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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

In 1895 Wilhelm Conrad Rontgen discovered a new form of radiation that he 

named X-rays. The prospects for X-ray diagnosis in medicine were immediately 

recognized. Since then, the use of X-ray has become wide-spread and abundant. 

In 1972, nearly eighty years later, an X-ray computed tomography (CT) 

apparatus for medical use was announced by Godfrey Newbold Hounsfield. This 

announcement is considered to be the next major step in radiology after the 

discovery of X-rays. Before the introduction of CT, soft-tissue could only be 

visualized indirectly using contrast media. CT enabled to visualize soft-tissue 

directly and because of its tomographic nature, to visualize the human anatomy 

in section, providing depth information. 

Hounsfield, who received the Nobel prize in 1979, did not invent the CT concept 

but he was the first to implement the ideas in a machine suitable for clinical 

practice. The CT concept itself was tested experimentally in the 1950's and 

1960's in different institutions throughout the world (1). Now, at the end of the 

20th century, CT scanners are present in many departments of radiology. 

CT scanners are used primarily for imaging the human body. They can also be 

used to provide information on tissue composition, called quantitative computed 

tomography (QCT) (1 ,2). When applied to parts of the skeleton, this information 

can be used to give a measure of bone mineral content within the skeleton (3-

5). 

Apart from bone mineral content analysis, quantitative CT methods are also 

proposed for quantification of calcification of pulmonary nodules (6-8), of liver 

iron content (9-11), for determination of the composition of urinary calculi (12) 

and of gallstones (13, 14), for assessment of lung damage due to bleomycin (15), 

for assessment of the success of radiotherapy of vertebral metastases (16) and 

for assessing the density distribution of subchondral bone, representing the long­

term loading history of individual joints (17). 

Furthermore, the quantitative information of CT is used for isodose computations 

in treatment planning in radiotherapy (18, 19) and for xenon enhanced CT 

scanning for the measurement of cerebral blood flow (20-22). 



Outside the field of medicine, OCT is used to study density gradients in 

structural ceramics (23). 

The application of QCT for bone mineral analysis has become a clinically 

established method for non-invasive bone mineral assessment (24-26). The 

vertebral body is the part of the skeleton most commonly used as site of 

investigation (27-33); the forearm and femur also being sites of interest (34-36). 

The application of QCT for bone mineral assessment can be divided into single­

and dual-energy quantitative computed tomography. Because QCT for bone 

mineral assessment is usually applied to the vertebral body, both single- and 

dual-energy QCT will be discussed with respect to that specific skeletal site. 

1.2 SINGLE ENERGY QUANTITATIVE COMPUTED TOMOGRAPHY 

Single-energy quantitative computed tomography (SEQCT) means that a CT slice 

is made at one specific X-ray tube potential. In QCT for bone mineral content 

assessment of the vertebral body, a mid-vertebral CT slice is made perpendicular 

to the axis of the vertebra. Usually, slices are made of three or four consecutive 

vertebrae (L 1-L3 or T12-L3). A specific region of interest (ROll is chosen within 

the trabecular part of the vertebral body. Within this ROI the mean CT number, 

which is a measure of the X-ray attenuation is determined. This mean CT number 

is converted to a bone mineral equivalent value which is achieved by scanning a 

reference device that contains materials with known concentrations of bone­

mimicking substances. A more detailed description of the technique will be given 

in chapters 2 and 3. 

The accuracy and precision of bone mineral assessment with SEQCT is 

influenced by a number of factors. The following error sources require 

consideration: unknown fat content in the vertebral body (37-42), beam­

hardening (43-47), scattered radiation (47-49), selection of CT slice (5,37,50-

53), selection of ROI (52,54-57), and apparatus instability (37). Some of these 

problems can be alleviated by scanning a reference device simultaneously with 

the patient (5,36,58). Others can be minimized by automation of scanning and 

measurement procedures (53-54,56-57). Error due to the variable fat content of 

the vertebral body, however, remains. This is due to the fact that in SEQCT the 

multi-component trabecular region of the vertebral body is described as a two­

compartment model. Estimates of the fat-error on bone mineral content 
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assessment vary from 10-30% (37-42). This is the largest source of error in 

SEQCT, the error increasing with increasing fat content in the vertebral body 

(25). Fat content increases with age, while the trabecular bone volume 

decreases. The increasing fat-error in aging is particularly important as the main 

topic of interest within the field of non-invasive bone mineral assessment is 

osteoporosis. This syndrome of diminishing bone content and subsequent 

fracturing of skeletal parts is a major health problem in Western society with its 

increasingly aging population. 

Dual-energy methods have been proposed to solve the fat-error problem (59-61 ). 

Greater accuracy of bone mineral content determination is predicted with dual­

energy methods, but at the cost of precision. 

1.3 DUAL ENERGY QUANTITATIVE COMPUTED TOMOGRAPHY 

In dual-energy quantitative computed tomography (DEQCT) attenuation data are 

gathered at two different X-ray tube potentials. The X-ray attenuation 

information obtained can be processed to determine an estimate of the bone 

mineral content. Two different methods of processing are described in the 

literature. 

First, a method called preprocessing dual-energy OCT. The attenuation data 

obtained at two different X-ray tube potentials are combined to a special 

projection data set that is used to reconstruct CT images. The projection data set 

can be decomposed into an incoherent scattering medium image and a photo­

electric absorbing medium image (60,62-63) or into images representing two 

natural substances (64-65). As specific hardware and software is required to 

perform this technique, it cannot be used on standard CT systems. 

Second, postprocessing methods are described (59,66-68). The CT images at 

both scanning energies are reconstructed as in SEQCT. These methods are much 

easier to use and more accessible in clinical practice. The mean CT number of 

the ROI within the vertebral body is determined in both images. Then they are 

combined using specific algorithms to give a bone mineral estimate. Various 

postprocessing DEQCT methods have been proposed to increase the accuracy of 

bone mineral content estimation. 

It is suggested that a more accurate estimation could be important for the 

prediction of vertebral strength (69,70). As already indicated, this is important 
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for research and clinical decision making in osteoporosis. The distinct values of 

the various postprocessing DEQCT methods for bone mineral content analysis 

have not been evaluated. It is not clear to what extent these methods correct the 

fat-error. Further, it is not established which of these methods is the method of 

choice. 

Apart from a solution to the fat-error in bone mineral content determination, 

DEOCT can provide additional information about the anatomic composition of the 

vertebral body. It has been used experimentally to estimate fat content within 

the vertebral body of patients with different clinical syndromes, such as 

Cushing's disease and anorexia nervosa (71-73). Again, the value of the methods 

used for this purpose has not been evaluated. Determination of the fat content 

could be of importance for prediction of positive and negative results in 

treatment of osteoporosis or for unravelling different types of osteoporosis (with 

or without an increase in intravertebral marrow fat content), as it is suggested 

that bone formation is deficient adjacent to fatty marrow as a result of 

diminished vascularity or due to the fact that the adipocytes (cells containing fat) 

and the osteoblasts (the "bone-makers") share a common pole of stem cells (74). 

1.4 AIM OF THE STUDY 

Neither the distinct value of the different postprocessing DEQCT methods for 

bone mineral analysis, nor the value of these methods for providing additional 

information about the anatomic composition of the vertebral body have been 

evaluated. Therefore, a study was performed to evaluate the different 

postprocessing DEQCT methods for bone mineral content determination within 

the trabecular region of the vertebral body. In addition, acquisition of a more 

fundamental insight to the possibilities of postprocessing DEOCT methods could 

be advantageous for application of these methods outside the field of bone 

mineral analysis. 

Ideally, the questions to be answered by the evaluation are: 

1. What are the differences and similarities between the various 

postprocessing DEQCT methods? 

2. Are some methods better than others? 

3. Do they really improve the accuracy of bone mineral measurements 

compared with single-energy OCT? 
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4. Can these methods give a reliable estimate of the intravertebral fat 

content? 

5. What are the practical problems when these methods are used in clinical 

practice? 

6. Is there a place for DEQCT in clinical practice at this moment? 

7. What area's of future research could improve the performance of 

postprocessing DEQCT methods? 

1.5 OUTliNE OF THE STUDY 

After this general introduction, a brief introduction to the physics of X-ray 

interactions, CT imaging and QCT is given in chapter 2. The postprocessing 

DEQCT methods are then discussed in chapter 3. 

Evaluation of the postprocessing DEQCT methods is made in several steps: 

1 . Theoretical analysis of the algorithms used in the different methods 

(chapter 3). 

2. Analysis of the methods by applying dual-energy methods in a phantom 

study on a standard CT scanner (chapter 4). 

3. Analysis of the problems encountered in the phantom study by transferring 

these to a patient simulation set-up. This set-up allows the modelling of a 

range of physiologic and pathologic conditions within the trabecular region 

of the vertebral body, as well as the modelling (separately or combined) of 

error sources inherent to the method or to the use of a CT scanner 

(chapters 5 and 6). 

4. Analysis of the precision of the postprocessing methods using the patient 

simulation set-up and an in vitro study with a human cadaver specimen of 

the lumbar spine (chapter 7). 

5. Exploration of the use and practical problems of postprocessing DEQCT in a 

patient case study (chapter 8). 

A conclusion is formulated about the use and prospects of DEQCT in radiological 

practice in chapter 9 and areas of future research are indicated. 
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CHAPTER 2 

BASIC PRINCIPLES OF CT AND OCT 

2.1 INTRODUCTION 

In this chapter some basic principles of X-ray diagnostic radiology and in 

particular the basic principles of CT (Computed Tomography) and quantitative CT 

are discussed. It is not the intention to give a full description of X-ray (and CT) 

physics and mathematics in this chapter. The reader is referred to: "The Physics 

of Medical Imaging" S. Webb ed. 1988, Adam Hilger, Bristol Philadelphia (1 ). For 

an introduction to CT the reader is referred to: "Computed Tomography. 

Principles and Practice" 1990, Philips Medical Systems, Eindhoven (2). 

2.2 BASIC PRINCIPLES OF X-RAY INTERACTIONS 

X-rays are electromagnetic waves which are produced when electrons strike a 

solid target. These electromagnetic waves consist of photons, which are packets 

of energy. In X-ray imaging, photons are emitted from an X-ray tube, enter the 

object of interest (the patient) and can interact in different ways with the matter 

they encounter. Photons are absorbed or scattered, or just pass the object 

without any interaction. The photons which have transversed the object can be 

visualized using an X-ray film or fluoroscopic screen, or can be detected by 

radiation detectors. Detection or visualization of the photons transversing an 

object gives a "photon attenuation map" of the object. 

In more detail: in the energy range used for diagnostic purposes, photon 

attenuation can be divided in terms of three different photon interactions; 

namely, photo-electrical effect, coherent scattering and incoherent scattering. 

Generally, photon interactions are described using two parameters, that are much 

easier to understand; namely, absorption and scatter. Both parameters will 

decrease the intensity of the radiation. Absorption decreases as the voltage used 

to generate the X-ray beam is increased. At low voltages (i.e. soft radiation), 

absorption is the prime interaction, whereas at higher voltages (i.e. hard 

radiation) scatter becomes the prime interaction. 

The degree of attenuation depends on the composition and thickness of the 

material. For a homogeneous material: 
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I = I e·pd 
t 0 [ 1], 

where, I, is the transmitted intensity; 10 is the incident intensity; J1 is the linear 

attenuation coefficient {in em·') and d is the thickness of the material {in em). 

The linear attenuation coefficient is in fact a measure for the probability that an 

X-ray photon will be attenuated in the material per unit length. The linear 

attenuation coefficient is, as indicated above, energy (E) and material dependent; 

p(E,Z,r), where, Z indicates the anatomic composition and r the physical density. 

For a compound or mixture the mass attenuation coefficient p/r can be 

approximated from the coefficients of the constituent elements by (3): 

J1 I r [2], 

where, m; is the mass fraction of element L 

2.3 BASIC PRINCIPLES OF COMPUTED TOMOGRAPHY 

In CT, an X-ray source is rotated around an object of interest. Photon attenuation 

is measured along several lines from the focal spot of the X-ray source to the 

detectors which are opposite to the focal spot (figure 2.1 ). These measurements 

are used to reconstruct a two-dimensional map of photon attenuation of the 

object of interest (1 ,2). This map is composed of so-called picture elements or 

"pixels". The volume of the scanned object which is represented by a pixel is 

called a volume element or "voxel". 

In CT the attenuation values are expressed as Hounsfield Units (HU), according 

to equation 3: 

CT# 1000 * ( Jlo - Jlw ) I Jlw [3], 

where CT# is the CT number in Hounsfield Units; Jl. is the energy dependent 

attenuation coefficient of the object of interest; Jlw is the energy dependent 

attenuation coefficient of water. 

The Hounsfield scale relates the photon attenuation of an object to the photon 
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'------ voxels 

Figure 2.1. Principles of CT scanning. (Courtesy of Philips Medical Systems). 

attenuation of water. Matter which attenuates the photon beam more than water 

gets a positive CT number, while matter which attenuates the photon beam less 

than water gets a negative CT number. 

One important feature of attenuation and CT numbers should be addressed: beam 

hardening. As the X-ray beam is polychromatic, the energy spectrum changes as 

the X-rays pass through an object. The lower energies in the X-ray spectrum are 

attenuated more than the higher energies. Consequently, the effective energy, 

defined as the equivalent monochromatic energy, increases as more tissue is 

transversed. Therefore, the CT number of a compound or tissue will not be equal 

when located at different positions in an object, and will vary in time if the 

object itself changes in size or composition. The reader is referred to the 

literature for more details (1-9). 

2.4 BASIC PRINCIPLES OF QUANTITATIVE COMPUTED TOMOGRAPHY 

The CT image is a two-dimensional display of a map of attenuation values. This 

map can be used to determine the average attenuation value (expressed in CT 
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numbers) of the object or of a specific region of interest (ROI) within the object. 

One of the first studies which used the probabilities of the specific features of 

CT scanning for quantitative assessment of bone mineral content was published 

by Reich et al in 1976 (1 0). From a numerical printout of scans made of bone 

specimens from tibias and fibulas of ten cadavers with a Delta CT scanner they 

determined the average CT number. This number correlated well with calcium 

determinations of the specimens. A similar study by Bradley et al was published 

in 1978 (11 ). They made scans of lumbar vertebrae with an ACTA CT scanner 

and calculated the average CT number of the cancellous part of the lumbar 

vertebral bodies. A good correlation was found between the average CT number 

and the calcium content of the lumbar vertebral bodies. 

As indicated in paragraph 2.3, CT numbers should not be considered as absolute 

values. Although the CT scale is defined clearly, the beam hardening 

phenomenon will cause the CT scale to drift within the scan field (9). The CT 

numbers show dependency on the object size, object shape, and the spectrum of 

the X-ray source. Several correction schemes have been developed to solve the 

beam hardening problem. There are preprocessing corrections like prefiltering and 

linearization (8), and postprocessing corrections (12-16). Significant differences in 

CT numbers between scanners have been reported (17-19), as well as 

differences within one scanner due to scanner instabilities, like changes in X-ray 

spectral quality (20). Therefore, reference devices were introduced in OCT for 

bone mineral analysis, which are scanned together with the patient (also called 

"simultaneous calibration") (21 ,22) or separate from the patient ("non­

simultaneous calibration") (23). The reference devices contain a bone-mimicking 

material [usually dipotassium hydrogenphosphate (K2HP04 ) or calcium 

hydroxyapatite] in different concentrations within a "soft-tissue environment" 

(usually water or a water-equivalent plastic). Using the reference device, the 

average CT number of the object of interest is converted to a bone equivalent 

value. See chapter 3 for more details. 

The trabecular region of the vertebral bodies in the spine is the region of interest 

used most frequently in OCT studies. As the turn-over rate of trabecular bone is 

thought to be eight times that of cortical bone, pathologic changes will become 

apparent more readily in this part of the skeleton. Further, some types of 

osteoporosis (postmenopausal and corticosteroid-induced osteoporosis) have a 

predilection for the spine (24). Therefore, we will confine this discussion to OCT 
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of the trabecular region of the vertebral body. 

As indicated in chapter 1, the accuracy of the single-energy OCT technique is 

impaired by the presence of intravertebral fat. The linear attenuation coefficient 

of fat is lower than that of water. Therefore, the CT number of fat is negative 

according to equation 3. The trabecular region of the vertebral body consists of 

trabecular bone substance (a collagen matrix with mineral deposits), 

hematopoietic tissue (red marrow) and adipose tissue (yellow marrow). 

Trabecular bone, and more particular bone mineral (primarily calcium 

hydroxyapatite) has a high attenuation resulting in a positive CT number. 

Hematopoietic tissue has an attenuation that is similar to that of water, resulting 

in a CT number close to zero. In SEOCT the trabecular region of the vertebral 

body is described as a two-compartment model, namely bone mineral within a 

watery environment. As indicated, the different components have their own 

characteristic quantitative behaviour, which is partly neglected when performing 

SEOCT. Especially, the influence of the fat content is neglected. Therefore, 

accuracy of the bone mineral content estimation with SEOCT will be limited. 

Furthermore, as intravertebral fat content varies interindividually as well as with 

age and disease, this results in an accuracy error of unknown magnitude and 

difficulties in interpretation of longitudinal studies of bone mineral content 

changes as measured with SEOCT. 

Dual-energy OCT (DEOCT) may be a solution to this problem. By adding an extra 

measurement at a different energy, the trabecular region is described as a three­

compartment model. Fat tissue can be treated as a separate compartment with 

DEOCT, ruling out its negative influence. DEOCT is based on the difference of 

the energy dependency of the attenuation characteristics of the various 

constituents of the vertebral body. Figure 2.2 shows the mass attenuation 

coefficients (Jl/r) of bone, water and fat as a function of energy (data derived 

from reference 25). 

Several techniques of DEOCT have been proposed: postprocessing techniques 

and preprocessing techniques. The postprocessing methods will be discussed 

extensively in chapters 3 and 4; their evaluation being the main aim of this 

study. The other techniques will be discussed briefly here. 

One of the first studies concerning tissue description with DEOCT was published 

by Rutherford et al in 1976 (26). In their paper a preprocessing technique was 

described which used a decomposition of the attenuation data in terms of the 
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CHAPTER 3 

THEORETICAL CONSIDERATIONS 1 

3.1 INTRODUCTION 

The accuracy of bone mineral measurements of the vertebral body with single­

energy quantitative computed tomography (SEQCT) is influenced by the 

occurrence of intravertebral fat. Dual-energy quantitative computed tomography 

(DEQCT) has been proposed to improve the accuracy of bone mineral content 

determination (1-11) and to give additional information regarding the composition 

of the trabecular region of the vertebral body (1 0, 12-14). 

