone has totally replaced the normal haemopoiesis. Stimulation of 

the abnormal clone by haemopoietic growth factors is also observed in vivo (23,24). 

The residual normal haemopoiesis, however, appears to regain its place after 

eradication of the MDS clone by chemotherapy or differentiation induction therapy 

(25), and may then be preferentially stimulated by haemopoietic growth factors (26). 

In myelodysplastic bone marrow cultures GM-CSF and ll-3 were significantly less 

effective in inducing myeloid colony formation than GCf-CM. Only in three of the 

sixteen cases the effect of the combination of ll-3 and GM-CSF was found to be 

additive or more than additive, whereas in one of those cases more colonies were 

formed than with GCT-CM. Therefore, our results suggest that the activities of 11-3 

and GM-CSF on MDS myeloid progenitor cells are more overlapping than in NBM 

cultures, which suggests that their target cell populations are largely identical. 

Whereas in NBM cultures G-CSF and GCT-CM contained comparable colony 

stimulating activities, in MDS bone marrow G-CSF did induce a significantly lower 

number of myeloid colonies than GCf-CM. Since we had previously found that GCf

CM contains ll-3 apart from G-CSF, it appears likely to presume that the combina

tion of these two factors were responsible for the larger number of colonies formed in 

response to GCf -CM. In three of the four MDS cases tested we could indeed 

demonstrate a synergistic and in the other case an additive effect of the combination 

of IL-3 and G-CSF on the growth of myeloid colonies. In the former three cases the 

effect of co-stimulation with 11-3 and G-CSF was comparable with the effect of GCf

CM, whereas in the latter case GCf-CM was more effective in stimulating MDS 

progenitor cells. Therefore, it can not be excluded that factors distinct from 11-3 and 

G-CSF contribute to the potent colony stimulating activity of GCf-CM on MDS bone 

marrow. Still, it appears that a subset of granulocytic colony forming cells require 

both 11-3 and G-CSF for optimal colony formation, suggesting that a pluripoietin 

should be combined with a later-acting factor for optimal effect, which is a charac

teristic shared by early bone marrow progenitor cells and peripheral blood progenitor 

cells (27). Some of the effects of 11-3, however, may be indirect, i.e., mediated by 

residual accessory cells, although all the bone marrows were thoroughly depleted of 

adherent and T-cells and the dose dependent inhibition of colony formation by al1-3 
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suggests a direct action of Il-3. However, to obtain conclusive evidence a larger series 

of experiments studying the effect the combination of Il-3 and G-CSF and GM-CSF 

and G-CSF on myeloid colony growth in MDS is required. 

We conclude that the activities of Il-3 and GM-CSF on myeloid progenitor cells 

present in MDS bone-marrows are more overlapping than in NBM cultures. Conco

mitantly the results obtained in a small series of MDS patients suggest that the 

majority of MDS progenitor cells are not yet responsive for G-CSF. The synergistic 

effect of the combination of Il-3 and G-CSF may suggest that these progenitor cells 

require exposure to a pluripoietin like Il-3 in order to acquire responsiveness for the 

later-acting factor G-CSF. 
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SUMMARY 

Interleukin-1 (Il-l) and Interleukin-6 (Il-6) have been reported to enhance the growth 

factor dependent colony formation of normal primitive haematopoietic progenitor 

cells as well as of leukemic blast-cell progenitors. We investigated the effects of 11-lB 

and 11-6 in combination with Granulocyte-Macrophage Colony-Stimulating factor 

(GM-CSF) on the in vitro colony formation of myeloid progenitors from 23 patients 

with a Myelodysplastic syndrome (MDS). Neither 11-18 nor 11-6 were found to have 

colony stimulating activity on their own. In normal bone marrow cultures, either 

stimulated with optimal or sub-optimal doses of GM-CSF, no enhancing or antagonis

tic effect of 11-6 or 11-18 was detected. In a majority of the MDS cases, however, an 

enhancing effect of 11-6 and 11-lB in combination with GM-CSF was observed (20 out 

of 23 and 10 of the 21 cases respectively). In 3 cases of the 11-6 and GM-CSF 

combination an antagonistic effect was observed as well as in 4 cases of the 11-18 and 

GM-CSF combination. A delayed addition of 11-6 to the cultures did not result in an 

abrogation of the effect, indicating that 11-6 is not required immediately at the 

initiation of the culture. These results indicate that co-stimulation with IL-6 or IL-lB 

is able to augment the GM-CSF activity on MDS myeloid progenitor cells. 
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INTRODUCTION 

The rnyelodysplastic syndrome (MDS) comprises a group of acquired disorders, which 

are characterized by an ineffective haernopoiesis resulting in a cytopenia of one or 

more cell lineages (Koeffler, 1986; Mufti & Galton,1986). Cytogenetic and G-6-PD 

studies have demonstrated that MDS is a clonal disease of the haernopoietic stern cell 

(Fialkow et al, 1981; Raskind et al, 1984; Janssen et al, 1989). Its high mortality rate 

results from the complications associated with persistent cytopenias, as well as from 

transformation to leukaemia. The abnormal haernopoiesis is reflected in an abnormal 

in vitro growth pattern of MDS bone marrow (Verma et al, 1979; Partanen et 

al, 1986). Decreased or absent megakaryocyte and erythroid colony formation is a 

typical finding in MDS (Juvonen et al, 1989). An abnormal granulocyte-macrophage 

colony formation may have prognostic value (Juvonen et al,1989; Haak et al,1986; 

Schipperus et al,1988). The nature, however, of the aberrant colony formation is 

poorly understood. The recent cloning of genes of various haernopoietic growth 

factors (Clark & Kaman, 1987; Sieff,1987), generally referred to as colony stimulating 

factors (CSF) or interleukins, has made it possible to produce purified CSF in large 

quantity and to investigate their in vitro and in vivo effects in MDS. The first clinical 

trials on the effects of recombinant CSF in MDS are being performed already 

(Vadhan-Raj et al, 1987; Antin et al, 1988; Ganser et al,1989). However, there is still 

limited information on the effect of recombinant haernopoietic growth factors on 

MDS in vitro colony formation. Recent reports indicate that the MDS progenitor cells 

defective response to growth factors is not affected by manipulation of recombinant 

factor levels or combinations (Baines et al, 1990). Carlo-Stella et al (1989) have 

reported that GM-CSF (even in high concentrations) is unable to improve the 

abnormal in-vitro colony formation of bone-marrow cells depleted of accessory cells. 

However, Mayani et al (1989), using unfractionated bone marrow, found that super

saturating concentrations of GM-CSF could ameliorate the abnormal colony formati

on. These discordant results may be due to an indirect effect of GM-CSF: the release 

of additional factors by rnonocytes and rnacrophages (Metcalf & Nicola, 1985; Warren 

& Ralph, 1986), which enhance the GM-CSF dependent colony formation of MDS 

myeloid progenitor cells. Apart from their activities on the lymphoid lineage, Il-l and 

the pleiotropic cytokine Il-6 have been reported to act as co-stimulants for the growth 
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of normal primitive haematopoietic progenitors (Moore et al,1987; Leary et al,1988) 

as well as for leukemic blast-cell progenitors (Hoang et al 1988a,b). ll-6 has also been 

implicated as a co-stimulant in the late stages of neutrophilic differentiation (Caracci

olo et al, 1989a, b). The effects of Il-6 and IL-l on MDS marrow, however, have not 

been reported so far. The aim of the present study is to investigate whether ll-6 and 

11-lB are able to enhance the in-vitro GM-CSF dependent colony formation of MDS 

progenitor cells. 

