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A. Introduction 

For a thorough understanding of the descending 
pathways of the motor system originating in the 
forebrain, knowledge about the anatomy and func
tion of the structures in the more caudally located 
parts of the central nervous system is indispen
sable. In this paper an overview will be presented 
of these caudal structures in brainstem and spinal 
cord as far as they concern the motor system, 
(sections 1 to 3). After that the descending path
ways belonging to the so-called somatic motor 
system are reviewed (section 4). Finally, a sum
mary of the many newly discovered pathways 
related to the limbic system will be given (section 
5). In the Conclusions section a concept will be 
presented, which subdivides the multitude of 
motor pathways into three motor systems. In this 

concept the motoneurons will be considered to 
belong to the peripheral motor system, (motor 
unit, which is the motoneuronal cell body-motor 
axon-muscle). The first motor system consists of 
the interneurons involved in motor reflex path
ways. The second motor system contains the 
pathways of the so-called somatic motor system, 
while the third motor system comprises the motor 
pathways related to the limbic system. The sec
ond and third motor systems act upon the neurons 
of the first motor system and to a limited extent 
directly on motoneurons, but not on each other. 
The importance and strength of the third motor 
system, which, untill recendy, was virtually un
known, will be emphasized 

B. Description of the spinal motor system and the de
scending motor pathways 

L Somatic and autonomic motoneurons in spinal cord and brainstem 

la. Somatic motoneurons in the spinal 
cord 
The somatic motoneurons innervate striated 
muscles of body and limbs. They are located in 
the ventral part of the ventral hom of the spinal 
cord, called lamina IX by Rexed (1952; 1954). The 
motoneurons innervating one particular muscle 
form a group, occupying a circumscribed portion 
of lamina IX. Rostrocaudally such a cell group can 
extend from one segment, (for example the me
dial gastrocnemius and soleus motor nuclei in the 
cat, which are located within the confines of the 
L7 spinal segment (Burke et al., 1977), up to 19 
segments (the longissimus dorsi muscle motoneu
ronal cell group, which, according to Holstege et 
al, (1987), extends from C8 to L5). The motoneu
ronal cell groups can be subdivided into a medial 
and a lateral motor column. The medial motor· 
column is present throughout the length of the 
spinal cord and its motoneurons innervate the 
axial muscles, which include the neck muscles. 
In the cat the lateral motor column is only present 
at the levels C5 to the upper half of T1 (cervical 
enlargement) and from L4 to S1 (lumbosacral en
largement). Motoneurons in the cervical and 

lumbosacral lateral column innervate the muscles 
of the fore- and hind-limbs respectively. 
The axial musculature, innervated by motoneu
rons in the medial motor column, consists of 
epaxial and hypaxial muscles. The epaxial muscles 
are innervated by branches of the dorsal rami of a 
spinal nerve and the hypaxial muscles by branches 
of the ventral rami. In the ventral hom, motoneu
rons innervating epaxial muscles are always lo
cated ventral to the motoneurons innervating 
hypaxial muscles (Sprague, 1948; Smith and Hol
lyday, 1983). The epaxial muscles function as 
extensors and lateral flexors of the head and verte
bral column. They also fix the vertebral column 
and some of them (the rotators) rotate the verte
bral column about its longitudinal axis. 

1a 1. Upper cervical cord. Motoneurons in the 
upper cervical cord innervate the neck muscles. 
Epaxial neck muscles are the biventer cervicis, 
complexus, the suboccipitally located rectus dor
salis capitis major, medius and minor, the obli
quus capitis cranialis and caudalis, the splenius 
and longissimus capitis. They are mainly in
volved in extension or elevation of the head, al-
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Fig. 1: Schematic representation of the combined C1-4 and T10-L2 spinal segments. The moton~mronal cell 
groups innervating specific neck and axial muscles are shown. The general action of these muscles and the 
precise cervical cord location of the neck muscle moton~mrons are also indicated. It must be emphasized that 
the cell groups not only contain motoneurons but also intem~mrons, (from Holstege and Cowie, 1989}. 

though unilateral contraction of the biventer cervi
cis, complexus and splenius muscles draws the 
head dorsally and laterally. Examples of hypaxial 
neck muscles are the prevertebral muscles (longus 
capitis, rectus capitis ventralis and rectus capitis 
lateralis), the sterno- and cleidomastoid muscles 
and the trapezius. All hypaxial muscles are in
volved in ventral and lateral flexion of head and 
neck The upper portion of the trapezius muscle, 
the clavotrapezius, overlies all dorsal neck muscles 
and acts as an extensor and rotator of the head. All 
three superficial muscles are innervated by the 
spinal accessory nerve. Several reports exist on 
the location of the neck muscle motoneuronal cell 
groups in the cat, which are summarized by Hol
stege and Cowie (1989). Figure 1 gives an overview 
of the location of these motoneurons in the upper 
cervical ventral hom, indicating that the epaxial 
muscle motor cell groups are situated ventral to 
the hypaxial muscle motoneurons. Holstege and 
Cowie (1989) have emphasized the fact that the 
action, structure and fiber composition of the cla
votrapezius, splenius and cleidomastoid muscles 
(Richmond and Abrahams, 1975) appear best suited 
to produce rapid or phasic torsional movements of 
the head such as might occur during orienting 
movements (Callister et al., 1987). On the other 
hand, the biventer cervicis, occipitoscapularis, 
semispinalis cervicis and rectus capitis dorsalis 
and probably also the prevertebral muscles, are all 
involved in more tonic aspects of head position 
(Richmond and Abrahams, 1975; Richmond et aL, 
1985a,b; Roucoux et al., 1985). Note that the sub
division of the neck muscles into muscles in-

valved in phasic (orienting) and tonic (head posi
tion) function does not follow the subdivision 
into epaxial and hypaxial muscles, but motoneu
rons innervating phasic muscles are always lo
cated lateral to the motoneurons innervating tonic 
muscles (Fig. 1). Such a functional subdivision is 
important, because the descending pathways 
project differently to the upper cervical ventral 
hom (see section 4 a 2). 

1a 2. Phrenic nucleus. The phrenic nucleus occu
pies a special position among the somatic mo
toneuronal cell groups, because its motoneurons 
innervate the diaphragm. Although the diaphragm 
is an axial muscle, it plays an essential role in 
respiration, which function is virtually independ
ent of that of the other axial muscles. In the cat 
the phrenic nucleus is located in the ventrome
dial part of the ventral hom at the level of the 
most caudal portion of C4 and throughout the 
rostra-caudal extent of C5 and C6 (Duron et al, 
1979). Phrenic motoneurons at the CS level pref
erentially innervate the costal region of the dia
phragm, while those in the C6 portion of the 
nucleus innervate the crural region (Duron et al., 
1979). There are almost no muscle spindles in the 
diaphragm (Duron et al., 1978) or g-motoneurons 
in the phrenic nucleus. Propriospinal projections 
to the phrenic nucleus have not convincingly 
been demonstrated anatomically (see section 2 c 
5), but the nucleus receives a great number of af
ferent fibers from specific brainstem areas (see 
section 3 a 1). Sterling and Kuypers (1967) found 
a remarkable high number of rostra-caudally ori-
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Fig. 2. Schematic overview of the location of the motoneuronal cell groups at the C8 level in the cat. The left 
side of the scheme shows the cell groups, the location of which has been studied using retrograde degeneration 
or tracing techniques (Sterling and Kuypers, 1967; Fritz et al., 1986a,b; Holstege et al., 1987 and Me Curdy et 
al, 1987}. On the right side of the scheme a more general subdivision into four motoneuronal cell groups has 
been made. 

ented dendrites within the phrenic nucleus, and 
the cell somata were elongated in a rostro-caudal 
direction (Cameron et al., 1983). On the other 
hand, Cameron et al. ( 1983 ), using intracellular 
HRP staining techniques, confirmed that the ma
jority of the dendrites extended rostro-caudally 
within the phrenic motor column, and showed 
some dendrites of phrenic motoneurons extend
ing in dorsolateral and dorsomedial directions. 
Many of the dorsomedial dendrites cross the 
midline in the anterior commissure or through 
the central gray. The dorsolaterally directed 
dendrites form bundles upon entering the lateral 
funiculus with the dendrites from other phrenic 
motoneurons (Cameron et al., 1983). 

1a 3. Cervical enlargement. At the level of the CS 
to T1 spinal segments in the cat the medial motor 
column is located in the ventral portion of the 
ventral hom. Only very few retrograde tracing 
studies exist about the exact location of the 
medial column motoneurons at this level. The 
epaxial muscle motoneurons, for example those 
innervating the longissimus dorsi, are located in 
the medial part of this area, while hypaxial muscle 
motoneurons such as those innervating the most 
rostral rectus abdominis, are located just lateral 
to the longissimus neurons (Holstege et al., 1987). 
Muscles with their origin at the vertebral column 
(latissimus dorsi) or chest (pectoralis and deltoid 
muscles), but with insertion on the humerus, 

produce forelimb movements (Crouch, 1969). 
Therefore they are not considered axial, but limb 
muscles. Sterling and Kuypcrs (1967) call them 
girdle muscles. Their motoneurons take part in 
the lateral motor column and are located in the 
ventral part of the ventral hom, lateral to the axial 
muscle motoneurons, but ventral to the intrinsic 
limb muscle motoneurons (Sterling and Kuypers, 
1967; Holstege et al., 1987) (Fig. 2). A very special 
place is occupied by a cell group in the most 
ventrolateral part of the ventral horn, named 
nucleus X by Giovanelli Barilari and Kuypers 
(1969) or ventral motor nucleus by Matsushita 
and Ueyama (1973). Only recently (Baulac and 
Meininger, 1981; Haase and Hrycyshyn,1985 and 
Theriault and Diamond, 1988b in the rat; Krogh 
and Towns, 1984 in the dog; Holstege et al., 1987 
in the cat) this cell group has been demonstrated 
to contain motoneurons innervating the cutaneus 
trunci or cutaneus maximus muscle, which ex
tends over the thoracic and abdominal regions of 
the body, covering the underlying muscles like a 
veil (see section 2 c 4). Motoneurons innervating 
muscles intrinsic to the forelimb are located more 
dorsally in the ventral hom, and the motoneurons 
innervating the most distal (hand-) muscles are 
located most dorsally (Fritz et al., 1986a,b; 
McCurdy et al., 1987) (Fig. 2). The difference in 
location between proximal and distal muscle mo
toneurons is nicely shown by Sterling and Kuypers 
( 1967), who noted that the motoneurons of the 



scapular head of the triceps muscle 
were located more ventral in the ven
tral hom than those innervating the 
medial and lateral heads of this muscle, 
which are intrinsic to the forelimb. 

la 4. Thoracic and upper lumbar spi
nal cord. At thoracic and upper lumbar 
levels, in rat and cat all the motoneu
rons belong to the medial motor col
umn. Many of them innervate the 
epaxial extensor muscles of the trunk, 
and are located in greatly overlapping 
cell columns in the ventromedial por
tion of the ventral hom, largely segre
gated from the overlapping cell groups 
of the motoneurons innervating the 
hypaxial muscles which lie dorsolateral 
in the ventral hom (Brink et al., 1979; 
Smith and Hollyday, 1983; Miller, 
1987; Holstege et al., 1987, Fetcho, 
1987, Lipski and Martin-Body, 1987; 
Fig. 1). The hypaxial muscles include 
the abdominal (external and internal 
abdominal oblique, the transversus 
abdominis and the rectus abdominis) 
and the internal and external intercos
tal muscles. The abdominal muscles 
are involved in postural functions such 
as flexion and bending of the trunk, but 
they also play an important role in 
increasing the intra-abdominal pres
sure during defecation, vomiting and 
forced expiration (see Holstege et al., 
1987 for review). Except for those 
innervating the rectus abdominis 
muscle, abdominal muscle motoneu
rons are scarce at upper thoracic levels, 
but are very numerous at low thoracic 
and upper lumbar segments (Holstege 
et al., 1987; Miller, 1987; Fig. 3). ln the 
cat, at low thoracic and upper lumbar 
levels, the motoneuronal cell group 
innervating the rectus abdominis 
muscle (a medial hypaxial flexor) is lo
cated medial to the cell column of 
motoneurons innervating the other ab
dominal muscles, but dorsal to the 
epaxial muscle motoneurons (Miller, 
1987; Holstege et al., 1987; Fig. 3). The 
intercostal muscles (internal and ex
ternal) are inserted between adjacent 
ribs and their contraction decreases the 
distance between these ribs. The inter-
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Fig. 3. Location of the motoneuronal cell groups innervating 
the hypaxial abdominal and latissimus dorsi muscles and the 
epaxial longissimus dorsi muscle (from Holstege et al, 1987}. 
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costal muscles are important for posture control, 
but they play a role in respiration also. Until 
recently it was generally been held that the exter
nal intercostal muscles are inspiratory in nature, 
while the internal intercostal muscles are expira
tory. A recent study of Lipski and Martin-Body 
(1987) confirmed that all external intercostal mo

. toneurons were inspiratory, but they also found 
that at upper thoracic levels three times as many 
internal intercostal motoneurons were inspira
tory than expiratory. Apparently at upper tho
racic levels expiratory motoneurons are scarce, 
since only a limited number of abdominal muscle 
motoneurons, which are all expiratory, was pres
ent at these levels (Holstege et al., 1987; Fig. 3). 
Conversely, at low thoracic levels all internal in
tercostal motoneurons were expiratory (47% of 
the total intercostal motoneuronal population). 
At these levels only very few external intercostal 
motoneurons were expiratory (5% of the total 
intercostal motoneuronal population), while 48% 
were non-respiratory (Lipski and Martin-Body, 
1987). Furthermore the location of the expiratory 
intercostal motoneurons at low thoracic levels 
overlaps greatly with the location of the expira
tory abdominal muscle motoneurons, which are 
quite numerous at these levels (Lipski and Mar
tin-Body, 1987; Holstege et al., 1987; Miller, 1987). 
In conclusion, inspiratory motoneurons are mainly 
located at upper thoracic levels, and expiratory 
motoneurons at low thoracic and upper lumbar 
levels. 

1a 5. Lumbosacral enlargement. The location of 
the motoneuronal cell groups at the lumbosacral 
enlargement (L4 to S1 in the cat) is very similar to 
the one of the cervical enlargement. The study of 
Romanes (1951) is still the most extensive on this 
subject, although there exist more recent retro
grade HRP tracing studies of Burke et al. ( 1977) on 
the location of the medial gastrocnemius and 
soleus motor nuclei and Horcholle-Bossavitet al. 
(1988) on the location of the peroneal motoneu
ronal cell groups. The position of the motoneu
ronal cell groups in the lumbosacral enlargement 
is very similar to that of the motoneurons in the 
cervical enlargement. For example, in both en
largements the motoneurons innervating the dis
tal muscles of the limbs are located in the dorsal 
portions of the ventral hom, while those inner
vating proximal limb muscles occupy a more ven
tral position. Furthermore, the motoneurons of 
the most distal muscles are always located in the 
caudal part of the enlargement, for example at the 

level C8-T1 for the small hand-muscle motoneu
ronal cell groups and ai: the level L7-S1 for the 
small foot-muscle motoneurons. Trunk muscle 
motoneurons are always located within the me
dial column (Brink et al., 1979). 

1a 6. Nucleus of Onuf. Onufrowicz (1899), who 
called himself Onuf, described a group X in tl1e 
ventral horn of the human sacral spinal cord, 
extending from the caudal S 1 to the rostral S3 
segments. According to Onuf, motoneurons in 
his nucleus X would be involved in erection and 
ejaculation, but they would also innervate the 
striated muscles of the urethral and anal sphinc
ters. Romanes (1951) in the cat described a ho
mologous cell group in the caudal half of the first 
and the rostral half of the second sacral segment 
and called it group Y. The cell group is now known 
as nucleus of Onuf (Fig. 4). Later retrograde HRP 
tracing studies in the cat (Sato et al., 1978; Mackel, 
1979; Kuzuhara et al., 1980; Ueyan1a et al., 1984; 
Holstege and Tan, 1987) demonstrated that Onuf 
motoneurons, via the pudendal nerve, innervate 
the striated muscles of the pelvic floor, including 
the urethral and anal sphincters. Within Onufs 
nucleus the dorsomcdial motoneurons innervate 
the anal sphincter, while the ventrolateral motor 
cells innervate the urethral sphincter (Sato et al., 
1978; Kuzuhara et al., 1980; Holstege and Tan, 
1987; Pullen, 1988). The motoneurons in the 
nucleus of Onuf are characterized by their dense 
packing, their relatively small size (however, see 
Pullen, 1988), and their numerous longitudinal 
dendrites (Dekker et al., 1973). Although in cat 
(Sato et al., 1978; Mackel, 1979; Kuzuhara et al., 
1980; Ueyama et al., 1984; Holstege and Tan, 
1987), monkey (Roppolo et al., 1985) and man 
(Schreder, 1981) Onufs nucleus consists of a single 
motoneuronal pool, in rat it consists of two spa
tially separate motoneuronal groups, with those 
innervating the anal sphincter being located at the 
medial gray border just ventral to lamina X 
(Schreder, 1980; McKenna and Nadelhaft, 1986). 
There is evidence that Onuf motoneurons belong 
to a separate class of motoneurons. On the one 
hand they are somatic motoneurons, because they 
innervate striated muscles and are under volun
tary control, but on the other hand they are auto
nomic motoneurons because; 1: cytoarchitectoni
cally they resemble autonomic motoneurons 
(Rexed, 1954; Fig. 4); 2: they have an intimate re
lationship with sacral parasympathetic motoneu
rons (Holstege and Tan, 1987; Nadelhaft et al., 
1980; Rexed, 1954); 3: they receive direct hypotha-



lamic afferents (Holstege, 1987; Holstege and Tan, 
1987) and 4: unlike the somatic motoneurons, but 
similar to the autonomic motoneurons, they are 
well preserved in the spinal cords of patients who 
have died from amyotrophic lateral sclerosis (ALS), 
(Mannen et al, 1977; 1982). Because the sacral 
autonomic (parasympathetic) motoneurons inner
vating the bladder are also spared in ALS patients, 
bladder and sphincter functions remain intact 
until the latest stages of the disease. 

lb. Autonomic motoneurons in the spi
nal cord 
1 b 1. Sympathetic preganglionic motoneurons 
The sympathetic motoneurons project to the chro
maffin cells of the adrenal gland, and to the postgan
glionic neurons in the sympathetic trunk, the 
sympathetic chain of ganglion cells, in which the 
peripheral sympathetic system originates. In the 
rat the superior, middle and inferior (stellate) cer
vical ganglia receive their input from pregan
glionic motoneurons in the TI-TS spinal seg
ments, with a minor contribution of C8 and T6-
T7 segments (Strack et al., 1988). The adrenal 
gland receives its sympathetic input from pregan
glionic cells in the TS to Til segments, with the 
emphasis on T8. The celiac, aortico-renal and 
superior mesenteric ganglia receive their main 
input from the T8 to Tl2 segments and the infe
rior mesenteric ganglion from the Tl3-L2 seg
ments (Strack et al., 1988). About 2S% of the pre
ganglionic cells in the TI-TS segments projecting 
to the cervical ganglia are located in the lateral fu
niculus, around 70% in the intermediolateral cell 
column (IML) and a total of S% in the central auto
nomic cell group (CA) around the central canal 
(Rexed's (19S4) lamina X) and in the area in be
tween the IML and CA, called the intercalated 
nucleus (Strack et al., 1988; Fig. S). The number of 
preganglionic motoneurons in the lateral funicu
lus, projecting to the other ganglia is much less 
numerous (~S%), while, with the exception of the 
inferior mesenteric ganglion, ~90% of the pregan
glionic motoneurons are located in the IML. 
Around 70% of the preganglionic motoneurons 
projecting to the inferior mesenteric ganglion are 
located in the central autonomic nucleus and 
~2s% in the IML. In the cat it is known that the 
sympathetic preganglionic motoneurons are seg
mentally organized (Rubin and Purves, 1980; Kuo 
et al., 1980). In the caudal C8 and rostral Tl 
segments of the cat preganglionic motoneurons 
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Fig. 4. Brightfield photomicrograph of the ventral 
hom of a section through the left ventral hom of the Sl 
spinal segment in the cat. The arrows indicate the 
nucleus of Onuf, (from Holstege and Tan, 1987). 