DE OCT can be done using preprocessing (11) or postprocessing methods (5-1 0). 

For preprocessing, special DEQCT hardware and software is required. However, 

postprocessing methods can be done easily on CT systems that allow a variable 

kVp selection. Various methods for postprocessing DEQCT have been proposed 

(5-1 0); the aim of this study was to evaluate these methods and to establish 

their distinct value. In this chapter, the methods are reported theoretically. In the 

next chapter, the practical aspects of using these methods are discussed. 

3.2 THEORY 

All quantitative CT methods in principle are based on the relation between the 

linear attenuation coefficient of a mixture of materials and the attenuation 

coefficients and concentrations of each of the materials (Equation 1 ): 

n 
p{E} = L(Jl;{E}/r;)C; 

i= 1 
[ 1] 

where, J1 is the energy {E} dependent linear attenuation coefficient of the mixture 

and Ji; that of the materials; r; is the mass densities and C; the concentrations. A 

list of abbreviations used for variables and subscripts is given in Appendix C. 

The concentrations of the materials can be expressed in terms of their volumes 

1
• This chapter is adapted from: van Kuijk C, Grashuis JL, Steenbeek JCM, Schutte 

HE, Trouerbach WTh. Evaluation of postprocessing dual-energy methods in quantitative 
computed tomography. Part 1. Theoretical considerations. Invest Radial 1990;25:876-
881. Permission for publication granted by J.B. Lippincott Company, Philadelphia, USA. 
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and mass densities: 

[2] 

where, V, is the fractional volumes of the materials. In computed tomography the 

CT number (CT) is related to the attenuation coefficient by: 

CT{E} = 1000 (p{E} - Pw{E}l I Pw{E} 

where, Jlw is the linear attenuation coefficient of water at energy E. 

Equations 1 through 3 can be combined and rearranged to: 

CT{E} ~(CT;V;{E}l 

where 

1 

[3] 

[4] 

[5] 

See Appendix A, for more details. Equation 4 states that the energy-dependent 

CT number of a mixture of materials (CT{E}l is the sum of the CT numbers of 

the pure materials (CT;) multiplied by the fractions of volume (V;l of the materials. 

The sum of the fractions of volume is 1 (Equation 5). 

For understanding QCT of the trabecular region of the vertebral body, this region 

should be described in terms of Equation 4. The trabecular volume is composed 

of trabecular bone substance, water, red marrow and fat. The trabecular bone 

substance itself is a mixture of the collagen matrix and bone mineral (calcium 

hydroxyapatite). Translating this anatomic description to Equation 4 yields: 

The subscripts v, bm, c, rm, f and w, indicate the trabecular region of the 

yertebral body, .Qone mineral, ~ollagen, red marrow, fat and water, respectively. 

To understand the distinct features of the different postprocessing dual-energy 

QCT methods, these methods can be translated to Equation 6, which will be 

called the "basic formula". 
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3.3 DESCRIPTION OF METHODS 

Postprocessing DEQCT methods were proposed initially by Rutherford et al (1 ), 

Genant and Boyd (2) and Brooks (3). Their suggestions were followed by Cann et 

al (5), who reported a method that is an extension of the single-energy method. 

In SEQCT, a calibration device that contains different solutions of a material that 

mimicks bone (usually K2HP04 in water, or calcium hydroxyapatite in a water­

equivalent plastic) is scanned simultaneously with the patient. The calibration 

device is used to generate a bone equivalent calibration line that relates the mean 

CT number (CT#bcl of the different solutions to g/cm 3 K2HP04 (or calcium 

hydroxyapatite): 

CT#bc = a * Beq + b [7] 

in which, "a" is the slope and "b" is the intercept of the calibration line; "Beq" is 

the bone mineral equivalent value (usually called bone mineral content) in g/cm3 
; 

and subscript be stands for .Q.one equivalent .Q.alibration. Throughout this chapter 

the "#" after "CT" indicates mean CT numbers of objects that are measured. 

The mean CT number (CT#) of the vertebral body is converted to g/cm3 Beq 

with the help of the calibration line: 

Beq = (CT#v- b) I a [8] 

The single-energy method describes the anatomic multi-component reality of the 

vertebral body in terms of a two-component model, e.g. bone mineral in water. 

Translating this description (see Appendix B for more details) to the basic formula 

(Equation 6) means that slope "a" represents (CTbm{E} - CT.{E}l I rbm and 

intercept "b" represents CTx{E} where CTx is the CT number of the mixture of 

the non-mineral components of the trabecular body (collagen, red marrow, water 

and fat). This results in: CTxVx = CTcVc + CT,mVrm + CT1V1 + CTwVw. The 

assumption that this mixture has the attenuation characteristics of water leads to 

the limited accuracy of bone mineral measurements with single-energy. It is 

assumed that CTbm{E} can be approximated by CT#bc{E}. Currently, dipotassium 

hydrogenphosphate (K2HP04 ) is the most widely used bone-mimicking material for 

calibration purposes. It has attenuation characteristics similar to those of calcium 

hydroxyapatite. 
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Cann et al (5) assume for their postprocessing dual-energy method that the 

difference in the mean CT number of the trabecular portion of the vertebral body, 

determined at two different energies, is due to the mineral content only. This 

means that the influence of the fat content on the CT number should be the 

same at both energies. However, this is not the case. A bone equivalent 

calibration line is generated for both the scanning energies. The bone mineral 

equivalent value is computed subsequently using the equation: 

(CT#v{E1} - CT#v{E2}) - (b{E1} - b{E2}) 
Beq [9] 

(a{E1} - a{E2}) 

{E1} and {E2} indicate the two different scanning energies. In terms of the basic 

formula (Equation 6), this means that slope "a" represents (CTbm{E} - CTY{E}l I rbm 

and intercept "b" represents (1 - V,)CTY{E}. CTY is the CT number of the mixture 

of the non-mineral and non-fat components of the vertebral body. This is: CTYVY 

= CTcVc + CT,mVrm + CTwVw. Using the calibration technique b{E} -= CT#w{E}, 

where the subscript w indicates water-equivalent, it follows that CT#w{E} should 

be equal to (1 - V,) CTy{E}. CTw is zero according to Equation 3. On one hand the 

condition can be fulfilled if V1 = 1, which means that the trabecular region 

contains fat only; this is not an anatomic reality. However, the condition can be 

fulfilled if CTY{E} is zero, which is impossible for the two scanning energies. 

Therefore, this method will not give optimal results in bone mineral content 

determination. 

In 1984 another dual-energy approach was reported by Lavai-Jeantet et al (6). 

This approach takes into account the energy dependency of the fat influence. 

Apart from bone equivalent calibration lines, which yield slope a{E} and intercept 

b{E}, fat equivalent calibration lines are generated for each energy using the CT 

number of 0 g/cm 3 bone equivalent (0% fat) and the CT number (CT#1) of a fat 

equivalent material (1 00% fat). The slopes (a{E}l and intercepts (13{E}l of these 

fat equivalent calibration lines are used in the following equations: 

CT#{E1} = a{E1} * Beq + b{E1} + a{E1} * F + B{E1} [1 0] 

CT#{E2} = a{E2} * Beq + b{E2} + a{E2} * F + B{E2} [11] 
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in which F is the percentage of fat by volume in the vertebral body. These 

equations are solved to obtain the bone mineral equivalent value and the 

percentage of fat by volume. 

Transforming these equations to the basic formula (Equation 6) shows that slope 

"a" of the bone-equivalent calibration line represents (CTbm{E} - CT.{E}) I rbm· The 

slope "a" of the fat equivalent calibration line represents (CT,{E} - CTv{E}l I 100. 

This method assumes that CT#,{E} = CT1{E}; this is only true if the fat 

equivalent material used for calibration purposes has exactly the same 

attenuation characteristics as the intravertebral fat tissue. The sum of the 

intercepts "b + B" should represent CTv{E}. However, when using the calibration 

technique b and B are both determined by the 0 glcm3 sample, which simulates 

CTv{E}. So b + B is in fact two times CTY{E}. Therefore, this method will cause 

inaccuracies in determination of both the bone mineral content and fat content. 

In 1987, Goodsitt et al (8) proposed two new dual-energy methods. The first 

approach uses the same bone equivalent calibration lines as the approaches of 

Lavai-Jeantet et al and Cann et al. In addition, the CT numbers of fat equivalent 

(CT#,{E}l and soft tissue equivalent (CT#.{E}) materials are used. This leads to 

the following equations: 

CT{E1 }N = a{E1} * Beq + b{E1} [12] 

CT{E2}N = a{E2} * Beq + b{E2} [13] 

CT#{E1} = CT{E1 }N + Vt * (CT#t{E1} - CT#.{E1 }l [14] 

CT#{E2} = CT{E2}N + Vt * (CT#t{E2} - CT#.{E2}l [15] 

CT#. is the CT number of the 0 g/cm3 sample in the calibration device. CT{E}N is 

the calculated estimate of what the mean CT number of trabecular bone would 

be if the spongiosa contained no fat. These equations are solved for the bone 

mineral equivalent value and the volume fraction of fat. 

Transforming these equations to the basic formula (Equation 6) shows that slope 

"a" represents (CTbm{E} - CT.{E}l I rbm ; intercept "b" represents CTv{E}; and 

(CT#1{E} - CT#.{E}l should be equal to (CT,{E} - CTv{E}l. As with the method of 

Lavai-Jeantet et al, it is assumed that CT#,{E} is equal to CT,{E}. Therefore, a 
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fat-equivalent material used for calibration purposes should have exactly the 

same attenuation characteristics of the intravertebral fat. Furthermore, this 

method assumes that CT#.{E} equals CTY{E}. Because CTY is the CT number of a 

mixture of materials (collagen and red marrow and water) for which the fractions 

of volume will vary interindividually, this condition cannot be fulfilled. However, 

this problem could be avoided partly, if calibration materials were available that 

simulate trabecular bone substance (calcium hydroxyapatite within a collagen 

matrix) diluted in a red marrow environment. Then, the assumption should be 

made that there is a fixed mineralization of the collagen matrix. If such 

calibration materials were available, slope "a" would represent (CTb.{E} -

CT,m{E}l I rbo; intercept "b" would represent CT,m{E}; (CT#1{E} - CT#.{E}l should 

then be equal to (CT,{E} - CT,m{E}l. The subscript bs indicates !lone .§.ubstance. 

The water compartment of the trabecular region should then be combined with 

the red marrow compartment. 

The only difference between the approaches of Goodsitt et al and Lavai-Jeantet 

et al is the intercept B used by the latter. The difference (D) between the bone 

mineral equivalent value calculated according to Lavai-Jeantet et al and the value 

calculated according to Goodsitt et al can be derived easily: 

D = 
(B{E1} * a{E2}) - (B{E2} * a{E1 }) 

(a{E1} * a{E2}) - (a{E2} * a{E1 }) 

A similar relation for the fat content can be derived. 

[16] 

The second approach of Goodsitt et al (8) is a direct derivation of the basic 

formula (Equation 6): 

CT#{E1} = Vb• * CT#b.{E1} + V1 * CT#1{E1} + V. * CT#.{E1} [17] 

CT#{E2} = Vb• * CT#b.{E2} + V1 * CT#1{E2} + V. * CT#.{E2} [18] 

[19] 

CT#ba{E} is the CT-number of pure bone substance (bone mineral in collagen 

matrix); Vba is the fraction of volume of bone substance. This method will be 

called "the basic approach" hereafter, to avoid confusion with the approach of 

Goodsitt et al discussed earlier. 
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In the original study by Goodsitt et al, CT#bs{E} was estimated by scanning a 

sample of femoral cortex at the two energies separately from the patient, and 

determining the maximum CT number in the cortical region of the midshaft. This 

sample was scanned separately to avoid imaging artifacts. Ethylalcohol 100% 

was used to determine CT#1{E}; CT#.{E} was defined as 0. 

CT#b.{E} represents the CT number of the mixture of bone mineral (CTbm{E}l and 

collagen (CT.{E}). The combination of these two materials is justified by 

assuming a constant mineralization of the collagen matrix. The basic approach 

should give good results if CT#1{E} is equal to CT1{E} and CT#.{E}V. is equal to 

CT,m{E}V,m + CTW{E}Vw, and if CT#bs{E} * vb. equals CTbm{E} * vbm + CT.{E} * 

v •. 
The last method reported in this chapter is an approach reported by Nickoloff and 

Feldman in 1985 (7) and presented in more detail in 1988 ( 1 0). Their approach is 

a direct derivation of the basic formula: 

CT#{E1} = O{E1}*cb + 0{E1}*c1 + a{E1}*c. + c5 + rr{E1} [20] 

CT#{E2} = O{E2} *cb + 0{E2} *c1 + a{E2} *c. + c5 + rr{E2} [21] 

il{E}, S{E} and o{E} are the energy-dependent and material-specific coefficients 

calculated from the linear attenuation coefficients of the different materials. cb, 

c1, and c. are the concentrations of bone substance, adipose tissue and soft 

tissue, respectively. 6 is -1000. rr{E} is the offset value for water. The 

coefficient can be described in terms of the CT number of the pure materials: 

(CT;{E} + 1 000) I r;. Combining this with Equation 2, this approach can be 

rewritten to the basic approach of Goodsitt et al discussed earlier in this chapter. 

Only one difference between the two methods remains; the water offset value 

used by Nickoloff. This water offset does not originate from the basic formula 

(Equation 6), because the soft tissue compartment incorporates water and red 

marrow (1 0). Therefore the water offset value is an empirical correction factor 

for CT number scale drift. 

To use this method, a determination of the effective energy is required. To 

achieve this, a device with compartments containing different concentrations of 

calcium hydroxyapatite is scanned simultaneously with the patient and the 

effective energy is computed from the slope of the linear regression fit of the 

measured CT numbers of the compartments versus the concentrations. This 
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effective energy estimation may be in error because the effective energies at the 

site of the calibration device are different from those at the vertebral body. 

The material-specific coefficients are calculated using knowledge of the elemental 

composition and the mass density of bone substance {again, it is assumed that 

there is a constant mineralization of the collagen matrix), intravertebral fat and 

red marrow, including the water compartment. Instead of finding suitable 

materials that mimick tissue for calibrating purposes, as required in the methods 

reported previously, this method requires an exact knowledge of the chemical 

and physical properties of the anatomic components of the vertebral body. 

3.4 DISCUSSION 

Four of the five methods discussed in this chapter use materials that mimick 

tissue for calibration purposes. It is assumed that CTbm can be simulated by 

CT#bc· This is only true if the material that mimicks bone has the same 

attenuation characteristics as the real bone mineral. For instance, when 

dipotassium hydrogenphosphate {K2HP04 ) is chosen as calibration material, an 

error in bone mineral estimation will occur, due to the {slight) difference in 

attenuation characteristics between K2HP04 and calcium hydroxyapatite. This 

error was discussed by Gluer et al {15) and a correction factor was calculated. 

Furthermore, when using K2HP04 solutions for calibration, additional errors can 

occur due to the so-called displacement effect. The errors arising from the use of 

K2HP04 are discussed extensively by Rao et al {16) and Crawley et al {17). 

For the postprocessing method of Cann et al, it is first assumed that CT1 is 

independent of energy. Secondly, the collagen compartment is combined with the 

red marrow and water compartments. It is assumed that this "soft tissue" 

compartment has the same attenuation characteristics as water {-equivalent). 

Both assumptions will lead to errors; as reported by Rao et al {16). 

For the method of Lavai-Jeantet et al, CT, is approximated by CT#1• This means 

that the fat equivalent material should have the same attenuation characteristics 

as the intravertebral fat for a correct determination of the bone mineral content 

and the fat content. However, this method shows a methodologic problem due 

to the double intercept, which will lead to inaccuracies. Apart from the intercept 

problem, the calibration method of Goodsitt et al {8) is essentially the same as 

that of Lavai-Jeantet et al {6). The same can be said about fat calibration. The 

27 



combination of the collagen compartment, red marrow compartment and water 

compartment to one soft tissue compartment can be a source of error. This 

combination of compartments is used by Cann et al and by Lavai-Jeantet et al. 

Authors justify this combination by assuming that the attenuation characteristics 

of "soft tissue" are the same as those of water. 

This "soft tissue problem" could be avoided partly by rearranging the 

compartments. Then, the assumption should be made that there is a fixed 

mineralization of the collagen matrix. The collagen and mineral compartments can 

be combined to a bone substance compartment. In that case, the "soft tissue" 

compartment contains red marrow and water only. However, calibration materials 

that mimick bone substance within a red marrow environment are not available 

currently. The assumption that red marrow could be mimicked by water for all 

energies is an approximation with limited value. The CT numbers for red marrow, 

calculated for the elemental composition as specified by Woodard and White 

(18), would vary from -34 HU (Hounsfield Units) at 40 keV to + 13 HU at 80 

keV. The CT number of water is 0 for all energies, due to the Hounsfield scale 

definition (Equation 3). 

Ignoring the collagen matrix as an attenuating component when using materials 

that mimick bone mineral in a water-equivalent environment, inevitably will cause 

inaccuracies. This was shown in an experimental set-up by Goodsitt et al (19). 

The basic approach of Goodsitt et al avoids, as well as possible, the "soft tissue 

problem". The collagen and bone mineral compartments are combined to a bone 

substance compartment. Therefore, the calibration materials used for this method 

should have the same attenuation characteristics as trabecular bone substance, 

intravertebral fat and red marrow/water. If so, this method will give good results. 

However, an accurate determination of CTb.{E} will be difficult due to beam 

hardening. 

The method of Nickoloff et al (1 0) does not use calibration materials, so 

uncertainties due to the choice of calibration materials can be avoided. Instead, it 

uses material-specific coefficients that can be derived, if the physical and 

chemical properties of the various constituents are known, and if a reliable 

estimation can be made of the effective scanning energy at the place of the 

vertebral body. If so, this method will produce good results. 

In this chapter it was intended to evaluate theoretically five postprocessing dual­

energy methods for quantitative CT. Sources of error were indicated. In the next 
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chapter, the practical aspects of these methods will be discussed, and will focus 

on the following items: 1) choice of the DEQCT method; 2) influence of the 

choice of tissue-equivalent materials for calibration purposes; 3) the difference 

between simultaneous peripheral calibration and non-simultaneous central 

calibration for those methods using tissue-equivalent calibration lines; 4) the 

difference between effective energy estimation at the place of the calibration 

device and at the place of the vertebral body, for the method of Nickoloff et al 

(10). 