MATERIALS AND METHODS 

Normal donors. Normal marrow samples were obtained from posterior ilieac crest 

puncture of five healthy volunteers. The marrow was collected in glass tubes contai

ning Hanks/Hepes with preservative-free heparin. 

Patients. 18 patients with MDS (two RA,two RARS, seven RAEB, four RAEBt and 

three CMML) and five patients with leukaemic transformation of MDS (LT-MDS) 

were studied upon informed consent. The MDS cases were classified according to the 

FAB nomenclature (Bennett et al, 1982). 

Preparation of cell suspensions. Low-density bone marrow cells of patients and 

normal donors were obtained by Ficoll-Isopaque centrifugation (1.077 gjml, 1000 g, 

20 min). T-cell depletion was performed by rosette formation with 2-aminoisothiouro

niumbromide (AET, Sigma) treated sheep erythrocytes and subsequent ficoll separati

on. Adherent cells were removed by incubating the cell suspension (1 x 106/ml in a

DMEM with 10% fetal calf serum (FCS)) for 1 hour at 37°C, 5% C02 under fully 

humidified conditions. Non-adherent cells were collected and washed twice in 

Hanks/Hepes. 

Recombinant human CSF and II. Recombinant GM-CSF was prepared and generous

ly supplied by Schering (Kenilworth, New Jersey, U.S.A) and was used in a concentra

tion of 10 ng/ml. Recombinant human hybridoma growth factor (rh-Il-6) was purified 

form E.coli (Brakenhoff et al, 1987), a generous gift from Dr L. Aarden (CLB, 

Amsterdam, The Netherlands). Rh-Il-6 was used in a concentration of 40 U/ml as 

defined by bioassay (Lansdorp et al, 1986). Recombinant human Interleukin-1 was 

purchased from Genzyme (Basel, Switzerland) and was used at 10 U /ml as defined by 

thymocyte assay. 
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Table 1 

Colony formation in response to GM-CSF and the combination of 
GM-CSF and Il-6 and for Il-l in MDS 

no MDS 
type 

1. RA 
2. RA 
3. RARS 
4. RARS 
5. RAEB 
6. RAEB 
7. RAEB 
8. RAEB 
9. RAEB 
10. RAEB 
11. RAEB 
12. RAEBt 
13. RAEBt 
14. RAEBt 
15. RAEBt 
16. CMML 
17. CMML 
18. CMML 
19. LTMDS 
20. LTMDS 
21. LTMDS 
22. LTMDS 
23. LTMDS 

MDS Mean 
SEM 

NBM 
1. 
2. 
3. 
4. 
5. 

NBM Mean 
SEM 

GM-CSF 

45.0 
5.2 

30.8 
133.2 
74.0 

o.o 
18.8 
16.0 
42.8 
26.8 
54.0 
4.0 

65.2 
8.0 

38.8 
0.0 

38.8 
34.5 
14.0 
38.4 
6.8 
1.2 

14.0 

30.9 
6.4 

37.2 
58.0 
40.6 
48.8 
45.2 

46.0 
3.6 

GM-CSF 
+Il-6 

128.0(2.8)1 
6.8(1.3) 

52.0(1.7) 
152.0 (1.1) 
114.0 (1.5) 

6.0(6.0) 
8.0(0.4) 

24.0(1.5) 
69.2(1.6) 
10.8(0.4) 

104.0(1.9) 
9.2(2.3) 

97.2(1.5) 
16.0(2.0) 
88.0(2.3) 
5.2(5.0) 

33.2(0.9) 
61.0(1.8) 
32.0(2.3) 
40.0(1.0) 
13.2 ( 1. 9) 
2.8(2.3) 

32.0(2.3) 

48.05 (1.6) 
9.4 

46.8(1.3) 
63.4(1.1) 
36.0(0.9) 
45.2(0.9) 
40.0(0.9) 

46.1(1.0) 
3.9 

GM-CSF 
+Il-l 

118.0 (2. 6) 
13.2(2.5) 
46.8(1.5) 

177.2(1.3) 
0.0(0.0) 
0.0(0.0) 

17.2(0.9) 
68.0(4.3) 
53.2(1.2) 
64.0(2.4) 
n.d2 

4.0(1.0) 
40.0(0.6) 
8.0(1.0) 

n.d 
1.2 (1.2) 

14.0(0.4) 
35.0(1.0) 
26.6(1.9) 
76.0(2.0) 
16.0(2.4) 
0.0(0.0) 

14.0 (1. 0) 

37.7(1.2) 
9.7 

36.0(1.0) 
58.6 (1. 0) 
41.4(1.0) 
45.2(0.9) 
46.8(1.0) 

45.6(1.0) 
3.7 

GM-CSF 
+Il-6 
+Il-l 

90.8(2.0) 
12.0(2.3) 
62.8(2.0) 

154.8 (1. 2) 
26.0(0.4) 
1.2(1.2) 

14.8(0.8) 
53.2(3.3) 
n.d 
22.8(0.9) 
n.d 
n.d 
n.d 
37.2(4.7) 
n.d 
2.8(2.8) 
8.0(0.2) 

44.0(1.3) 
n.d 
66.8(1.7) 
13. 2 ( 1. 9) 
1.2(1.0) 

n.d 

38.2(1.2) 
10.3 

38.9(1.0) 
60.1(1.0) 
39.2(1.0) 
43.2(0.9) 
45.2(1.0) 

43.2(0.9) 
2.9 

In parenthesis: the relative increase induced by the 
combination as compared to the GM-CSF effect only. IL-6 - GM-CSF 
n.d.: not determined. 
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Colony assay. Cultures were performed in the a-modification of Dulbecco's modified 

Eagles Medium (a-DMEM, Flow) containing 0.9% methylcellulose (Fluka Methocell 

MC), and supplemented with 20% FCS and 1% dialyzed Bovine Serum Albumin 

(BSA), 30 JLM lecithine, 0.1 JLM fully iron-saturated human transferrin, 100 JLM 

mercaptoethanol. Cultures were performed in 24-well plates (Costar), containing 2.5 x 

104 bone marrow cells per well (250 JLl). The cultures were incubated at 37 oc under 

fully humidified conditions of 5% C02 in air. Colonies ( = more than 50 cells) were 

counted on day 7, 10, 14, 18 and 22. Colonies were taken at random from several 

cultures and stained according to the May-Grunwald-Giemsa technique for subse

quent morphological examination. 

Statistical analysis. Statistical evaluation of data was done with Wilcoxon's signed

ranks test for two groups. 

RESULTS: 

The effect of GM-CSF stimulation on normal and MDS colony formation 

No spontaneous colony growth was observed in low-density, non-adherent, T-cell 

depleted normal or MDS bone marrow cells. Induction of colony formation by GM

CSF is dose dependent. Plateau colony formation was achieved at concentrations of 5 

ng/ml rh-GM-CSF in both normal as well as MDS bone marrow cultures. However, 

colony numbers were decreased in 13/23 (56.5%) MDS cases as compared with 

normal bone marrow (table 1). 