Fig. 5. Schematic drawing of a transverse section of 
the third thoracic segment of the spinal cord of the cat. 
The 4 different locations of sympathetic motoneurons 
are indicated. 
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are exclusively located in the dorsolateral funicu
lus (Henry and Calaresu, 1972; Chung et al, 1979). 
The highest concentration of neurons in the IML 
is at the Tl-T2 and at the L3-L4levels (Henry and 
Calaresu, 1972). In the lumbar cord the IML con
tinues until the L4 level (Henry and Calaresu, 
1972), but sympathetic motoneurons may also be 

· present in the lateral part of the L5 intermediate 
zone (Jiinig and McLachlan, 1986; Morgan et al., 
1986), although not all cats have sympathetic 
motoneurons as caudal as LS (Morgan et al, 1986). 
Many of them traverse the inferior mesenteric 
ganglia to make synaptic connections with termi
nal ganglia of the pelvic plexus as well as in the 
walls of their targets (bladder and genital organs). 
They run via the pelvic and hypogastric nerves, 
and innervate the bladder and genitals directly or 
indirectly via connections with the paravesical 
ganglia of the parasympathetic system Elbadawi, 
1982). Sympathetic fibers have inhibitory effects 
on the detrusor muscle of the bladder and excita
tory effects on the smooth musculature of the 
urethra and base of the bladder. 

1 b 2. Parasympathetic preganglionic motoneu
rons. The parasympathetic preganglionic mo
toneurons in the sacral cord of the cat (S2 and S3 
segments) innervate the detrusor muscle of the 
bladder and the colon. The motoneurons are 
organized into two groups, a lateral band of neu
rons, dorsoventrally oriented in the lateral part of 
lamina VII and a more medial group of neurons, 
the dorsal band, mediolaterally oriented in the 
lateral part of lamina V (Nadelhaft et al., 1980). 
The urinary bladder is innervated mainly by the 
lateral band of cells and the colon mainly by the 
dorsal band cells (Morgan et al., 1979; Holstege 
and Tan, 1987). 

lc. Somatic motoneurons in the brain
stem 
The motoneurons innervating the muscles of the 
head, such as the facial, chewing, tongue, pharynx 
and extra-ocular muscles are all located in the 
brainstem. They do not form a continuous rostra
caudal band of motoneurons such as in the spinal 
cord, but are subdivided into several distinct mo
toneuronal cell groups. 

1c 1. Extra-ocular muscle and retractor bulbi 
motoneuronal cell groups. The extra-ocular 
muscles are innervated by motoneurons in the 
oculomotor, trochlear and abducens nuclei, all of 

which are located dorsomedially in the tegmen
tum. The oculomotor nucleus is located in the 
rostral mesencephalon, the trochlear nucleus in 
the caudal mesencephalon and the abducens nu
cleus in the ponto-medullary transition zone. The 
oculomotor nucleus contains motoneurons in
nervating the ipsilateral medial rectus, inferior 
rectus and inferior oblique muscles and the contra
lateral superior rectus and levator palpebrae. 
Trochlear motoneurons innervate the contralateral 
superior obliqu~ and abducens motoneurons in
nervate the ipsilateral lateral rectus muscle (see 
Evinger, 1988 for review). 
The accessory abducens or retractor bulbi nucleus 
in the cat is a loosely arranged motoneuronal cell 
group, just dorsal to the superior olivary complex 
(Fig. 6). The nucleus contains a total of about 100 
(Grant et al., 1979; Spencer et al., 1980) motoneu
rons. They innervate the retractor bulbi muscle, 
an extraocular muscle divided into four slips, 
which attach themselves on the eyeball behind 
and beside the inferior and superior recti muscles. 
The four slips are thinner and shorter than the 
other extra-ocular muscles. Retractor bulbi 
muscles are present in most vertebrates, but not 
in apes and humans (Bolk et al., 1938). The 
functional role of the retractor bulbi muscles is 
purely eye -protection: it retracts the eyeball, 
forcing the intraorbital fat against the base of the 
nictitating membrane and causing the latter to 
sweep across the eyeball (Bach-y-Rita, 1971). This 
event is also called the nictitating membrane 
response. The retractor bulbi muscles do not 
contract independently of the orbicularis oculi 
(McCormick et al., 1982). 

Fig. 6. Schematic drawing of a transverse section 
through the caudal brainstem at the level of the ab
ducens (VI) and superior olivary nucleus (SO}. The 
black dots indicate the position of the small accessory 
abducens or retractor bulbi nucleus, which consists of 
=100 motoneurons, (from Holstege et al. 1986b}. 



lc 2. Jaw-closing and opening muscle motoneu
rons. In the cat the jaw-closing muscles masseter, 
temporalis and medial pterygoid muscles as well 
as the lateral pterygoid muscle, which is not a jaw 
closing muscle, are innervated by motoneurons in 
the dorsolateral two thirds of the motor trigemi
nal nucleus. The jaw-opening muscle motoneu
rons (anterior digastric and mylohyoid) are lo
cated in the ventromedial one third of this nu
cleus (Mizuno, et al., 1975; Batini et al., 1976). 
This region also contains the motoneurons inner
vating the tensor veli palatini (Keller et al., 1983). 
In the cat the posterior digastric muscle motoneu
rons, which send their axons via the facial nerve, 
are located in two separate small cell groups, one 
dorsal to the superior olivary complex and just 
medial to the VII nerve and one dorsal to the facial 
nucleus (Grant et al., 1981). The latter region also 
contains stylohyoid muscle motoneurons (Shohara 
and Sakai, 1983). 

1c 3. Facial muscle motoneurons.. Motoneurons 
in the facial nucleus innervate the various facial 
muscles. In the cat the lateral and ventrolateral 
facial subnuclei contain the motoneurons inner
vating the muscles of the upper and lower mouth 
respectively. Motoneurons in the dorsomedial 
facial subnucleus innervate the ear or pinna 
muscles, and the dorsal portion of the facial nu
cleus (intermediate facial subnucleus) contains 
motoneurons innervating the muscles around the 
eye (Papez, 1927; Courville, 1966a; Kume et al., 
1978; Fig. 7). In other mammals slight variations 
in this subdivision are present (Kamiyama et al., 
1984 in the mouse; Hinrichsen and Watson, 1984; 

Intermediate subnucleus 
(orbicularis oculi+ other 
musdes around the eye) 

Lateral \ 
subnucleus'-~ D] Dorsomedial 

(upper mouth) (\ o· /subnucleus u ~ (earmuscles) 

Ventrolateral D 
subnucleus/. 

(lower mouth) ~ 

Ventromedial 
subnucleus 
(platysma) 

Fig. 7. Schematic drawing of a transverse section 
through the left facial nucleus. The different facial 
subnuclei and the muscle innervated by the motoneu
rons in these subnuclei are indicated. 
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Klein and Rhoades, 1985 and Friauf and Herbert, 
1985 in the rat; Dom et al., 1973 in the opossum; 
Provis, 1977 in the brush-tailed possum; Holstege 
and Collewijn, 1982 in the rabbit; Satoda et al., 
1987 in the Japanese monkey). The facial nucleus 
contains mainly motoneurons, only a few non
motoneurona1 cells have been detected. They 
project to the cerebellar flocculus (R0ste, 1989). 

1c 4. Middle ear muscle motoneurons. In the cat, 
motoneurons innervating the tensor tympani, 
which send their axons via the motor trigeminal 
nerve, are located just ventral to the motor trigemi
nal nucleus (Lyon, 1975; Mizuno et al., 1982; 
Keller et al., 1983; Friauf and Baker, 1985). Stape
dius motoneurons, which send their axons via the 
facial nerve, are located in cell clusters around the 
traditional borders of the facial nucleus as well as 
dorsal to the lateral superior olivary nucleus (Lyon, 
1978; Shaw and Baker, 1983; Joseph et al., 1985). 
In the squirrel monkey stapedius motoneurons 
are located ventromedial to the facial nucleus 
(Thompson et al., 1985). Recently it has been 
shown (McCue and Guinan, 1988; Guinan et al. 
1989) in the cat that there is a spatial segregation 
of function within the stapedius motoneurons. 

lc 5. Somatic motoneurons belonging to the 
nucleus ambiguus. In the cat the somatic mo
toneurons in the nucleus ambiguus innervate the 
laryngeal, pharyngeal and soft palate muscles. 
The nucleus extends for a distance of 5 to 6 mm 
caudally from the facial nucleus. Laryngeal mo
toneurons are located in the caudal two thirds of 
the nucleus and lie dispersed in the ventrolateral 
part of the reticular formation. Motoneurons 
innervating pharynx and soft palate form a com
pact cell group, the dorsal group of the nucleus 
ambiguus. It is located 1.5 to 2.5 mm caudal to the 
facial nucleus. Pharyngeal motoneurons are also 
located in the more loosely arranged retrofacial 
part of the nucleus, situated just caudal to the 
facial nucleus. Furthermore, the retrofacial part 
of the nucleus ambiguus contains motoneurons 
innervating the cricothyroid muscles and the upper 
portion of the esophagus (Lawn, 1966; Yoshida et 
al., 1981; Holstege et al., 1983; Davis and Nail, 
1984). In the rat the oesophagus motoneurons are 
located in a compact cell group (Bieger and 
Hopkins, 1987), but in this animal certain palatal 
and upper pharyngeal muscles are absent (Clea
ton-Jones, 1972; Bieger and Hopkins, 1987), which 
might simplify the motoneuronal arrangement in 
this species. 
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1c 6. Tongue muscle motoneurons. Motoneurons 
innervating the intrinsic and extrinsic tongue 
muscles are located in the hypoglossal nucleus, 
which also contains motoneurons innervating the 
geniohyoid muscles (Uemura et al., 1979; Miyazaki 
et al., 1981 ). ln the cat the geniohyoid muscle 
motoneurons are located· in the most ventral 
portion of the rostral two thirds of the hypoglossal 
nucleus. The other extrinsic tongue muscle 
motoneurons (genioglossus, hyoglossus, and sty
loglossus) are located laterally in the hypoglossal 
nucleus. The intrinsic muscle motoneurons, 
which send their axons via the medial branch of 
the hypoglossal nerve, are located medially and 
ventrally in the nucleus, while the intrinsic muscle 
motoneurons, which send their axons via the lat
eral branch, are located in the dorsal portions of 
the nucleus (Uemura et al., 1979). This relatively 
complicated subdivision of the hypoglossal nu
cleus makes it impossible to subdivide the hypo
glossal nucleus into tongue protrusion and a tongue 
retraction regions and further anatomic and physio
logical study is necessary to umavel a more pre
cise subdivision within this motoneuronal pooL 

ld. Autonomic (parasympathetic) pregan
glionic motoneurons in the brainstem 
1d 1. Preganglionic motoneurons innervating iris 
and lens via the ciliary gailglion. Parasympathetic 
preganglionic motoneurons in the vicinity of the 
oculomotor nucleus innervate the ipsilateral cili
ary ganglion, whose neurons control the iris and 
lens (ciliary body). Some may bypass the ciliary 
ganglion to innervate the iris or ciliary body di
rectly (see Evinger, 1988 for review). All these 
preganglionic motoneurons are involved in the 
pupillary light reflex. ln the cat the preganglionic 
motoneurons lie in the ipsilateral central gray 
dorsal to the oculomotor nucleus and in the teg
mental area ventral to the oculomotor nucleus 
(Loewy et al., 1978; Toyoshirna et al., 1980; Strass
man et al., 1987). In the monkey (Burde and 
Loewy, 1980) the preganglionic motoneurons are 
located in the Edinger-Westphal nucleus and in 
the nucleus of Perlia, located between the somatic 
motoneuronal oculomotor nuclei (Olszewski and 
Baxter, 1954). 

1d 2. Preganglionic motoneurons innervating 
salivatory and lacrimal glands. The parasympa
thetic motoneurons innervating the parotid gland, 

via the minor petrosal nerve and the otic ganglion, 
as well as those innervating the submandibular 
and sublingual salivatory glands, via the chorda 
tympani, are all intermingled in the lateral teg
mental field dorsal to the facial nucleus (Contre
ras et al., 1980 in the rat; Nomura and Mizuno, 
1981, 1982; Hosoya et al., 1983 and Tramonte and 
Bauer, 1986 in the cat). The motoneurons inner
vating the lacrimal gland, via the greater petrosal 
nerve, are located slightly more rostrally and 
ventrally in the lateral tegmentum (Contreras et 
al., 1980). 

ld 3. Preganglionic motoneurons innervating the 
visceral organs. The parasympathetic motoneu
rons innervating the visceral organs (lung, heart, 
stomach and intestine) via the vagus nerve are 
located mainly in the dorsal vagal nucleus and in 
the ventral part of the medullary lateral tegmental 
field, i.e. the area of the nucleus ambiguus and 
retroambiguus (Nosaka et aL, 1979; Weaver, 1980; 
Kalia and Mesulam, 1980a,b; Kalia, 1981; Hopkins 
and Armour, 1982). A few neurons are present in 
the lateral tegmentum between both cell groups 
and in the upper cervical ventral horn (Kalia and 
Mesulam, 1980a,b). There is extensive overlap 
between the location of the neurons innervating 
the different viscera, although Hopkins and 
Armour (1982) and Plecha et aL (1988) indicate 
that almost 90% of the preganglionic neurons 
innervating the heart are located in the area of the 
nucleus ambiguus. It has always been difficult to 
give a precise description of the nuclei ambiguus 
and retroambiguus, because both nuclei consist of 
many different populations of motor (autonomic 
and somatic) and premotor cells. ln the cat the 
only portion of the nucleus ambiguus that can 
easily be recognized as such in non-experimental 
Nissl sections is its dorsal group, containing 
motoneurons innervating pharynx and soft palate 
(Lawn, 1966; Yoshida et aL, 1981; Holstege et al., 
1983; Davis and Nail, 1984). Furthermore the 
caudal half of the nucleus rctroambiguus (NRA), 
located at the border between gray and white 
matter at medullary levels caudal to the hypoglos
sal nucleus, forms a reasonably well circumscribed 
nucleus (Fig. 8; Kalia and Mcsulam (1980a,b) re
ported that this nucleus contains vagal nerve para
sympathetic preganglionic motoncurons. How
ever, from their drawings the impression is gained 
that the parasympathetic neurons arc not located 
within the confines of the nucleus rctroambiguus, 
but just medial to it. The nucleus itself contains 
interneurons involved in expiration related sys-
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Fig. 8. Darkfield photomicrographs showing the HRP labeled neurons in the contralateral NRA (arrows) at the 
level of the caudal medulla (A) and medullospinal transition (B) after injection of HRP in the ipsilateral T1 spinal 
cord. Bar represents 1 mm. 

terns [see section 3a). The fact that all other scription of afferents to these nuclei practically 
portions of the nuclei ambiguus and retroam- useless without a precise identification of the mo
biguus consist of neurons more or less scattered toneurons involved. 
within the lateral tegmental field, makes a de-

2. Local projections to motoneurons 

2a_ Recurrent motoneuronal axon collat
eral projections to motoneurons 
Recurrent collaterals of motoneurons innervating 
limb muscles terminate directly on local mo
toneurons innervating the same or synergistic 
muscles [Cullheim and Kellerth, 1978). Further
more, motoneuronal axon collaterals project di
rectly on local intemeurons [Renshaw cells). 
Renshaw cells are located in the ventral hom 
medial to the motor nuclei [Jankowska and 
Lindstrom, 1971; Van Keulen, 1979; Fig. 9). They 
have an inhibitory effect on the same or synergis
tic a and g motoneuronal cell groups from which 

they receive their afferents. This phenomenon is 
known as recurrent inhibition (see Baldissera et 
al, 1981 for review). Renshaw cells project via 
propriospinal pathways in the ventral funiculus 
[Fig. 9). Recurrent inhibition is especially strong 
in motoneuronal cell groups innervating proxi
mal limb muscles, less strong in muscles of more 
distal parts of the limb [wrist or ankle) and absent 
in motoneuronal cell groups innervating the most 
distal limb musculature such as those innervating 
the phalanges of the forelimb [Hahne et al., 1988) 
or the small foot-muscles of the hindlimb [Cull
heim and Kellerth, 1978). Apparently recurrent 
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inhibition is primarily concerned with control of 
the proximal muscles (limb position), rather than 
of the distal ones (movements of the digits). 