In summary: five postprocessing methods for dual-energy quantitative computed 

tomography of the vertebral body were evaluated theoretically. The methods 

were compared by transforming the original sets of equations to a standard set. 

Only two of these methods produced optimal results, namely the basic approach 

of Goodsitt et al (8) and the method of Nickoloff et al (1 0). The calibration 

approach of Goodsitt et al will produce optimal results only if calibration 

materials are available that mimick the anatomic constituents of the vertebral 

body better than those available currently. Theoretically, the methods of Cann et 

al (5) and of Lavai-Jeantet et al (6) will not produce optimal results. 
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APPENDIX A 

Derivation of Equation (4): Equation (2) substituted in Equation 1 gives: 

n 
p{E} = ~(Ji;{E}V;) 

i=1 

According to Equation (3): 

p{E} = Pw (1 + CT{E} I 1 000) 

Substitution of [AA.2] in [AA.1] gives: 

n 
Pw (1 + CT{E} I 1 000) ~(V; Pw (1 + CT;{E} I 1 000)) 

i= 1 

[AA.1] 

[AA.21 

[AA.3] 

After division by Jlw and after cancelling the left side 1, by the sum of the 
fractions of volume ( = 1 according to Equation [5]) on the right side, and after 
multiplication by 1000, [AA.3] can be reduced to Equation (4). 
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APPENDIX B 

Translation of Equation {8) into the basic formula {Equation [6]). Theoretically, 
Beq is the concentration of bone mineral: cbm" Then, Equation 8 can be rewritten 
to: 

[AB.1] 

Equation {6) can be rewritten to: 

[A8.2] 

with, 

Using Equation {2) in [AB.2l gives: 

[A8.3] 

[AB.4] 

[AB.4] substituted in [AB.3] gives: 

[A8.5] 

Comparing [AB.1l to [AB.5], gives: 

a = (CTbm - CTJ I rbm' 

and 
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APPENDIX C 

Legend of variables and subscripts used in this paper: 

Variables 
p: linear attenuation coefficient (em_,) 
E: energy (keY) 
r: mass density (g/cm3

) 

c: concentration (g/cm3
) 

V: volume fraction 
CT: CT number 
CT#: mean CT number measured on objects 
a: slope of bone equivalent calibration line 
b: intercept of bone equivalent calibration line 
Beq: bone equivalent value (g/cm3

) 

a: slope of fat equivalent calibration line 
B: intercept of fat equivalent calibration line 
F: percentage of fat by volume 
n: material-specific coefficient for bone substance 
e: material-specific coefficient for fat 
u: material-specific coefficient for soft tissue 
c5: -1000 
rr: water offset value 

Subscripts 
i: any material. 
w: water 
v: trabecular region of vertebral body 
bm: bone mineral 
c: collagen 
rm: red marrow 
f: fat 
be: bone equivalent calibration 
s: soft tissue 
x: combination of collagen, red marrow, fat and water 
y: combination of collagen, red marrow and water 
bs: bone substance: combination of bone mineral and collagen 
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CHAPTER4 

PRACTICAL ASPECTS 2 

4.1 INTRODUCTION 

Single-energy quantitative computed tomography (SEQCT) is a well-established 

method for determining the bone mineral content in the vertebral body (1-3). The 

accuracy of SEQCT is, however, limited due to the occurrence of other constitu­

ents of the vertebral body, such as fat (3-8) and collagen (9). Dual-energy quan­

titative computed tomography (DEQCT) has been proposed to improve the 

accuracy of bone mineral measurements (4, 1 0-18) and to provide additional 

information about the composition of the trabecular region of the vertebral body 

(17-21 ). DEQCT can be done using preprocessing methods (14, 15) or post­

processing methods (1 0-13, 16-18). Preprocessing methods require access to the 

raw projection data at the two scanning energies together with sophisticated 

software that is not available for all commercial CT scanners. In the past decade, 

several postprocessing methods have been proposed that can be divided into two 

different approaches. The first approach uses materials that mimick tissue for 

calibration purposes, as in the single-energy method (11, 12, 16); the second uses 

material-specific coefficients, calculated for the effective scanning energies 

(13, 18). 

In the previous chapter, the various postprocessing methods were evaluated 

theoretically, by transforming the original sets of equations to a standard set. A 

detailed description of the various DEQCT methods and the similarities and 

differences between these methods was reported (22). 

In this chapter, the practical aspects of using these methods are discussed, as 

evaluated in a phantom study. The study design allowed control of the 

composition of the vertebral body, which is not possible with in vivo studies. The 

following items were assessed: 1) influence of the choice of DEQCT method; 2) 

influence of the choice of the tissue-equivalent materials for calibration purposes; 

3) the difference between peripheral and central calibration. 

2
• This chapter is adapted from: van Kuijk C, Grashuis JL, Steenbeek JCM, Schutte 

HE, Trouerbach WTh. Evaluation of postprocessing dual-energy methods in quantitative 
computed tomography. Part 2. Practical Aspects. Invest Radiol 1990;25:882-889. 
Permission for publication granted by J.B. Lippincott Company, Philadelphia, USA. 
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The aim was to establish the distinct value of these methods and, if possible, to 

appoint a method of choice. 

4.2 MATERIALS AND METHODS 

An anthropomorphic phantom was used (Computerized Imaging Reference 

Systems, [CIRS], Norfolk, VAl as "the patient" allowing to change the vertebral 

body composition by using "trabecular bone" inserts. A range of different 

concentrations of bone, red marrow and fat simulating inserts was available. An 

extra set of CIRS trabecular inserts that contained 0, 50, 100 and 150 mg/cm3 

of calcium hydroxyapatite in a red marrow-equivalent solid plastic and 100% fat­

equivalent material was used as a reference device. 

To study the influence of tissue-equivalent materials in the reference device on 

the estimation of bone mineral content and fat content, a homemade reference 

device was used (Erasmus University Rotterdam [EURJ device, The Netherlands). 

This device contains freshly made solutions (0, 50, 1 00, 200 mg/cm3
) of dry K2 

HP04 (Baker Chemicals BV, Deventer, The Netherlands) in water as bone mineral­

equivalent, within tubes provided with an air-lock to entrap air bubbles. 

Furthermore, it contains liquid paraffin, polyethylene and 70% ethanol as fat­

equivalent materials. These devices were placed under the anthropomorphic 

phantom for the performance of simultaneous peripheral calibration. Figure 4.1 

shows a CT image of the CIRS anthropomorphic phantom with the extra set of 

CIRS inserts as reference device. 

Non-simultaneous central calibration was performed using either the CIRS inserts 

without fat and with 100% fat, or the materials of the EUR device placed in the 

trabecular slot of the phantom. Figure 4.2 shows the anthropomorphic phantom 

with a tube containing dipotassium hydrogenphosphate within the trabecular slot 

of the phantom. Scanning was done with a Philips Tomoscan 350 (Philips 

Medical Systems, Best, The Netherlands). Two separate scans were made 

through every insert; one at 70 kVp, the other at 120 kVp, (the lowest and 

highest kVp setting possible on the Tomoscan 350), with a standard slice 

thickness of 6 mm. A circular region of interest was used to determine the mean 

CT number (CT#) of the trabecular insert and of the materials in the calibration 

device. 

Calculations were done for the postprocessing methods of Cann et al (11 ), Laval-
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Figure 4.1. CT image of CIRS anthropomorphic phantom with CIRS reference device. 

Jeantet et al (12), the calibration approach of Goodsitt et al (16), the basic 

approach of Goodsitt et al (16), and the method of Nickoloff et al (18). These 

methods were outlined in detail in chapter 3 (22). In addition, for comparison the 

single-energy results are given. For the basic approach of Goodsitt et al (16), the 

CT numbers of the pure materials were not found by scanning these materials, 

because it is not possible to scan 100% calcium hydroxyapatite without imaging 

artifacts. Therefore, these CT numbers were calculated from the linear 

attenuation coefficients of these materials for the effective scanning energies. 

This approach will be called "the modified method". 

For the last method and for the method of Nickoloff et al (18), the slope of the 

calibration equations was used to estimate the effective scanning energies. The 

water offset value used by Nickoloff et al is a red marrow offset value when 

using the CIRS inserts as calibration device. It is determined by the difference 

between the measured CT number for the insert, consisting of 100% red 
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Figure 4.2. CIRS phantom with tube containing K:!fP04 in the trabecular slot. 

marrow-equivalent material and the "ideal" CT number calculated for this insert 

at the effective scanning energy. The "ideal" CT numbers were calculated using 

knowledge of the elemental composition and mass densities for the different 

materials used by CIRS. Furthermore, the effective scanning energies were 

determined independently for the two calibration devices. 

All measurements were corrected for drifts in the CT number scale. Because the 

water offset value used in the method of Nickoloff et al is an empirical correction 

for scale drift (22), this correction was applied to all other DEQCT methods; thus 

a uniform correction was made for all methods. 

The precision was assessed by scanning the samples six times and by calculating 

the standard deviation of these measurements. In some cases, for illustration 

purposes, differences in estimates between the different postprocessing DEQCT 

methods have been evaluated statistically with a paired Student's t test. 

38 



4.3 RESUlTS 

4.3.1 Single-energy results 

The single-energy results for the different calibration devices and techniques 

(peripheral vs central) are shown in Table 4.1. The influence of the fat content 

on the estimates of bone mineral content is shown. 

For the EUR reference device decreases of 8 mg/cm 3 K2HP04 at 70 kVp and 10 

mg/cm3 at 120 kVp for the peripheral calibration technique are observed for an 

increase of 10% fat by volume. For the central calibration technique the 

decreases are 9 mg/cm3 and 11 mg/cm3 at 70 kVp and 120 kVp, respectively. 

For the CIRS reference device decreases of 9 mg/cm 3 calcium hydroxyapatite at 

70 kVp and 11 mg/cm 3 at 120 kVp for the peripheral calibration technique are 
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seen. For the central calibration technique the decreases are 1 0 mg/cm3 and 12 

mg/cm 3 at 70 kVp and 120 kVp, respectively. 

4.3.2 Dual-energy results 

Dual-energy results for bone mineral content and fat content determination are 

shown in Tables 4.2 through 4.5. The results vary depending on the post­

processing method used. 

4.3.2. 1 Dual-energy results for central calibration technique with CIRS reference 

device. 

Table 4.2 shows the estimates for the CIRS reference device and the central 

calibration technique. This technique can be considered the ideal calibration set­

up in the current phantom study because the same materials are used in the 

reference device as in the trabecular inserts. Furthermore, calibration is done at 

the same place as the trabecular inserts. The estimated effective energies were 

59.0 kV at 70 kVp and 75.3 kV at 120 kVp. 

Cann's method decreases the fat-induced error, as seen with SEQCT, by a factor 

of approximately two. For the other methods, the fat-induced error is suppressed 

completely. All the estimates of bone mineral for the method of Lavai-Jeantet et 

al are 3.1 mg/cm3 lower than for the method of Goodsitt et al. In comparison 

with the method of Nickoloff et al, the estimates for the method of Lavai­

Jeantet et al are 1 .8 mg/cm3 (average; standard deviation [SDJ 1 .3 mg/cm3
; P­

value 0.0014; t =4.52) lower. Consequently, the estimates for the method of 

Goodsitt et al are 1.3 mg/cm3 (average; SD 1.3 mg/cm3
; P-value 0.01; t=3.22) 

higher than the estimates for Nickoloff's method. 

All estimates of the fat content are 16.3% higher for the method of Lavai­

Jeantet et al compared with the method of Goodsitt et al. The estimates of fat 

content with the method of Lavai-Jeantet et al are systematically too high, 

compared with the true fat content. Compared with the method of Nickoloff et 

al, the estimates of fat content for the method of Lavai-Jeantet et al are 19.2% 

higher (average; SD 3%; P-value <0.0001; t=20.4). 

The results for the modified method of Goodsitt et al and for the method of 

Nickoloff et al are identical; this is due to the fact that all CT measurements are 

corrected for CT number scale drift. Therefore, the offset value used in the 
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approach of Nickoloff et al is zero, leading to the identical results (22). The 

results for the modified method, therefore, will be omitted in the remainder of 

this study. 

4.3.2.2 Dual-energy results for peripheral calibration technique with CIRS 

reference device. 

The results for the peripheral calibration technique with the CIRS reference 

device are shown in Table 4.3. The estimated effective energies are 54.8 kV at 

70 kVp and 69.4 kV for 120 kVp. The bone mineral content determination 

becomes less accurate by this calibration technique. There is an underestimation 

of the bone mineral estimates for the inserts with a higher true bone mineral 

content (> 50 mg/cm3
). Compared with the central calibration technique (Table 

4.2), the estimates of bone mineral for all DEQCT methods are significantly 

lower: for Cann's method 10.2 mg/cm3 (average; SD 9.3 mg/cm3
; P-value 

0.0073; t = 3.45); for the method of Lavai-Jeantet et al, 13.2 mg/cm3 (average; 

SD 13.6 mg/cm 3
; P-value 0.0136; t=3.06); for the method of Goodsitt et al, 

12.0 mg/cm3 (average; SD 11.8 mg/cm3
; P-value 0.01 05; t=3.22) and for the 

method of Nickoloff et al, 11.7 mg/cm3 (average; SD 11.6 mg/cm 3
; P-value 

0.011; t=3.19). The estimates of fat content are not significantly changed. 

With the peripheral calibration technique, the estimates of bone mineral for the 

method of Lavai-Jeantet et al are 4.3 mg/cm3 lower than for the method of 

Goodsitt et al (average; SD 3.1 mg/cm3
; P-value 0.0015; t=4.48) and 3.3 

mg/cm3 lower than for the method of Nickoloff et al (average; SD 4.6 mg/cm3
; P­

value 0.0496; t= 2.27). There is no significant difference between the estimates 

of bone mineral for the methods of Goodsitt et al and Nickoloff et al. The 

estimates of fat content for the method of Lavai-Jeantet et al are 14.3% higher 

than for the method of Goodsitt et al (average; SD 2.7%; P-value<0.0001; 

t = 16.5), and 19.4% higher than for the method of Nickoloff et al (average; SD 

7.9%; P-value<0.0001; t=7.75). The estimates of fat content for the method 

of Goodsitt et al are 5.2% higher (not significant) than for the method of 

Nickoloff et al (average; SD 7.5%; P-value 0.0583; t=2.17). 
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4.3.2.3 Dual-energy results for central calibration technique with EUR reference 

device. 

To study the influence of choosing other tissue-equivalent materials in the 

calibration device, the EUR reference device was used. 

If the bone-equivalent calibration is changed to K2HP04 solutions in water, 

without changing the fat equivalent calibration, the bone mineral content and fat 

content estimates are changed {Table 4.4). 

Compared with the central calibration technique, using the CIRS reference device 

(Table 4.2), the bone mineral estimates for the method of Cann, Lavai-Jeantet et 

al, and Goodsitt et al are higher for the insert with a lower true bone mineral 

content ( < 150 mg/cm3
). However, for the method of Nickoloff et al, the 

estimates are lower for the inserts with a higher true bone mineral content {>50 

mg/cm3
). For the central calibration technique with dipotassium 

hydrogenphosphate, the estimated effective energies are 54 kV at 70 kVp and 

70 kV at 1 20 kVp. This differs from the effective energies estimated with the 

CIRS reference device. The bone mineral estimates and fat content estimates for 

the methods of Lavai-Jeantet et al and Goodsitt et al have a fixed difference, 

although the estimates are nearly the same. There is a difference of 1.8 mg/cm3 

(average; SO 0.1 mg/cm3
; P-value <0.0001; t=49.3) for the bone mineral 

estimates, and a difference of 3.8% (average; SD 0.05%; P-value 0; t=250). 

4.3.2.4 Dual-energy results for central calibration technique with different fat 

equivalent materials. 

In Table 4.5, the bone mineral content estimates and fat content estimates are 

given for the insert that contains 1 00 mg/cm3 of calcium hydroxyapatite and 

30% fat. The estimates are obtained with various fat equivalent calibration 

materials. As bone mineral equivalent, either the CIRS inserts without fat or the 

K2HP04 solutions are used. The uncorrected CT numbers of the fat equivalent 

materials are for CIRS fat equivalent, -135 Hounsfield Units (HU) at 70 kVp and -

115 HU at 120 kVp; for paraffin -195 HU and -165 HU, respectively; for 70% 

ethanol -140 HU and -130 HU, respectively; and for polyethylene -1 02 HU and -

71 HU respectively. Thus, a proper choice of fat equivalent material and of bone 

equivalent material is important, especially for the fat content determination. 

44 



45 



4.3.3 Precision 

The precision for the bone mineral estimates, expressed as standard deviation, is 

0.5 mg/cm 3 for SEQCT at 120 kVp; 0.8 mg/cm3 for SEQCT at 70 kVp; 3 mg/cm3 

for the DEQCT method of Cann; and 5 mg/cm3 for all other postprocessing 

DEQCT methods. The precision for the estimates of fat content was 5% (by 

volume) of fat. All data in this study should be interpreted with the precision 

figures in mind. 
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4.4 DISCUSSION 

4.4. 1 Single-energy 

Underestimation of the bone mineral content by SEQCT due to the fat content is 

comparable with data reported in the literature {4,6,7) (Table 4.1 ). Bone mineral 

content estimates for the CIRS reference device are lower than for the EUR 

reference device. The difference is too large to be explained by the differences in 

attenuation characteristics between calcium hydroxyapatite and dipotassium 

hydrogenphosphate alone. Mainly, it is due to the red marrow equivalent within 

the CIRS inserts. The attenuation characteristics of this material are dissimilar 

from those of water. The estimates for the inserts without fat show that bone 

mineral determination is improved by performing a central calibration technique. 

With this technique, differences in scanner-related error sources, such as beam 

hardening and scatter, between the centrally located vertebra and the peripherally 

located reference device are avoided. 

4.4.2 Dual-energy 

The method suggested by Cann et al {11 ), assumes that the influence of 

constituents other than bone mineral on the mean CT number of the vertebral 

body is approximately the same at every energy. Then, the difference in mean 

CT number is due only to the bone mineral component in the vertebral body; 

therefore, this method uses only calibration equations of bone equivalent 

materials. As shown, this method reduces the fat-induced error by a factor of 

two, but it does not provide an estimation of fat content. 