Effect of Il-6 and Il-16 on colony growth 

Il-6 and Il-lB did not induce colony formation of fractionated normal bone marrow 

cells, neither singly nor together. As is shown in Fig 1 and Table 1, the addition of Il-

6 or Il-l had no effect on the GM-CSF induced colony formation of normal marrow 

progenitor cells. However, 11-6 enhanced the GM-CSF effect in 19/ 21 (90.5%) MDS 

cases, inducing an approximate two-fold increase in colony numbers (p< 0.01). In 3 

cases (Table 1: cases 7,10 and 17) colony numbers decreased in the presence of IL-6. 

In 11/21 (52.4%) cases an average two-fold enhancement of colony growth by Il-l 

was observed. Whereas in four cases an inhibition of the colony formation was 

observed (cases 5,13,17 and 22). 
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Figure 1: Effect of Il-6, Il-lj3 and their combination on GM-CSF induced MDS ma"ow 
(upper panel) and normal bone ma"ow (lower panel) colony formation. 
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In 9/21 cases Il-6 and Il-l both stimulated the GM-CSF induced colony formation. In 

case 17 Il-l and Il-6 both inhibited the colony formation, whereas in four cases 

opposite effects of Il-l and Il-6 were found. 

Role of accessory cells in the 11-6 enhancement 

The effects of Il-6 described above were obtained with T-cell depleted, non-adherent 

bone marrow cells. The effects of GM-CSF or the GM-CSF - Il-6 combination in 
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Fig 2. The e!Tects nf Cf..-1-CSF (light stipple! ;111d the c;I\1-CSF -II-fl 
combination (hc<n'Y stipple) on low-density (panel :\).low-density. 
adherent cell depleted (panel Bl. and low-density adherent cell. T-ccll 
depleted bone marrow cells (panel Cl of case 1. Data are expressed in 
percentages or maximal colony growth. 

MDS on respectively undepleted, adhe

rent-cell depleted, and T-cell and adhe

rent-cell depleted bone marrow cells are 

shown in Fig.2. The number of colonies 

formed by undepleted or adherent cell 

depleted bone marrow in response to 

GM-CSF was comparable to those for

med by fully depleted bone-marrow cells 

in response to the combination of GM-

CSF - Il-6. This indicates that accessory cells apparently produce Il-6 endogeneously. 

II-6 effect on myeloid progenitor cells in the presence of high and low GM-CSF 

concentrations 

In order to determine whether Il-6 increases progenitor cell responsiveness to GM

CSF, the activity of Il-6 was tested in the presence of high (supersaturating) concen

trations of GM-CSF (100 ng/ml). Whereas a further increase of an already saturated 

GM-CSF dose did not improve the colony growth of MDS marrow, Il-6 had a definite 

enhancing effect at both GM-CSF concentration levels (Fig 3, left panel). To 

eliminate the possibility that the IL-6 effect is due to stimulation of endogeneously 

produced GM-CSF, a control was performed by adding Il-6 to normal bone marrow 

cultures under conditions of both sub-optimal (1 ng/ml) as well as saturated GM-CSF 

concentrations (10 ng/ml). No Il-6 effect was observed in in combination with either 

GM-CSF concentration (Fig 3, right panel). 

114 



120 

100 

100 

"' 
80 

Q; 
u 

"' 0 

- 60 
"' "' o; 

-~ u 
c 
0 

0 - so 
u 40 

20 

D GM-CSF []ill] GM-CSF CD -10 ng/ml 100 ng/ml GM-CSF GM-CSF 
1 ng/ml 10 ng/ml 

~ GM-CSF - GM-CSF - -10 ng/ml 100 ng/ml 
+ IL-6 + I L-6 GM-CSF GM-CSF 

1 ng/ml 10 ng/ml 
+ I L-6 + ll-6 

Figure 3: Il-6 effect in the presence of a high (100 ngjml) dose GM-CSF in MDS (left 
panel) and a low dose (1 ngjml) GM-CSF in NBM (right panel) as compared with a 
normal GM-CSF concentration (10 ngjml). 

Kinetics of GM-CSF or GM-CSF - 11-6 induced colony formation 

Time course studies revealed two types of colony growth kinetics in response to GM

CSF: (1) a growth pattern comparable with that of normal bone marrow (Fig 4, 

panels A and B), or (2) a delayed type of colony growth (panel D). Il-6 was found to 

augment GM-CSF induced colony numbers (panel Band D). In two cases (6 and 16) 

colony growth could be observed only in response to the GM-CSF - Il-6 combination 

(panel C). Il-6 did not affect MDS marrow colony growth kinetics: maximum colony 

numbers were found at the same day either in the presence or absence of Il-6. 
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Figure 4: Colony growth kinetics induced by either GM-CSF or the GM-CSF - Il-6 
combination in NBM (panel A), Refractory anaemia (RA) (panel B), RA with excess of 
blasts (RAEB) (panel C) or Leukemic transfonned MDS (LT-MDS) (panel D). 

The effect of delayed addition of GM-CSF and II-6 

In order to determine whether IL-6 is required at the initiation of the culture, IL-6 

was added at consecutively the beginning, at day 1, 2 and 6 of culture. The results 

indicate that a delayed addition of one to several days did not influence the effect of 

IL-6. However, a delay in GM-CSF addition of one to several days during continued 

IL-6 stimulation, resulted in a rapid decline in the number of colonies (Fig 5). 

Morphological features of the colony cells 

No clear differences in morphology of colony cells formed in response to either GM

CSF or the GM-CSF - ll-6 combination were observed. In case 18 co-stimulation with 

ll-6 and GM-CSF revealed a 77% increase in colony numbers compared to stimulati

on with GM-CSF only . 
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From both groups (GM-CSF - ll-6 as 

well as GM-CSF stimulation only) five 

colonies were randomly selected, and 

differential counts were performed on 

each of these colonies. In the GM

CSF - IL-6 co-stimulated colonies 14.2% 

± 9.8 (M ± SD) of the cells were im

mature (blasts and promyelocytes ), 

whereas in the GM-CSF stimulated 

colonies 8.5% ± 3.7 of the cells were 

immature (table 2). These differences 

are statistically insignificant. 
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Figure 5. The effect of a delayed addition of 
either Il-6 or GM-CSF. 

Table 2 Differential counts of the colony cells formed in response to 
either GM-CSF or the GM-CSF - Il-6 combination in MDS (case 18) 

GM-CSF GM-CSF 
+Il-6 

% ± SD % ± SD 

blastsjpromyelocytes 8.5 ± 3.7 14.2 ± 9.8 
Myelocytes 28.5 ± 8.2 28.8 ± 10.5 
meta-myelocytes 26.2 ± 6.7 25.0 ± 6.6 
bands 10.8 ± 4.0 8.6 ± 1.5 
polymorphonuclears 25.3 ± 8.2 23.0 ± 13.2 
eosinophils 0.7 ± 0.7 0.4 ± 0.5 
monocytes 0.0 ± 0.0 0.0 ± o.-o 
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DISCUSSION 

In this study we investigated the effects of Il-6 and Il-l on the GM-CSF stimulated 

myeloid colony formation by low-density, non-adherent, T-cell depleted bone marrow 

cells of MDS patients and normal controls. Neither Il-6 nor Il-l were observed to 

induce the proliferation of myeloid progenitor cells on their own. Although these 

results are not concordant with those obtained by Caracciolo et al (1989a,b ), who 

found that Il-6 supported the proliferation of a small number of myeloid colonies, 

they agree with a number of other reports (Moore et al, 1987; Suda et al, 1988; Bot 

et al, 1989). Enhancement by Il-6 and Il-l of GM-CSF induced colony formation was 

observed in most MDS cases, in contrast to the lack of colony growth enhancement in 

normal bone marrow. Remarkably, the GM-CSF - IL-6 combination did induce 

colony formation in two cases in which neither factor alone was able to induce colony 

growth, indicating that both stimuli are required for proliferation of these progenitor 

cells. In cases with a reduced response to GM-CSF, neither IL-6, Il-l nor their 

combined activity resulted in a rise of the number of colonies into the normal range. 