2b. Muscle spindle afferent projections to 
motoneurons 
2b 1. Muscle spindle afferent projections to mo
toneurons in the spinal cord. ln the spinal cord 
group Ia muscle spindle afferents have an excita
tory effect on motoneurons, innervating the same 
or synergistic muscle groups (Mendell and Henne
man, 1971). Muscle spindles project directly 
(Brown and Fyffe, 1978; Ishizuka et al., 1979) or via 
intemeurons (Jankowska et al., 1981) onto mo
toneurons. The Ia afferent projection system 
exists in proximal as well as in distal limb muscle 
control (Ishizuka et al., 1979; Fritz et al., 1978; 
1984). Ia muscle spindle afferents not only have 
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an excitatory effect on motoneurons, but also on 
the so-called Ia inhibitory intemeurons which in 
turn have an inhibitory effect on motoneurons 
innervating muscles, antagonistic to the muscle 
from which the Ia muscle spindle afferents are 
derived_ The Ia inhibitory intemeurons are lo
cated in lamina VII of the spinal intermediate 
zone and project to the antagonist muscle mo
toneurons, mainly via propriospinal pathways 
(Jankowska and Lindstrom, 1972; Fig. 9). Thus, 
the Ia afferents of a specific muscle excite the mo
toneurons of the same (homonymous) and syner
gistic muscles, and, via Ia inhibitory intemeu
rons, inhibit the motoneurons of the antagonistic 
muscles (see Henneman and Mendell, 1981 and 
Baldissera et al., 1981 for reviews). Ia afferents 
also have an inhibitory influence on homony
mous and synergistic muscle motoneurons (Fetz 
et al., 1979), but this inhibition is mediated by 

___. Inhibitory projections 

Fig. 9. In A a schematic draw
ing of the L7 ventral hom 
showing the recurrent axon 
collaterals, Renshaw cells, Ia 
inhibitory intemeurons and 
Ia afferents of two motoneu
rons innervating an agonist 
(Ag) and an antagonist (Ant} 
muscle respectively. Note that 
many of the neurons project 
via propriospinal pathways. In 
B a magnified view of the dif
ferent projections is shown. 
Note that the motoneurons 
receive inhibitory input from 
their own axon collaterals and 
Renshaw cells as well as from 
the Ia inhibitory intemeurons 
from the antagonist muscle. 
Excitatory input is derived 
from Ia afferents. It is known, 
(Cullheim and Kellerth, 1978), 
that recurrent axon collater
als of a proximal muscle mo
toneuron projects directly 
onto the somata or dendrites 
of other motoneurons inner
vating the same or synergistic 
muscles. Although indicated 
as such in the schematic draw
ing, it is not sure whether a 
motoneuron projects to its 
own dendrites or soma. 



interneurons and not by direct projections to 
motoneurons. 

2b 2. Muscle spindle afferent projections to mo
tonemons in the brainstem. The nemonal cell 
bodies of the muscle spindle afferents are located 
in spinal ganglia outside the central nervous sys
tem. However, the ganglion cells of the muscle 
spindle afferents of the mouth closing muscles are 
located within the central nervous system. They 
are called mesencephalic trigeminal neurons and 
are mainly large-diameter globular cells with one 
process, although some of them are of smaller 
diameter. The mesencephalic trigeminal neu
rons, which combined form the mesencephalic 
trigeminal nucleus, are located at pontine and 
mesencephalic levels in the border area between 
periaqueductal gray (PAC) and the dorsally and 
laterally adjoining tegmentum. The peripheral 
processes of these cells first descend through the 
so-called mesencephalic trigeminal tract (Fig. lOA), 
and then via the motor root of the trigeminal 
nerve to the sensory receptors in the mouth clos
ing muscles. The sensory signals are derived from 
the muscle spindles in the mouth closing muscles 
as well as from pressure receptors at the base of the 
teeth, the temporomandibular joint, gums and 
tongue. The muscle spindle afferents are located 
throughout the rostrocaudal extent of the 
mesencephalic trigeminal nucleus, while the 
pressure receptor ganglion cells are present in the 
caudal half of the nucleus. After a 3H-leucine 
injection involving the rostral mesencephalic 
trigeminal nucleus, Holstege and Cowie (in prepa
ration) found that the proximal processes pass 
caudally, first via the mesencephalic trigeminal 
tract (Fig. lOA), but at levels caudal to the motor 
trigeminal nucleus in the so-called Probst (1899) 
tract, which can be followed until the upper seg
ments of the cervical cord (figs. lOC-F). From this 
tract some fibers are distributed to the dorso
lateral two thirds of the motor trigeminal nucleus 
(Fig. lOB), which contains mouth closing muscle 
motoneurons (see section 1 c 2). Although the ter
mination of muscle spindle afferents in the motor 
trigeminal nucleus was not very strong, it was 
more pronounced than the very weak projection 
reported by Luschei (1987). The detection of only 
a limited muscle spindle projection to the mouth 
closing motoneurons is in agreement with the 
finding of Appenteng et al. (1978), who triggered 
mouth closing muscle spindle afferents in the 
mesencephalic trigeminal nucleus. They found 
that the muscle spindles produced monosynaptic 
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excitatory post synaptic potentials in only a small 
proportion of the mouth closing motoneurons. 
Much denser projections than to the motor trigemi
nal nucleus were found to the supratrigeminal and 
intertrigeminal regions (Fig. lOB), located just 
dorsal and lateral to the motor trigeminal nucleus 
(see also Luschei, 1987 and Shigenaga et al., 1988). 
Further caudally, Holstege and Cowie (in prepara
tion) found that muscle spindle afferents in the 
Probst tract terminate only to a very limited 
extent at levels around the facial nucleus (Fig. 
10C), but strongly in the dorsal portion of the 
lateral tegmentum at the level of the hypoglossal 
nucleus (Fig. lOE). No labeled fibers were found in 
the trigeminal, solitary or hypoglossal nuclei. 
Projections to these nuclei may be derived from 
neurons in more caudal portions of the mesenceph
alic trigeminal nucleus receiving peri-oral pres
sure receptor afferents (Sirkin and Feng, 1987). 
Neurons in the dorsal portion of the lateral teg
mentum at the level of the hypoglossal nucleus 
project to the hypoglossal nucleus and to the ven
tromedial one third of the motor trigeminal nu
cleus (Holstege and Kuypers, 1977; Holstege et al., 
1977; Holstege and Blok, 1986), which area con
tains mouth opening muscle motoneurons (see 
section 1 c 2; Fig. 11). Intemeurons, which receive 
mouth closing muscle spindle afferents and proj
ect to mouth opening motoneurons, might serve 
as Ia inhibitory interneurons for the mouth clos
ing motoneurons. However, after stimulating 
mouth closing muscle afferent fibers, Kidokoro et 
al (1968) could not demonstrate such inhibitory 
effects in the antagonist digastric muscle mo
toneurons. 

2c. Propriospinal pathways 
2c 1. Projections from intememons. With the 
exception of the Ia afferents, no direct primary 
afferent projections exist to the motoneurons. For 
example, stimulation of Ib tendon organ afferents 
of a specific muscle produces inhibition of the 
motoneurons of the same and synergistic muscles 
and excitation of motoneurons of antagonist 
muscles. These effects are mediated via excita
tion of interneurons in the intermediate zone, 
mainly laminae V and VI, which in turn project, 
via propriospinal pathways, to motoneurons 
(Czarkowska et al., 1976). Jankowska and McCrea 
(1983) demonstrated that both the excitatory and 
inhibitory interneuronal pathways to motoneu
rons are shared by Ia and Ib afferents. 
Other primary afferents are derived from the skin 
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Fig. 10. Daikfield photomicrographs of the labeled fibers in the mesencephalic trigeminal tract (A) or Probst 
tract (Figs. C-F) after an injection of 8H-leucine in the dorsolateral part of the pretentorial PAC and adjoining 
tegmentum, including the mes. V neurons at that level. Note the light projections to the dorsolateral two thirds 
of the motor trigeminal nucleus, the virtual absence of projections Mound the level of the facial nucleus, and the 
strong projections to the lateral tegmental field at the level of the hypoglossal nucleus (E). 

and joints, and the group II and ill muscle affer
ents. Their reflex pathways to motoneurons always 
include interneurons. In hindlimb segments of 
the cat the minimum linkage in reflex pathways 
from cutaneous afferents to motoneurons is tri
synaptic [Lundberg, 1975), although in case of the 
forelimb disynaptic pathways seem to exist. The 
last order interneurons, projecting to the mo
toneurons, enter the funiculus at the same rostra-

caudal level as their cell body is located. Within 
the funiculus they run rostrally and/or caudally to 
reenter the spinal gray at the level of their target 
motoneurons [Jankowska and Roberts, 1972). For 
such local pathways especially those parts of the 
dorsolateral, ventrolateral and ventral funiculi are 
involved, which border the gray matter. These 
parts are called fasciculi proprii or propriospinal 
pathways. Anatomic studies [Sterling and Kuypcrs, 
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Chewing muscles 

Fig. 11. Schematic drawing of the organization of tlle mesencephalic trigeminal nucleus and tract. The stiongest 
projections from tlle Probst tract is at tlle level of the hypoglossal nucleus. Other tracing studies have indicated 
that neurons in this area project strongly to the mouth opening motoneurons in tlle motor trigeminal nucleus, 
but whether these neurons at the level of the hypoglossal nucleus play the role of Ia inhibitory neurons remains 
to be elucidated. 

1968; Rustioni et al., 1971; Molenaar et al., 1974; 
Molenaar, 1978) have indicated that the intemeu
rons, located in different areas of the intermediate 
zone, project to different motoneuronal cell groups. 
Intemeurons in the lateral part of laminae V and 
Vl project via the dorsolateral funiculus to the dor
solateral motoneuronal cell group in the cervical 
or lumbosacral enlargement, which innervate 
distal limb muscles. Intemeurons in the central 
part of the intermediate zone project via the ven
trolateral funiculus to the ventrolateral motoneu
ronal cell group, innervating proximal limb 
muscles. Intemeurons in the medial part of the 
intermediate zone, [medial part of lamina Vll and 
lamina VIII) project via the ventral funiculus, to 

the medial motoneuronal cell groups, innervating 
the axial and proximal muscles [Fig. 12). Within 
the cervical or lumbosacral enlargements such 
projections go from rostral to caudal and from 
caudal to rostral [Molenaar and Kuypers, 1978). 

2c 2. Projections from propriospinal neurons. 
According to Baldissera et al. [1981) there is a func
tional difference between intemeurons and pro
priospinal neurons. Intemeurons are intercalated 
in reflex pathways of limb segments, while pro
priospinal neurons are located outside the limb 
segments, but project into them. The C3-C4 neu
rons which relay supraspinal motor information 
to a-motoneurons in the CS-T1 spinal cord [lllert 
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Fig. 12. Schematic illustration of the projections from intemeurons in the C7 intermediate zone (laminae V-VII} 
via the propriospinal pathways to the motoneurons at the CB level. Note that the neurons in the dorsolateral part 
of the intermediate zone project to the dorsolaterally located motoneuronal cell group innervating distal limb 
muscles. The interneurons in the central part of the intermediate zone project to motoneurons in the 
ventrolateral ventral hom, which innervate proximal limb muscles. Interneurons in the medial part of the 
intermediate zone on both. sides of the spinal cord project to the motoneurons in the medial part of the ventral 
hom. These motoneurons innervate axial muscles. Note also that the C7 propriospinal fibers at the level of CB 
are shifted to a slightly more peripheral position in the funiculus. 

et al., 1978) are examples of propriospinal neu
rons. Illert et al. (1978) demonstrated that, after a 
complete transection of the corticospinal tract at 
the level of CS, disynaptic excitatory postsynaptic 
potentiais (EPSP's) in forelimb muscle motoneu
rons can still be evoked by stimulation of the 

contralateral pyramid or red nucleus, while they 
were abolished after a corticospinal tract transec
tion at the level of C2. Alstermark et al., 1987b, 
using intra-axonal injections of horseradish per
oxidase, demonstrated C3-C4 propriospinal pro
jections to a-motoneurons and interneurons in 

Fig. 13. On the right. Darkfield photomicrographs of the caudal medulla oblongata and 7 different levels of the 
cervical and upper thoracic cord after injection of 3H-leucine in the lateral two thirds of the intermediate zone 
of the C2 spinal gray matrer. Note the strong projections to the motoneuronal cell groups in the C6 and CB ventral 
horn. Note also that from the injection site the descending propiospinal fibers gradually move to more peripheral 
parts of the funiculi. The arrow in CB points to the CTM motor nucleus, which. does not receive descending 
propriospinal pathways. Bar represents 1 mm. 
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the C6-Tl spinal cord. Molenaar (1978) using the 
retrograde HRP technique found that only a lim
ited number of labeled neurons in the C2-C4 
intermediate zone projected to a-motoneurons in 
the C5-Tl spinal cord, but Holstege (1988b) and 
Holstege and Blok (1989), using the anterograde 
autoradiographic tracing technique, demonstrated 
that neurons in the intermediate zone of C2 proj
ect heavily to the C6-Tl motoneuronal cell groups 
(Fig. 13), with the exception of the cutaneus trunci 
muscle motoneurons (see later). Thus, not only 
C3-C4, but also C2 propriospinal neurons project 
to the C5-Tl a-motoneurons. With regard to the 
functional importance of the upper cervical pro
priospinal projections to motoneurons, Alster
mark et al. (1981; 1987b) demonstrated that the 
propriospinal neurons, driven by cortico- and/or 
rubrospinal fibers, can produce target reaching 
movements in cats. During this movement the 
paw is brought in contact with the food. However, 
direct activation of the C5-T1 inter- and motoneu
rons from the cortico- and/or rubrospinal tracts 
can also produce target reaching movements 
(Alstermark, 1987b). Such direct activation is es
sential for food taking movements in cats, con
sisting of toe grasping and paw supination. Thus 
the upper cervical propriospinal neurons, when 
properly stimulated, can produce target reaching 
movements, but not the more precise food taking 
movements. 

2c2 a Propriospinal neurons as rhythm generators. 
During the scratch reflex (one limb) or locomotion 
(all four limbs) the limbs perform rhythmic move
ments, which are independent of the afferent sig
nals from that limb. The main characteristics of 
the rhythmic movements of a limb are deter
mined by its so-called spinal generator. During 
the scratch reflex only one generator is active, 
during locomotion, all four of them. The spinal 
generators consist of interneurons, which lie 
mainly in the lateral part of laminae V, Vl and Vll 
over the whole length of the cervical or lumbosac
ral enlargement. Renshaw cells and Ia inhibitory 
interneurons are not responsible for the basic 
pattern of rhythmic changes, (see Gelfand et al., 
19.88 for review). Grillner (1981) hypothesized 
that the spinal generator of a limb consists of 
several rhythm generators, each controlling one 
joint. The regulation of the rhythm generators is 
performed by means· of tonic commands corning 
from higher brain centers. Ill all likelihood the 
diffuse descending systems, originating in the 
ventromedial medulla oblongata and projecting to 

all parts of the intermediate zone and motoneu
ronal cell groups, play an important role in this 
regulation (see further sections 5 b 1 and 5 c 1 c). 

2c 3. Long propriospinal projections. As pointed 
out in section 1, the column of motoneurons 
innervating axial muscles extends from the cau
dal medulla oblongata (neck muscles) to the sacral 
cord (lower back muscles). Since they are often 
simultaneously active during certain proximal 
body movements, long propriospinal projections 
are necessary to coordinate such axial movements. 
Giovanelli Barilari and Kuypers (1969) and Mole
naar and Kuypers (1978) have shown that there 
exist direct reciprocal connections between the 
cervical and lumbosacral spinal cord. The great 
majority of the neurons giving rise to such long 
propriospinal projections are located in the me
dial part of the intermediate zone (lamina VIII and 
adjoining Vll). They project bilaterally, but mainly 
ipsilaterally via the ventral funiculus, and proba
bly play a role in establishing a functional unity of 
the axial and proximal musculature. A smaller 
number of neurons in the dorsolateral part of the 
cervical intermediate zone and a few in lamina I 
(Molenaar and Kuypers, 1978) send axons via the 
dorsolateral funiculus to the lumbar cord. The 
function of these projections is less clear, al
though it is known that stimulation . of forelimb 
afferents evokes a sequence of excitation and inhi
bition in hindlimb motoneurons (for example to a
motoneurons of the flexor digitorum longus 
muscle (Schomburg et al., 1975)). In summary, 
long propriospinal pathways are probabLy involved 
in the coordination of axial muscle activity· as 
well as in the coordination between fore- and 
hindlimbs. 
Comparing the density of the short and long pro
priospinal projections, it is important to note that 
an injection of 3H-leucine in the intermediate 
zone of a portion of the C2 or C6 intermediate 
zone produces many fibers terminating in the C8-
Tl motoneuronal cell groups (Holstege, 1988b; 
Fig. 13; Holstege and Blok, 1989), but only very 
few in the lumbar cord (Holstege, 1988b). After an 
injection of 3H-leucine in the 17 spinal cord, which 
produces heavy labeling in for example the infe
rior olive, only very few labeled fibers were found 
in the medial part of the C8 intermediate zone 
(Holstege unpublished observations). Thus, the 
long propriospinal projections are much weaker 
than the short propriospinal and interneuronal 
projections to motoneurons. It remains to be de
termined whether the coordination between fore-



and hindlimbs relies entirely on the relatively 
weak long propriospinal projections, or on other 
projection systems as welL 

2c 4. Specific propriospinal projections. Gio
vanelli Barilari and Kuypers (1969) and Ueyama 
and Matsushita (1973) have demonstrated an ipsi
lateral projection from the thoracolumbar spinal 
cord to a specific motoneuronal cell group in the 
most ventrolateral portion of the C8-T1 ventral 
hom. The cell group was called "group X" by 
Giovanelli Barilari and Kuypers (1969) and "ven
tral motor nucleus" by Matsushita and Ueyama 
(1973), indicating that it was not known which 
muscle was innervated by these motoneurons. It 
was later demonstrated (see section 1 a 3) that the 
motoneurons in this cell group innervate the cuta
neus trunci muscle (CTM). The CTM is a thin 
broad sheet of skeletal muscle just beneath the 
skin. It does not contain muscle spindles and 
receives its afferents from the overlying skin. Bi
lateral contraction of the muscle can easily be 
triggered by pinching the skin or in the cat by 
gentle displacement of the fur (CTM-reflex). The 
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afferent information for this reflex is conveyed via 
the cutaneous nerves, which are segmentally or
ganized. Physiological studies have shown that 
long ascending propriospinal pathways, originat
ing in the thoracolumbar cord, exist between the 
cutaneous afferents and the CTM motor nucleus 
(Krogh and Denslow, 1979i Theriault and Dia
mond, 1988a). Holstege and Blok (1989) in their 
study on the specific descending pathways to the 
CTM motor nucleus, combined the anatomic 
findings of Giovanelli Barilari and Kuypers ( 1969) 
and Ueyama and Matsushita, 1973 with the more 
recent physiological findings and produced a sche
matic diagram of the anatomy of the CTM reflex 
(Fig. 14). 