The methods suggested by Lavai-Jeantet et al and by Goodsitt et al use 

calibration of bone mineral-equivalent and fat-equivalent materials. These 

methods take into account the energy-dependence of the fat influence. Further­

more, these methods allow estimation of the fat content of the vertebral body, 

thus offering potentially useful clinical information. 

The method of Lavai-Jeantet et al does not provide accurate estimates of fat 

content; even when the most ideal calibration is done, e.g. central calibration 

with the same materials, the estimates are disappointing. The cause is the use of 

a double intercept (22). Apart from this intercept problem, the methods of Lavai­

Jeantet et al and Goodsitt et al are essentially the same, and there is a fixed 

relationship between the estimates obtained with these methods (22). These 
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estimates, however, will show larger variations, dependent on the calibration 

materials chosen. 

The differences noted between the estimates obtained with the two reference 

devices for the methods of Lavai-Jeantet et al and of Goodsitt et al (Tables 4.2 

and 4.4) are caused by the assumptions made when K2HP04 solutions in water 

are used for bone equivalent calibration. First, it is assumed that K2HP04 has the 

same attenuation characteristics as calcium hydroxyapatite; this, however, is not 

true (6). Second, it is assumed that red marrow is water-equivalent; for the CIRS 

inserts this is not the case. The 100% red marrow-equivalent has a CT number 

of 40 HU - 25 HU in the energy range of 50 - 75 keV. 

With the EUR reference device and the central calibration technique the estimates 

for the methods of Laval-Jeantet et al and Goodsitt et al are approximately the 

same. They would be exactly the same if both the intercepts of the bone­

equivalent and fat-equivalent calibration lines were zero (22). Although the CT 

number correction sets the CT number of water at zero, the intercepts will not 

be zero because they are the results of a linear regression fit between the CT 

numbers and the actual concentrations of the K2HP04 solutions. 

Furthermore, these methods give accurate results only if a central calibration 

technique is done, avoiding differences in effective energy between the central 

place of the vertebral body and the peripheral place of the calibration device. 

The method of Nickoloff et al (18) provides accurate results if the effective 

energy is estimated centrally with materials that have exactly the same 

attenuation characteristics as the materials in the region of interest. Furthermore, 

it requires an offset value that is a correction for CT number scale drift. This 

value should be determined centrally. 

Goodsitt and Rosenthal (17) compared the methods of Cann, Lavai-Jeantet et al, 

and their own calibration approach in a phantom study. A non-simultaneous 

central calibration technique was used with the CIRS reference device, and a 

simultaneous peripheral calibration technique was used with the UCSF phantom 

that contained K2HP04 solutions. The fat equivalent used for calibration purposes 

was not specified. Furthermore, it is not clear if an attempt was made to correct 

their measurements for CT number scale drift. The results in their study cannot 

be used to compare the results obtained with both reference devices or to 

compare the peripheral calibration technique with the central one, because both 

parameters were changed simultaneously. Nevertheless, the study of Goodsitt 
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and Rosenthal was important because it discussed the variance in bone mineral 

and fat content estimates with DEQCT methods, due to the choice of the 

reconstruction circle size, which can be varied on the CT scanner that was used 

in their study (Model 9800, General Electric, Milwaukee, WI). 

In summary, the results obtained in this study indicate that application of the 

DEQCT methods are hampered by several restrictions: 1) The calibration or 

effective energy determination should be done centrally. If it is done peripherally, 

a conversion should be made to the central place of the vertebral body. 2) The 

CT number scale drift should be corrected for the central focus of the vertebral 

body. 3) The calibration materials should mimick exactly the attenuation 

properties of the anatomic constituents of the vertebral body for the scanning 

energies used, or the composition of these constituents should be known exactly 

so that the material-specific coefficients can be calculated. 

If these conditions can be fulfilled, only the methods of Goodsitt et al and 

Nickoloff et al will give accurate results. However, the postprocessing methods 

reported in this study assume that the vertebral body can be described as a 

three-component entity. In the current phantom study, the composition of the 

trabecular inserts could also be described perfectly as a three-component model. 

The consequences of this simplification should be studied first, before a definite 

judgment can be given about the proper use of methods for postprocessing dual­

energy quantitative computed tomography in medicine. 
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CHAPTER 5 

PATIENT SIMULATION STUDIES: SKELETAL AGING 

5.1 INTRODUCTION 

In previous chapters five different postprocessing DEQCT methods were 

evaluated theoretically (chapter 3) and in practice with phantom studies (chapter 

4) (1 ,2). The postprocessing methods evaluated are the methods of Cann (3), 

Lavai-Jeantet (4), Goodsitt's calibration approach (5), Goodsitt's basic approach 

(5) and Nickoloff's method (6). It was concluded that the methods of Goodsitt 

and Nickoloff give the best results for estimation of bone mineral and fat content 

within the trabecular region of the vertebral body. The method of Cann gives 

bone mineral content estimates that are more accurate than the estimates 

obtained with the single-energy method, but is inferior to the methods of 

Goodsitt and of Nickoloff. The method of Cann does not give a fat content 

estimate. It was shown that the method of Lavai-Jeantet will not give optimal 

results due to the use of a double intercept in its algorithm ( 1). 

Estimates obtained with the calibration method of Goodsitt will show a variance 

due to the choice of both the tissue mimicking materials in the reference device 

and to the calibration technique (namely, peripheral versus central calibration). 

Estimates obtained with the method of Nickoloff, which is essentially the same 

as Goodsitt's basic approach, will vary due to accuracy of the determination of 

the effective energy and due to the choice of the material-dependent coefficients 

used in the algorithm (1 ,2). 

The question as to what the influence of these disturbing factors will be in vivo, 

remains to be solved. Therefore, the findings of previous chapters will be 

translated to a (semi)clinical environment. For this purpose, a patient simulation 

study was performed. The vertebral body and different tissue-equivalent materials 

are described in terms of their X-ray attenuation characteristics. Changes in 

composition of the vertebral body are simulated and the influence of different 

calibration materials and effective energy differences are evaluated. 

5.2 THE PATIENT SIMULATION STUDY 

The simulation study can be divided into four parts: 

1) Description of the human anatomy in terms of X-ray attenuation 
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characteristics. 

2) Description of the human anatomy and its changes due to aging and 

pathologic conditions. 

3) Description of materials used for calibration purposes in terms of X-ray 

attenuation characteristics. 

4) Possibility to simulate influences inherent to the use of a CT scanner. 

5.2. 1. Composition of the vertebral body 

For the patient simulation studies, it is necessary to describe the anatomic 

constituents of the trabecular region of the vertebral body in terms of their 

attenuation characteristics. The vertebral body consists of bone mineral (calcium 

hydroxyapatite) within a collagen matrix, adipose tissue (or yellow marrow) and 

hematopoietic tissue (or red marrow). The composition of the vertebral body 

changes with aging and disease; e.g. in aging, trabecular bone volume decreases, 

while the volume fraction of adipose tissue increases and the volume fraction of 

hematopoietic tissue decreases (7-12). 

If the elemental composition and the mass density for the distinct constituents 

are known, the linear attenuation coefficient for the constituents can be 

calculated (see appendix A, for more details). The compositions and mass 

densities can be found in the literature: 

Bone mineral 

Bone mineral consists primarily of calcium hydroxyapatite, (Ca, 0 (P04 ) 6(0H)) 

distributed in a collagen matrix. The mass density of bone mineral is estimated at 

3.06 g/cm3
• This description of bone mineral was utilized by Nickoloff et al (6) 

for their calculations of the material specific coefficients used in their 

postprocessing dual-energy method. It was also used by Mazess (7), in a 

theoretical analysis of the accuracy error due to the fat content when using 

single-energy quantitative CT for bone mineral content determination. A similar 

analysis was performed by Crawley et al (13). More detailed reports on the mass 

density of bone mineral are the studies of Gong et al (14, 15), Mueller et al (16) 

and Galante et al (17). 

Collagen 

The mass density of collagen is quoted as 1 .38 g/cm3 (7). Its elemental 

composition can be given as 54% C, 23% 0, 16% N and 7% H (percentage by 

weight). This is the elemental composition for protein in general, as 

53 



recommended by the ICRP (International Commission on Radiological Protection) 

in the report of the task group on reference man, in which a reference individual 

for estimation of radiation dose is described (18). 

Water 

Water (H 20) has a mass density of 1 .00 g/cm3
• 

Trabecular bone substance 

Normal mineralized trabecular bone substance can be defined as a collagen 

matrix, with 58% of weight calcium hydroxyapatite, 32% collagen, and 10% 

water and a mass density of 1 .92 g/cm3 (7, 10, 16). This is comparable to the 

description of normal cortical bone (18-20). 

The marrow space 

The marrow space within the trabecular region of the vertebral body is filled with 

hematopoietic tissue and adipose cells. 

Hematopoietic tissue 

Nickoloff and coworkers (6), described a non-adipose tissue compartment within 

the marrow space, which comprehended red marrow and water, with a mass 

density of 1.02 g/cm3
• This figure was derived from Mazess (7). Mazess 

assumed that red marrow contains 30% lipid. However, according to the studies 

of Woodard and White (19-20), red marrow contains 40% lipid and has a mass 

density of 1.03 g/cm 3
• This is also according to the ICRP recommendations (18). 

Adipose tissue 

Different descriptions and names are given to the adipose compartment within 

the marrow space. According to Mazess (7), who called it yellow marrow, it has 

a mass density of 0.93 g/cm 3 and contains 80% lipid. Nickoloff et al (6) used a 

mass density of 0.92 g/cm3 for this compartment that was called adipose tissue. 

According to Woodard and White (19-20), yellow marrow contains 80% lipid, 

but has a mass density of 0.98 g/cm 3
• This is also the ICRP recommendation 

(18). In addition, Woodard and White (20) have described three different types of 

adipose tissue, with mass densities varying between 0.93 g/cm3 and 0.97 g/cm3 

and percentages by mass of lipid between 87.3% and 61.4%. 

5.2.2 Model for the trabecular region and computation of CT data 

Description of the trabecular region 

For our simulation study, the trabecular region is divided into three different 

compartments, that can be discerned histological. An osseous compartment filled 
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with the collagen matrix and mineral deposits, and the marrow space which itself 

can be divided into two distinct compartments, namely blood without fat, with a 

mass density of 1 .06 g/cm 3 (20) and adipose tissue with the highest lipid 

content and a mass density of 0.93 g/cm3 (20). 

For normal trabecular bone substance, we used the description according to 

Woodard and White (20) with a mass density of 1.92 g/cm3
• A summary of the 

elemental compositions and the mass densities of the various compartments used 

for the calculations of the linear attenuation coefficients is given in Table 5.1. 

The calculated linear attenuation coefficients for the various constituents of the 

trabecular region of the vertebral body are shown in Table 5.2 for an energy 

range of 40 - 80 keV. 

Computation of CT data. 

In computed tomography the CT number (CT) is related to the linear attenuation 

coefficient by: 

CT{E} 1000 (p{E}-Pw{E}) I flw{E} [1] 
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where, Pw is the linear attenuation coefficient of water at energy E. Using 

Equation 1, CT numbers were generated for the different constituents of the 

vertebral body. 

The CT number of the trabecular region of the vertebral body itself (CT.) was 

generated using the equation: 

[2] 

where, V; is the fraction of volume of the constituents within the trabecular 

region of the vertebral body; the subscripts v, bs, bl and at, indicate the 

trabecular region of the yertebral body, .Qone §ubstance, Q!ood and .Q.dipose 

:tissue, respectively. 

Using Equation 2, CT numbers for imaginary vertebral bodies with varying 

compositions can be generated. A derivation of Equation 2 can be found in 

chapter 3. 

Description of changes in the vertebral morphometry due to aging. 

In order to simulate a wide range of different compositions of vertebral bodies, 

the composition of the trabecular region of the vertebral body was changed 

according to changes that occur in aging. CT numbers were calculated for 

different compositions: trabecular bone volume decreases in steps of 1% (11.1 

mg/cm3 calcium hydroxyapatite), changing from 20% (222.5 mg/cm3
) to 5% 

(55.6 mg/cm3
); blood volume was decreased in steps of 1 %, changing from 60 -

45%; adipose tissue volume was increased in steps of 2%, changing from 20 -

50% (Figure 5.1 ). The changes in vertebral body composition are similar to those 

found in histological studies of the vertebral .body by Dunnill et al (8), and by 

Burkhardt et al (9). 
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CT data were generated for SEQCT and DEQCT at 50 and 70 keV. These 

energies were chosen because they approximate the effective energies at tube 

potentials of 70 and 120 kVp, respectively. For postprocessing DEQCT the 

following methods were used to generate bone mineral and, if possible, fat 

Percentage of Volume 

80 

60 

40 

20 

0 

30 45 60 
Age (Yeara) 

-Trabecular Bone E2ZI Adipose Tissue HE3I Hematopoietic Tissue 

Figure 5. 1. Changes in vertebral body composition due to aging. 

75 

content estimates: Cann's method, Goodsitt's calibration approach and 

Nickoloff's method (see chapter 3 for a detailed description of the various 

DEQCT methods). Goodsitt's basic approach would give the same results as 

Nickoloff's approach (1) and is therefore not used in this chapter. 

5.2.3 Reference devices and material dependent coefficients 

The influence of the choice of calibration materials on SEQCT, Cann's method 

and Goodsitt's calibration approach was evaluated by simulating different 

reference devices: 

1) A reference device consisting of materials that are "identical" to those 

used for description of the trabecular region of the vertebral body. 

2) The "identical" bone equivalent, but the fat equivalent changed to the 

CIRS (Computerized Imaging Reference Systems, Norfolk, Va) fat 
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equivalent. 

3) K2HP04 in water as bone equivalent and "identical" adipose tissue as fat 

equivalent. 

4) K2HP04 in water as bone equivalent and the CIRS fat equivalent. 

K2 HP04 was chosen because, up to now, it is the most widely used bone 

equivalent material for calibration purposes. The CIRS fat equivalent was chosen, 

because it was used as calibration material by Mayo-Smith et al (21) in their 

DEQCT studies of the intravertebral fat content of patients with Cushing's 

disease and anorexia nervosa. 

In Nickoloff's method, energy dependent material specific coefficients are used 

(1 ). These coefficients were calculated using the tissue descriptions in Table 5.1. 

creating "identical" coefficients. In order to simulate the influence of the 

coefficients on bone mineral and fat content estimation, the tissue descriptions 

for calculating the coefficients were changed from those used for description of 

the vertebral body; "non-identical" coefficients. Blood was changed to the red 

marrow specification (mass density 1 .03 g/cm3
) (20) and the adipose tissue 

description was changed to the alternative adipose tissue descriptions (mass 

densities 0.95, 0.97 and 0.98 g/cm3
) (20). The linear attenuation coefficients for 

the various tissue descriptions are given in Table 5.3. 

5.2.4 Non-uniform effective energies 

In order to simulate a difference in effective energy between the place of the 

vertebral body and the place of the reference device, as can occur in clinical 

practice, CT numbers of the trabecular region were calculated for 55 and 75 keV 
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also, assuming an elevation of 5 keV at the place of the vertebral body, due to 

spectral beam hardening. The elevation of 5 keV was chosen according to our 

experiences in the phantom studies (chapter 4). 

5.3 RESULTS 

5.3. 1 Differences between methods under "ideal" conditions 

Figure 5.2 shows the results for bone mineral estimates obtained with SEQCT 

and the various DEQCT methods under "ideal" circumstances, namely an 

"identical" reference device and uniform effective energies. On the horizontal axis 

the age is given. This, in fact, represents the compositions of the vertebral body 

as given in Figure 5.1. On the vertical axis the difference between the bone 
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Figure 5.2. SEQCT and DEQCT results under "ideal" conditions. Difference from 
true bone mineral content in mg/cm3

• 

mineral estimate and the true bone mineral content is given in mg/cm3
• 

It is seen, that the DEQCT methods of Nickoloff and Goodsitt give excellent 

results. The DEQCT method of Cann gives better bone mineral estimates 
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compared with SEQCT. There is an underestimation of true bone mineral content 

that increases with increasing adipose tissue volume and decreasing trabecular 

bone volume, from 7 to 17 mg/cm3 (as a percentage of true bone mineral 

content, from 3 to 31 %). 

SEQCT underestimates the bone mineral content, following the same trend. 

Underestimation is larger at a higher effective energy: at 50 keV underestimation 

increases from 12 to 29 mg/cm3 (5 to 53%), at 70 keV underestimation 

increases from 15 to 37 mg/cm3 (7 to 67%). 

5.3.2 Influences of reference devices and material dependent coefficients 

In figure 5.3 the results are shown for SEQCT at 50 keV, if the bone mimicking 

material in the reference device is changed to K2HP04 • The true bone mineral 

content is underestimated from 3 to 28 mg/cm3 (2% to 50%). The 

underestimation is less than with the "identical" reference device, but is more 
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Figure 5.3. SEQCT 50 keV results for "identical" and Kj-IPO,. calibration. 
Difference from true mineral content in mg/cm3

• 

sensitive to increasing adipose tissue volume (steeper slope). 
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Figure 5.4 shows the results for Cann's method with the two bone mimicking 

materials. With K2HP04 the true bone mineral content is underestimated from 5 
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Figure 5.4. DEQCT results for the method of Cann et a/. "Identical" versus 
KJIP04 calibration. Difference from true mineral content in mg/cm3

• 

to 23 mg/cm3 (2 to 42%). 

In Figure 5.5.A the results are shown for Goodsitt's method obtained with four 

different reference devices. The bone mineral content can be estimated 

accurately if the "identical" reference device is used. It is seen that if only the 

fat equivalent is changed (cal 2) the bone mineral content is underestimated from 

3 mg/cm3 (1 %) to 7 mg/cm3 (13%). If only the bone equivalent is changed (to 

K2HP04 ; cal 3), the bone mineral content is underestimated from 7 mg/cm3 (3%) 

to 10 mg/cm 3 (18%). If both tissue mimicking materials are changed (cal 4), the 

bone mineral content is underestimated from 6 mg/cm3 (3%) to 16 mg/cm3 

(30%). The corresponding fat content estimates are given in Figure 5.5.8, the 

same horizontal axis is used as for the graphic presentation of the bone mineral 

estimates. On the vertical axis the absolute difference (in percentage volume of 

fat) between the fat content estimates and the true fat content is given. The 
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Figure 5. 5.A. DEQCT bone mineral results for the method of Goodsitt et a!. 
"identical" versus "non-identical" calibration. Difference from true mineral 
content in mg/cm3

• 

intravertebral fat content can be estimated accurately if the "identical" reference 

device is used. By changing the fat equivalent (cal 2) the true fat content is 

underestimated ranging from 7 to 17% (percentage of fat by volume). By 

changing the bone equivalent (cal 3) the fat content is underestimated ranging 

from 27 to 20%. By changing both equivalent materials (cal 4) the fat content is 

underestimated ranging from 24 to 32%. 