This indicates that Il-6 and Il-l only potentiate the GM-CSF effect, but are not able 

to normalize a reduced response. Mayani et al (1989) previously reported an enhan

cing effect by high-dose GM-CSF on myeloid colony formation of unfractionated 

MDS bone marrow, suggesting a reduced sensitivity of MDS progenitor cells for GM

CSF. These results were not reproduced by more recent data collected by the same 

group (Baines et al, 1990) or by Carlo-Stella et al (1989). In addition, we did not find 

a high-dose GM-CSF effect. Since we could demonstrate that accessory cells can 

substitute for IL-6, the findings of Mayami et al may be due to endogenous release of 

Il-6 by accessory cells. Our findings also indicate that the Il-6 effect is due to an 

intrinsic disorder of the colony forming cell rather than to a reduced production of Il-

6 by MDS marrow accessory cells. 

We found that Il-6 did not affect the colony formation kinetics of MDS marrow. In 

cases with delayed colony growth kinetics, which we have reported to be a MDS 

characteristic (Schipperus et al, 1990), Il-6 was not able to shorten the delay in colony 

growth onset. Moreover, a delayed addition of GM-CSF of one day already totally 

abrogated the Il-6 effect, whereas the Il-6 effect is not influenced by a delay in 

administration. Therefore, our results are in agreement of those of Suda et al (1988) 
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and Caracciolo et al (1989), who found a proliferative TI-6 effect on late granulocyte

macrophage progenitors, already responsive for GM-CSF, instead of acting like a 

priming factor as has been reported by others (Ikebuchi et al, 1987; Leary et al, 1988; 

Bot et al, 1989). Of the two groups of colony cells, which were stimulated either by 

GM-CSF or GM-CSF - IL-6 combination, morphological analysis revealed no 

significant differences. This indicates that increased colony formation is not accompa

nied by an increased differentiation of colony cells. 

Although in most cases TI-6 and TI-l augmented the GM-CSF induced colony growth, 

in 3/21 cases TI-6 antagonized the GM-CSF induced colony formation. This was also 

observed in four cases with the TI-l - GM-CSF combination. This dual action of inter

leukins has been described before, but is still difficult to explain. One possible 

explanation is that the effects of these interleukins depend on the conditions set by 

other substances present, i.e other growth factors or still undefined serum factors 

(Roberts, 1985). In other systems the effects of growth factors have been reported to 

depend on the developmental (differentiation) stage of the cells (Rennick et al, 1987). 

However, this does not be exclude the possibility that the production of inhibitors by 

residual accessory cells is induced in these cases. 

We present data indicating that TI-6, and in a lesser extent, TI-l enhance the GM-CSF 

induced myeloid colony formation of MDS bone marrow, as previously reported for 

leukemic myeloid cells and primitive normal haemopoietic progenitor cells. Everson 

et al, (1989) found that IL-6 and GM-CSF are potential growth factors for chronic 

myelomonocytic leukemia cells. These recent findings support our results. We 

observed augmentation of colony formation by TI-6 in all subtypes of MDS, suggesting 

that this response pattern is present throughout all stages of the disease. Furthermore, 

our results indicate that the reduced responsiveness for GM-CSF of the late granulo

cyte-macrophage progenitor cells in MDS may be ameliorated by co-factors like TI-l 

or TI-6. 
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CHAPTER 7 

GENERAL DISCUSSION 
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MDS classification 

The myelodysplastic syndrome (MDS) classified according to the criteria proposed by 

the FAB-cooperative group encompasses a heterogeneous group of disorders with 

dyshemopoietic abnormalities in one or more cell lineages, with or without an 

increase in the percentage of bone marrow blast cells. Although, now generally 

accepted the classification has been the subject of much controversy for a number of 

reasons. First, none of the sub-types is wholly exclusive of the others. The RAs with 

or without an excess of blasts are a relatively homogeneous group. However, their 

distinction from the acute leukemias, especially erythroleukemia is arbitrary and 

unclear and perhaps separates unjustly diseases which are biologically an entity. 

Secondly, whithin one subtype considerable differences in terms of survival and risk of 

leukemic transformation may occur. In particular this is the case in acquired idiopa

thic sideroblastic anemia (AISA) or refractory anemia with ringsideroblasts (RARS). 

Gatterman et al. (1990) have distinguished on cytomorphological grounds between 

pure sideroblastic anemia (PSA), which is confined to dyserythropoiesis and RARS, 

which is characterized by additional dysplastic features of granulopoiesis and/or 

megakaryopoiesis. Both PSA and RARS are diagnosed in the same MDS group 

(MDS 2 or RARS), but Gatterman and al. found striking differences in the risk of 

leukemic transformation between PSA and RARS in 94 patients (5 year cumulative 

rate 1.9 versus 48%). Overall survival was much better in PSA than in RARS (5 year 

cumulative chance 69% versus 19% ). Infections and hemorrhages were frequent 

causes of death in RARS but not in PSA The differences in terms of leukemic 

transformation and survival between cases with dysplastic features in one cell line and 

cases dysplastic in two or more cell lineages may apply to all MDS subtypes and not 

only to AISA cases. Saarni and Linman (1973) already made this distinction in their 

definition of the 'preleukemic syndrome' (PLS). Their criteria included the presence 

of dysplastic megakaryocytes and granulocytes as well as dyserythropoisis. Using these 

criteria a syndrome may be identified in which the incidence of acute leukemia ranges 

up to 45%. More recently Brito-Babapulle et al. (1987) have defined MDS with 

features of trilineage disease (TMDS). The authors looked for dysplastic features in 

erythroid, megakaryocytic and granulocytic lineages (i.e. PLS features) in the bone

marrow of AML patients as evidence for pre-existing MDS. TMDS was found in 24 
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(15%) of the 160 consecutive cases of primary de novo AML, including two of 33 

cases of M1, four of 40 cases of M2, none of 18 cases of M3, five of 31 cases of M4, 

six of 30 cases of M5 and all of six cases of M6. They found that AML cases with 

TMDS differed from cases without in the occurrence of symptomatic cytopenias but 

also in lower rates of complete remission. One may conclude, at least in AML-M6 

cases, that biologically the leukemia represents the final stage of the malignant clone 

initiated already in the clinical stage of MDS. 

In chapter 2 we present results that support this view. We could demonstrate by 

double immunofluorescence studies (DIF) analysis that a population of TdT, myeloid

antigen double positive (TdT + jMM +) cells was present in MDS cases with dyshemo

poietic features in more than one lineage (RAEB and RAEBt). The frequency of 

MM + /TdT + cells was found to increase rapidly in the leukemic phase of the disease. 