2c 5. Absence of propriospinal projections to 
certain motor nuclei 
2c5 a. CTM motor nucleus. Short propriospinal 
pathways exist for almost all motoneuronal cell 
groups. However, the CTM motor nucleus, in 
contrast to the surrounding motoneuronal cell 
groups in the cervical enlargement, does not seem 
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Fig. 14. Schematic representation of the pathways involved in the CTM reflex and the specific supraspinal 
projections to the CTM motor nucleus. 
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to receive projections from cervical interneurons 
(Holstege and Blok, 1989), although many from 
more caudal regions (see section 2 c 4 and Fig. 14). 
The lack of descending propriospinal pathways to 
the CfM motor nucleus is not surprising. CTM 
motoneurons are involved in totally different 
movements than the other motoneurons in the 
ventrolateral portion of the C8-upper Tl ventral 
hom, which innervate the muscles of the fore
limb. The propriospinal afferent pathways from 
the cervical cord are mainly concerned with coor
dination of movements of the forelimb, in which 
the CfM does not play a role. 

2c5 b. Phrenic nucleus. A second cell group that 
seems to receive only a small number of proprio
spinal fibers (if any) is the phrenic nucleus. Hol
stege (1988b) observed, in cases with relatively 
large injections of triated leucine in the C1 and C2 
spinal cord, strong projections to the CS-Tl mo
toneuronal cell groups, but only very weak (if any) 
projections to the phrenic nucleus (Fig. 15). This 
observation is not unimportant, because Aoki et 
aL (1980) have reported that neurons in the Cl-C2 
intermediate zone generate a spontaneous respi
ratory rhythm in cats two hours after a C1 spinal 
transection, but not after a C3 transection. On the 
other hand, Lipski and Duffin ( 1986) studied the 
C1-C2 propriospinal inspiratory neurons, but could 
not find any evidence for synaptic connections 
between these cells and the phrenic motoneu
rons. They suggested a disynaptic pathway in-

Fig. 15. Darkfield photomicrograph of a tranverse 
section of the C6 spinal cord after an injection of 3H
leucine at the level of C2 {Fig. 13 C2). The arrows 
indicate the area of the phrenic nuclei, receiving virtu
ally no labeled fibers from the C2 intermediate zone. 

volving segmental intemeurons, but Holstege (un
published observations), in a case with a large 
triated leucine injection in the segmental interneu
ronal zone at the upper C6 level, could not find 
well defined projections to the ipsi- or contra
lateral phrenic nucleus. Thus, it remains to be 
resolved how the C1-C2 inspiiatory interneurons 
of Aoki et aL (1980) control phrenic motoneurons. 
Possibly, propriospinal neurons in the thoracic 
cord project to the phrenic nucleus, because stimu
lation in. spinal cats of the afferent fibers of the 
internal and external intercostal muscles elicits a 
polysynaptic reflex excitation of phrenic motoneu
rons, followed by a depression of spontaneous 
phrenic motor activity (Decima et al, 1969). 

2c5 c. Onuf's nucleus. The third motoneuronal 
cell group which does not seem to receive proprio
spinal projections from more rostral levels is the 
nucleus of Onuf (Rustioni et al., 1971; Holstege 
and Tan, 1987) (Fig. 16). Similar to the descending 
propriospinal pathways to the CTM motor nu
cleus, the lack of descending interneuronal or 
propiospinal projections to Onufs nucleus is not 
unexpected, because Onuf motoneurons are in
volved in completely different movements than 
the hindlimb innervating motoneurons surround
ing Onufs nucleus. The propriospinal afferent 
pathways from the lumbar cord are mainly con
cerned with coordination of movements of the 
hindlimb, in which Onuf's nucleus does not play 
a role. 

Fig. 16. Darkfield photomicrograph of a transverse 
section through the S1 spinal cord of the cat after an 
injection of 3H-leucine at the level of L7. The arrow 
points to the nucleus of Onuf, receiving no labeled 
fibers from the L7 intermediate zone (from Holstege 
and Tan, 1987}. 



However, Onuf motoneurons, innervating the 
pelvic floor muscles, have a very strong relation
ship with skin afferents. Stimulation of the peri
anal skin gives rise to simultaneous reflex reac
tions of the anal, urethral and bulbocavernosus 
muscle [Pedersen, 1985). The afferent fibers enter 
the spinal cord via the pudendal nerve, in the cat 
in the segments S1, S2 and upper S3 (Ueyama et 
al., 1984), in the monkey in the segments 17 to S2 
(Roppolo et al., 1985) and in humans in the seg
ments S1 to S4 (Pedersen, 1985). In general the 
strongest afferent input enters the cord one seg
ment caudal to the level of the nucleus of Onuf. 
Predictably, but not yet demonstrated, there exist 
projections from interneurons in the caudal sacral 
cord to the Onuf motoneurons, similar to the 
ascending projections from the thoracolumbar 
cord to the CfM motor nucleus. 

The CTM, phrenic and Onuf's nuclei not only 
have in common that they receive only very few, 
if any, descending propriospinal fibers, but also 
that for all three of them the muscles they inner
vate contain only very few, if any muscle spindles, 
(see Theriault and Diamond, 1988a for the CfM 
motor nucleus, Duron et al., 1978 for the phrenic 
nucleus and Todd, 1964 and Gosling et al., 1981 
for Onuf's nucleus). Furthermore all three motor 
nuclei have an exceptionally large number of 
longitudinally running dendrites within their 
nuclei (Dekker et al., 1973), and all three receive 
specific afferent projections from supraspinal 
structures (see section 3). 

2d. Propriobulbar pathways 
The organization of the interneuronal projections 
to the trigeminal (V), facial (VII), ambiguus [X) and 
hypoglossal (Xll) motor nuclei in the brainstem is 
not fundamentally different from the interneu
ronal and propriospinal projections in the spinal 
cord. This is not the case for the projections to the 
extra-ocular motor nuclei of the oculomotor, tro
chlear and abducens nerves and the ear mucle 
motoneurons in the facial nucleus, which form 
part of specific, mainly medially located premotor 
systems controlling eye-, head- and ear move
ments (see section 4a). 
Going rostrally from the level of Cl, the spinal 
intermediate zone (laminae V to Vlll) is called re-. 
ticular formation [subnuclei reticulares dorsalis 
and ventralis of Meessen and Olszewski, 1949). It 
contains intemeurons projecting to the motoneu
rons in the upper cervical cord (Holstege, 1988b) 
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Fig. 17 Schematic drawing of the subdivision of the 
bulbar reticular formation into a medial and lateral 
tegmental field. The lateral tegmental field can be 
considered as the rostral extension of the spinal inter
mediate zone, containing intemeurons for the mo
toneurons in brainstem and spinal cord. The medial 
tegmental field gives rise to descending pathways in
volved in postural and orienting movements and in 
level setting of all neurons in the spinal cord. 

and to the V, VII, X and xn motor nuclei [Holstege 
and Kuypers, 1977 and Holstege et al., 1977). 
Rostral to the level of the obex the reticular 
formation can be subdivided into a medial and a 
lateral tegmental field (Fig. 17). The lateral teg
mental field extends rostrally into the parabra
chial nuclei and the nucleus Kolliker-Fuse, and 
can be considered as the rostral extension of the 
spinal intermediate zone (Holstege et al., 1977). 
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For example, the projections from the red nucleus 
and motor cortex in cat and monkey to the bulbar 
lateral tegmental field are continuous with the 
projections to the intermediate zone of the spinal 
cord (see section 4b). At medullary levels the 
bulbar lateral tegmental field involves the so
called parvocellular reticular formation, the lat
eral paragigantocellular reticular nucleus of 
Olszewski and Baxter (1954), (see also Martin et 
al., 1990) and the intermediate reticular nucleus, 
as defined by Paxinos and Watson (1986) in the rat. 
The lateral tegmental field adjoins the hypoglos
sal nucleus ventrolaterally, the facial nucleus 
dorsomedially and surrounds the nucleus am
biguus. At pontine levels the lateral tegmental 
field comprises area h of Meessen and Olszewski 
(1949), which surrounds the motor trigeminal 
nucleus, and the ventral part of the parabrachial 
nuclei and the nucleus Kolliker-Fuse. In general, 
interneurons located medially in the lateral teg
mental field project bilaterally to the V, Vll and XII 
motor nuclei, while neurons located laterally proj
ect ipsilaterally (Holstege et al, 1977). The me
dial tegmental field at the levels of pons and 
medulla is involved in eye-head coordination and 
gives rise to long descending pathways to the 
spinal cord, involved in regulating axial and proxi
mal body movements (see section 4 a) or level 
setting systems (section 5 b 1). 

2d 1. Interneuronal projections to the motor 
trigeminal nucleus. In the cat almost all afferent 
projections to the motor trigeminal nucleus are 
derived from the bulbar lateral tegmental field. 
There are only 3 exceptions; 1) the few afferents 
from the mesencephalic trigeminal ganglion cells 
to the mouth closing motoneurons (see section 3 
b 2); 2) fibers from the upper medullary ventrome
dial tegmentum, which project diffusely to all mo
toneuronal cell groups including the motor trigemi
nal nucleus (see section 5 b 1) and 3) the motor 
cortex in monkey and humans, but not in cat, 
(Kuypers, 1958a,b,c). 
Interneurons projecting to the motor trigeminal 
nucleus are not uniformly distributed throughout 
the lateral tegmental field The mouth opening 
rnotoneurons receive their strongest projections 
from neurons in the lateral tegmentum at levels 
caudal to the obex (Holstege and Blok, 1986; Hol
stege, 1989). The mouth closing rnotoneurons 
receive their afferent projections mainly from 
neurons in more rostral parts of the lateral teg
mental field, i.e. from the level of the hypoglossal 
nucleus rostrally until the supratrigeminal nuclei 

and the area of the ventral parabrachial nuclei and 
nucleus Kolliker-Fuse (Holstege and Kuypers, 1977 
and Holstege et al., 1977; Mizuno et al., 1983; 
Holstege and Blok, 1986, Travers and Norgren, 
1983). 
Furthermore, Holstege et al. ( 1983) demonstrated 
a very specific projection pattern, originating from 
neurons located just dorsal and dorsornedial to the 
superior olivary complex. These neurons project 
contralaterally to mouth opening motorteurons in 
the trigeminal nucleus, the geniohyoid motoneu
rons in the hypoglossal nucleus and soft palate 
and pharynx motoneurons in the dorsal group of 
the nucleus ambiguus (Fig. 18). The authors 
suggest that this projection pattern might play a 
role in the coordination of the first (buccopharyn
geal) phase of swallowing. Physiological studies 
(Doty and Bosma, 1956; Miller, 1972) had demon
strated that the mylohyoid, geniohyoid and pala
topharyngeal muscles were inhibited immedi
ately prior to the swallowing act, which led Hol
stege et aL (1983) to speculate that this inhibition 
might be due to action of the pontine cell group. 

2d 2. Interneuronal projections to the hypoglossal 
nucleus. The afferents to the hypoglossal nucleus 

Fig. 18. Schematic drawing of the projections originat
ing from neurons located just dorsomedial to the supe
rior olivary complex. On the left side are indicated the 
muscles involved, on the right side the nuclei in which 
the motoneurons are located that innervate these 
muscles. It is suggested that this projection pattern 
might be involved in the first phase of swallowing. 



are organized in largely the same way as those to 
the motor trigeminal motoneurons, which sug
gests that a strong relationship exists between the 
motor control of tongue and jaw movements. 
With the exception of some diffuse projections 
originating in the medullary ventromedial teg
mentum and some primary afferent fibers from 
the C1-C3 dorsal roots (Holstege and Kuypers, 
1977) all afferent projections to the hypoglossal 
nucleus are derived from the bulbar lateral teg
mental field (Holstege et al., 1977; Travers and 
Norgren, 1983). Different levels of the lateral 
tegmental field project to different portions of the 
hypoglossal nucleus (Holstege unpublished re
sults). For instance, interneurons in the respira
tion related caudal part of the lateral tegmentum 
project to other parts of the hypoglossal nucleus 
(see also Sica et al., 1984) than interneurons in the 
rostral part of the lateral tegmental field, which 
are involved in coordinating mouth closing move
ments. However, the functional importance of 
these differences is difficult to assess, because, 
although some anatomic subdivisions have been 
described (see section 1 c 6) within the hypoglos
sal nucleus of the cat, thorough knowledge about 
a functional subdivision (for example a different 
location in the hypoglossal nucleus for tongue 
protrusion and tongue retraction motoneurons) is 
still lacking. Only combined anatomic and physio
logical studies can reveal the meaning of the 
observed anatomic differences in projections to 
the hypoglossal nucleus, (see for example the pro
jection from the NRA to the hypoglossal nucleus 
in Fig. 22). 

2d 3. Interneuronal projections to the facial nu
cleus. The lateral tegmental field projects heavily 
to the facial nucleus. However, these projections 
differ strongly for each of the subnuclei, and will, 
therefore, be described for each subnucleus sepa
rately. 

2d3 a. Interneuronal projections to the ear- and 
platysma muscle motoneuronal cell groups. The 
only portion of the lateral tegmental field project
ing to the dorso- and ventromedial subnuclei, 
which contain ear and platysma muscle motoneu
rons respectively (Fig. 7), is its most caudal part, 
i.e. the area of the nucleus retroambiguus (NRA) 
(Holstege et al., 1977; Travers and Norgren, 1983;. 
Holstege and Blok, 1989). These neurons probably 
form the rostral extent of a group of intemeurons 
in the cervical cord projecting to the pinna- and 
platysma muscle motoneurons in the facial nu-
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deus, because similar projections to the pinna 
muscle motoneuronal cell group are derived from 
the dorsal hom and intermediate zone at the level 
Cl-C4 (Mehler, 1969; Holstege and Kuypers, 1977; 
Nakano et al., 1986). These fibers ascend bilater
ally (Holstege et al., 1977), (and not only contra
laterally as suggested by Nakano et al., 1986), ·to 
terminate mainly ipsilaterally in the dorsomedial 
and ventromedial facial subnuclei (ear- and plat
ysma muscle motoneuronal cell groups). The 
platysma muscle motoneurons receive their affer
ents from the Cl-C6 spinal cord (Mehler, 1969; 
Holstege and Kuypers, 1977). The ascending pro
jections probably represent a similar pathway as 
the ascending propriospinal projections to the 
CTM motor nucleus (see section 2 c 4). Neither 
the CTM nor the external ear and platysma muscles 
contain muscle spindles and these muscles use 
the overlying skin for there proprioceptive infor
mation. Afferent fibers from the skin overlying 
the external ear and platysma muscles reach the 
central nervous system via the auriculotemporal 
branch of the trigeminal nerve, and the C2-C4 
dorsal root fibers (pinna muscles) or the C2-C6 
dorsal root fibers (platysma muscle). The fibers of 
the auriculotemporal nerve terminate in the dor
sal portion of the C1-C3 dorsal horn (Panneton 
and Burton, 1981; Shigenaga et al., 1986), and the 
C2-C6 dorsal roots fibers terminate mainly on 
interneurons in the C2-C6 dorsal hom (Pfaller and 
Arvidsson, 1988). Such first order interneurons 
may project directly to the pinna and platysma 
muscle motoneurons in the facial nucleus (Hol
stege and Kuypers, 1977), but second order in
terneurons may also be involved. There exist 
other projections to the dorsomedial facial subnu
cleus, but they are derived from areas related to 
eye-head coordination, see section 4a). 

2d3 b. Interneuronal projections to the orbicu
laris oculi and retractor bulbi muscle motoneu
ronal cell groups and the neuronal organization of 
the blink reflex. As for the ear and platysma 
muscles, the orbicularis oculi muscle does not 
contain muscle spindles and uses the overlying 
skin for its proprioception. The skin overlying the 
orbicularis oculi muscle and the cornea is inner
vated by the ophthalmic branch of the trigeminal 
nerve, the proximal fibers of which terminate in 
the ventral part of the spinal trigeminal nucleus 
(Panneton and Burton, 1981). Neurons in the 
ventral part part of the spinal trigeminal nucleus 
project to the blink motoneurons, which are the 
orbicularis oculi and retractor bulbi motoneu-
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ronal cell groups (Takeuchi et al, 1979; Panneton 
and Martin, 1983; Holstege et al., 1986a,b; see 
sections 1 c 1 and 1 c 3). These disynaptic connec
tions between trigeminal nerve afferents on the 
one hand and orbicularis oculi and retractor bulbi 
motoneurons on the other probably represent the 
R1 component of the blink reflex. 
The blink reflex consists of two different reflexes; 
the orbicularis oculi reflex and the nictitating 
membrane response. The orbicularis oculi reflex 
in the cat consists of two EMG components (R1 
and R2) (Lindquist and Martensson, 1970) and has 
latencies of 9-12 msec (R1) and 15-25 msec (R2). 
R1 is ipsilateral in all vertebrates; R2 is bilateral in 
humans (Kugelberg, 1952), but ipsilateral in cats 
(Hiraoka and Shimamura, 1977). The nictitating 
membrane response, which is the retraction of the 
eyeball by the retractor bulbi muscles, also con
sists of two components similar to the orbicularis 
oculi reflex (Guegan and Horcholle-Bossavit, 1981). 
The nictitating membrane response is used in 
studying conditioned reflexes, because it provides 
the experimenter with a high degree of control 
over the sensory consequences of the uncondi
tioned stimulus (Gormezano et al, 1962). Al
though the Rl reflex is disynaptic in mammals, in 
the lizard primary trigeminal afferents seem to 
project directly on retractor bulbi motoneurons 
(Barbas-Henry and Wouterlood,l988), suggesting 
that in the lizard the R1 reflex is monosynaptic. 
Holstege et al., (1986a,b) demonstrated a strong 
and specific ipsilateral projection to the blink 
motoneuronal cell groups from the ventrolateral 
pontine tegmental field, which they called the 
pontine blink premotor area (Fig. 19). It must be 
emphasized that this region, which forms part of 
the lateral tegmental field, lies outside the spinal 
trigeminal nucleus. It means that this projection 
cannot play a role in the disynaptic R1 component 
of the blink reflex. 
Holstege et al. (1986a,b) also demonstrated spe
cific projections from an area in the medial teg
mentum at levels of the hypoglossal nucleus to 
the blink motoneuronal cell groups, which they 
called the medullary blink premotor area (Fig. 20). 
This region is not part of the lateral tegmental 
field, but belongs to the dorsal part of the medul
lary medial tegmentum, which plays an impor
tant role in eye- and neck muscle motor control 
(see section 4a). A similar projection to the retrac
tor bulbi motoneuronal cell group has been de
scribed in the rabbit (Harvey et al., 1984). Holstege 
et al. (1986b) also observed projections from the 
medullary blink premotor area to the pontine 

blink premotor area (Fig. 20 A,B). The projections 
from the medullary blink premotor area were 
mainly bilateral, but some ipsilateral projections 
were also observed (Holstege et al 1988). Like the 
pontine blink premotor area, the medullary blink 
premotor area is not located in the spinal trigemi
nal nucleus and thus cannot be involved in the 
disynaptic organization of the R1 blink reflex 
component. 
Both the pontine and medullary blink premotor 
areas are probably involved in the R2 blink reflex 
component because 1) The R2 reflex component is 
not disynaptic, but multisynaptic (Kugelberg, 1952; 
Lindquist and Martensson, 1970; Hiraoka and 
Shimamura, 1977; Ongerboer de Visser and 
Kuypers, 1978), and the response consists of sev
eral spikes (Berthier and Moore, 1983; Kugelberg, 
1952); 2) The R2 blink reflex component, accord
ing to Shahani and Young (1972), is responsible for 
actual closure of the eyelids. For such a motor per
formance, strong projections to the blink mo
toneurons are necessary. Holstege et al. (1986a,b) 
found such connections only from the pontine 
and medullary blink premotor areas; 3) The 
medullary blink premotor area projects specifi
cally to the pontine blink premotor area, indicat
ing that both areas are involved in the same 
neuronal organization. For a description of the 
afferent projections to the pontine blink premotor 
area (from red nucleus, pretectum and medullary 
blink premotor area) and the medullary blink pre
motor area (from the superior colliculus and 
pontine medial tegmentum), which may play an 
important role in the R2 reflex, see Holstege et al. 
(1986b; 1988 and Fig. 21). 
There are also projections to the orbicularis oculi 
motoneurons that do not project to the retractor 
bulbi motoneurons. Such projections are derived 
from all levels of the bulbar lateral tegmental field 
from caudal medulla to the ventral parabrachial 
nuclei and nucleus Kolliker-Fuse (Holstege et al., 
1986a). They probably play an important role in 
the relay of the cortical and lateral limbic control 
of the muscles around the eye. 