In Figure 5.6.A the results are shown for bone mineral content estimation with 

the method of Nickoloff. Results for the "identical" tissue description and results 

obtained if the tissue descriptions used for determination of the energy 

dependent material specific coefficients are different from the tissue description 

of the constituents of the vertebral body, are shown. If the tissue description for 

fat is different, bone mineral content is overestimated. Overestimation of bone 

mineral content increases as the true bone mineral content decreases. The largest 

error occurs if the fat description is changed to the yellow marrow description. 

The fat content estimates for the same simulation set-up are shown in Figure 

5.6.B. If the adipose tissue description i::; changed, the fat content is 

overestimated. Overestimation increases with decreasing trabecular bone volume. 
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Figure 5.5.8. DEQCT fat content results for the method of Goodsitt et a/. 
"Identical" versus "non-identical" calibration. 
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Figure 5. 6.A. DEQCT bone mineral results for the method of Nickoloff et a/. 
Adipose tissue description is changed for the calculation of the material 
dependent coefficient. 
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However, the overestimation given as percentage of the true fat content is fixed: 

140% for adipose 2, 231% for adipose 1 and 1046% for the yellow marrow 

description. 

Difference from true fat content (% Vol) 
70 ······························································································································································································ 
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-10~-----------------.------------------.-----------------~ 
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Age 

Figure 5.6.8. DEQCT fat content results for the method of Nickoloff et a/. 
Adipose tissue description is changed for the calculation of the material 
dependent coefficient. 

In Figures 5.6.C and 5.6.0 the results are shown if the adipose tissue description 

and/or the hematopoietic tissue description is changed. In all cases the bone 

mineral content is overestimated. If only the hematopoietic tissue description is 

changed the bone mineral content is overestimated from 9 - 7 mg/cm3 (4- 12%). 

The difference between the bone mineral estimates and the true bone mineral 

content is nearly fixed. This is true also, if the adipose tissue description is 

altered to the descriptions with mass densities of 0.95 or 0.97 g/cm3
• With the 

yellow marrow description the difference increases with decreasing trabecular 

bone volume, although the overestimation is less compared with Figure 5.6.A. 

The fat content is overestimated in all cases (Figure 5.6.0). Overestimation 

decreases with the adipose (0.93 g/cm3
) description, and increases with all other 

adipose tissue descriptions. 
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Figure 5. 6. C. DEQCT bone mineral results for the method of Nickoloff et a!. 
Adipose and soft tissue descriptions are changed for calculation of the material 
dependent coefficients. 

5.3.4 Influences of non-uniform effective energies 

Figure 5.7 shows the results for the bone mineral estimates obtained with the 

DEQCT and SEQCT methods, if the effective energies for the vertebral body are 

5 keV higher than for the "identical" reference device. For all methods the bone 

mineral content is underestimated, ranging from 79 - 12 mg/cm3 (36 - 22%) for 

the DEQCT methods of Nickoloff and of Goodsitt; from 57 - 25 mg/cm3 (26 -

45%) for Cann's method; from 42 - 34 mg/cm3 (19 - 61 %) for SEQCT at 50 

keV; and from 32- 39 mg/cm3 (14- 71 %) for SEQCT at 70 keV. 
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Figure 5.6.D. DEQCT fat content results for the method of Nickoloff et al 
Adipose and soft tissue descriptions are changed for calculation of the material 
dependent coefficients. 
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Figure 5. 7. SEQCT and DEQCT results. A 5 ke V difference in effective energy 
exists between the simulated vertebral body and the simulated "identical" 
reference device. 
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5.4 DISCUSSION 

The findings shown in Figures 5.2, 5.5, 5.6.A and 5.6.8 demonstrate that in an 

ideal situation, i.e. reference materials identical to the anatomic tissues, uniform 

effective energies and absence of scanner dependent error sources, like field 

inhomogeneity, the postprocessing dual-energy algorithms of Goodsitt and of 

Nickoloff are capable of an accurate estimation of bone mineral content and fat 

content in the trabecular region of the vertebral body. This was already predicted 

in our theoretical evaluation of the various postprocessing algorithms (chapter 3, 

(1 )) and illustrated in the phantom studies (chapter 4, (2)). 

If the bone-mimicking material in the reference device is changed to K2HP04 the 

estimates obtained with SEOCT improve. This seems to be a contradiction. 

However, it is due to a fortunate coincidence that the attenuation characteristics 

of K2HP04 partially compensate the fat error. The same observation was made by 

Crawley et al (12). 

The estimates obtained with Goodsitt's calibration approach vary considerably 

with the tissue mimicking materials used in the reference device (Figures 5.5.A 

and B). This is especially true for the fat content estimates. This was also 

illustrated in the phantom studies (2). In this simulation set-up, changes from the 

"ideal" situation result in underestimation of bone mineral and fat content. 

Underestimation increases with an increasing true fat content. However, in all 

instances, it is less than the underestimation of bone mineral content seen with 

single-energy OCT (Figure 5.3). 

The bone mineral and fat content, as calculated with the method of Nickoloff et 

al., are overestimated, if the tissue description of the hematopoietic or the 

adipose tissue is altered. However, the bone mineral estimates are better than 

with single-energy OCT at 50 keV, except when the yellow marrow description 

is used for the adipose tissue description. The fat content estimates vary 

considerably. 

If a difference of 5 keV in effective energy is simulated (that can occur in 

practice) between the central site of the vertebral body and the peripheral site of 

the reference device, bone mineral and fat content are underestimated for the 

DEOCT methods of Goodsitt and Nickoloff. The underestimation decreases with 

increasing fat content. The accuracy is influenced negatively by this effective 

energy difference. 

Values that are outside the physiological range are obtained easily due to 
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improper calibration materials or effective energy differences. This is especially 

true for the fat content estimates. In a patient study published by Rosenthal et 

al. (22), this observation was also described. The fat content of several radiated 

and non-radiated vertebral bodies was measured with DEQCT (Goodsitt's 

calibration approach). Fat fractions calculated were > 100% in two of the three 

radiated vertebral bodies. 

Goodsitt et al (5) also observed this phenomenon while evaluating the "basic 

approach" (see chapter 3) in a phantom study. They proposed an additional 

constraint to the algorithm, namely that each volume fraction component must 

be positive. Nickoloff and Feldman (6) suggested a graphical solution to this 

problem. For various adipose tissue volumes between 20% and 80%, the values 

for the trabecular bone volume that would yield the CT numbers measured in the 

trabecular part of the vertebral body at both scanning energies are determined 

and graphed. The point of intersection should give the correct value for the 

trabecular bone volume and the adipose tissue volume. If, however, the curves 

do not intersect, the point of closest approach is selected. Although not stated in 

the original paper (6), this means that calculated values for the adipose tissue 

volume will be cut off at 20% or at 80%. For example, in our simulation study 

for Nickoloff's method with 5 keV energy elevation, this would mean that the fat 

content estimates would be cut off at 20% fat by volume for a true fat content 

ranging from 20 - 44%. This will obscure differences. The "uncorrected" 

estimates range from -64 to 16% for the same true fat content range. In that 

case, differences in fat content will be exaggerated. Therefore, the limitation of 

estimates to the expected physiological range can obscure information. 

In summary: in this chapter the DEQCT methods that appeared to be the most 

valuable in the theoretical analysis (chapter 3) and in the phantom studies 

(chapter 4), are evaluated in a patient simulation set-up. For Goodsitt's 

calibration approach it is shown, that especially for fat content determination, it 

is important to use reference materials that closely mimick the anatomic 

constituents of the vertebral body. Materials mimicking trabecular bone 

substance (including the collagen matrix), intravertebral hematopoietic tissue, and 

intravertebral adipose tissue should be used. Development of these materials has 

been announced (23). 

An accurate description of the anatomic constituents is also necessary for 

Nickoloff's method, so that the material specific coefficients can be calculated. A 
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more accurate description of the elemental composition and mass density of the 

various constituents of the vertebral body would improve the accuracy of bone 

mineral and fat content estimation with this method. 

However, apart from this problem, accuracy will be greatly impaired by the 

effective energy differences at both scanning energies, between the site of the 

vertebral body and the site of the reference device. In practice, this problem will 

be the major problem in performing postprocessing DEQCT. 

APPENDIX A 

Calculation of linear attenuation coefficients. 
In the domain of diagnostic energies, the linear attenuation coefficient Jl of an 
element of atomic number, Z, at energy E is given by: 

J1 = r N. a(Z,E) I A [Ap.1], 

where r is the mass density; N. is Avogadro's number; a (Z,El is the total atomic 
cross section of the X-ray interaction process (coherent scattering, incoherent 
scattering and photo-electric effect); A is the atomic mass. 

The linear attenuation coefficient for a mixture or compound can be computed 
from: 

J1 = r L Qk (N. I Ak ) ak (Z,E) 
k 

where, ilk is the mass fraction of the kth atomic constituent. 

[Ap.2], 

The different interaction cross sections are computed according to the method of 
Hawkes and Jackson (24). 
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CHAPTER 6 

PATIENT SIMULATION STUDIES: 

MINERALIZATION AND BONE MARROW CHANGES 

6.1 INTRODUCTION 

In the previous chapter, the influence of mismatching reference materials and of 

effective energy differences was discussed for SEOCT and postprocessing 

DEOCT in relation to changes in composition of the vertebral body that can be 

expected to occur in aging. A linear decrease in trabecular bone volume and 

hematopoietic tissue volume and a compensatory increase in adipose tissue 

volume was assumed. Furthermore, it was assumed that mineralization of the 

trabecular bone substance does not change. 

In this chapter, we will consider the influence of changes in bone mineralization 

on OCT data, assuming that the volumes of trabecular bone, of hematopoietic 

tissue and adipose tissue do not change. This influence should be investigated 

because accuracy of postprocessing DEOCT methods could be impaired by 

changes in bone mineralization, since in these methods it is assumed implicitly 

that mineralization of the trabecular bone substance does not change. The 

influence of altered mineralization on OCT data is evaluated using the patient 

simulation set-up for SEOCT and the postprocessing DEOCT methods of Cann et 

al., Nickoloff et al. and of Goodsitt et al. 

Another problem, that will be discussed in this chapter, is the influence on OCT 

data of bone marrow changes without an accompanying change in bone mineral 

content of the vertebral body. This is of importance because SEOCT is used in 

monitoring bone density changes in a variety of disorders and treatments (1-6). 

SEOCT is preferred for longitudinal studies because of its better precision 

compared with DEOCT. However, interpretation of longitudinal changes in 

SEOCT data is difficult, because the bone equivalent value is influenced by true 

bone mineral content changes and/or by bone marrow changes. The latter is of 

importance in osteoporosis treatment research. One has to be aware that actual 

bone loss or bone gain can be obscured by bone marrow changes and that bone 

marrow change itself can simulate changes in bone mineral content. The 

accuracy problem in SEOCT due to intravertebral fat content is reported 

extensively (7-15). However, the clinical implications for monitoring treatment 
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regimens or the natural course of diseases has received only little attention in the 

literature (15). 

In order to evaluate the influence of bone marrow changes on OCT data, an 

additional study was performed, again using the simulation set-up. Changes in 

bone marrow composition were simulated by altering the volumes of the marrow 

constituents without changing the trabecular bone volume. Mineralization of the 

trabecular bone substance was kept constant. 

6.2 METHODS 

Simulation of bone mineralization changes 

In the patient simulation study, as described in chapter 5, it is assumed that the 

trabecular bone substance has a fixed mineralization (58% of weight calcium 

hydroxyapatite, 32% collagen and 10% water). To simulate mineralization 

changes, the trabecular bone substance is decomposed into its basic 

constituents. Equation 2 of chapter 5 is altered to: 

In contrast to Equation 2 of chapter 5, the volume fractions of bone mineral (Vbml 

and collagen (V.l and water (within the trabecular bone substance) (VJ are 

treated separately, in order to simulate changes in bone mineralization. 

The linear attenuation coefficients for bone mineral (calcium hydroxyapatite; 

mass density 3.06 g/cm3
) are 1.791 cm·1 at 50 keV and 0.959 cm·1 at 70 keV; 

for collagen (mass density 1.38 g/cm3
) 0.282 cm·1 at 50 keV and 0.250 at 70 

keV (compare with Table 5.2). 

A decrease in mineralization is simulated by decreasing the percentage of weight 

of bone mineral and increasing the percentage of weight of water (Table 6.1 ). 

The mass density of trabecular bone substance decreases from 1 .918 g/cm3 to 

1.718 g/cm3
• These data are according to the findings of Mueller et al (16) and 

the suggestions of Weissberger et al (17) and those of Mazess (7). 

The composition of the vertebral body changes in aging, as discussed in chapter 

5. Therefore, the influence of altered mineralization was performed for different 

compositions of the trabecular region of the vertebral body more or less 

corresponding to age differences as follows: 
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A: 20% trabecular bone volume, 60% hematopoietic tissue volume and 20% 

adipose tissue volume; for an individual of young age (30 years). 

8: 15% trabecular bone volume, 55% hematopoietic tissue volume and 30% 

adipose tissue volume; for a middle-aged person (45 years). 

C: 10% trabecular bone volume, 50% hematopoietic tissue volume and 40% 

adipose tissue volume; for an individual of advancing age (60 years). 

Simulation of bone marrow changes 

Equation 2 of chapter 5 was used to simulate bone marrow changes. Trabecular 

bone volume was kept constant at 20%, 15%, and 10%, under the assumption 

that mineralization does not change. The remaining marrow volume was 

considered to be filled with hematopoietic tissue only. Subsequently, the 

hematopoietic tissue was replaced by adipose tissue in steps of 5% of volume, 

until the marrow space was filled completely with adipose tissue. 

Calculation of CT data 

CT numbers were generated at 50 and 70 keV. Bone mineral and, if possible, fat 

content estimates were calculated for the dual-energy method of Cann et al (18), 

the calibration method of Goodsitt et al (19), and the dual-energy method of 

Nickoloff et al (20), and for SEQCT at 50 keV. 

For SEQCT and the postprocessing DEQCT methods of Cann and Goodsitt et al 

an "identical" calibration device was simulated. For the method of Nickoloff et al 

"identical" materials specific coefficients were simulated. 
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In chapter 5, it was shown that differences in effective energy between the 

reference device and the vertebral body have a large influence on the accuracy of 

QCT data (Figure 5.7). Therefore, in addition to the simulation of uniform 

effective energies, the influence of bone marrow changes was evaluated at an 

effective energy difference between vertebra and reference device of 5 keV. 

6.3 RESULTS 

Mineralization changes. 
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Mass density (g/ml} 

Figure 6.1.A. SEQCT and DEQCT bone mineral results at a trabecular bone 
volume of 20%. Simulation of changes in mineralization of the trabecular bone 
substance. Difference from true mineral content in mg/cm3

• 

The results for bone mineral content determination with SEQCT at 50 keV and 

for DEQCT, are given in Figure 6.1.A for 20% trabecular bone volume and in 

Figure 6.1 .B for 10% trabecular bone volume. 

At 20% trabecular bone volume the bone mineral content is underestimated by 

SEQCT with approximately ± 11 mg/cm3 (in percentage of true bone mineral 

content ranging from 5 - 6%), if the inass density of trabecular bone substance 

ranges from 1.918 - 1. 718 g/cm3
• At 15% trabecular bone volume, the 

underestimation is ± 17 mg/cm3
; in percentage ranging from 10 - 13%). At 10% 
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Figure 6.1.8. SEQCT and DEQCT bone mineral results at 10% trabecular bone 
volume. Simulation of changes in mineralization of trabecular bone substance. 
Difference from true mineral content in mg/cm3

• 

trabecular bone volume, the corresponding figures are ± 23 mg/cm3
; in 

percentage ranging from 21 - 27% underestimation. Underestimation of bone 

mineral content with SEQCT reported as an absolute difference is approximately 

constant for a given trabecular bone volume. Underestimation in percentage of 

true bone mineral content increases with decreasing trabecular bone volume and 

with decreasing mass density of the trabecular bone substance. 

For the DEQCT method of Cann et al, bone mineral content is underestimated 

with 7 mg/cm3 at 20% trabecular bone volume (3 - 4%); with 10 mg/cm3 at 

15% trabecular bone volume (6 - 8%); and with 14 mg/cm3 at 10% trabecular 

bone volume (12 - 16%). Underestimation of bone mineral content with the 

DEQCT method of Cann et al reported as an absolute difference is approximately 

constant for a given trabecular bone volume. The underestimation in percentage 

of true bone mineral content shows the same trend as the SEQCT results. 

Underestimation is less than with SEQCT at 50 keV. 

Bone mineral estimates are the same for the dual-energy methods of Nickoloff et 

al and Goodsitt et al. This is due to the fact that the same tissue descriptions are 

used for the calibration input for the method of Goodsitt et al as for the 
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calculation of the material dependent coefficients for the method of Nickoloff et 

al. Bone mineral content is underestimated slightly with decreasing mineralization. 

The maximum underestimation is 2.5 mg/cm3 (2%) at 20% trabecular bone 

volume and at a density of 1. 718 g/cm3
• The influence on fat content 

Difference from true fat content (%) 
2 ······························································································································································································· 

30% ATV 

-6 ········································································································································································ 

20% ATV 
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Mass density (g/ml) 

Figure 6.1.C. DEQCT (Method of Goodsitt and of Nickoloff} fat content results. 
Simulation of changes in mineralization of trabecular bone substance. Difference 
from true fat content in percentage of volume. 

determination is more pronounced, as can be seen in Figure 6.1.C. 

Underestimation increases with decreasing mineralization and with decreasing 

true fat content. The maximum underestimation is 7% (percentage fat by 

volume) at 20% adipose tissue volume (ATV) and a mass density of 1. 718 

g/cm3 (as percentage of true fat content this is 33%). 