In one patient the results of follow-up DIF studies showed that the frequency of 

MM + jTDT + cells decreased during remission, increased six months before relapse 

RAEB and finally to 35% in AML. Since these TdT + /MM + cells are extremely rare 

in normal bone marrow, they are considered to represent a subpopulation of the 

leukemic clone in AML (Adriaansen et al., 1990). In MDS MM + jTdT + cells 

probably represent the abnormal granulopoiesis, which may have already leukemic 

features. In this respect it is of interest that a MM + jTdT + subpopulation was 

present in a RARS case with an abnormal granulopoiesis, but absent in RARS cases 

without dysgranulopoiesis. In conclusion, double immunofluorescence analysis may be 

useful to detect abnormal myeloid cells in MDS and to monitor this subpopulation 

during disease progression. 

In vitro marrow cultures 

The colony forming capacities of the various progenitor cells are usually decreased in 

MDS patients (Greenberg and Mara, 1979; Chui and Clark, 1982; Greenberg et al., 

1983; Juvonen et al., 1985). Frequently an abnormal maturation of the colony cells is 

found (Golde and Cline, 1973; Spitzer et al., 1979; Verma et al., 1979). The main 

purpose of this study was to reveal the nature of the defect leading to the abnormal 

in vitro colony formation of the hemopoietic cells in MDS. Since survival, growth and 

differentiation of hemopoietic cells is dependent on hemopoietic growth factors or 
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colony stimulating factors we investigated the effects of these factors on the in vitro 

growth of MDS bone-marrow. The abnormal colony formation may be due to 1) an 

intrinsic defect of the progenitor cells, i.e. a decreased number of CSF receptors, a 

lower affinity of the receptors for CSF, or abnormalities in the intracellular CSF

stimulus signal transduction; 2) an environmental defect, i.e. an abnormal growth 

factor production, either spontaneously or induced, by accessory cells or bone-marrow 

micro-environment. To eliminate the effects of accessory cells we depleted the bone

marrow cells ofT-cells and adherent cells. Although these fractionated bone-marrow 

cell suspensions may still contain residual accessory cells, no spontaneous colony 

growth was observed. Moreover Il-1, a potential inducer of the production of 

hemopoietic growth factors by accessory cells, did not induce colony formation when 

added as a single factor to the bone-marrow cultures (chapter 6). Therefore we 

concluded that the bone marrow cells were, at least functionally, depleted of the cells 

capable of producing CSFs. 

In chapter 3 colony formation of normal and MDS bone marrow cells was tested in a 

liquid-agar double layer colony assay, adapted from the PHA-leukocyte feeder colony 

assay described by LOwenberg et al. (1980). The feeder layer was replaced by the 

conditioned medium of the giant tumor cell line (GCT-CM). Colony formation was 

found in all 7 NBM, 17 MDS and 5 AML cases. Colonies were found to be adherent 

or non-adherent to the agar underlayer. The adherent colonies consisted of terminally 

differentiated cells, whereas the non-adherent colonies comprised immature cells. We 

used the ratio adherent/non-adherent colonies as a measure for the maturation index 

of the colonies. The maturation index of NBM cases was high and that of AML cases 

low. MDS and LT-MDS cases had highly variable indices and their mean values were 

intermediate to that of NBM and AML. No apparent correlation was found between 

the colony maturation index and F AB type or clinical course of the MDS cases. When 

PHA was not added to the cultures, no or only a few colonies were observed in AML, 

LT-MDS and MDS cases with progressive disease. In the absence of PHA, the same 

number of colonies were found in MDS with a stable clinical course and NBM as in 

the presence of PHA. We concluded that PHA dependency for colony formation 

correlated with a higher number of blasts in the bone-marrow and probably with an 

impending leukemic transformation of the MDS. PHA may either function as: a) a 
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co-factor for CSF, required for MDS/AML progenitor cell proliferation, b) an 

inducer of the production of secondary factors necessary for MDS-progenitor 

proliferation, and c) an inducer of cell-cell contact necessary for the initiation of 

MDS/ AML progenitor-cell proliferation. Since initial cell-cell interaction seems to be 

a prerequisite for colony formation in the PHA-colony assay (Kluin-Nelemans, thesis 

1989, Pulsoni et al., 1989; Reilly et al., 1989) further experiments were performed in 

semi-solid media in order to exclude the influence of cell-cell interactions. 

First the response patterns and growth kinetics of colony-forming cells stimulated with 

Il-3, GM-CSF, G-CSF and GCT-CM were studied (chapter 4 and 5). Colony formati

on was found in 23/23 MDS and LT-MDS cases with GCT-CM, in 19/21 (90.5%) 

with GM-CSF and 15/17 (88%) with GCT-CM stimulation. Colony numbers were 

below the normal range with GCT-CM stimulation in 9/23 (39%), with GM-CSF in 

13/21 (62%) and with IL-3 in 7/17 (41%) of the MDS cases (chapter 5). Therefore, 

single CSFs appear to stimulate colony formation by MDS bone marrow inadequately. 

Colony formation was found to be delayed in MDS as compared to NBM cultures 

(chapter 4). The delay in colony formation was most apparent in GCT-CM stimulated 

cultures. GCT-CM and G-CSF induced colony formation kinetics were found to be 

identical both in MDS and NBM cultures. GCT-CM colony formation activity could 

be neutralized by anti-G-CSF antibodies (chapter 5) indicating that the colony 

stimulating activity present in GCT-CM can be ascribed to G-CSF. In MDS cases 

with features of high risk disease (in terms of leukemic transformation and survival), 

a greater delay than in low risk cases was found. An increased time interval before 

progenitor cells begun to divide was found to cause the delayed colony formation. 

This was most apparent in the late (G-CSF responsive) progenitor compartment and 

progressed in parallel with disease progression. Cytogenetic analysis of the colony 

cells proved that these cells originated from the abnormal clone (chapter 4 and 5) 

and therefore we concluded that this growth pattern is a characteristic of the abnor

mal clone. In normal bone marrow only the early progenitor cells are considered to 

be in GO (Lathja, 1979). Our results suggest that in MDS, progenitor cells in the 

relative late compartment as the CFU-G are more frequently dormant, i.e in GO of 

the cell cycle, than their normal counterparts. 

A possible explanation for the relative increase of dormant cells in the late progenitor 
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cell compartment in MDS may be an inadequate stimulation of these cells by single 

colony stimulating factors. In chapter 5 we therefore studied the effects of combinati

ons of IL-3, GM-CSF and G-CSF on the in vitro growth of myeloid progenitors in 

MDS. The combination of Il-3 and GM-CSF did not enhance colony numbers above 

the sum of the colonies formed in the presence of the two factors alone (no synergis

tic effect). Furthermore, colony numbers formed with the 11-3 - GM-CSF combination 

rarely exceeded the scores of the dominant factor (no additive effect). These results, 

which agree with those of Baines et al. (1990), suggest that these factors act on an 

identical progenitor population in MDS. In contrast, in NBM a partial additive effect 

of the IL-3 - GM-CSF combination was observed. This is in agreement with previous 

data indicating that IL-3 and GM-CSF stimulate overlapping, but distinct, progenitor 

cell populations (Emerson et al., 1988). A synergistic effect of the 11-3 - G-CSF 

combination was found in MDS but not in NBM. Therefore it appears that MDS 

myeloid progenitors require both IL-3 and G-CSF for optimal colony formation. We 

concluded that a pluripotent factor (as IL-3) should be combined with a later acting 

factor for an optimal colony stimulating effect in MDS. Again, (as the percentage 

dormant cells) this is a characteristic shared by early bone marrow progenitor cells 

(Caracciolo et al., 1989a). 