Fig. 19. On the right. Brightfield (A) and darkfield (B 
and C) photomicrographs of a case with an injection of 
3H-leucine in the caudal pontine ventrolateral teg
mental field, not involving the trigeminal nucleus. 
Note the dense ipsilateral distribution of labeled fibers 
to the RB motoneuronal area (B) and the intermediate 
facial subnucleus (C), (from Holstege et aL 1986b} 
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Fig. 20. Darkfield and brightfield pho
tomicrographs of a case with an injec
tion of 3H-leucine in the medullary 
medial tegmentum at the level of the 
hypoglossal nucleus. Note the dense 
bilateral projection to the intermedi
ate facial subnuclei (D), the RB mo
toneuronal cell group (C), and the 
pontine premotor blink area (arrows 
in A and B), (from Holstege et al. 
1986b). 
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Fig. 21. Schematic representation of the pathways possibly involved in the anatomic framework of the R1 and 
R2 blink reflex components, (from Holstege et al. 1986b). 

2d3 c. Interneuronal projections to the motoneu
rons of the peri-oral muscles. Peri-oral muscles, 
like the other facial muscles, do not contain muscle 
spindles and depend on the overlying skin for their 
proprioception. According to Shigenaga et al. 
(1986) the afferent information of the peri-oral 
skin terminates in the rostral portion of the caudal 
spinal trigeminal nucleus, just caudal to the obex. 
However, peri-oral muscle motoneurons, located 
in the lateral and ventrolateral facial subnuclei, 
receive only a limited number of afferents from 
interneurons in the caudal spinal trigeminal 
nucleus itself, but very many from interneurons 
in the lateral tegmentum medially adjoining the 
caudal spinal trigeminal nucleus [Holstege et al., 
1977; Erzururnlu et al 1980; Takeuchi et al., 1979; 
Panneton and Martin, 1983; Travers and Norgren, 
1983). Although afferent projections to the peri
oral muscle motoneurons are derived from all 
levels of the lateral tegmental field, very strong. 
projections originate in the most rostral portion of 
this area, the ventral parabrachial nuclei and the 
nucleus Kolliker-Fuse [Holstege et aL, 1977; 
Takeuchi et al., 1979; Panneton and Martin, 1983; 

Travers and Norgren, 1983). Thus, similar to the 
organization of the afferents to the other facial 
muscle motoneurons, mainly second order neu
rons in the lateral tegmental field (intermediate 
zone) give rise to direct projections to motoneu
rons. Naturally, such second order interneurons 
receive also afferents from other sources, such as 
motor cortex, red nucleus and limbic system. 
Finally, neurons in the area of the NRA project 
mainly contralaterally to the ventrolateral facial 
subnucleus, innervating the muscles of the lower 
part of the mouth. Possibly, these projections 
take part in the expiration related system, which 
also projects mainly contralaterally to the mouth 
opening, pharynx, soft palate, and abdominal 
muscle motoneurons [Holstege, 1989). 

2d 4. Interneuronal projections to the dorsal 
group of the nucleus ambiguus. Most subgroups 
of the nucleus ambiguus of the cat consist of mo
toneurons scattered in the ventrolateral part of 
the medullary lateral tegmental field. In the cat 
only one subgroup, the dorsal group, is so compact 
that it can be easily recognized in Nissl stained 
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sections (section 1 c 5). The dorsal group contains 
motoneurons innervating pharynx and soft pal
ate. Direct projections to the dorsal group of the 
nucleus ambiguus have only been demonstrated 
to originate from a small number of areas. A light, 
but distinct projection is derived from a cell group 
dorsomedial to the superior olivary complex (see 
section 2 d 1). From studying a large number of 
cases the impression was gained that all other 
projections to the dorsal group of the nucleus 
ambiguus are derived from neurons in caudal 
parts of the medullary lateral tegmental field. 
From these projections, those from the caudal 

NRA are most numerous, especially contralater
ally (Holstege, 1989; Fig. 22). Various studies have 
claimed that the nucleus ambiguus receives pro
jections from the PAC and hypothalamus (Jiirgens 
and Pratt, 1979; Mantyh, 1983; Saper et al., 1976; 
Ter Horst et al., 1984), but in none of these studies 
the precise subgroup of the nucleus ambiguus has 
been indicated With respect to the dorsal group, 
it has been demonstrated that it receives no affer
ents from the PAC (Holstege, 1989), the hypo
thalamus (Holstege, 1987b), or amygdala and bed 
nucleus of the stria terminalis (Holstege et al. 
1985). Furthermore, the impression was gained 

Fig. 22. Darkfield photographs of the caudal brainstem (A to C) and 3 segments (T3, T7 and L2) of the spinal cord 
after a relatively small injection of 3H-le:ucine in the caudal NRA. Note the strong bilateral projections to the 
lateral parabrachial nuclei and nucleus Kolliker-Fuse in A and the very strong projection to the contralateral 
dorsal group of the nucleus ambiguus in B (arrow). The projection to the ipsilateral dorsal group (in circle) is 
weaker. Note further the bilateral projection to the dorsal part of the hypoglossal nucleus in C and the strong 
projections to the intercostal and abdominal motoneuronal cell groups in the spinal cord, (from Holstege, G., 
1989). 
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that neither the ventral parabrachial nuclei/nu- palate motoneurons. The caudal NRA is strongly 
deus Kolliker-Fuse complex nor the lateral soli- involved in expiration related activities (see sec
tary nucleus project to the dorsal group (Holstege tion 3 a) and that is probably also true for its 
and Van Krimpen, 1986). These negative findings projection to the pharynx motoneurons in the 
emphasize the importance of the caudal medul- dorsal group of the nucleus ambiguus, because it 
lary lateral tegmental field, and especially the has been shown that the pharynx muscles are 
NRA as interneuronal link to the pharynx and soft involved in expiratory activities (Sherrey and 

Megirian, 1975). 

3. Bulbospinal intemeurons projecting to motoneurons 
In section 2 d it has been stated that the bulbar 
lateral tegmental field can be considered as the 
rostral continuation of the, spinal intermediate 
zone. However, the bulbar lateral tegmental field 
not only contains intemeurons for the motoneu
ronal cell groups V, Vll, X and Xli in the brainstem, 
but also for certain cell groups in the spinal cord, 
especially those involved in respiration, abdomi
nal pressure, micturition and blood pressure. 

3a. Pathways involved in respiratory control 
Chemoreceptors in the carotid body and the pul
monary stretch receptors form the most impor
tant peripheral afferents for the respiratory sys
tem. From the carotid body, which senses arterial 
blood gases and pH, fibers terminate in the dor
somedial subnuclei of the solitary tract (Berger, 
1980). These fibers have there cell bodies in the 
petrosal ganglion and pass via the glossopharyn
geal and carotid sinus nerve. The pulmonary 
stretch receptors are located in the smooth muscle 
of the trachea, main bronchi and intrapulmonary 
airways. Peripheral afferent fibers innervating all 
these receptors, arise from cell bodies in the no
dose ganglion and project to the nuclei of the 
solitary tract (Donoghue et al., 1982). The organi
zation of the CTM and ear reflex pathways (sec
tions 2c 4 and 2d3 a) indicate that the premotor 
intemeurons are located close to the incoming 
afferent fibers. The same is true for the premotor 
interneurons of the respiratory motor output 
system. They are located in the caudal medulla, 
where the vagal nerve enters the brainstem, and 
not in the spinal cord Therefore, the medullary 
projections to the respiratory motoneurons should 
not be considered as a specific supraspinal control 
system, but as a propriobulbospinal system. 
Physiological studies have demonstrated that the 
brainstem neurons can be subdivided into inspira
tory and expiratory neurons, although in the dor
solateral pons some inspiratory-expiratory phase
spanning neurons exist (see Feldman, 1986 for 
review). From the inspiratory neurons 50-90% 

project to the spinal cord, while almost all expira
tory neurons project to the cord. The spinal cord 
projecting inspiratory neurons send excitatory 
fibers to the phrenic nucleus, while the expiratory 
neurons send excitatory fibers to the abdominal 
muscle motor nuclei. The expiratory fibers in the 
Botzinger complex send inhibitory fibers to the 
phrenic nucleus. The importance of these path
ways is exemplified by the finding that a transec
tion at the spina-medullary junction completely 
abolishes respiratory movements of diaphragm, 
rib cage and abdominal muscles (St. John et al., 
1981). 

3a 1. Projections to the phrenic nucleus. The 
phrenic nucleus, containing motoneurons inner
vating the diaphragm, is by far the most important 
motor nucleus for inspiratory activity. Although 
the phrenic nucleus receives only a limited number 
of descending propriospinal afferent connections 
(see section 2 c 5), it receives very strong descend
ing monosynaptic connections from four sources 
in the caudal brainstem: 

3al a. Projections from the ventrolateral nucleus 
of the solitary tract. Physiological studies have 
pointed out the existence of direct monosynaptic 
excitatory inputs from the ventrolateral solitary 
nucleus (called dorsal respiratory group by inves
tigators of the respiratory system) to the phrenic 
nucleus (Cohen et al., 1974; Hilaire and Manteau, 
1976; Davies et al., 1985a,b). Pulmonary vagal 
afferents terminate in the medial and dorsolateral 
subnuclei of the solitary tract nucleus and to a 
limited extent to the ventrolateral solitary nu
cleus (Donoghue et al., 1982; Berger and Averill, 
1983). The neurons in the ventrolateral solitary 
nucleus, projecting to the phrenic nucleUs, can be 
subdivided into R. and Rb neurons. Pulmonary 
stretch receptors inhibit the R. neurons and excite 
the Rb neurons (Von Baumgarten et al., 1957). The 
excitation of the Rb neurons is at least in part 
monosynaptic, but monosynaptic connectivity 
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between pulmonary stretch receptors and the R. 
neurons could not be demonstrated (Averill et al., 
1984; Berger et al., 1985). Both R. and Rb neurons 
have been shown to drive the spinal inspiratory 
neurons (phrenic and external intercostal) mono
synaptically (Fedorko et al, 1983; Lipski et al., 
1983; Lipski and Duffin, 1986). 
Using anterograde tracing techniques, Loewy and 
Burton, (1978) and Holstege, G. and Kuypers, 
(1982) demonstrated such direct connections ana
tomically. Their finding was confirmed by Ri
kard-Bell et al, (1984) and Onai and Miura, (1986) 
using retrograde tracing techniques. According to 
Holstege (unpublished results), a contingent of 
labeled fibers crossed the midline just rostral to 
the obex and descended contralaterally via the 
dorsolateral, but mainly ventral funiculi until low 
thoracic levels. From these fibers, many termi
nate on both the somata and dendrites of the 
phrenic motoneurons at caudal C4 to C6 levels. 
Phrenic motoneuronal dendrites extend far into 
the lateral and ventrolateral funiculi and the medial 
and dorsal parts of the ventral funiculus (Cameron 
et al., 1983). The terminations on the phrenic mo
toneurons are so strong that terminations on the 
more distal portions of the dendrites are easily rec
ognizable (Fig. 23). The projection to the contra
lateral phrenic motoneurons is slightly stronger 
than to the ipsilateral one. Part of the fibers 
terminating on ipsilateral phrenic motoneurons 

Fig. 23. Darkfield photomicrograph of a section through 
the CS segment of the spinal cord in the cat, after a 3H
leucine injection in the area of the lateral solitary 
nucleus on the left side. Note the strong bilateral 
projections to the phrenic motor nuclei and the heavy 
projection to the distal dendrites of the phrenic mo
toneurons on the contralateral side (arrow). Note also 
that abnost all descending fibers in the ventral and 
ventrolateral funiculi are contralateral 

travel through the ipsilateral ventral funiculus. 
However, the impression is gained (Holstege, 
Unpublished results) that the majority of the fibers 
terminating in the ipsilateral phrenic nucleus, 
descend via the contralateral ventral funiculus 
(Fig. 23t and recross in the ventral commissure of 
the C5-C6 spinal level. This idea is further sup
ported by the finding that a C2 hemi-infiltration 
with HRP resulted in only a few labeled neurons 
in the ipsilateral and many in the contralateral 
ventrolateral solitary nucleus (Holstege unpub
lished results). 
The R. and Rb neurons not only receive afferent 
information from the pulmonary stretch recep
tors, but also from neurons in other parts of the 
solitary nucleus and from neurons in other parts 
of the brainstem (e.g. the Botzinger neurons, see 
section 3 a 1 c) and limbic system (see sections 5 
d 2; 5 d 4 and 5 e). 

3a1 b. Projections from the para-ambiguus nu
cleus/rostral NRA. Physiological studies have 
demonstrated that at levels around the obex, in 
the area of the nucleus ambiguus, a group of 
premotor respiratory intemeurons is located. This 
group is called the rostral retroambiguus or para
ambiguus or by scientists working in the respira
tory system the ventral respiratory group. The 
rostral part of this group, (rostral to the obex), 
contains mainly inspiratory neurons, while the 
caudal portions, (caudal to the obex) contain mainly 
expiratory neurons. Especially at levels around 
the level of the obex the inspiratory and expiratory 
neurons are intermingled. Some of the inspiratory 
neurons maintain mono-, di-, or oligosynaptic 
excitatory projections to phrenic motoneurons 
(Merrill, 1970; Cohen et al., 1974; Davies et al., 
1985a,b) and, similar to the neurons in the ventro
lateral solitary nucleus, they form a source of 
drive to inspiratory motoneurons (phrenic and 
external intercostal). Holstege, G. and Kuypers, 
(1982) and Holstege et al. (1984b) were the first to 
demonstrate that neurons in this area indeed 
projected to the somata and dendrites of the phrenic 
motoneurons at caudal C4 to C6 levels, in an 
almost identical manner as the neurons in the 
ventrolateral solitary nucleus. Later anterograde 
(Feldman et al., 1985; Yamada et al., 1988) and 
retrograde (Rikard-Bell et al., 1984; Onai and Miura, 
1986) tracing studies confirmed their findings. 
Holstege, (unpublished observations), observed a 
rostrocaudal difference in the pathways to the 
phrenic and the intercostal motoneurons. The 
rostral portion of the rostral NRA project mainly 



via the dorsolateral and lateral funiculus, the cau
dal portions of the rostral NRA (at levels around 
the obex) project mainly via the ventral funiculus. 
Similar to the projections from the ventrolateral 
solitary nucleus, a substantial portion of the fibers 
terminating in the ipsilateral phrenic nucleus 
seems to be derived from the contralateral ventral 
funiculus, recrossing in the ventral commissure 
of the C5 and C6 segments (Holstege, unpublished 
results). The most caudal part of the NRA does 
not project to the phrenic nucleus (Holstege, 1989). 
There exist many different opinions about how 
many inspiratory neurons in the ventrolateral teg
mentum project monosynapj:ically to the phrenic 
nucleus. Estimations range from 2-7% (Fedorko 
et al., 1983) via 25% (Merrill, 1974) and 28% (Sears 
et al., 1985) to 61% (Hilaire and Manteau, 1976). 
All other projections would be di- or oligosynap
tic. In contrast to the physiological studies, 
anatomic tracing studies give the impression that 
most of the rostral retroambiguus/para-ambiguus 
projections to the phrenic nucleus are monosyn
aptic. They show specific pathways to the phrenic 
nucleus and very few projections to other portions 
of the cervical gray. 
The finding of Holstege G. and Kuypers, (1982); 
Feldman et al. (1985) and Holstege, G. (1989) that 
neurons in the caudal NRA also project to the 
phrenic nucleus, (according to Holstege, G. ( 1989) 
only the most caudal portion of the NRA does not 
project to the phrenic nucleus), seem to contradict 
the physiological findings of Merrill, (1970). Mer
rill found no electrophysiologically identified 
expiratory neuron in the caudal NRA, which proj
ect to the phrenic nucleus. However, caudal NRA 
neurons, projecting to phrenic motoneurons may 
not be involved in expiration, but in vomiting, 
coughing and other abdominal straining activi
ties. During vomiting and coughing the phrenic 
motoneurons are simultaneously active with the 
abdominal muscle motoneurons. Miller et al. 
(1987) found that neurons in the caudal NRA 
control vomiting, during which strong contrac
tions of the abdominal muscle motoneurons take 
place. However, they also found that only one 
third of the expiratory neurons in the caudal NRA 
are active during vomiting. By making lesions in 
the upper cervical spinal cord, Newsom Davis and 
Plum (1972) were able to achieve a considerable 
reduction of the diaphragmatic component of the 
cough response, without any reduction of the dia
phragmatic activity during rhythmic breathing. 
Furthermore, Newsom Davis ( 1970) showed that 
the descending pathways involved in producing 
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hiccups in man was largely distinct from those 
concerned with rhythmic breathing. 