Bone Marrow Changes 

Results of bone mineral content determination with SEQCT and DEQCT if the 

marrow composition is changed are given in Figure 6.2.A for 20% trabecular 

bone volume and in Figure 6.2.8 for 10% trabecular bone volume. On the 

horizontal axis the percentage volume of fat is given. On the vertical axis the 

bone mineral estimates are given as percentage of true bone mineral content. 

As expected, the DEQCT methods of Goodsitt et al and Nickoloff et al give an 
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Figure 6.2.A. SEQCT and DEQCT bone mineral results at 20% trabecular bone 
volume. Simulation of bone marrow changes. 
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Figure 6.2.8. SEQCT and DEQCT bone mineral results at 10% trabecular bone 
volume. Simulation of bone marrow changes. 
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accurate estimation of bone mineral content. The DEQCT method of Cann 

reduces the fat-induced error with a factor of two. The SEQCT data are 

influenced by a change in marrow composition. There is increasing 

underestimation of true bone mineral content with increasing adipose tissue 

volume and with decreasing trabecular bone volume. With the "identical" 

calibration set-up, underestimation is 2.9 mg/cm3 if 5% of volume is converted 

from hematopoietic to adipose tissue. For the DEQCT method of Cann, 

underestimation is 1. 7 mg/cm3 if 5% of volume is converted. 

In Figure 6.2.C results are shown for bone mineral content estimation if bone 

marrow changes at a trabecular bone volume of 10% are simulated when there 

are effective energy differences. The influence on the accuracy of bone mineral 

content determination, defined as a deviation from true bone mineral content, is 

illustrated clearly. An effective energy difference impairs the accuracy, as already 

shown in Figure 5.7. A change of 5% in marrow volume is detected by SEQCT 

at 50 keV as a change of 2.7 mg/cm3 in bone mineral content. The DEQCT 

method of Cann detects it as a change of 1.4 mg/cm3 in bone mineral content, 

% of true bmc value 
120 ························································· ................................................................................................................................. . 
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Figure 6.2.C. SEQCT and DEQCT bone mineral results at 10% trabecular bone 
volume. Simulation of bone marrow changes and 5 ke V difference in effective 
energy. 
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while the DEQCT methods of Goodsitt and Nickoloff detect it as a change of 0.6 

mg/cm3
• An increase of fat volume is reflected by an increase in the bone 

equivalent value by the methods of Goodsitt and Nickoloff and by a decrease by 

SEQCT and the DEQCT method of Cann. An increase of 5% fat by volume is 

detected by the dual-energy methods as an increase of 6% fat by volume. 

6.4 DISCUSSION 

In this chapter, the influence of bone mineralization and bone marrow changes on 

OCT data is evaluated, using a patient simulation set-up. 

Diminished bone mineralization, as in osteomalacia, will impair the accuracy of 

bone mineral measurements with the DEQCT methods of Goodsitt et al and 

Nickoloff et al only slightly. This accuracy error is small compared with the 

accuracy errors that arise from non-ideal calibration procedures or tissue 

descriptions, or from effective energy differences. 

Simulation of bone marrow changes was performed to evaluate its influence on 

SEQCT data in longitudinal studies with the purpose of monitoring bone mineral 

content changes. A 5% change in bone marrow composition gives a change of 

2.9 mg/cm3 (2. 7 mg/cm3 with 5 keV difference) in the bone equivalent value. At 

70 keV, the change will be even larger, namely 3. 7 mg/cm3 (data not shown). At 

a low initial bone mineral content of 1 00 mg/cm3 
( ± 9% trabecular bone 

volume), this change would give a 3% change in the bone equivalent value. A 

greater change in bone marrow composition of 10% would give a 6% change in 

the bone equivalent value. At a very low initial bone mineral content of 60 

mg/cm 3 (± 5% trabecular bone volume), a change of 5% in bone marrow 

composition gives a 5% change in bone equivalent value. Evaluation with SEQCT 

of treatment regimens known to affect fat metabolism and body composition, 

like anabolic steroids (21 ), could be hampered by this phenomenon. The expected 

error exceeds the precision error of SEQCT. Postprocessing DEQCT (the methods 

of Goodsitt and Nickoloff) could be a (partial) solution to this problem, because 

the bone equivalent value is not influenced by bone marrow alterations in the 

"ideal" situation and only slightly when effective energy differences are taken 

into account. In addition, changes in bone marrow composition can be monitored. 

In order to give a more definite judgement, the precision of postprocessing 

DEQCT will be discussed in the next chapter. 
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CHAPTER 7 

PRECISION OF POSTPROCESSING DUAL-ENERGY QUANTITATIVE 

CTMETHODS 

7.1 INTRODUCTION 

In the previous chapters, accuracy errors were the main topic of interest in the 

evaluation study of postprocessing DEQCT methods. It was shown that the 

postprocessing dual-energy methods of Goodsitt et al and Nickoloff et al can 

improve the accuracy of bone mineral measurements compared with single­

energy and the DEQCT method of Cann et al. Furthermore, these methods allow 

an estimate of bone marrow composition. In chapter 6 it was shown that the 

interpretation of SEQCT data in longitudinal studies is hampered by the 

uncertainty introduced by (unknown) changes in marrow composition. However 

in clinical practice SEQCT is preferred for longitudinal studies, because of its 

better precision ( 1-3). 

Precision is influenced by a number of factors: 1) CT scanner variability; 2) 

operator variability; and 3) patient variability (1 ,4-13). 

1) CT scanner variability refers to instabilities of the apparatus. Detector 

instabilities or variability in the spectral quality of the X-ray tube due to tube 

aging or tube replacement cause CT number variability. Field non-uniformities 

also cause CT number variability. Changes in table height (vertical displacement 

of the object) or lateral displacement of the object within the scan field can 

cause CT number changes. Therefore, absolute CT numbers can not be used in 

longitudinal studies. Reference devices were introduced in QCT offering a partial 

solution to this problem (4). Further, a strict scanning protocol (fixed object 

position, fixed table height, fixed scanning and reconstruction parameters) and 

the use of quality assurance programs will minimize this error. The current 

stability for CT scanners is reported to be better than 1 HU (Hounsfield Unit) 

(10). 

2) Operator variability refers to the ability of the operator to relocalize the mid­

vertebral slice. Positioning of the mid-vertebral slice in vivo can be done by using 

a volumetric multi-slice and reformatting technique. A number of contiguous 

slices are made through the lumbar spine. Then a new image representing a 

predefined mid-vertebral volume is synthesized using specific software (4). 
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However, in routine practice it is customary to select the mid-vertebral slice on a 

lateral computed image of the lumbar spine. This slice selection procedure is 

influenced by the experience and skill of the operator. Kalender et al (13) showed 

that differences of 1-2 mm in mid-vertebral slice selection were common. This 

leads to an error of 1-2% in the bone mineral equivalent value. Therefore, an 

automated slice selection program was developed by Kalender et al (13), that 

reduces the operator variability. It should be noted, however, that operator 

interaction is still needed in 10% of the cases (13). If operator interaction is 

required for the region of interest (ROll selection for bone mineral measurements, 

it can be an additional source for variability. Louis et al (6) showed the mean 

absolute value of intrasubject variation to be 2.6 mg/cm3 for SEQCT and 4.1 

mg/cm for preprocessing DEQCT with manual selection of the ROI and without 

repositioning the patient. With repositioning of the patient (and consequently 

adding a positioning error) the variability increased to 3.8 mg/cm3 for SEQCT and 

to 6.0 mg/cm3 for preprocessing DEQCT. Automated ROI definition with the 

possibility of operator interaction reduced the variability to 0.4 mg/cm 3 for 

SEQCT and 0.5 mg/cm3 for preprocessing DEQCT without patient repositioning 

and to 2.7 mg/cm 3 for SEQCT and 2.8 mg/cm3 for preprocessing DEQCT with 

patient repositioning. 

3) Patient variability refers to the variability in CT number due to changes in the 

patient's size or composition, e.g. the presence of bowel gas. 

The reproducibility for SEQCT studies is reported (as coefficient of variation) to 

be better than 1% in "dedicated" research centers and 2-4% in routine practice. 

The precision for postprocessing DEOCT is generally believed to be worse 

because of the propagation of errors associated with combining data from two 

separate scans. Exact figures for the precision of postprocessing DEQCT 

methods have not been reported recently. 

7.2 METHODS AND MATERIAlS 

An embalmed specimen of a human lumbar spine was used. In order to render 

the specimen airfree, it was held under water for 24 hours in a vacuum tank. 

Then, the specimen was fixed rigidly within a circular water tank, and placed in 

the CT scanner. Scanning was done with the Philips Tomoscan 350. CT slices of 

6 mm thickness were made at 120 kVp (120 mAs) and at 70 kVp (480 mAs). A 

84 



Figure 7.1. CT image of cadaver specimen of lumbar spine in water tank. 

reference device consisting of circular tubes with different solutions of K2HP04 in 

water (0, 50, 100, 200, 400 mg/cm3
) and liquid paraffin was scanned 

simultaneously with the water tank. A CT image of the experimental set-up is 

shown in Figure 7.1. 

A circular region of interest (ROll was used within the trabecular region of the 

vertebral body. Localization of the ROI on the other kVp image was done on 

exactly the same position. 

Experiment 1: Scanner variability. 

A mid-vertebral slice was defined through the third lumbar vertebra on the lateral 

image. Scans were made alternately at 1 20 kVp and 70 kVp; this was repeated 

five times. The same was done for the third and fourth lumbar vertebra. 

Experiment 2: Slice selection variability. 

A mid-vertebral slice was defined through the second lumbar vertebra on the 

lateral image. Scans were made alternately at 1 20 and 70 kVp. Then, the table 
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was moved 0.5 mm automatically and the scans were repeated. A maximum 

deviation from the center of 2 mm (up or down) was allowed. 

For both experiments, QCT results were calculated for the single-energy method 

at 1 20 and 70 kVp. Postprocessing DEQCT results were calculated according to 

the methods of Cann et al, Goodsitt et al (calibration method; K2HP04 solutions 

and liquid paraffin as fat equivalent), and Nickoloff et al. The water-offset value 

for the method of Nickoloff et al, was assessed by defining three circular ROI's 

within the water tank; left, above and right of the vertebral body. 

Experiment 3: Simulation study. 

Apart from the in vitro study, that could be limited in value by the small number 

of observations, precision figures for scanner variability were determined with the 

patient simulation set-up (see chapters 5 and 6). The composition of the 

vertebral body was fixed and the CT numbers at 50 and 70 keV were calculated. 

Normal distributions with means equal to the input CT numbers and a standard 

deviation of 1, assuming a CT number reproducibility of ± 1 HU for the CT 

scanner, were generated using a random number generation procedure 

(Statgraphics, Version 4.0, University edition; Statistical Graphics Corporation; 

Rockville, Maryland). 250 data points were generated for each CT number, 

separately. 

QCT data were calculated using random pairs of CT numbers, assuming an "ideal 

calibration" set-up. Calculations were performed at three different compositions 

of the vertebral body to evaluate a dependency on tissue composition: A. 20% 

trabecular bone volume, 20% adipose tissue volume and 60% hematopoietic 

tissue volume: B. 15% trabecular bone volume, 30% adipose tissue volume and 

55% hematopoietic tissue volume: C. 10% trabecular bone volume, 40% adipose 

tissue volume and 50% hematopoietic tissue volume. 

In this chapter, the precision is defined as standard deviation of the mean for all 

experiments. 

7.3 RESUlTS 

Experiment 1: Scanner variability. 

QCT data for the various methods are given in Table 7. 1. Data are given as the 

mean with standard deviation of five measurements. In addition the bone mineral 

equivalent values are averaged for the three lumbar vertebrae. The precision of 
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bone mineral measurements, given as the largest standard deviation of the 

measurements of the individual vertebral bodies, are 0.5 mg/cm3 for SEQCT at 

70 kVp; 0.5 mg/cm3 at 120 kVp; 2.1 mg/cm3 for the method of Cann et al; 3.9 

mg/cm3 for the calibration method of Goodsitt et al; and 4.0 mg/cm3 for the 

method of Nickoloff et al. For bone equivalent values, determined by averaging 

the values of the three consecutive vertebral bodies, the precision figures are 0.2 

mg/cm 3 for SEQCT at 70 kVp; 0.3 mg/cm 3 at 120 kVp; 0.9 mg/cm3 for the 

method of Cann et al; 1 .9 mg/cm 3 for the calibration method of Goodsitt et al; 

and 2.1 mg/cm3 for the method of Nickoloff et al. The precision of fat content 

estimates, given as the largest standard deviation of the measurements of the 

individual vertebral bodies, are 3.7% (percentage volume of fat) for the 

calibration method of Goodsitt et al; and 6.0% for the method of Nickoloff et al. 

For the fat content values, determined by averaging the values of the three 

consecutive vertebral bodies, the precision figures are 1.8% for the calibration 

method of Goodsitt et al; and 3.2% for the method of Nickoloff et al. 

Experiment 2: Slice selection variability. 

The results are given in Table 7 .2. The standard deviation for bone mineral 

estimates obtained with a maximum deviation of 1 mm (n = 5), is 1.5 and 1.4 

mg/cm 3 for the SEOCT measurements at 70 and 120 kVp, respectively. The 

standard deviation for bone mineral measurements obtained with postprocessing 

DEQCT methods is larger; 2.0 mg/cm3 for the method of Cann et al, 2.8 mg/cm3 
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for the calibration method of Goodsitt et al, and 3.7 mg/cm3 for the method of 

Nickoloff et al. For fat content estimates the standard deviation is 1.6% for the 

calibration method of Goodsitt et al, and 3.2% for the method of Nickoloff et al. 

The standard deviation for bone mineral estimates obtained with a maximum 

deviation of 2 mm (n = 9), is 2.4 mg/cm 3 for SEQCT at 70 kVp, 2.0 mg/cm3 at 

120 kVp, 3.4 mg/cm3 for the method of Cann, 5.2 mg/cm3 for the method of 

Goodsitt and 5. 7 mg/cm3 for the method of Nickoloff. The standard deviation for 

fat content estimates is 3.0% for the method of Goodsitt and 5.1% for the 

method of Nickoloff. 

Experiment 3: Patient simulation results. 

The precision is the same for all vertebral body compositions; for SEQCT at 50 

keV it is 0.4 mg/cm 3
, at 70 keV 0.7 mg/cm 3

• For the DEQCT method of Cann 

the standard deviation is 1 .5 mg/cm 3 and for the DEQCT methods of Goodsitt 

and of Nickoloff 3.3 mg/cm3
• The standard deviation for the fat content estimate 

is 5% fat by volume. 

7.4 DISCUSSION 

The experiments presented in this chapter were designed to assess the precision 

of the postprocessing DEQCT methods. Variability of the CT number on the 

Philips Tomoscan 350 with the scanning parameters as reported in the materials 

and methods section, was assessed using an embalmed specimen of the lumbar 

spine. Averaging the bone mineral content results for three consecutive vertebral 
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bodies, as is usual in OCT, gives precision figures (given as standard deviation of 

the mean of five measurements) of less than 0.5 mg/cm3 for SEOCT, less than 

1.0 mg/cm3 for Cann's DEOCT method, and less than 2.5 mg/cm3 for the other 

DEOCT methods. The largest standard deviation for the fat content estimation 

was found to be 3.2% volume of fat for Nickoloff's method. 

The influence of slice selection is shown clearly in Table 7 .2, and it emphasizes 

the importance of the slice selection procedure. The estimates vary due to the 

inhomogeneity of the vertebral body· Therefore, an automated slice selection 

procedure is mandatory. 

The precision figures predicted with the patient simulation set-up are close to 

those found in the in vitro study for assessing the CT scanner variability. 

Variability due to the positioning of the ROI was not assessed, because it is 

possible to automatize this procedure completely, which eliminates this variability 

(13,14). 

In clinical practice, the precision of OCT measurements will be less. Patient 

movement during scanning will cause positioning errors. Long-term scanner 

variability will be impaired by changes in scanner hardware and software. In the 

latter case, strict quality assurance protocols and regular system calibration 

procedures are necessary to monitor stability of CT systems used for OCT. 

Furthermore, in patients with a low trabecular bone volume in the vertebral body, 

an improper relocalization of the mid-vertebral slice decreases precision due to 

increased inhomogeneity of the vertebral body. In a SEOCT study performed on 

the same CT scanner in 1987, the reported coefficient of variation, as obtained 

by scanning 1 0 osteoporotic patients twice with repositioning of the patient, was 

reported to be 2. 7% (15). The scanning parameters were 120 kVp, 120 mAs, 

with an additional Copper filter and 6 mm slice thickness. Recent SEOCT 

precision estimates reported for other CT systems are given for comparison: 

Siemens DRH CT scanner, 0.4% coefficient of variation for short-term scanner 

stability and 1.6% for short-term variability including repositioning of a 

anthropomorphic phantom (11 ); General Electric GE9800 CT scanner, 1.5% for 

in vivo short-term variability including repositioning (12). The simulation study 

showed that the precision figures for scanner instability is independent of the 

vertebral body composition. However, if the precision was given as coefficient of 

variation (100*SD/mean), the precision would be dependent on vertebral 

composition. Therefore, comparison of precision figures given as coefficient of 
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variation can be misleading. 

If we consider the precision figures from the patient simulation study, as the best 

that can be expected from current CT scanner designs, and combine the data 

with the bone marrow change simulation study (as presented in chapter 6) 

SEQCT at low kilovolt peak values has a precision of ± 0.4 mg/cm3 and 

additional an uncertainty of 2.9 mg/cm 3 per 5% of marrow volume, due to 

conversion of marrow constituents, in interpretation of data. DEQCT with 

Nickoloff's method or Goodsitt's method has a precision of ± 3.3 mg/cm3
, 

without uncertainty in interpretation of data. These theoretical data suggest that 

postprocessing DEQCT, in spite of a decreased precision, could be used in 

monitoring changes in bone mineral content in the trabecular region of the 

vertebral body, if changes in the marrow composition are suspected. However, 

this is only true if precision levels are reached that are comparable with those 

presented in this chapter. This is only possible with strict scanning and 

measurement procedures and automatization of as many steps as possible within 

the QCT protocol (e.g. mid-vertebral slice selection and ROI positioning in 

vertebral body and reference device). 

Apart from the precision figures, the estimates themselves should be discussed. 