Apart from their activities on the lymphoid lineage, 11-1 and the pleiotropic cytokine 

IL-6 have been reported to act as co-stimulants for the growth of normal, primitive, 

hemopoietic progenitors (Moore et al., 1987; Leary et al., 1988). Since committed 

progenitor cells in MDS have many characteristics in common with normal primitive 

progenitor cells, 11-1 or 11-6 may act as co-stimulants on MDS progenitor cells. In 

chapter 6 the effects of IL-l and 11-6 on GM-CSF induced colony formation in NBM 

and MDS was studied. In normal bone marrow cultures, either stimulated with 

optimal or suboptimal doses of GM-CSF, no enhancing effect of 11-6 and 11-lB was 

detected. However, in the majority of the MDS cases an enhancing effect of IL-6 and 

IL-lB on the activity of GM-CSF was observed. No additional effect of a high GM

CSF dose, either in the presence or absence of IL-6 was observed. These results 

suggest that 11-1 and 11-6 augment the sensitivity of MDS progenitor cells for GM

CSF. Obviously this is not due to the induction of GM-CSF production by MDS 

progenitor cells or accessory cells, since the enhancing effect of IL-6 was still present 
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with high doses of GM-CSF. Possibly Il-l and Il-6 recruit MDS progenitor cells in a 

stage where they can respond to other factors. However, we found that a delayed 

administration of Il-6 did not influence its effect. Therefore, our results indicate that 

IL-6 acts on progenitor cells already responsive for GM-CSF, either by an augmenta

tion the number of GM-CSF receptors on MDS progenitors as has been reported for 

the Il-l effect on early progenitors (Bartelmez and Stanley 1985) or by acting in a 

sequence following GM-CSF as have been reported by Caracciolo (1989b). 

How can these additive and synergistic effects of growth-factors on MDS progenitor 

cells be achieved? One explanation is that one CSF alters the progenitor cells so that 

they become responsive to stimulation by another, previously inactive CSF. The action 

mechanism may be, as with Il-l, the enhancement of CSF receptor expression. 

Alternative explanations may be the induction of rate limiting second messager 

systems or recruitment of the cells into a CSF responsive phase of cell-cycle. Why this 

two- or even three-signal system operates on committed MDS progenitors and only on 

primitive normal progenitor cells is unclear. Whereas all our data indicate that MDS 

committed progenitor cells are functionally immature and resemble, in that respect, 

normal pluripotent (early) progenitor cells, one explanation may be that this is 

primarily due to a maturation defect of the MDS clone, already detectable at the 

level of the progenitor cell compartment. However, as described in chapter 3, the 

delay in colony formation of MDS marrow was not associated with a relative increase 

of the GM-CSF responsive compartment, as would be expected in case of a relative 

increase of the earlier compartments. Moreover, Baines et al. (1988) have reported 

that the colony formation of purified CD34-positive cells in MDS is decreased as 

compared with CD34 normal bone marrow cells. These findings do not support the 

concept of a left shift in the progenitor cell compartment. 

The presence of a functional defect (i.e. an intrinsic disorder) of the progenitor cells 

in MDS may be another explanation. This intrinsic abnormality makes committed 

MDS progenitor cells functionally resemble normal early progenitor cells. Hypotheti

cly this may be an adaptive processes of the MDS clone in order to compensate for 

an absolute or relative stem-cell deficit. 

The combined action of IL-6 and GM-CSF or Il-3 and G-CSF recruits both normal 

stem cells and MDS progenitor cells into cell-cycle. This may be a strong argument 
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for using these or other comparable combinations of growth factors in future clinical 

trials for MDS, since these growth factor combinations may effectively induce 

proliferation of residual normal stern cells and, at the same time, enhance differentia

tion of the MDS clone. Continuous administration of these factors over longer 

periods of time are probably needed to initiate a lasting remission. However, since it 

is unknown whether CSFs can induce irreversible committrnent, there is a possible 

risk of stimulation one cell lineage at the cost of another. A more obvious drawback 

of combination therapy may be a more rapid induction of leukemic transformation as 

compared with the reported stimulation of proliferation of leukemic blast cells with 

GM-CSF alone (Herrmann et al., 1989). Well designed clinical trials have to provide 

us with the answers on these important questions. 
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SUMMARY 

Blood cell formation results from the continuous proliferation, differentiation and 

maturation of pluripotent hemopoietic stem cells located in the human bone marrow. 

In vitro culture assays, developed in the last twenty years, have enabled the identifica

tion of the various pluripotent and committed progenitor cells present in human bone 

marrow by their capacity to form colonies of mature blood cells in vitro. Colony 

formation dependens on the presence of hemopoietic growth factors in the culture 

medium, which have become known as the colony stimulating factors (CSFs). At 

present a number of CSFs can be produced on a large scale through recombinant 

DNA technology and their biological activities have subsequently been defined. In 

chapter L 1 and 1.2 the general principles of hemopoiesis are introduced, i.e., the 

different models of stem cell renewal and commitment, the various in vitro clonogenic 

assays for normal as well as for leukemic colony forming cells and the effects of the 

CSF on progenitor cells and mature blood cells. 

The myelodysplastic syndrome (MDS) comprises a group of acquired disorders, which 

are characterized by an ineffective hemopoiesis resulting in cytopenia of one or more 

cell lineages. Cytogenetic and G-6-PD studies have demonstrated that MDS is a 

clonal disease of the hemopoietic stem celL The results of some studies suggest that 

normal hemopoiesis is replaced by the abnormal clone already in an early stage of 

the disease. Up to fourty percent of the MDS patients eventually develop an acute 

myeloblastic leukemia. The preleukemic nature of the MDS makes this syndrome of 

particular interest in the study of leukemogenesis. In chapter 1.3 the clinical, mor

phological and in vitro growth characteristics of the MDS are introduced. 

In chapter 2 six patients with MDS (three RARS, two RAEB and one RAEBt) were 

studied using double immunofluorescence analysis (DIF) for the presence of terminal 

deoxynucleotidyl transferase (TdT) and myeloid-antigen (MM), such as CD13, CD14, 

CD15 and CD33 expression. TdT expression was found in 0.1 - 11% of the cells. In 

four cases (1 RAEBt, 2 RAEB and 1 RARS) 58 - 99% of the TdT + cells expressed 

the panmyeloid markers CD13 and/or CD33, whereas the precursor antigen CD34 

was present in 68 - 99% of the TdT + cells. Follow-up studies performed in two 

patients, that evolved into an acute myeloid leukemia (AML), showed in one patient 

an increase of MM + /TdT + cells from 11% in RAEBt to 25% in AML-M2. In the 
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other patient the percentage of MM + /TdT + cells was 0.1% at diagnosis, decreased 

during remission, increased to 0.2% before relapse RAEB and finally to 35% when 

AML-M2 emerged. These data indicate that MM + TdT + cells represent abnormal 

myeloid cells in MDS and their detection may be useful to monitor the abnormal 

myeloid subpopulation during disease progression. No MM + jTdT + cells were found 

in 2/3 RARS patients. In these patients no dysgranulopoietic features were found. In 

the other RARS case 5% MM + /TdT + cells were detected along with the presence 

of an abnormal granulopoiesis, suggesting that DIF staining can discriminate between 

RARS cases with and without an abnormal granulopoiesis. 