3a1 c. Projections from the Biitzinger complex. 
The ventrolateral part of the lateral tegmental 
field of the medulla just caudal to the facial nu
cleus contains a group of neurons, called the 
Botzinger complex. The name Botzinger was 
chosen by participants at a symposium on the 
nucleus tractus solitarius in Heidelberg in honor 
of a German vineyard (Feldman, 1986). According 
to anterograde tracing studies of Holstege et al., 
(1984b); Ellenberger and Feldman, (1988) and Otake 
et al. (1988), Botzinger neurons give rise to a 
specific bilateral projection to somata and den
drites of the phrenic nucleus by way of the contra
lateral dorsolateral funiculus. It was difficult to 
assess whether there were also descending fibers 
in the ipsilateral dorsolateral funiculus terminat
ing in the ipsilateral phrenic nucleus, but the 
impression was gained that the ipsilateral phrenic 
nucleus receives fibers via the contralateral dorso
lateral funiculus, recrossing at the C5/C6 level. 
Furthermore, Botzinger neurons project bilater
ally, but mainly contralaterally to the lateral soli
tary nucleus, and ipsilaterally to the NRA. Physio
logical studies have demonstrated that BOtzinger 
neurons are expiratory neurons, which, during the 
expiratory phase, monosynaptically inhibit the 
phrenic motoneurons (Merrill and Fedorko, 1984) 
as well as the inspiratory neurons in the ventro
lateral solitary nucleus (Merrill et al., 1983) and 
rostral NRA (Fedorko and Merrill, 1984). It has 
been suggested that the BOtzinger projections to 
the caudal NRA are excitatory (see Long and 
Duffin, 1986 for review). 

3a1 d Projections from the ventrolateral parabra
chial nuclei and nucleus Kiilliker-Fuse. A fourth 
source of phrenic nucleus afferents is the ventro
lateral part of the parabrachial nuclei, including 
the area of the nucleus Kolliker-Fuse. This area 
was called pontine pneumotaxic center (Lumsden, 
1923; Bertrand and Hugelin, 1971; Bertrand et al., 
1974), but presently called pontine respiratory 
group by respiratory system investigators. Ac
cording to anterograde tracing results of Holstege, 
G. and Kuypers, ( 1982), neurons in this area give 
rise to specific bilateral, but mainly ipsilateral 
projections to the somata and dendrites of the 
phrenic motoneurons (Fig. 24). Similar results 
were obtained by Rikard-Bell et al. (1984), using 
retrograde tracing techniques, but questioned by 
Onai and Miura (1986), who, after injecting HRP 
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in the phrenic nucleus observed only sparse label
ing in the dorsolateral pontine tegmentum. The 
last authors explained their failure to identify 
neurons in the dorsolateral pons by suggesting 
that the projections of this area to the phrenic 
nucleus were disynaptic, having a synaps in the 
NRA. However, transneuronal transport is diffi
cult to obtain with the anterograde triated leucine 
tracing technique (Grafstein and Laureno, 1973). 
It can only be observed in the case of extremely 
dense projections to certain areas, in which the 
silver grains are not only located around, but also 
over the cell bodies. An example is the retinal 
projection to the superior colliculus (Collewijn 
and Holstege, 1984), but even then the transneu
ronal fiber labeling is very weak. In none of the 
cases with dorsolateral pontine injections, silver 
grains were found over the cell bodies of the NRA 
(Holstege, unpublished observations), which ex
cludes the possibility of labeling disynaptic pro
jections from the dorsolateral pons to the phrenic 
nucleus. 
Electrical stimulation in the area of the ventro
lateral parabrachial nuclei and nucleus Kolliker
Fuse elicits different respiratory effects, depend
ing on the phase, intensity and precise site of the 
stimulus. Stimulation in the dorsolateral pons 
(Cohen, 1971) revealed that dorsally in this area 
strong inspiratory facilitatory effects were ob
tained, while ventrally in this area, i.e. medial to 
the rubrospinal tract strong expiratory facilitatory 

Fig. 24. Darkfield photomicrograph of a section through 
the CS segment of the spinal cord in the cat, after a 3H
leucine injection in the area of the ventral para brachial 
nuclei and nucleus Kolliker-Fuse. Note on the left the 
strong ipsilateral projections to the phrenic nucleus 
and to the distal dendrites of the phrenic motoneurons 
(arrow). Note on the right the limited projection to the 
contralateral phrenic nucleus. 

effects were observed. The neurons projecting to 
the phrenic nucleus are located in the area be-

. tween the inspiratory and expiratory facilitatory 
regions and at present it is unclear whether they 
have an excitatory or inhibitory effect on the 
phrenic motoneurons. Lesions in the dorsolateral 
pontine tegmentum produce so-called inspiratory 
apneusis, i.e. the inspiratory phase continues for 
abnormal length (Lumsden, 1923), which can 
sometimes lead to death by asphyxia. Later stud
ies (Von Euler et al., 1976) demonstrated that a rise 
of body temperature causes a progressive shorten
ing of apneustic duration after apneusis-promot
ing lesions in the area of the parabrachial nuclei 
and nucleus Kolliker-Fuse. Although the dorso
lateral pons does not seem to contain the pneumo
taxic centre, it exerts strong excitatory influence 
on the inspiratory switch-off mechanisms. Fur
thermore. it may play an important role in the 
coordination of the respiratory functions with 
cardiovascular control functions (Mraovitch et 
al., 1982; Connelly and Wurster, 1985), also be
cause neurons in the same dorsolateral pontine 
area project very strongly to the T1-T3 interme
diolateral cell column (Holstege, G. and Kuypers, 
1982). 

3a 2. Projections to the intercostal motonenrons 
As indicated in section 1 a 4, the intercostal mo
toneurons in the upper thoracic cord are mainly 
inspiratory and at caudal thoracic levels expira
tory. Physiological studies of Davies et al. ( 1985a,b) 
and Duffin and Lipski, (1987) have demonstrated 
that the inspiratory brainstem neurons in the 
ventrolateral solitary nucleus and in the area of 
the rostral retroarnbiguus/para-ambiguus not only 
project to the phrenic nucleus, but also to the 
intercostal motoneurons. Moreover, Davies et al 
(1985a,b) found inspiratory neurons, that project 
to both the phrenic and intercostal motoneurons. 
The ventrolateral solitary nucleus projects con
tralaterally to the upper thoracic ventral horn (Fig. 
25) but fibers are scarce at mid-thoracic levels and 
absent beyond the level of Tl1 ( Holstege, G. and 
Kuypers, 1982; Holstege, unpublished results). 
Merrill and Lipski, (1987) studied the retroarn
biguus projections to the external and internal 
intercostal motoneurons physiologically. They 
concluded that monosynaptic connections are 
rare (=4%) and that most of them go via segmental 
interneurons, which would produce synchronized 
discharge of intercostal motoneurons. Anatomic 
tracing results of Holstege, G. and Kuypers, (1982) 
demonstrate that neurons in the area of the NRA 



Fig. 25. Darkfield photomicrograph of a section through 
the T3 segment of the spinal cord in the cat, after a 3H
leucine injection in the area of the lateral solitary 
nucleus on the left side. Note the projection in the 
contralateral ventral hom to motoneurons, probably 
innervating inspiratory intercostal muscles. Bar repre
sents 1 mm. 

just rostral to the obex project mainly contralater
ally to large portions of the upper thoracic ventral 
horn, containing inter- and motoneurons. At 
caudal thoracic levels, however, the projections 
are very strong in the abdominal muscle mo
toneuronal cell groups. These projections are 
probably derived from expiratory neurons in the 
NRA. Projections from the Botzinger complex to 
intercostal or abdominal muscle motoneurons 
were not observed, although Bongianni et al. [1988) 
have found inhibitory effects on the inspiratory 
external intercostal motoneurons, of stimulation 
in the Botzinger cell group. The dorsolateral 
pontine neurons, giving rise to specific projec
tions the phrenic nucleus, were not found to 
project to the inspiratory intercostal motoneu
rons [Holstege, unpublished results). The projec
tions to the expiratory intercostal motoneurons 
are much more difficult to assess, because these 
motoneurons are intermingled with expiratory 
abdominal muscle motoneurons in the caudal 
thoracic cord. In all likelihood the expiratory 
intercostal motoneurons receive the same projec
tions from the expiratory medullary neurons as 
the abdominal muscle motoneurons [see next 
section). 

3a 3. Projections to the cutaneus trunci, abdomi
nal muscle and pelvic floor motor nuclei 
Abdominal muscles not only play a role in the 
expiration phase of respiration, but also in strain
ing of the abdomen in relation to coughing, vom-

35 

iting, hiccups, parturition and defecation. Ab
dominal muscle motoneurons, located in the T5 
to L3 spinal cord [see section 1 a 4) receive strong 
monosynaptic afferent projections from the expi
ration related interneurons in the rostral as well 
as caudal parts of the NRA. Anatomic studies of 
Holstege, G. and Kuypers, [1982); Feldman et al. 
[1985) and Holstege G. [1989) show that the NRA 
gives rise to fibers, which cross the midline at the 
caudal medullary levels and travel via the contra
lateral ventral funiculus, to terminate on the 
somata and dendrites of the abdominal muscle 
motoneurons bilaterally, with a slight contra
lateral preponderance (Fig. 22). Holstege, G. [1989) 
and Holstege [unpublished observations) also 
observed that the caudal part of the rectus abdom
inis muscle motoneuronal cell column, which is 
located medial to the motoneurons innervating 
the other abdominal muscles [Holstege et al., 
1987; Miller, 1987; Fig. 3), does not receive NRA 
projections. Apparently, the rectus abdominis 
muscle is not involved in abdominal straining 
related activities, which is in agreement of the 
finding of Ninane et al. [1988), that in the dog the 
rectus abdominis, unlike the other abdominal 
muscles, does not show phasic expiratory electro
myographic [EMG) activity during respiration. 
Thus, retrograde and anterograde tracing studies 
indicate that specific brainstem projections to the 
abdominal muscle motoneurons originate only in 
the NRA [from levels around the obex until C1). 
However, within the confines of the NRA neu
rons have different functions. Some are specifi
cally involved in expiration and some others in 
vomiting and/or coughing or other abdominal 
straining activitie<>. Only one third of the neurons 
seems to be active in more than one of these 
functions. The abdominal muscles also play a role 
in posture control. However, the supraspinal 
posture control areas are located in other parts of 
the brainstem [see section 4 a) and do not involve 
the NRA 
The CTM motor nucleus also receives afferent 
fibers from the NRA, suggesting that the CTM is 
also involved in abdominal straining activities 
(Holstege and Blok, 1989; Fig.14). Moreover, neu
rons in the ventral parabrachial nuclei and nu
cleus Kolliker-Fuse, which also send fib&s to the 
ipsilateral phrenic nucleus and T1-T3 interme
diolateral cell column, project ·to the ipsilateral 
CTM motor nucleus [Holstege and Blok, 1989; 
Fig.14). It remains to be determined whether the 
pontine projection to the CTM motor nucleus is 
respiration related. 
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Ventral parabrachial cell group 

--< Excitatory proj. 
____. Inhibitory proj. 