The 120 kVp SEQCT bone mineral content estimates are higher than the 70 kVp 

SEQCT estimates, while the estimates obtained with Cann's method are lower 

than with both SEQCT settings. This is the opposite of what one would expect, 

for the intravertebral adipose tissue should render the 1 20 kVp data lower than 

the 70 kVp data. Further, the estimates with Cann's method would be influenced 

less by the intravertebral adipose tissue and give higher estimates than those 

obtained with SEQCT. 

Different explanations for this phenomenon should be considered. The estimates 

are biased by the difference in effective energy at the place of the vertebral body 

and the place of the reference device. Adressing this problem, reported in 

chapter 5 and the results shown in Figure 5.7, suggest that this explanation is 

correct. In this simulation, it was shown that high energy SEQCT estimates can 

be larger than low energy SEQCT estimates, and that Cann's method can give 

estimates below SEQCT estimates. 

The estimates could be biased by the embalming process of the vertebral body, 

the intravertebral fat could have been washed out and could have changed the 

attenuation characteristics of the marrow component of the trabecular region of 
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the vertebral body. The fat content results obtained with Goodsitt's method and 

Nickoloff's method seem to confirm this. The estimated fat content is negative 

for the methods of Goodsitt and of Nickoloff. However, the fat content estimates 

obtained with Goodsitt's method are biased by the choice of non-ideal calibration 

materials (K2HP04 and paraffin). The fat estimates with the DEQCT method of 

Nickoloff could be biased by the choice of the tissue description used for 

calculating the material dependent coefficients. The bone mineral content 

estimates with the method of Cann are lower than the SEQCT estimates. This 

can not be explained fully by a disappearance of the intravertebral adipose tissue 

alone. For, in that case, the bone mineral estimates with Cann's method would 

be close to the SEQCT estimates. Therefore, the bias due to the effective energy 

differences seems to be the most important. 
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CHAPTERS 

PATIENT CASE STUDIES 

8.1 INTRODUCTION 

In chapter 3, five different postprocessing methods for dual-energy quantitative 

computed tomography were evaluated theoretically and it was shown that the 

methods of Goodsitt and Nickoloff could exactly estimate the bone mineral 

content and could also provide an exact fat content estimate. However, as 

indicated in previous chapters of this thesis, problems may rise when DEQCT is 

used in clinical practice. 

In the phantom studies, described in chapter 4, two major problems were 

encountered: 

1) The difference in effective energy between the location of the region of 

interest and the location of the reference device. In OCT of the vertebral body, 

the accuracy of bone mineral and fat content estimations is influenced by the 

differences in effective energies between the centrally located vertebral body and 

the peripherally located reference device. 

2) The tissue equivalence of calibration materials within the reference device for 

the method of Goodsitt or the exact description of the anatomical tissues for 

calculation of the material specific coefficients for the method of Nickoloff. If the 

X-ray attenuation characteristics of the materials used for reference or if the 

description of the anatomical tissues are not matched perfectly to those of the 

anatomic constituents of the vertebral body, the accuracy of bone mineral and 

fat content estimation is deteriorated. 

In chapter 5, these problems were transferred to a simulated clinical 

environment. It was predicted that in clinical practice the accuracy of DEQCT is 

influenced negatively by these problems. Further, it was shown that bone mineral 

and fat content estimates outside the physiological range are obtained easily. 

Improvement of accuracy, defined as deviation of the estimate from the true 

bone mineral content, is advocated as a reason to perform DEQCT instead of 

SEQCT. The results presented in this thesis have shown that in a controlled 

environment this concept is true. However, if realistic clinical conditions are 

encountered, accuracy is impaired by the problems discussed above. 

For the clinical use of DEQCT, two questions remain to be discussed: 
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1) Can DEQCT be of value in the interpretation of longitudinal data? 

and 

2) Can DEQCT give useful information about the intravertebral fat content? 

Concerning the first question, the answer can be found in chapters 6 and 7. The 

study presented in chapter 6, in which bone marrow changes were simulated 

without a change in bone mineral content, showed that DEQCT could be of value 

in the proper interpretation of longitudinal changes. 

Concerning the second question, the answer could also be extracted from the 

phantom and simulation studies. Although the accuracy of fat content 

determination in terms of deviation from the true fat content is low, differences 

between patient groups can probably be detected. 

The answers to the questions are drawn from the phantom and simulation 

studies and should be verified in clinical practice. 

Therefore, an in vivo study is presented in this chapter: SEQCT and 

postprocessing DEQCT were performed in six patients and the results are 

discussed. 

8.2 PATIENTS, METHODS AND MATERIALS 

Two studies were performed. 

Study 1: 

The aim of this study was to verify the results as presented in the simulation 

study for the method of Nickoloff, when different tissue descriptions were used 

for calculation of the material specific coefficients (Figures 5.6.A through D). In 

the simulation study (chapter 5) it was shown that when the tissue descriptions 

were changed for calculation of the material specific coefficients, bone mineral 

and fat content estimates were higher than obtained with the descriptions used 

to model the vertebral body. Especially, if the yellow marrow description was 

used to define the adipose tissue compartment within the bone marrow, the 

estimates were elevated extensively. The in vivo experiment should demonstrate 

similar findings. 

Patients: 

Two patients, referred to the department of radiology for OCT, were selected 

randomly. 

Patient 1: a 53-year-old healthy postmenopausal female referred to the 
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department for screening. 

Patient 2: a 26-year-old male with juvenile osteoporosis referred for monitoring of 

his bone mineral status. 

Methods and materials: 

CT scanning was performed with a Philips Tomoscan 350. The scanner was 

calibrated before scanning the patient according to the instructions of the 

manufacturer. Axial CT slices were made of the fourth lumbar vertebra. Mid­

vertebral slices with a width of 6 mm were made at a tube potential of 120 kVp, 

with a tube current of 200 rnA and an exposure time of 0.6 seconds (Computed 

Tomographic Dose Index: 14 mGy) and at a tube potential of 70 kVp with a tube 

current of 400 rnA and an exposure time of 1.2 seconds (Computed 

Tomographic Dose Index: 11 mGy). The images were reconstructed at a field of 

view of 240 mm. The patients were scanned in a supine position, the legs 

elevated to decrease the lordotic curvature of the spine. A reference device 

containing solutions of K2HP04 in water (0, 50, 100, 200, 400 mg/cm3
) was 

placed on the scan table under the lumbar region of the spine. As fat equivalent 

the subcutaneous fat tissue of the patients was used. An example of a 

reconstructed image is shown in Figure 8.1. 

A circular ROI was used to determine the mean CT number of the trabecular 

region of the vertebral body and of the materials in the reference device. An 

irregular hand-drawn ROI was used to determine the mean CT number of an area 

containing subcutaneous fat. 

Different material dependent coefficients were used for the algorithm of the 

method of Nickoloff. Fat description and soft-tissue description were varied in the 

same way as described in chapter 5. For soft-tissue equivalent, either "blood" 

with a mass density of 1.06 g/cm3 or "red marrow" with a mass density of 1 .03 

g/cm3 was used. For fat equivalent, the descriptions were "adipose" with a mass 

density of 0.97 g/cm 3
; "adipose" with a mass density of 0.95 g/cm3

; "adipose" 

with a mass density of 0.93 g/cm3 and "yellow marrow" with a mass density of 

0.98 g/cm3
• All descriptions are according to the data presented by Woodard and 

White (1 ). 

Study 2: 

There were two objectives in this study. Firstly, to demonstrate the influences of 

two different calibration techniques in vivo; namely, a central non-simultaneous 
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Figure 8. 1. CT image of patient case study. 

calibration technique and a peripheral simultaneous calibration technique. 

Secondly, to evaluate the interpretation of bone mineral content estimates and 

especially the fat content estimates as obtained with SEQCT and postprocessing 

DEQCT in four patients with a variety of metabolic bone disorders, from which it 

was expected that the intravertebral fat content would differ significantly. 

Patients: 

Patient A: a 35-year-old male with idiopathic osteopenia. 

Patient 8: a 62-year-old female with senile osteoporosis. 

Patient C: a 63-year-old female with polycythemia and accompanying 

osteoporosis. 

Patient D: a 58-year-old female with Cushing's disease. 

All patients were referred to the department of diagnostic radiology for OCT. 

The patients were chosen deliberately. It was expected that patient 8 would 

have a higher fat content than patient A, who was younger and had no obvious 
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signs of adiposity. Patient C was expected to have a low fat content due to the 

abundance of hematopoietic tissue compared with patient B. Both patients were 

of the same age and were diagnosed to have osteoporosis. Patient D was 

expected to have a high fat content due to the increased adiposity in Cushing's 

syndrome. 

Methods and Materials: 

CT scanning was performed as described in study 1 . 

For patient A, a ROI was defined within the perirenal fat tissue to determine the 

mean CT number for fat reference, because there was not enough subcutaneous 

fat tissue present in this case. 

Two different calibration techniques were used. A simultaneous peripheral 

calibration technique with the reference device as described for study 1, and a 

non-simultaneous central calibration technique using the CIRS anthropomorphic 

phantom with trabecular inserts, containing 0, 50, 1 00, and 200 mg/cm3 

dipotassium hydrogenphosphate in water. More details about the CIRS phantom 

and the inserts are in chapter 4. 

The bone mineral equivalent value and, if possible, the fat equivalent value was 

estimated using SEQCT and postprocessing DEQCT according to the methods of 

Cann, Goodsitt (calibration approach) and Nickoloff. For the method of Nickoloff, 

the "blood" description and the "adipose 0.93 g/cm3
" description was used as 

input for the material dependent coefficients. 

8.3 RESULTS 

The results for experiment 1 are given in Table 8.1. If the "blood" description is 

used, bone mineral estimates are the lowest for "adipose 0.93" and the highest 

for "yellow marrow". The same observations can be made, if the "red marrow" 

description is used. Moreover, the findings are similar for the fat content 

estimates. These findings are exactly the same as predicted in the patient 

simulation studies shown in Figures 5.4 A through D (chapter 5). 

The results for study 2 are given as the mean of the equivalent values of the 

two vertebrae scanned and are presented in Figure 8.2 for the simultaneous 

peripheral calibration set-up (A. bone mineral estimates and B. fat content 

estimates), and in Figure 8.3 for the non-simultaneous central calibration set-up. 
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For all patients the bone mineral estimates are low compared with reference 

values (2-4), indicating a low bone mineral content (osteopenia) for all patients. 

The estimates are lower at 1 20 kVp. With the postprocessing DEQCT method of 
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Figure 8.2.A. Patient results for bone mineral content assessment with the 
simultaneous peripheral calibration technique. 
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Figure 8.2.8. Patient results for fat content assessment with the simultaneous 
peripheral calibration technique. 

Cann the bone mineral estimates are higher than with SEQCT, but the increase in 

the estimates compared with SEQCT is patient dependent. The increase is small 

for patients A and C, but large for patient B and D. With the postprocessing 

DEQCT method of Goodsitt the bone mineral estimates are higher compared with 
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the method of Cann, except for patient A. The differences in bone mineral 

estimates between patients as observed with SEQCT and the DEQCT method of 

Cann are diminished. With the postprocessing DEQCT method of Nickoloff the 

bone mineral estimates are the highest. Differences between patients are small. 

The fat content estimates show striking differences between patients. Patient A 

(juvenile osteopenia) and patient C (polycythemia and osteoporosis) have low fat 

content estimates compared with patient B (senile osteoporosis) and patient D 

(Cushing's syndrome). 

SE 70 kVp SE 120 kVp Cann 
Method 

Goodsltt Nickoloff 

- Patient A EZ'22l Patient B !WI Patient C ~ Patient D 

Figure 8.3.A. Patient results for bone mineral assessment with non-simultaneous 
central calibration. 

The estimates are lower at 120 kVp for patients B, C and D, but higher for 

patient A. With the postprocessing DEQCT method of Cann the bone mineral 

estimates are higher than with SEQCT for patients B, C and D, but lower for 

patient A. With the postprocessing DEQCT method of Goodsitt the bone mineral 

estimates are higher compared with the method. of Cann, except for patient A. 

With the postprocessing DEQCT method of Nickoloff the bone mineral estimates 

are the highest. 

Again, the fat content estimates show striking differences between patients. 

Comparison of results obtained with the peripheral calibration technique with 

those obtained with the central technique shows that differences between 

patients show the same trend for SEQCT and for the postprocessing DEQCT 
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Figure 8.3.8. Patient results for fat content assessment with the non­
simultaneous central calibration technique. 

method of Cann. However, differences between patients are not the same for 

the other postprocessing DEQCT methods. For the method of Goodsitt the bone 

mineral estimates, obtained with the peripheral technique, are the highest for 

patient A followed by patients C and D and the lowest for patient B. The 

estimates obtained with the central technique are the highest for patient D, 

followed by patients C and B and the lowest for patient A. For the method of 

Nickoloff, the ranking order is D, A, B, C for the peripheral technique and D, C, 

A, B, for the central technique. The differences between the bone mineral 

estimates are larger for the central calibration technique. 

The ranking order of the fat content estimates did not change between the 

different calibration techniques for the method of Nickoloff. The ranking order for 

the fat content estimates obtained with the method of Goodsitt with the 

simultaneous calibration technique is B, D, C, A and with the non-simultaneous 

technique D, B, C, A. However, the fat content estimates obtained with the 

method of Goodsitt for patients B and D are almost the same. 
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8.4 DISCUSSION 

The aim of the study presented in this chapter was to verify the simulation 

studies and to demonstrate the use of DEQCT in clinical practice. 

Study 1 confirms the trends seen in the patient simulation studies for the method 

of Nickoloff, if different tissue descriptions for calculating the material dependent 

coefficients are used. 

The results from study 2 show that the differences in bone mineral estimates 

between patients with SEQCT are enlarged artificially due to the influence of fat 

content. Patients with the same true bone minerai content, but with a difference 

in intravertebral fat content, will show a difference in the bone mineral estimate 

obtained with SEQCT. This was already shown in chapter 6. Results with the 

methods of Goodsitt and Nickoloff presented in this chapter show a smaller 

difference in bone mineral estimates between the patients, but a large difference 

in fat content. Patient C with polycythemia and osteoporosis has a much lower 

fat content than Patient B with senile osteoporosis. This is reflected by a great 

difference in bone mineral estimates as obtained with SEQCT. The difference is 

smaller between the estimates obtained with the DEQCT method of Cann. The 

method of Cann reduces the fat-induced error by a factor of two, as was shown 

in the phantom studies (chapter 4) and simulation studies (chapters 5 and 6). 

This is reflected in the patient results by a diminishing of the differences between 

the bone mineral estimates of different patients. With the methods of Goodsitt 

and Nickoloff the difference is smaller again, suggesting that the patients do not 

differ much in bone mineral content. 

The fat content estimates differ substantially. The patient with polycythemia 

shows low fat content estimates. This suggests an increase in intravertebral 

hematopoietic tissue, as could be expected with the disease. The patient with 

senile osteoporosis shows a fat content estimate similar to the patient with 

Cushing's disease. Because age matched controls were not included in this 

study, it is not possible to state if the estimates are higher than can be expected 

for age. It is clear that further patient studies are required to analyze differences 

in intravertebral fat content in metabolic bone diseases. 

The influence of another calibration technique in the reference device is 

demonstrated clearly in study two. The order for the bone mineral estimates 

changes for the DEQCT methods of Goodsitt and of Nickoloff. This means, that 

differences observed between patient groups can differ depending on the 
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calibration set-up. 

The results obtained by the simultaneous peripheral calibration technique are 

biased by two factors: 1) non-ideal reference materials for those methods using 

calibration materials or non-ideal material specific coefficients for the method of 

Nickoloff and 2) effective energy differences. The results obtained by the non­

simultaneous central calibration technique are biased by non-ideal reference 

materials or non-ideal material specific coefficients. By using a central technique, 

effective energy differences between the centrally located vertebral body and a 

peripherally placed reference device are partially corrected. 

However, an accurate estimation of the effective energy at the place of the 

vertebral body is possible only if the central calibration device (in this case the 

CIRS phantom with inserts) has exactly the same X-ray attenuation and beam 

hardening characteristics as a real patient. Furthermore, it should have the same 

size as the patient. In practice, patients can differ in size considerably, e.g. a 

patient with Cushing's syndrome is larger because of an increased adiposity 

associated with the disease. Therefore, it is mandatory to match the size of the 

anthropomorphic phantom as close as possible to the size of the patient. 

In summary; study 1 confirms the trend in bone mineral and fat content 

estimates obtained with the method of Nickoloff, as shown in the patient 

simulation set-up in chapter 5. In study 2 striking differences in fat content 

estimates were found between the patients presented in this chapter. Differences 

in bone mineral content estimates between patients as obtained with SEQCT are 

exaggerated due to the influence of intravertebral fat. 
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CHAPTER 9 

CONCLUSIONS. 

Computed tomography scanners are designed for imaging the human body. The 

images obtained show the human anatomy in section and provide depth 

information to the radiologist. Using three-dimensional reconstruction algorithms, 

it is even possible to provide images to a clinician that gives a view which 

corresponds to the perception of human anatomy as presented in medical school. 

While CT scanners are primarily dedicated to diagnostic imaging, they can be 

used to provide quantitative information on human body composition and 

physiology. This feature of CT scanning, called quantitative CT, has been used 

primarily for estimation of bone mineral content within the skeleton. The bone 

mineral content analysis within the vertebral body of the lumbar spine with 

single-energy QCT (SEQCT) has become a well-established method for monitoring 

changes due to aging, disease and therapeutic interventions. 

In SEQCT, the trabecular region of the vertebral body is in fact described as a 

two-compartment model, namely bone mineral within a watery environment. In 

reality, the trabecular region of the vertebral body is a multi-component entity 

consisting of bone mineral deposited in a collagen matrix that forms a complex 

three-dimensional structure. This structure is surrounded by hematopoietic and 

adipose tissue. All the components have different X-ray characteristics, which is 

neglected in part when SEQCT is performed. Therefore, the accuracy of SEQCT 

measurements for estimation of bone mineral content within the spine is limited 

and interpretation of changes in the bone mineral equivalent value is difficult. A 

decrease in the bone mineral equivalent value can be ascribed to a real change in 

bone mineral content, but also to a change in bone marrow composition, namely 

a conversion of red marrow to yellow marrow. Several investigators have 

therefore proposed dual-energy OCT (DEQCT) to solve this problem. By adding an 

extra measurement at a different energy, the trabecular region can now be 

described to consist of three compartments. Since intravertebral fat tissue is the 

most disturbing factor in SEQCT, due to its specific X-ray attenuation 

characteristics, it is treated as a separate compartment using DEQCT, ruling out 

its negative influence on the accuracy of bone mineral measurements. Moreover, 

its content can now be measured, which could be a valuable goal in itself. The 

amount of fat tissue within the trabecular region may be a predictor of the 
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metabolic capability in this region. 