The abnormal hemopoiesis in MDS is reflected in an abnormal in vitro growth 

pattern of MDS bone marrow. Decreased or absent colony formation of erythroid and 

megakaryocytic progenitor cells is a typical finding. An abnormal granulocyte

macrophage colony growth is often observed. However, the nature of the aberrant 

colony formation of MDS bone marrow in vitro is poorly understood. The main 

objective of this thesis was to study the possible defects leading to the abnormal in 

vitro colony formation of myeloid progenitor cells in MDS. In chapter 3 colony 

formation of normal (NBM), MDS, MDS in leukemic phase (LT-MDS) and leukemic 

(AML) bone marrow cells was studied in a modified PHA-leukocyte feeder colony 

assay, in which the feeder cells were replaced by the conditioned medium of the giant 

tumor cell line (GCT-CM) as a source of CSFs. It was found that in NBM and MDS 

marrows of patients with a stable clinical course optimal colony formation was 

observed with stimulation with GCT-CM alone, whereas LT-MDS, AML and MDS 

bone marrows of patients that ran a rapid progressive course were dependent on co

stimulation with PHA and GCT-CM for colony formation. Thus, PHA dependency for 

colony formation may identify MDS cases with a more progressed disease. 

In chapter 4 the growth characteristics and kinetics of myeloid NBM and MDS 

progenitor cells stimulated with recombinant Il-3, GM-CSF and G-CSF were studied. 

Colony numbers were lower when stimulated with single recombinant CSF than with 

GCT-CM, although colony formation efficiency was high (at least 88% of cases). 

Colony formation was found to be delayed in MDS as compared with NBM. The 

delay in colony formation of the G-CFU was most apparent and in MDS cases with 

features of high risk disease (i.e., high leukemic transformation risk and short 
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survival). The delay in colony formation was found to be caused by a increased time 

interval before progenitor cells initiated division. These results suggest that committed 

progenitor cells in MDS marrow are relatively more quiescent (in the GO phase of 

cell cycle) than NBM progenitor cells and the time spent in Go increases with disease 

progression. 

In chapter 5 the effects on colony formation of the stimulation with combinations of 

recombinant 11-3, GM-CSF and G-CSF was studied. In NBM cultures an additive 

effect of the 11-3 - GM-CSF combination was observed, whereas no additive or 

synergistic effects of these factors were found in MDS. The response to G-CSF was 

reduced in MDS marrow as compared with NBM. This reduced effect could be 

ameliorated by 11-3, which acted synergisticly with G-CSF. These results indicate that 

a reduced colony growth of MDS marrow can be improved by the combined stimula

tion with a pluripotent and a lineage restricted CSF. 

In chapter 6 the effects of 11-1 and 11-6 on the GM-CSF induced proliferation of 

myeloid progenitor cells in MDS was investigated. In NBM cultures, either stimulated 

with optimal or sub-optimal doses of GM-CSF, no enhancing effect of IL-6 or 11-1 was 

observed. However, in a majority of the MDS cases an enhancing effect of 11-1 and 11-

6 on GM-CSF induced colony formation was found. This enhancing effect was still 

present in the presence of high doses of GM-CSF, indicating that enhancement of 

colony formation was not mediated by the release of additional GM-CSF in the 

culture. These results suggest that 11-1 and 11-6 augment the sensitivity of progenitor 

cells for GM-CSF. However, a delayed addition of IL-6 of several days did not 

abrogate its effect, whereas an delayed administration of GM-CSF resulted in a fall in 

colony numbers. These results indicate that 11-6 acts on progenitor cells already 

responsive to GM-CSF. 11-6 may increase the number or affinity of the GM-CSF 

receptors or act in a sequence following the action of GM-CSF. 

In chapter 7 the results of these investigations are discussed in the context of the 

literature. 
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SAMENVATIING 

De vorming van bloed cellen is bet resultaat van de continue proliferatie, differentia

tie en uitrijping van pluripotente bemopoietiscbe stamcellen en voorlopercellen, die 

zicb in bet menselijk beenmerg bevinden. In boofdstuk 1.1 en 1.2 worden de algeme

ne principes van de bemopoiese geintroduceerd, waarbij ingegaan wordt op de 

verscbillende bestaande stamcelmodellen, de verscbillende in vitro kweeksystemen, 

die gebruikt worden om normale en leukemiscbe voorlopercellen te kweken en 

tenslotte de effecten van de CSFs op bemopoietiscbe voorlopercellen en rijpe bloed 

cell en. 

Het myelodysplastiscbe syndroom (MDS) is een verworven aandoening van de 

bemopoietiscbe stamcel, die resulteert in een ineffectieve bemopoiese. De ineffectivi

teit van de bemopoiese komt tot uiting in een cytopenie van een of meerdere 

cellijnen (an ernie, leukopenie en trombopenie). De normale bemopoiese lijkt al in 

een vroeg stadium van de ziekte gebeel vervangen te zijn door de MDS kloon. De 

MDS-kloon wordt gekenmerkt door een neiging tot maligne ontaarding: ongeveer 

veertig procent van de MDS patienten krijgt uiteindelijk een AML. Deze eigenscbap 

maakt bet MDS uitermate interessant in bet kader van de bestudering van bet 

onstaan van leukemie, omdat meer inzicbt in de patbogenese van MDS kan leiden tot 

een betere kennis van bet onstaan van AML. In boofdstuk 1.3 wordt ingegaan op de 

kliniscbe, morpbologiscbe en in vitro groei eigenscbappen van MDS. 

In boofdstuk 2 worden zes MDS patienten bescbreven, waarvan bet beenmerg met 

bebulp van dubbelimmunofluorescentie tecbnieken geanalyseerd is. Gezocbt werd 

naar cellen, die zowel bet enzym terminale deoxynucleotidyl transferase (TdT) als 

myeloid-antigenen als CD13, CD14, CD15 en CD33 tot expressie bracbten 

(MM + /TdT + ). TdT expressie werd gevonden in 0,1 - 11% van de cellen. Bij vier 

patienten (1 RAEBt, 2 RAEB en 1 RARS) bleken 58 - 99% van de TdT + cellen de 

panmyeloide-antigenen CD13 en/of CD33 tot expressie te brengen, terwijl bet 

precursor antigeen CD34 in 26 - 99% van de TdT+ cellen aanwezig was. Vervolg 

studies in twee patienten lieten een duidelijke toename van de MM + /TdT + cell en 

zien van 11% naar 25% en 0,1% naar 35% in respectievelijk de MDS and AML fase. 

Bij twee van de drie RARS patienten werden geen MM + /TdT + cellen gevonden. 

Deze twee patienten vertoonden geen afwijkingen in de granulopoiesis. In de andere 
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RARS patient konden 5% MM + /TdT + cell en worden aangetoond en deze patient 

had inderdaad een abnormale granulopoiesis. Uit deze gegevens kan geconcludeerd 

worden dat dubbel-immunofluorescentie analyses de mogelijkheid verschaffen om een 

abnormale subpopulatie myeloide cellen, aanwezig in MDS beenmerg, te detecteren 

en te vervolgen gedurende de verschillende fases van de ziekte. 

De abnormale hemopoiese bij MDS patienten vindt zijn weerslag in een abnormaal in 

vitro groeipatroon van MDS beenmerg. Over het algemeen is de kolonievorming van 

erythroide, megakaryocytaire en myeloide voorlopercellen afgenomen of afwezig. De 

oorzaak hiervan is onbekend. Ret belangrijkste doel van het onderzoek, beschreven in 

dit proefschrift, is het achterhalen van afwijkingen in MDS beenmerg, die kunnen 

leiden tot deze veranderde groeipatronen. 