' Onuf (pelvic floor) motoneurons 
~~~S1-S2 

Fig. 26. Schematic overview of the pathways controlling respiration and abdominal pressure. Note that from 
the descending pathways originating in the medulla, only the contralateral ones are indicated, although there 
exist to a limited extent some ipsilateral pathways. 



A relatively small number of neurons in the most 
caudal portion of the caudal NRA project to the 
nucleus of Onuf, bilaterally but with a contra
lateral preponderance [Holstege and Tan, 1987). 
The involvement of the Onuf nucleus in this pro
jection suggest that the pelvic floor also plays a , 
role in abdominal straining and that neurons in 
the caudal NRA coordinates abdominal straining 
via direct projections to all abdominal wall muscle 
motoneurons, i.e. diaphragm, abdominal muscles 
and pelvic floor. Fig. 26 gives an schematic over
view of the pathways controlling respiration and 
abdominal pressure 

3b. Pathways involved in niicturition control 
The brainstem, via its long descending pathways 
to the sacral cord, is vital for coordinating muscle 
activity of bladder and bladder-sphincter, during 
normal micturition. The importance of the brain
stem in micturition control is best shown by pa
tients with spinal cord injuries above the sacral 
level They have great difficulty in emptying the 
bladder because of uncoordinated actions of the 
bladder and sphincter [detrusor-sphincter dyssyn
ergia). Such disorders never occur in patients with 
neurologic lesions rostral i:o the pons, which indi
cates that the coordinatory neurons are located in 
the pontine tegmentum [Blaivas, 1982). Barring
ton showed as early as 1925 that these neurons are 
probably located in the dorsolateral part of the 
pontine tegmentum, because bilateral lesions in 
this area in the cat produced inability to empty the 
bladder. Later studies of Nathan and Smith [1958) 
supported this finding, which led to the concept 
that micturition can be considered as a spino
bulbo-spinal reflex. 
Recent anatomic studies in the rat [Loewy et al., 
1979), opossum [Martin et al, 1979b); cat [Hol
stege et al., 1979; 1986c) and monkey [Westlund 
and Coulter, 1980) have shown that neurons in 
the dorsolateral pontine tegmentum, medial to 
the locus coeruleus, project directly and specifi
cally to the sacral intermediolateral cell group 
[parasympathetic motoneurons) as well as to the 
sacral intermediomedial cell group, but not to the 
nucleus of Onuf [Fig. 27). The nucleus of Onuf 
receives specific projections from neurons in more 
lateral parts of the dorsolateral pontine tegmental 
field [Holstege et al., 1979; 1986c). The dorso
lateral pontine tegmentum does not project to the 
sacral parasympathetic motoneurons [Fig. 27). In 
order to differentiate between the two different 
areas in the dorsolateral pons, Holstege et al. 
[1986c) called them theM- [medial) and L- [lateral) 
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regions. The M-region probably corresponds with 
Barrington's [1925) area. Neither theM- nor the L
region projects to the lumbar intermediolateral 
[sympathetic) cell groups. 
Electric stimulation in the M-region produces an 
immediate and sharp decrease in the urethral 
pressure and pelvic floor EMG, followed after 
about two seconds by a steep rise in the intravesi
cal pressure [Holstege et al., 1986c), mimicking 
complete micturition [Fig. 28). The decrease in 
the urethral pressure cannot be caused by a direct 
M-region projection to the nucleus of Onuf, be
cause such a projection does not exist [Holstege et 
al, 1979,1986c). A study of Griffiths et al. [1989) 
suggests that the M- and L-regions may have re
ciprocal inhibitory connections. Stimulation in 
the L-region results in strong excitation of the 
pelvic floor musculature and an increase in the 
urethral pressure [Holstege et al., 1986c; Fig. 29). 
Bilateral lesions in the M-region result in a long 
period of urinary retention, during which detrusor 
activity is depressed and the bladder capacity 
increases. Bilateral lesions in the L-region give 
rise to inability to store urine. The urethral 
pressure decreases and due to absence of the inhib
itory influence of the L-region on the M-region 
detrusor activity increases. The result is that the 
urine is expelled prematurely because of a combi
nation of increased detrusor activity and decreased 
urethral pressure. Outside the episodes of de
trusor activity the urethral pressure is not de
pressed below normal values [Griffiths et al., 1989). 
These observations suggest that during the filling 
phase the L-region has a continuous excitatory 
effect on the nucleus of Onuf, which inhibits 
urethral relaxation coupled with detrusor con
traction. When micturition takes place, the M
region excites, via a direct pathway, the sacral 
parasympathetic motoneurons, but at the same 
time the M-region inhibits the L-region, which 
disinhibits sphincter relaxation so that micturi
tion can take place. 
Although patients with neurological lesions in 
the brain rostral to the pons never experience 
detrusor-sphincter dyssynergia, they suffer from 
lack of control of the initiation of micturition. 
This raises the question of what determines the 
beginning of the micturition act. Obviously, 
precise information about the degree of bladder 
filling is conveyed to supraspinal levels, but spe
cific sacral projections to the pontine micturition 
center have not been demonstrated. This suggests 
that other structures, rostral to the pontine mic
turition center, determine the initiation of mic-
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TIME(sec) 20 

Fig. 28. Recordings of urethral pressure, pelvic floor EMG, intravesical pressure, and stimulus timing during M-· 
region stimulation in the cat. Note the immediate fall in urethral pressure and pelvic floor EMG after the 
beginning of the stimulus and the steep rise in the intravesical pressure about two seconds after the beginning 
of the stimulus. This pattem mimics complete micturition (from Holstege et al. 1986). 

em URETHRAL PRESSURE 100] H20 

---
0 

PELVIC FLOOR 

TIME(sec) 20 40 60 eb 1cio 1~0 
Fig. 29. Recordings of urethral pressure, pelvic floor EMG, intravesical pressure, and stimulus timing during £
region stimulation in the cat. At the beginning of each period of stimulation there is an immediate increase in 
the urethral pressure and the pelvic floor EMG. Note that the spontaneous detrusor contractions tend to be 
inhibited by the stimulation (from Holstege et al. 1986}. 

Fig. 27. On the left. Brightfield photomicrographs of autoradiographs showing the tritiated leucine injection 
areas and clarkfield photomicrographs showing the spinal distributions of labeled fibers after an injection in the 
L-region (on the left) and after an injection in the M-region (on the right) in the cat. Note the pronounced 
projection to the nucleus of Onuf (arrows in the S1 segment) in the case with an injection in the L-region (left). 
Note also the dense distribution of labeled fibers to the sacral intennediolateral (parasympathetic motoneurons) 
and intermediomedial cell groups after an injection in the M-region {S2 segment on the right). 
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tuntlon. Such structures would be expected to 
project specifically to the M-region of the pontine 
micturition center. Many clinical studies indi
cate that cortical (the medial frontal gyrus and 
anterior cingulate lobe) as well as subcortical 
structures (septum, preoptic region of the hypo
thalamus, and amygdala) are involved in control 
of the beginning of micturition. Experimentally, 
the only structure that has been demonstrated to 
project specifically to the M-region is the preoptic 
area in the cat (Holstege, 1987b; section 5 d 4). 
Stimulation in this area produces micturition
like contractions (Grossman and Wang, 1956), but 
it is not known whether it determines the begin
ning of micturition. It is possible that regions 
other than the preoptic area also project to the M
region. Furthermore, the fact that the pelvic floor, 
including the intrinsic external urethral sphinc
ter, is under voluntary control, suggests that di
rect cortical projections to the nucleus of Onuf 
may exist. However, such projections have not 
been demonstrated convincingly. Figure 30 gives 
a schematic overview of the spinal and supraspi
nal structures involved in micturition control and 
their role in the neuronal framework of micturi
tion. 

3c. Pathways specifically involved in cardiovas
cular control 
The spinal cord motoneurons involved in cardio
vascular control are the sympathetic motoneu
rons in the intermediolateral cell column (IML) 
(see section 1 b 1). Afferent projections to these 
neurons originate in several parts of the medulla 
and pons. Strong afferent projections originate in 
the nucleus raphe magnus and pallidus, but these 
structures project diffusely to all parts of the 
spinal gray matter and not specifically to the IML. 
They are probably involved in level setting mecha
nisms of all spinal cord neurons (see section 5 b). 
Physiological studies have indicated that the 
neurons specifically controlling cardiovascular 
functions are located in the ventrolateral part of 
the lateral tegmental field between inferior olive 
and facial nucleus. In several studies this area is 
referred to as the VLM (ventrolateral medulla), a 
large area extending from the level of the superior 
olivary nucleus to the most caudal extent of the 
lateral reticular nucleus. Although the whole area 

Fig. 30. On the left. 
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contains neurons which project to the IML (Loewy 
et al., 1981; Ross et al., 1984; Ciriello et al., 1986), 
the strongest projections are derived from the an 
area in the rostral VLM, at the level of the caudal 
pole of the facial nucleus and just caudal to this 
nucleus. This area, some parts of which are 
located close to the ventrolateral surface of the 
medulla, is also called the subretrofacial nucleus. 
Subretrofacial neurons must not be mistaken by 
cells belonging to the Botzinger complex, which 
are located in the retrofacial nucleus, dorsal and 
medial to the subretrofacial nucleus, and project 
to the phrenic nucleus (see section 3 a 1 c). An 
injection of tritiated leucine in this area shows 
thin labeled fibers descending in the lateral fu
niculus to terminate in the IML throughout its 
total length (Tl-L4) bilaterally, but at upper tho
racic levels mainly ipsilaterally (Holstege, unpub
lished results; Fig. 31 ). The neurons in the subretro
facial nucleus take part in the rostral sympatho
excitatory VLM area, which is essential for the 
maintenance of the vasomotor tone and reflex 
regulation of the systemic arterial blood pressure 
(see Ciriello et al., 1986 for review). At least part 
of the cells in this area projecting to the IML 
contain substance P and phenylethanolamine N
methyltransferase, which catalyzes the synthesis 
of adrenalin (Lorenz et al, 1985). Lovick (1987) 
and Dampney and McAllen (1988) have shown 
that neurons in the rostral part of the subretrofa
cial nucleus project specifically to the IML neu
rons, innervating the kidney and adrenal medulla, 
while neurons in the caudal part of the subretro
facial nucleus innervate more caudal parts of the 
IML, with neurons innervating the hindlimb. Neu
rons in more caudal portions of the VLM, i.e. 
around the obex, have sympatho-inhibitory ef
fects, probably by inhibiting neurons in the rostral 
VLM by means of release of nor-adrenalin (Ciri
ello et al., 1986). 
Other bulbar areas projecting directly to the IML 
are the solitary nucleus (Loewy and Burton, 1978) 
and the lateral parabrachial nuclei and nucleus 
Kolliker-Fuse (Holstege, G. and Kuypers, 1982). 
The latter area projects specifically to the rostral 
(Tl-T3) portion of the IML, but the significance of 
these projections, and whether or not they play a 
role in cardiovascular control remains to be deter
mined. 

Schematic representation of the spinal and supraspinal structures involved in micturition control. Excitatory 
pathways are indicated by "(+)", inhibitory projections by "(-}". {From Holstege and Griffiths, 1990). 
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Fig. 31. Darkfield photomicrographs of a section through the Tl (left) and Ll (right} spinal segments after an 
injection of 3H-leucine in the ventrolateral medulla (VLM) just caudal to the facial nucleus. The injection 
included the subretrofacial nucleus. Note the specific projections to the IML mainly ipsilaterally at Tl, 
bilaterally at Ll {arrows). The arrow in Tl points to labeled fibers terminating on distal dendrites of the 
preganglionic motoneurons. Note also the specificity of the projection and the absence of other descending 
pathways 
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4. Descending pathways of somatic motor control systems 

As pointed out in section la, the somatic mo- into lateral and medial columns. At upper cervi
toneurons in the cervical and lumbosacral en- cal, thoracic and upper lumbar levels all motoneu
largements of the spinal cord can be subdivided rons belong to the medial column. Motoneurons 

Fig. 32. Schematic representation of the distribution of the HRP labeled neurons in brainstem and diencephalon 
of the cat after hemi-infiltration of HRP in the C2 spinal cord. (From Holstege, 1988a). 
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in the lateral motor column innervate the distal 
extremity muscles, i.e. the fore- and hindpaws in 
the cat (hands and feet in primates) and the distal 
portions of the fore- and hindlegs. Motoneurons 
in the medial column innervate proximal and 
axial musculature, such as muscles of neck, shoul
der, trunk, hip and back. A similar mediolateral 
organization appears to exist in the propriospinal 
pathways (section 2c 1) and in the descending 
pathways belonging to the somatic motor system. 
The medial motor column receives afferents 
mainly from cell groups in the brainstem which 
project via the ventral funiculus of the spinal cord 
(Petras, 1967; Holstege, G. and Kuypers, 1982; 
Holstege, 1988b). They form the medial descend
ing system. The lateral motor column receives 
its supraspinal fiber afferent projections mainly 
from red nucleus and cerebral motor cortex via the 
dorsolateral funiculus (lateral descending system) 
(Nyberg-Hansen and Brodal, 1964; Petras, 1967; 
Kuypers and Brinkman, 1970; Armand et al, 1985; 
Holstege, 1987a; Holstege and Tan, 1988). They 
represent the lateral descending system. 

4a. The medial descending system 
The function of the medial system is maintenance 
of erect posture (antigravity movements), integra
tion of body and limbs, synergy of the whole limb 
and orientation of body and head (Kuypers, 1981 ). 
Within the medial system most of the proximal 
and axial muscles are simultaneously active, which 
explains why they are mutually connected via 
long propriospinal systems (section 2c 3) and why 
supraspinal structures, projecting to inter- and 
motoneurons of the proximal and axial muscles 
are not clearly somatotopically organized. In 
order to control orientation of body and head, the 
medial system also determines the position of the 
eyes in space, which includes the position of the 
head on the trunk and the position of the eyes in 
the orbit. The following brainstem cell groups 
belong to the medial system: Field H of Forel, the 
interstitial nucleus of Cajal and surrounding re-

Fig. 33. On the left. 
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ticular formation (INC-RF), the intermediate and 
deep layers of the superior colliculus, a cell group 
in the lateral P AG and adjacent tegmentum, the 
pontine and upper medullary medial tegmentum, 
a cell group in the contralateral medullary medial 
tegmental field and the lateral, medial and inferior 
vestibular nuclei (Fig. 32). They all project (di
rectly or indirectly) to the oculomotor nuclei in 
the brainstem (section 1c 1) (see Biittner-Ennever 
and Buttner, 1988 for review) and to the neck 
muscle inter- and motoneurons in the first five 
cervical segments of the spinal cord (section 1a 1) 
(Holstege, 1988b). 

4a 1. Pathways involved in regulating axial and 
proximal body movements. Neurons in the 
pontine and upper medullary medial tegmentum 
and in the lateral vestibular nucleus (L VN) send a 
large number of fibers via the ventral funiculus to 
laminae vm and the adjoining part of vn through
out the length of the spinal cord (Jones and Yang 
(1985) in the rat; Martin et al. (1979c) in the 
opossum; Nyberg-Hansen and Mascitti (1964); 
Nyberg-Hansen, (1965); Petras, (1967); Holstege, 
G. and Kuypers, (1982) and Holstege, (1988b) in 
the cat; Fig. 33). With respect to the neurotrans
mitters involved in the long reticulo- and vestibu
lospinal pathways, Kimura et al. (1981), utilizing 
a polyclonal antibody, reported that the large 
neurons in the pontine and medullary medial 
tegmentum and in the L VN were choline acetyl 
transferase (ChAT) positive, i.e. contained ace
tylcholine. On the other hand, Jones and Beaudet 
(1987) utilizing a monoclonal antibody did not 
find these neurons ChAT positive, but found that 
some other (smaller) neurons in the inferior and 
medial vestibular nuclei contained ChAT. Thus, 
it remains to be determined whether or not the 
long medially descending systems contain ace
tylcholine as a neurotransmitter. 
The function of the long medially descending sys
tems is nicely illustrated by experiments of Law
rence and Kuypers (1968a,b) in the monkey. They 
made, after pyramidotomy, (interruption of the 

Darkfield photomicrographs of the caudal medulla and 7 different levels of the spinal cord in a cat with a 3H
leucine injection in the vestibular complex (lateral vestibular nucleus, rostrodorsal portion of the inferior 
vestibular nucleus and cell group y). Note the heavily labeled lateral vestibulospinal tract fibers in the ventral 
part of the ipsilateral ventral funiculus gradually passing medially. Note also the medial vestibulospinal tract 
fibers on both sides in the dorsal part of the ventraT funiculus of the cervical cord. Note further the dense 
projections to the medial part of the ipsilateral ventral hom throughout the length of the spinal cord and the vezy 
strong fiber terminations in a small area at the L7 level. This area contains many neurons projecting to the 
inferior olive (Armstrong and Schild, 1979). (From Holstege, 1988b). 
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corticospinal fibers at the level of the medulla 
oblongata), a bilateral lesion of the upper medul
lary medial tegmentum. The lesion not only de
stroyed the spinal cord projecting neurons in the 
upper medulla, but also interrupted all the fibers 
descending medially in the brainstem, e.g. the 
ponto-, tecto-, interstitia- and vestibulospinal fi
bers. Such lesions produced monkeys with pos
tural changes of trunk and limbs, inability to right 
themselves, and a severe deficit in the steering of 
axial and proximal limb movements. On the 
other hand picking up pieces of food with the hand 
was considerably less impaired. Recovery was 
slow and when the animals were able to walk, 
they had great difficulty in avoiding obstacles and 
frequently veered from course. In the examining 
chair the animals had no problem to pick up pieces 
of food from a board with their hands and bring 
them to the mouth. Unlike the animals in which 

A 
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the medial system is intact, they did not orient 
themselves to the approaching food, but followed 
the food only with their eyes. 

4a 2. Pathways involved in regulating eye- and 
head movements. The medial system brainstem 
structures can be subdivided into cell groups steer
ing vertical eye- and head movements and those 
steering horizontal eye- and head movements. 
Examples of the first group are the interstitial nu
cleus of Cajal and adjacent reticular formation 
(INC-RF) and Field H of Forel, which includes the 
rostral interstitial nucleus of the MLF (Biittner
Ennever et al., 1982; Holstege and Cowie, 1989). 
For the horizontal eye and head movements, the 
superior colliculus and the pontine and medullary 
medial tegmental field are most important 
(Biittner-Ennever and Holstege, 1986). 

.. 
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Fig. 34. Brightfield photomicrographs of transverse sections of the ventral part of the rostral mesencephalon in 
a cat with a left hemi-infiltration of HRP in the C2 spinal cord. Note the scattered HRP labeled neurons in the 
caudal Field H of Fore] (arrows in A, B and C). Note also the many HRP labeled neurons in the reticular areas 
surrounding the INC in C and D. Many of these neurons are located contralaterally, but some of them may be 
labeled because the hemi-infiltration extended slightly into the contralateral ventral funiculus of the C2 
segment. Note further the many labeled rubrospinal neurons on the contralateral side in B, C and D and one 
labeled neuron in A. Bar represents 1 mm. (From Holstege and Cowie, 1989). 



4a2 a.. Projections of Field H of Forel and inter
stitial nucleus of Cajal and surrounding areas 
(INCRF). Neurons in Field H of Forel and inter
stitial nucleus of Cajal, projecting to the extra
ocular muscle motoneurons, are mainly located 
in the so-called rostral interstitial nucleus of the 
medial longitudinal fasciculus (riMLF), (Graybiel, 
1977; Biittner-Ennever and Buttner, 1978), and in 
the interstitial nucleus of Cajal (INC), (Carpenter 
et al, 1970; Graybiel and Hartwieg, 1974). The 
major portion of the spinally projecting neurons 
are not located in the riMLF or INC proper but in 
adjacent areas, Le. the ventral and lateral parts of 
the caudal third of the Field H of Forel and in the 
INC-RF (Zuk et al., 1983; Spence and Saint-Cyr, 
1988; Holstege, 1988b; Holstege and Cowie, 1989; 
Figs. 32 and 34). 
Neurons in caudal Field H of Forel project to the 
pontine and upper medullary medial tegmental 
field (Biittner-Ennever and Holstege, 1986), and 
via the ventral part of the ventral funiculus, to the 
lateral part of the upper cervical ventral horn 
(Holstege, 1988b; Holstege and Cowie, 1989; Fig. 
35). This area contains the laterally located mo
toneuronal cell groups, innervating cleidomas
toid, clavotrapezius and splenius muscles (see 
section 1 a 1; Fig. 1). At lower cervical levels 
labeled fibers are distributed to the medial part of 
the ventral horn. Projections from the caudal 
Field H of Forel to thoracic or more caudal spinal 
levels are sparse (Holstege, 1988b; Holstege and 
Cowie, 1989). 
Neurons in the INC-RF, together with a few neu
rons in the area of the nucleus of the posterior 
commissure, project bilaterally to the medial part 
of the upper cervical ventral horn, via the dorsal 
part of the ventral funiculus (Holstege, 1988b; 
Holstege and Cowie, 1989). This area includes 
motoneurons innervating prevertebral flexor 
muscles and some of the motoneurons of the 
biventer cervicis and complexus muscles (Section 
1 a 1; Fig. 1). Further caudally, labeled fibers are 
distributed to the medial part of the ventral horn 
(laminae VIII and adjoining VII) similar to the 
projections of Field H of Forel. A few INC-RF 
neurons project to low thoracic and lumbosacral 
levels (Holstege and Cowie, 1989). 
Stimulation in the riMLF and adjacent areas pro
duces vertical saccadic eye and fast head move
ments (Hassler, 1972; Buttner et al., 1977), and 
lesions in this area, including the H-field of Forel,· 
result in vertical gaze paralysis (Biittner-Ennever 
et al., 1982; Brandt and Dieterich, 1987). On the 
other hand, stimulation in the INC-RF was shown 
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Field H of Fore I (including the riMLF) 

Fig. 35. Schematic drawing showing tbe pathways as 
well as tbe termination zones of tbe projections origi
nating in caudal Field H of Forel and in tbe INC-RP. 
Note tbat tbe neurons in tbe caudal Field H of Forel 
project to more lateral parts of tbe ventral hom tban 
tbe neurons of tbe INC-RP. Note also tbat tbe ven
tromedial nucleus (see Fig. 1) does not receive diiect 
afferent connections from tbis part of tbe brainstem. 
(From Holstege and Cowie, 1989). 