Several methods for postprocessing DEQCT have been proposed in the past. 

Postprocessing DEQCT is relatively easy to perform; in fact, it is two times 

SEQCT. 

It was the aim of the studies presented in this thesis to evaluate the various 

postprocessing DEQCT methods. 

Ideally, the questions that should be answered by the evaluation are: 

1 . What are the differences and similarities between the various 

postprocessing DEQCT methods? 

2. Are some methods better than others? 

3. Do they really improve the accuracy of bone mineral measurements 

compared with SEQCT? 

4. Can these methods give a reliable estimate of intravertebral fat 

content? 

5. What are the practical problems when these methods are used in clinical 

practice? 

6. Is there a place for DEQCT in clinical practice at this moment? 

7. What areas of future research could improve the performance of 

postprocessing DEQCT methods? 

Five different postprocessing DEOCT methods were evaluated, each named after 

the author who published the method. The evaluation was made in several steps: 

1 . A theoretical analysis of the algorithms used in the different methods 

(chapter 3). 

2. An analysis of the methods by applying the dual-energy methods in a 

phantom study on a standard CT scanner (chapter 4). 

3. An analysis of the problems encountered in the phantom study, by 

transferring these to a patient simulation set-up. This set-up allows the 

modelling of a range of physiologic and pathologic conditions within the 

trabecular region of the vertebral body, as well as the modelling (separately 

or combined) of error sources inherent to the method or to the use of a CT 

scanner (chapters 5 and 6). 

4. An analysis of the precision of the postprocessing methods by an in vitro 

study, using a human cadaver specimen of the lumbar spine (chapter 7). 

5. Initial experiences in clinical use, presented by patient case studies, 

demonstrate the practical consequences of DEQCT (chapter 8). 
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Theoretical evaluation of the five DEQCT methods show that only two of these 

methods will produce optimal results, namely the basic approach of Goodsitt et 

al and the method of Nickoloff et al. The calibration approach of Goodsitt et al 

will produce optimal results only if calibration materials are available that exactly 

mimick the anatomic constituents of the vertebral body. The method of Cann et 

al will not produce optimal results; furthermore, it does not provide a fat content 

estimate. The method of Lavai-Jeantet does not give optimal results, due to a 

methodological error in the algorithm. 

These conclusions were confirmed by the phantom studies. 

At this point, the methods that give optimal results focus on two different 

approaches: 

A. The "calibration" approach. The trabecular region of the vertebral body is 

described as a three-compartment model and the contents of these 

compartments is mimicked by reference materials. Then simultaneous 

calibration can be performed, by placing the reference materials near the 

patient within the scan field. This is called simultaneous peripheral 

calibration. Or the calibration can be performed non-simultaneously using an 

anthropomorphic phantom allowing to scan reference materials at a location 

in the scan field were the vertebral body would be normally. This is called 

non-simultaneous central calibration. 

B. The "effective energy" approach. In this approach the three-compartment 

model is not mimicked by reference materials. It is assumed that the 

compartments can be identified by "material dependent coefficients" that 

can be calculated if the effective energy, defined. as the equivalent 

monochromatic energy of the polychromatic X-ray spectrum, is known or 

can be estimated. In practice, the effective energy is estimated using a 

reference device. 

In theory both approaches can exactly estimate the bone mineral content. In 

practice, however, accuracy is impaired by the choice of tissue equivalent 

materials for calibration purposes (or for calculation of material dependent 

coefficients); by effective energy differences between the place of the region of 

interest and the place of the reference device; or inaccuracies in the energy 

estimation. 

The results presented in this thesis show that a proper tissue equivalence is 

mandatory. To ensure this, several conditions should be fulfilled. An exact 
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knowledge of the attenuation characteristics of the biological materials within the 

region of interest is mandatory. The elemental compositions and the mass 

densities of the various anatomical tissues within the region of interest should be 

known. In the case of vertebral bone mineral estimation with postprocessing 

DEQCT, the description for the fat tissue compartment within the vertebral body 

is especially important. Different compositions for fat tissue are given in the 

literature and it is not yet clear, which is the best for intravertebral fat tissue. 

More research is necessary to obtain an accurate description of the intravertebral 

fat tissue to facilitate choice of the right fat-equivalent material. Another 

condition that should be fulfilled is proper parametrization of the attenuation 

characteristics of biological and tissue equivalent materials to ensure an accurate 

matching. 

The second problem encountered, the effective energy difference, is caused by 

beam hardening of the polychromatic X-ray beam towards the center of the 

object of interest. Beam hardening correction schemes are implemented on a CT 

scanner that correct this problem, but never completely. They are usually 

optimized for circular phantoms filled with water which are placed within the 

center of the scan field. However, the human body is not circular and the human 

body does not consist of 100% water. The beam hardening problem in 

quantitative CT should be investigated more fundamentally. Second-order beam 

hardening corrections or empirical beam hardening correction schemes should be 

evaluated more extensively for their use in QCT. 

The problem due to the effective energy differences could be avoided partially by 

performing a central calibration technique. The phantom used for that purpose 

should be anthropomorphic in configuration and should have exactly the same X­

ray beam hardening characteristics as the patients that will be assessed. 

Furthermore, it must be possible to change its size to match it as closely as 

possible to the size of the patient. Another disadvantage of a central calibration 

technique is that it is performed non-simultaneously. It can not correct for short­

term CT scanner fluctuations. However, the variability of the CT scanner 

performance is minimal in modern scanner designs. 

The results presented in the previous chapters, show that postprocessing DEQCT 

may be valuable in clinical practice. Postprocessing DEQCT must be used in 

longitudinal studies on bone mineral content changes, if significant changes in 

the bone marrow composition are anticipated. Furthermore, postprocessing 
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DEQCT can be used for evaluation of fat content differences between groups of 

patients. These are the main applications of postprocessing DEQCT in clinical 

practice up to now, provided that some basic requirements are fulfilled, namely: 

A. A strict quality assurance protocol on the CT scanner used. 

B. Automation of as many steps as possible in the scanning and analysis 

protocol. 

C. A strict scanning protocol. 
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Summary. 

CT scanners can be used to provide quantitative information on body 

composition. Its main application is for bone mineral content estimation within 

the lumbar vertebral body. This is usually done with a single-energy technique. 

The estimates obtained with this technique are influenced by the intravertebral 

fat content, which varies interindividually and with disease. Dual-energy 

techniques have been proposed to solve the fat-error, but their exact value is 

unknown. The aim of the studies presented in this thesis, is to evaluate different 

postprocessing dual-energy methods for quantitative computed tomography for 

bone mineral and fat content analysis within the trabecular region of the vertebral 

body. Comparison of these methods by transforming them to a standard set of 

equations, reveals that only two out of five methods would give optimal results 

(chapter 3). This is confirmed in phantom studies (chapter 4). In the phantom 

studies, two major problems for performing postprocessing DEQCT are 

encountered: 1) the accuracy of the tissue equivalence of reference materials or 

accuracy of tissue description and 2) the effective energy difference between the 

site of the vertebral body and the reference device. Using a patient simulation 

model, the influence of these disturbing factors on the accuracy of bone mineral 

and fat content estimation is evaluated for different clinical conditions (chapters 

5 and 6). The precision of the bone mineral and fat content determination with 

postprocessing DEQCT is evaluated in chapter 7. In addition to an in vitro 

experiment, the precision is estimated using the patient simulation model. The 

results from chapters 5 through 7, show that postprocessing DEQCT can be of 

value in clinical practice. Postprocessing DEQCT should be used in longitudinal 

studies on bone mineral content changes, if significant changes in the bone 

marrow composition are anticipated. Furthermore, postprocessing DEQCT can be 

used for evaluation of fat content differences between groups of patients. 

Striking differences in the fat content estimates are seen in a number of patients 

with different metabolic disorders (chapter 8). It is concluded that the theoretical 

superb accuracy of bone mineral measurements obtained with postprocessing 

DEQCT, can be eliminated by practical problems such as improper tissue 

equivalence of the reference materials and energy differences between the region 

of interest and the reference device. More research is necessary to obtain an 

exact knowledge of the elemental compositions and mass densities of the various 
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anatomical structures within the vertebral body, especially intravertebral fat 

tissue. Beam hardening corrections, implemented in the CT scanner, should be 

evaluated for their effect on OCT. 
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Samenvatting (Summary in Dutch}. 

CT scanners kunnen naast het afbeelden van de menselijke anatomie worden 

gebruikt om kwantitatieve informatie te verkrijgen over de compositie van 

weefsels. Het belangrijkste toepassingsgebied is tot op heden het bepalen van 

het botmineraalgehalte in het wervellichaam. In deze studie wordt de waarde van 

verschillende methoden om kwantitatieve computer tomografie (CT) met twee 

energieen te verrichten, met als doel het bepalen van het botmineraalgehalte en 

het vetgehalte in het wervellichaam, onderzocht. Deze methoden worden 

verondersteld een betere schatting te geven van het botmineraalgehalte dan de 

kwantitatieve computer tomografische techniek die gebruik maakt van een 

energie. 

De verschillende methoden werden allereerst vergeleken door ze terug te brengen 

tot een en dezelfde mathematische formule. Daarmee werd aangetoond dat 

slechts twee methoden optimale resultaten zullen geven (hoofdstuk 3). Dit zijn de 

methode gepubliceerd door Goodsitt et al, die gebruik maakt van referentie 

materialen en de methode gepubliceerd door Nickoloff et al, die gebruik maakt 

van materiaal specifieke coefficienten en van een schatting van de effectieve 

energieen van de gebruikte rontgenspectra. 

Met behulp van een fantoomstudie werd de theoretische voorspelling uit 

hoofdstuk 3 bevestigd (hoofdstuk 4). Uit de fantoomstudie bleek dat er twee 

grote problemen zijn by de praktische uitvoering van deze vorm van kwantitatieve 

CT. Wil men de werkelijke waarden van het botmineraalgehalte en van het 

intravertebrale vetgehalte zo dicht mogelijk benaderen, dan dienen de referentie 

materialen een hoge mate van weefselequivalentie te bezitten of de te berekenen 

materiaal specifieke coefficienten moeten zo goed mogelijk de waarden van de te 

meten anatomische structuren benaderen. Voorts moet er rekening mee worden 

gehouden dat door stralenopharding van het rontgenspectrum, er verschillen zijn 

in effectieve energieen op verschillende plaatsen in het scanveld, wanneer zich in 

het scanveld een object bevindt. 

Deze invloeden werden verder bestudeerd in een patient simulatie studie 

(hoofdstukken 5 en 6). Uitgaande van de elementaire compositie en de 

massadichtheid van de verschillende anatomische weefsels werd de inhoud van 

het wervellichaam gemodelleerd. Tevens werden verschillen in de compositie van 

het wervellichaam gemodelleerd voor fysiologische (veroudering) en pathologische 
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(verstoorde botmineralisatie, aandoeningen van het beenmerg) processen. In 

dezelfde proefopstelling konden ook het gebruik van verschillende referentie­

materialen en verschillen in effectieve energie binnen het scanveld worden 

gesimuleerd. Hieruit bleek dat, hoewel de methoden in theorie in staat zijn het 

botmineraalgehalte en het vetgehalte nauwkeurig te bepalen, de nauwkeurigheid 

aanzienlijk wordt verslechterd door de eerder genoemde factoren. Tevens bleek 

dat de kwantitatieve CT methode met een energie moeilijk interpreteerbare 

botmineraal-equivalente waarden Ievert in follow-up studies. De methode die van 

een energie gebruik maakt wordt nadelig be"invloed door veranderingen die in het 

beenmerg optreden. De methode die gebruik maakt van twee energieen heeft hier 

nagenoeg geen last van. 

Hoewel de reproduceerbaarheid van de bepalingen slechter is met de twee­

energieen techniek ten opzichte van de techniek die gebruik maakt van een 

energie, zoals werd aangetoond in hoofdstuk 7 in een kadaver studie en een 

simulatie studie, wordt de interpretatie van de bepalingen makkelijker in een 

longitudinaal onderzoek wanneer men de twee-energieen methode gebruikt. Deze 

techniek moet dan ook worden gebruikt als men vermoed dat er veranderingen in 

het beenmerg zouden kunnen optreden tijdens het vervolgen van een 

pathofysiologische proces of van een therapeutische interventie. 

Voorts kan met de twee-energieen techniek een uitspraak worden gedaan over 

verschillen in vetgehalte tussen groepen van patienten met een verschillend 

ziektebeeld. 

Een en ander werd nog eens ge"illustreerd in hoofdstuk 8, waar enige patienten 

met een laag botmineraalgehalte en waarvan kon worden verwacht dat ze zouden 

verschillen in vetgehalte, werden gedemonstreerd. Er werden met behulp van de 

twee-energieen techniek inderdaad grote verschillen gevonden in het gemeten 

vetgehalte. 

Om echter de voordelen van de twee-energieen techniek volledig te kunnen 

uitbuiten, zal nog nader onderzoek moeten worden verricht. 

Om weefselequivalente materialen beter te definieren, of beter materiaal 

specifieke coefficienten te kunnen berekenen, zal een gedetailleerd onderzoek 

moeten worden verricht naar de elementaire compositie en de massadichtheden 

van de verschillende weefsels in het wervellichaam. Voorts zal moeten worden 

onderzocht op welke manier de verstorende effecten van de opharding van het 

ri:intgenspectrum het best kunnen worden gecorrigeerd wanneer men een CT 
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scanner wil gebruiken voor kwantitatieve doeleinden, naast het routine gebruik 

voor het genereren van voor diagnostiek geschikte afbeeldingen van de humane 

anatomie. 

113 



Dankwoord. 

Dank ben ik verschuldigd aan Prof.Dr. H.E. Schutte, hoofd van de afdeling 

radiodiagnostiek, mijn promotor, die mij aile vrijheid heeft gegeven om dit 

proefschrift te schrijven. Tevens, dank ik Dr. W.Th. Trouerbach, belast 

met de Ieiding van de afdeling experimentele radiodiagnostiek, die mij, 

gedurende de bijna drie jaar die ik op de experimentele afdeling 

doorbracht, altijd aanmoedigde en tot prestaties aanspoorde. 

De hulp van Dr.lr J.L Grashuis, van de afdeling medische informatica van 

de Erasmus Universiteit, en de hulp van Drs. J.C.M. Steenbeek, werkzaam 

bij Philips Medical Systems, bij het schrijven van dit proefschrift is zeer 

belangrijk voor mij geweest. Vanaf het begin van het onderzoek waren we 

een uitstekend team. 

Zij, die dagelijks met mij op de experimentele afdeling doorbrachten: A.W. 

Zwamborn, Mw W.J. van Leeuwen en L. de Baat, dank ik voor de goede 

sfeer en hun advies en hulp in vele zaken. T. Rijsdijk wordt bedankt voor 

het fotowerk. 

Dit proefschrift was nooit geschreven zonder de steun van mijn vrouw, 

Elly, die de manische en de depressieve periodes die een promovendus 

doormaakt, altijd wist op te vangen. 

Het onderzoek gepresenteerd in dit proefschrift werd mede mogelijk 

gemaakt door een subsidie van het ministerie van economische zaken; 

stimulerings programma medische technologie, projectnummer MTR 

89001. Het project werd mede mogelijk gemaakt door Philips Nederland 

B. V. en Philips Medical Systems B. V. 

114 



CURRICULUM VITAE 

De schrijver van dit proefschrift werd geboren op 1 april 1962 te 

Dordrecht. Na het behalen van het VWO diploma aan het Johan de Witt 

Gymnasium te Dordrecht (1?.-richting} in 1980, werd door hem de studie 

scheikunde aangevangen aan de Rijksuniversiteit te Leiden. In 1981 begon 

hij aan de studie geneeskunde aan dezelfde universiteit. Het 

doctoraalexamen werd in 1986 behaald. In 1988 werd het artsexamen 

afgelegd. In zijn studententijd was hij met name actief in verschillende 

facultaire bestuursorganen. 

Sinds 1988 is de schrijver verbonden aan de afdeling radiodiagnostiek 

(Hoofd: Prof.Dr. H.E. Schutte} van het Academisch Ziekenhuis "Dijkzigt" 

Rotterdam en van de Erasmus Universiteit te Rotterdam. Hij is betrokken 

bij fundamenteel en toegepast klinisch onderzoek op het gebied van 

kwantitatieve r6ntgentechnieken. Op 1 januari 1991 is hij gestart met de 

opleiding in het specialisme radiodiagnostiek. 

De schrijver is gehuwd en he eft een dochter. 

Dordrecht, Januari 1991. 

115 




	EVALUATION OF POSTPROCESSING DUAL ENERGY QUANTITATIVE COMPUTED TOMOGRAPHY = Evaluatie van postprocessing methoden voor kwantitatieve computer tomografie met twee energieen
	Contents.
	CHAPTER 1 - GENERAL INTRODUCTION
	CHAPTER 2 - BASIC PRINCIPLES OF CT AND OCT
	CHAPTER 3 - THEORETICAL CONSIDERATIONS. adapted from: Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 1. Theoretical considerations.


van Kuijk C, Grashuis JL, Steenbeek JC, Schütte HE, Trouerbach WT.

Invest Radiol. 1990 Aug;25(8):876-81.


PMID: 2394569 [PubMed - indexed for MEDLINE] 
	CHAPTER 4 - PRACTICAL ASPECTS. adapted from: Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical aspects.


van Kuijk C, Grashuis JL, Steenbeek JC, Schütte HE, Trouerbach WT.

Invest Radiol. 1990 Aug;25(8):882-9.


PMID: 2394570 [PubMed - indexed for MEDLINE] 
	CHAPTER 5 -Patient Simulation Studies:
Skeletal Aging
	CHAPTER 6 - Patient Simulation Studies:
Mineralization and Bone Marrow Changes
	CHAPTER 7 - Precision of Postprocessing Dual-Energy QCT Methods
	CHAPTERS 8 - Patient Case Studies
	CHAPTER 9 - CONCLUSIONS
	Summary.
	Samenvatting (Summary in Dutch}.
	Dankwoord.
	CURRICULUM VITAE