In hoofdstuk 3 worden de groeieigenschappen beschreven van myeloide MDS 

voorlopercellen in een kweeksysteem, dat door de groep van LOwenberg speciaal 

ontwikkeld is voor leukemisch beenmerg (PHA-lf-assay). In dit kweeksysteem wordt 

de proliferatie van voorlopercellen zowel door CSFs als door phytohemagglutinine 

(PHA) gestimuleerd. Bij normaal beenmerg en beenmerg van MDS patienten met 

een stabiel klinisch beloop bleek de koloniegroei optimaal gestimuleerd te worden 

door CSF aileen. Echter, bij AML, leukemisch getransformeerde MDS, en MDS 

patienten met een progressief klinisch beloop, bleek PHA naast CSF onontbeerlijk te 

zijn voor koloniegroei. Geconcludeerd kan worden dat de afhankelijkheid van PHA 

voor in vitro koloniegroei een eigenschap is van beenmerg van MDS patienten met 

een meer progressief beloop, of een grotere kans op het ontwikkelen van een AML. 

In hoofdstuk 4 wordt de groei kinetiek van hemopoietische voorlopercellen in MDS 

beenmerg, na stimulatie met recombinant interleukine-3 (IL-3), granulocyte-macrop

hage colony-stimulating factor (GM-CSF) en granulocyte-CSF (G-CSF) beschreven. In 

meer dan 88% van de gevallen werd koloniegroei gestimuleerd door een van deze 

factoren. De kolonie-aantallen waren echter veelal lager dan in kweken gestimuleerd 

met GCT-CM (welke meerdere groeifactoren bevat). Een vertraagde koloniegroei 

van MDS beenmerg werd gevonden, welke het meest uitgesproken was bij granulocy

taire voorlopercellen (G-CFU). Tevens was de vertraagde groei meer uitgesproken bij 

MDS patienten met in het beenmerg meer dan 10 % blasten, complexe cytogeneti

sche afwijkingen, of een gedocumenteerde leukemische ontaarding. De vertraagde 
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koloniegroei bleek veroorzaakt te worden doordat de voorlopercellen een latere 

aanvang maakten met de deling. Deze resultaten suggereren dat gecommiteerde voor

lopercellen in MDS beenmerg relatief langer in rust zijn (in de GO fase van de eel 

cyclus) in vergelijking hun normale tegenvoeters. 

In hoofdstuk 5 worden de effecten van stimulatie met combinaties van CSFs op de 

koloniegroei van MDS beenmerg beschreven. Een duidelijk synergistisch effect van de 

combinatie Il-3 en G-CSF op MDS myeloide voorlopercellen werd gevonden, terwijl 

dit effect niet waameembaar was bij normaal beenmerg. Deze resultaten suggereren 

dat myeloide voorlopercellen in MDS beenmerg meerdere CSFs nodig hebben voor 

een optimale stimulatie (waarschijnlijk een progressie factor gecombineerd met een 

differentiatie factor). Dit is een eigenschap die ook beschreven is voor normale 

pluripotente voorlopercellen en suggereerd een functionele onrijpheid van myelodys

plastische myeloide voorlopercellen. 

In hoofdstuk 6 worden de effecten van 11-1 and 11-6 op myeloide voorlopercellen in 

MDS beenmerg beschreven. 11-1 en 11-6 stimuleren zelf geen koloniegroei, maar 

kunnen de repons op een tweede CSF vergroten. Bij normale beenmerg kweken werd 

geen effect van de beide interleukines gezien in combinatie met GM-CSF. Ben 

duidelijk stimulerend effect van 11-1 en 11-6 op de koloniegroei van MDS beenmerg 

werd echter wel gevonden. Ook in de aanwezigheid van een tienvoudige concentratie 

GM-CSF was dit stimulerend effect aanwezig. Dit geeft aan dat de stimulatie niet 

wordt veroorzaakt door een extra productie van GM-CSF. Waarschijnlijk verhogen Il

l and 11-6 de gevoeligheid van MDS voorlopercellen voor GM-CSF. Identieke 

resultaten werden verkregen wanneer 11-6 pas na enkele dagen aan de kweken werd 

toegevoegd, wat impliceert dat 11-6 waarschijnlijk voorlopercellen stimuleert, die al 

gevoelig zijn voor GM-CSF. Geconcludeerd kan worden dat in MDS, myeloide 

voorlopercellen verminderd gevoelig zijn voor GM-CSF. Deze verminderde gevoelig

heid kan niet verholpen worden met behulp van zeer hoge doseringen GM-CSF, maar 

wel gedeeltelijk door middel van co-stimulatie met 11-6. 

In hoofdstuk 7 worden de resultaten besproken in samenhang met recente literatuur 

gegevens. 
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ABBREVIATIONS 

AET 
AI SA 
ALIP 
AML 
BFU-E 
BPA 
CAFC 
CD 
CFU-blast 
CFU-E 
CFU-Eo 
CFU-G 
CFU-GEMM 
CFU-GM 
CFU-M 
CFU-Meg 
CM 
CMML 
CSF 
ECGF 
Epo 
FAB 
FCS 
GCT-CM 
G-CSF 
GM-CSF 
HGF 
HIM 
IL 
LT 
LT-MDS 
McAb 
M-CSF 
MDS 
MM 
NBM 
PDGF 
PHA 
PHSC 
PLS 
PSA 
RA 
RAEB 
RAEBt 
RARS 
TdT 
TGF 
T-MDS 
TNF 
4-HC 

2-aminoethylthiouronium bromide hydrobromide 
acquiered idiopathic sideroblastic anemia 
abnormal localization of immature precursors 
acute myeloid leukemia 
burst forming unit -erythroid 
burst promoting activity 
coblestone area forming cell 
cluster of differentiation 
colony forming unit -blast cells 
colony forming unit-erythroid 
colony forming unit-eosinophil 
colony forming unit-granulocyte 
colony forming unit -granulocyte-erythroid-macrophage-megakaryocyte 
colony forming unit-granulocyte-macrophage 
colony forming unit-macrophage 
colony forming unit-megakaryocyte 
conditioned medium 
chronic myelomonocytic leukemia 
colony-stimulating factor 
endothelial cell growth factor 
erythropoietin 
French-American-British cooperative group 
fetal calf serum 
giant cell tumor cell-line conditioned medium 
granulocyte-colony stimulating factor 
granulocyte-macrophage-colony stimulating factor 
hemopoietic growth factor 
hemopoietic inductive environment 
interleukin 
lymphotoxin 
leukemic transformed myelodysplastic syndrome 
monoclonal antibody 
macrophage-colony stimulating factor 
myelodysplastic syndrome 
myeloid marker 
normal bone marrow 
platelet derived growth factor 
phytohemagglutinin 
pluripotent hemopoietic stem cell 
preleukemic syndrome 
pure sideroblastic anemia 
refractory anemia 
refractory anemia with excess of blasts 
refractory anemia with excess of blasts in transformation 
refractory anemia with ringsideroblasts 
terminal deoxynucleotidyl transferase 
transforming growth factor 
trilineage myelodysplasia 
tumor necrosis factor 
4-hydroperoxycyclophosphamid 
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