to cause ocular torsion, head tilt and head rotation 
in the frontal plane to the ipsilateral side (Ander
son, 1981; Fukushima et al., 1978). Unilateral 
electrolytic and kainic acid lesions and temporary 
(procaine) lesions in the INC-RF produce deficits 
in the vertical vestibula-ocular and vestibulo
collic reflexes (Anderson, 1981 ), as well as head 
tilt to the opposite side (Hyde and Toczek, 1962). 
Bilateral lesions result in dorsiflexion of the head 
(Fukushima et al., 1978). These physiological 
observations suggest that the riMLF is primarily 
involved in eye and head movement control, while 
the INC-RF is mainly concerned with eye and 
head position. The differences in the spinal cord 
projections from these two areas may form the 
anatomic framework for the differences in neck 
muscle control. 

4a2 b. Projections from the colliculus superior. 
Retrograde tracing studies indicate that the neu
rons in the superior colliculus, projecting to the 
spinal cord, are mainly located in the lateral por
tion of its intermediate and deep layers on the 
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Fig. 36. Schematic drawing of the contralaterally descending pathways of the intermediate and deep layers of 
the superior coiliculus to the caudal brainstem. Note the strong projections to the dorsal two thirds of the 
contralateral pontine and medullary medial tegmental field and the smail ipsilateral fiber distribution to this 
area, mainly at the level of the facial nucleus. Note also that at caudal medullary and upper cervical levels the 
main contralateral projection is to the lateral part of the intermediate zone, although there exists a small 
component terminating more ,medially. Furthermore, originating mainly in the lateral part of the superior 
coiliculus, a specific component is indicated in gray, descending medially with the contralateral tecto-bulbo· 
spinal tract The fibers of this component terminate in the lateral tegmental field and lateral facial subnuclei 
bilaterally, with an ipsilateral preponderance. (From Holstege and Cowie, in preparation) 



contralateral side. Anterograde tracing studies 
(Nyberg-Hansen, 1964a; Petras, 1967; Coulter et 
al., 1979; Huerta and Harting, 1982; Holstege, 
1988b and Cowie and Holstege, in preparation) 
show that from the superior colliculus a stream of 
thick diameter fibers pass lateral and ventral to 
the P AG and cross the midline via the dorsal 
tegmental decussation. On the contralateral side 
the fibers descend in a medial position through 
the caudal mesencephalon, pons and medulla into 
the ventromedial funiculus of the spinal cord (Fig. 
36), where they continue until the level of C4 and 
a few until C5-C6. ln the pons and medulla many 
fibers terminate in the medial tegmental field and 
in the upper cervical cord in the lateral part of the 
intermediate zone (Fig. 36). The main projection 
in the spinal cord is on intemeurons, which corre
sponds with the findings of Anderson et al. (1971) 
who rep9rted disynaptic excitatory tecto-motoneu
ronal projections and only a few monosynaptic 
ones. Cowie and Holstege (in preparation) have 
demonstrated that there exists a lateral compo
nent of this medially descending system, which 
projects to the lateral tegmental field of caudal 
pons and medulla (section 2 d) and to the lateral 
facial subnuclei (Holstege et al., 1984a; Fig. 36). 
Roucoux et al. (1980) found that stimulation of 
the anterior part of the CS evokes eye saccades, 
which were retinotopic and the accompanying 
head movements were slow and of small ampli
tude. At intermediate collicular levels SC stimu
lation· produced goal directed eye saccades and 
synchronous head movements, which were fast 
and of large amplitude. At posterior collicular lev
els stimulation evoked goal directed head move
ments. 

4a2 c. Spinal projections from the lateral periaque
ductal gray (PAG) and adjacent mesencephalic 
tegmentum. Retrograde tracing results of Cas
tiglioni et al. (1978) in the monkey, Martin et al. 
(1979c) in the opossum; Huerta and Harting (1982) 
and Holstege, (1988a,b) in the cat have demon
strated a spinally projecting group of neurons in 
the lateral P AG and adjacent mesencephalic teg
mentum at levels caudal to the RN (Fig. 32 L,M). 
According to anterograde tracing studies of Mar
tin et al. (1979c) and Holstege, (1988b), these 
neurons project to the spinal cord via the central 
tegmental tract into the ventral and ventrolateral 
funiculi of the spinal cord. Although some con-· 
tinue until the upper lumbar cord, they are sparse 
beyond the T3 level. A few descending labeled 
fibers are observed in the dorsolateral funiculus. 
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At the level of the C1 segment labeled fibers 
terminate in the lateral part of the intermediate 
zone and at the C2-C4 levels in more central parts 
of it (Fig. 37). Further caudally labeled fibers 
terminate in the medial part of the ventral hom 
(laminae VIII and adjoining Vll). Some labeled 
fibers, probably derived from the fibers descend
ing in the dorsolateral funiculus, terminate ·in 
lamina X and the upper thoracic intermediolateral 
cell column (Fig. 37). It is not known whether this 
cell group is involved in eye and head movement 
control, but exacdy this region has been shown to 
project to an eye movement related area of the 
central mesencephalic reticular formation ( cMRF), 
(see Buttner-Ennever and Buttner, 1988). Further
more, stimulation in this area produces horizon
tal conjugate saccadic eye movements, which are 
different from eye movements, elicited in the 
deep layers of the superior colliculus (Robinson, 
1972 in the monkey, Collewijn, 1975 in the rab
bit). Such an involvement of the PAG and adja
cent tegmentum in eye and head movements is 
interesting, because this area receives its main 
afferents from limbic structures (Hopkins and 
Holstege, 1978; Holstege et al., 1985; Holstege, 
1987b). It implies that these neurons in the lateral 
P AG and adjacent mesencephalic tegmentum 
could provide an interaction between the limbic 
and oculomotor system, which does not occur at 
"immediate" premotor levels (Buttner-Ennever 
and Holstege, 1986). 

4a2 d. Spinal projections from the pontine and 
medullary medial tegmental field. ln section 4a it 
has been indicated that this area maintains long 
descending projections to the central and medial 
parts of the intermediate zone (laminae vn and 
VIII) of the spinal cord. However, at the level·of 
the upper cervical cord, fibers terminate in the 
lateral and central parts (laminae V-VIII) of the 
ventral hom. The pontine and upper medullary 
medial tegmentum plays an important role in the 
oculomotor control system. The region includes 
the so-called paramedian pontine reticular forma
tion (PPRF), which is a physiological entity, whose 
complete anatomic limits are still obscure. It 
contains many specific cell groups, such as long
lead bursters, short-lead bursters and omnipause 
neurons, all known to be essential for the genera
tion of saccades (Raphan and Cohen, 1978; Fuchs 
et al., 1985; Buttner-Ennever and Buttner, 1988). 
The pontine and upper medullary projections to 
the upper cervical cord are similar to the spinal 
projections from other saccade related areas, such 
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as the area of the rostral iMLF and the superior 
colliculus and all 3 regions have strong reciprocal 
connections (see Biittner-Ennever and Buttner, 
1988 for review). Neurons in this region have been 
reported to receive afferent impulses from the 
labyrinth (Peterson et al., 1984), cerebellum (Eccles 
et al., 1975) and superior colliculus (Grantyn et al., 
1980). Grantyn et al. (1987) also demonstrated 
that pontine reticulospinal neurons, on their way 
to the spinal cord, give off collaterals to the ab
ducens nucleus, facial nucleus, nucleus preposi
tus hypoglossi and medial vestibular nucleus. 
This illustrates the close relationship between 
the oculomotor, neck and axial musculature 
control systems. 
Retrograde tracing results (Holstege, 1988b) have 
revealed a cell group in the dorsal half of the 
contralateral medullary medial tegmentum at the 
level of the inferior olive (Fig. 32 T,U). Antero
grade tracing studies of Biittner-Ennever and 
Holstege (1986) and Holstege, (1988b) demon
strated that these neurons project through the 
contralateral ventral funiculus, but only until the 
level of CS. The fibers, which remain close to the 
ventral hom, terminate densely in the motoneu
ronal cell groups of the C1-C4 segments. The 
impression was gained that this projection repre
sents one of the strongest direct brainstem projec
tions to neck muscle motoneurons. 
The pontine and medullary medial tegmental 
projections have been extensively investigated 
physiologically by Peterson et al. (1978,1979) and 
Peterson (1979,1980), who subdivided the pontine 
and medullary medial tegmentum in 5 different 
zones. Holstege, (1988b), comparing the anatomic 
observations with the physiological results of Pe
terson, concluded that the anatomic tracing stud
ies confirm some of the physiological "tracing" 
results of Peterson (1979,1980), but many differ
ences still exist and need to be resolved. 

4a2 e. Spinal projections from the vestibular 
nuclei In section 4 a it has been indicated that the 
lateral vestibular nucleus and the pontine and 

Fig. 37. On the left. 
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upper medullary medial tegmentum maintain long 
descending projections to the central and medial 
parts of the intermediate zone (laminae vn and 
Vlll) of the spinal cord. In the upper cervical cord, 
the lateral vestibulospinal tract (L VST) descends 
through the ventral part of the ipsilateral ventral 
funiculus. They terminate, unlike the fibers from 
the medial tegmentum, in the medial and central 
and not lateral parts of the ventral hom at the level 
of the upper cervical cord (Fig. 33). Two other 
bundles of vestibulospinal fibers descended via 
the ipsi- and contralateral MLF into the medial 
part of the upper cervical ventral funiculi (Nyberg
Hansen, 1964b; Nyberg-Hansen and Mascitti, 
1964, and Petras, 1967; Holstege and Kuypers,1982 
and Holstege, l988b). They belong to the medial 
vestibulospinal tract, which originates in the lat
eral, medial and inferior vestibular nuclei. Medial 
vestibulospinal fibers terminate in the medial 
part of the ventral hom also. The contralateral 
medial vestibulospinal tract does not descend 
beyond cervical levels (Fig. 33). Whether the 
ipsilateral medial vestibulospinal tract descends 
beyond cervical levels is difficult to assess, be
cause its fibers join the lateral vestibulospinal 
tract at low cervical levels. During their descent 
through the brainstem, the vestibulospinal fibers 
did not project significantly to the caudal pontine 
and medullary medial tegmental field, which 
suggests that these two areas have different func
tions within the medial system. 
Stimulation in the lateral vestibular nucleus (L VN) 
produces mono- and polysynaptic excitatory 
postsynaptic potentials (EPSP's) in head extensor 
muscle motoneurons (Wilson and Yoshida, 1969a) 
and in back muscle motoneurons (Wilson et al., 
1970). L VN stimulation also produces some 
monosynaptic EPSP's in hindlimb extensor 
muscles, but polysynaptic EPSP's are much more 
common (Grillner et al., 1970; Wilson and Yoshida, 
1969a). Stimulation in the L VN also resulted in 
disynaptic inhibition of flexor muscles via Ia in
hibitory interneurons located in the ventral part 
of the intermediate zone (Hultbom, 1976). On the 

Darkfield photomicrographs of the caudal medulla and 7 different levels of the spinal cord in a cat with an 
injection of 3H-leucine involving the lateral PAG, the laterally adjoining mesencephalic tegmentum and deep 
layers of the superior colliculus. Note the ipsilateral fibers derived from the lateral PAG and adjoining 
tegmentum descending in the ventral and ventrolateral funiculi and terminating in the lateral part of the Cl and 
the central and/or medial parts of the C2-T1 ventral hom. Note also the projection to lamina X and the upper 
thoracic intermediolateral cell column, derived from fibers descending in the dorsolateral funiculus (arrow in 
12). Note further the tectospinal fibers in the contralateral ventral funiculus, distributing labeled fibers to the 
lateral (C1-C3) or central (C4-CS) parts of the intermediate zone. Bar represents 1 mm, (from Holstege, 1988b). 
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other hand, stimulation in the MVN evokes mono
synaptic inhibition of neck (Wilson and Yoshida, 
1969b) and back motoneurons (Wilson et al., 1970). 
These inhibitory effects are mediated via the MVST 
(Akaike et al., 1973). In short, the LVST excites 
neck, axial and extensor muscle motoneurons and 
inhibits flexor muscles. The MVST inhibits neck
and axial muscle motoneurons. 

4a2 f. Concluding remarks regarding the descend
ing pathways involved in regulating head 
movements. Figure 38 gives an overview of the 
white matter location of all the descending path-

C2 

ways belonging to the medial descending system 
in the upper cervical and low thoracic spinal cord 
Only the pontine medial tegmental field and the 
lateral vestibulospinal tract, and to a limited ex
tent the interstitiospinal tract, descend through
out the length of the spinal cord. 
At upper cervical levels, the INC-RF and the ves
tibular nuclei project mainly to the medial por
tion of the upper cervical intermediate zone, in 
which area the prevertebral muscle and some 
biventer cervicis and complexus muscle motoneu
rons are located [Abrahams and Keane, 1984; Fig. 
1 ). These muscles may be specifically involved in 
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Fig. 38. Schematic representation of the spinal white matter location of the various descending pathways, 
specifically involved in control of neck and axial muscle inter- and motoneurons. On the left a drawing of the 
C2 spinal segment and on the zigbt a drawing of the T12 spinal segment. It must be emphasized that this scheme 
does not give any indication about the number of fibers belonging to the different descending pathways. It must 
also be noted that many other descending fiber systems pass througb the same areas as indicated in the drawing 
(for example propiospinal, reticulospinal and corticospinal fibers), (from Holstege, 1988b). 



head position, although until now such an in
volvement has only been described for the biventer 
cervicis, occipitoscapularis, semispinalis cervicis 
and rectus capitis (Richmond et al., 1985; Roucoux 
et al., 1985). In accordance with this concept, both 
INC-RF and vestibular nuclei are known to be 
strongly involved in eye position and head pos
ture. On the other hand, the main spinal projec
tion of the caudal Field H of Forel, superior colli
culus, lateral P AG and adjacent tegmentum, and 
pontine medial tegmental field is to the lateral 
parts of the upper cervical ventral hom, which 
contains motoneurons innervating cleidomastoid, 
trapezius and splenius muscles. The latter group 
of muscles appear best suited to produce rapid or 
phasic torsional movements of the head such as 
might occur during orienting movements (Callis
ter et al., 1987). It would correspond with the 
observation that stimulation in the caudal Field H 
of Forel, superior colliculus and pontine medial 
tegmental field produces eye saccades and fast 
head movements. 
In summary, a concept is put forward (Holstege, 
1988b) in which the medial somatic system struc
tures are subdivided into two groups; one that 
controls tonic eye- and head position, and one that 
produces saccadic eye- and fast head movements. 

4b. The lateral descending system 
The lateral component of the voluntary motor 
system produces independent flexion-biased move
ments of the extremities, in particular of the 
elbow and hand (Kuypers, 1981). The two most 
important constituents are the rubro- and cortico
spinal tracts. Vertebrates without extremities, 
such as snakes and sharks, do not have a rubro- or 
corticospinal tract, indicating that the presence of 
such tracts is related to the presence of limbs or 
limb like structures (Ten Donkelaar, 1988). Both 
red nucleus and motor cortex are somatotopically 
organized, containing regions such as a face area 
projecting to the face motor- and premotor neu
rons in caudal pons and medulla, an arm or foreleg 
area projecting to the cervical cord, and a hindleg 
portion sending fibers to the lumbosacral cord 
(Kuypers, 1981; Armand et al., 1985; Holstege, 
1987a; Holstege and Tan, 1988). There are differ
ences between the organization of the rubro- and 
corticospinal tract, which depend for an impor
tant part on the species involved. · 

4b 1. The mbrobulbar and rubrospinal system. 
There are two different descending pathways from 
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the red nucleus to the caudal brainstem; 1) a 
mainly contralateral pathway, which sends fibers 
to the premotor intemeurons in the lateral teg
mental field (section 2d), the dorsal column nu
clei, precerebellar structures other than the infe
rior olive, and to the spinal cord; 2) an ipsilateral 
fiber system which terminates on neurons in the 
inferior olive. Many of the neurons in the red 
nucleus projecting via the contralateral mbrobul
bospinal sys._em are of large diameter and are 
located in the caudal portions of the red nucleus, 
while the rubro-olivary neurons are of smaller 
diameter and are located in the rostral parts of the 
red nucleus. The caudal part of the red nucleus is 
usually called magnocellular red nucleus, while 
the rostral part of the red nucleus is called parvo
cellular red nucleus. In the cat neurons projecting 
to both the spinal cord and inferior olive do not 
exist (Huisman et al., 1982). The subdivision in 
magno- an parvocellular red nucleus leads to 
confusion because in the cat the parvocellular 
(rostral) red nucleus not only contains neurons 
projecting to the inferior olive, but also neurons 
projecting to the spinal cord (Holstege and Tan, 
1988). Furthermore there exist important species 
differences regarding the relation magnocellular
parvocellular red nucleus. Therefore, Holstege 
and Tan (1988) proposed a new subdivision of the 
red nucleus based on the projections of the neu
rons located in it: a rubrobulbospinal red nucleus 
and a mbro-olivary red nucleus. It must be em
phasized that the rubro-olivary neurons form part 
of a much larger projection system, (see section 4 
b 1 b). 

4b 1 a The mbrobulbospinal projections. The 
rubrobulbospinal red nucleus is somatotopically 
organized in such a way that neuror.s in its dorsal 
part project to the bulbar lateral tegmental field 
and facial nucleus (Kuypers et al., 1962; Martin et 
al., 1974; Holstege and Tan, 1988), neurons in the 
dorsomedial red nucleus project to the cervical 
cord and neurons in the ventrolateral red nucleus 
to the lumbosacral cord (Pompeiano and Brodal, 
1957; Murray and Gurule, 1979; Huisman et al., 
1982; Holstege and Tan, 1988). In accordance 
with the somatotopic organization, only very few 
red nucleus neurons project to both the cervical 
and lumbar cord (Huisman et al., 1982). All 
projections are contralateral except for a few ipsi
laterally descending fibers, projecting to the inter
mediate zone of the cervical cord (Holstege, 1987a). 
The red nucleus also projects to the interpositus 
nucleus in the cerebellum (Huisman et al., 1982) 
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and to some precerebellar structures in the caudal 
brainstem, such as the nucleus corporis pontobul
baris, lateral reticular nucleus and external cuneate 
nucleus (Edwards, 1972; Martin et al., 197 4; Hol
stege and Tan, 1988). Furthermore, neurons in the 
dorsomedial (foreleg) part of the red nucleus send 
fibers to the cuneate nucleus, while neurons' in 
the ventroillteral (hindleg) part of the red nucleus 
project to the gracile nucleus (Edwards, 1972; 
Martinet al, 1974; Holstege and Tan, 1988). It has 
been demonstrated that the projections to the 
interpositus nucleus are collaterals from rubrobul
bospinal fibers (Huisman et al., 1982). In all 
likelihood, this is also true for the red nucleus 
projections to the precerebellar structures in the 
brainstem and dorsal column nuclei (see Ander
son, 1971), which would correspond with the 
finding that the latter projections are somatotopi
cally organized (Holstege and Tan, 1988). 
In the spinal cord the rubrospinal fibers descend 
via the dorsolateral funiculus and terminate on in
temeurons in the lateral parts of the intermediate 
zone (laminae V to VII) and to a limited extent 
directly to motoneurons. Intemeurons receiving 
rubrospinal fibers receive afferents from other 
sources also, such as peripheral nerves, proprio
spinal neurons, and reticula- and corticospinal 
tracts. Furthermore, rubrospinal fibers terminate 
on both first and last order intemeurons (Hongo et 
al., 1969; see also Jankowska, 1988 for review). 
Apparently the red nucleus uses all the interneu
rons involved in the reflex pathways in the spinal 
cord (see section 2). Rubrospinal fibers also termi
nate on intemeurons in the upper cervical cord 
(Holstege et al., 1988b). Upper cervical motoneu
rons innervate the neckmuscles, which belong to 
the medial system. Although a red nucleus effect 
on neck muscles cannot be excluded, it is more 
likely that the great majority of these projections 
terminate on intemeurons, which in turn project 
to motoneurons in the lower cervical cord, inner
vating distal muscles of the forelimb (Holstege, 
1988b, see section 2 c 2). The neurotransmitter 
utilized by the rubrospinal neurons is not pre
cisely known. According to Kimura et al. (1981) 
all rubrospinal cells in the red nucleus contain 
choline acetyl tranferase (ChAT), indicating that 
they use acetylcholine as a neurotransmitter. 
However, Jones and Beaudet (1987) did not find 
ChAT positive neurons in the red nucleus. 
Although the red nucleus projections to motoneu
rons are mostly indirect, physiological studies in 
cat (Shapovalov and Karamyan, 1968) and mon
key (Shapovalov et al., 1971; Shapovalov and 

Kurchavyi, 1974; Cheney, 1980; Cheney et al., 
1988) have demonstrated direct red nucleus pro
jections to spinal motoneurons. Anatomically 
however, there was only evidence for direct red 
nucleus projections to motoneurons in the facial 
nucleus (Courville, 1966b; Edwards, 1972; Martin 
et al., 1974; Holstege et al., 1984a; Holstege and 
Tan, 1988). Only recently, Holstege (1987a; Fig. 
39); Robinson et al. ( 1987) and McCurdy et al. 
(1987) demonstrated that the red nucleus in the 
cat projects directly to a specific group of mo
toneurons in the dorsolateral part of the C8-T1 
ventral hom, innervating forelimb digit muscles 
(see section 1 a 3). One year later, Holstege et a1 
(1988; Figs. 40 and 41) at the light microscopical 
level and Ralston et al. (1988) at the electron 
microscopical level revealed rubro-motoneuronal 
projections in the monkey, which were more 
extensive than in the cat. These projections 
involved all distal limb muscle motoneuronal cell 
groups in the cervical and lumbosacral enlarge
ments. Projections to the axial or pruximal muscle 
motoneurons were never observed. The predomi
nant population of rubromotoneuronal contacts 
were terminals containing rounded synaptic ves
icles, forming asymmetric contacts with motoneu
ronal somata and primary dendrites. Only occa
sional terminals with flattened or pleomorphic 
vesicles were present (Ralston et al., 1988). Gi
bson et a1 (1985) and Cheney et al. (1988) studied 
the red nucleus projections to flexors and extensor 
motoneurons of the wrist and fingers in the monkey 

Fig. 39. Darkfield photomicrograph of the contra
lateral CB spinal segment of a cat with an iniection of 
3H-leuciue in the dorsomedial (forepaw area) part of 
the rubrospinal red nu_leus. Note the strong pro;ec
tions to the dorsal and lateral intermediate zone and 
the specific pro;ection to the most dorsolateral portion 
of the motoneuronal c.._ll group (arrow). Bar represents 
1 mm. (From Holstege, 1987a). 
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Fig. 40. Darkfield photogJaphs of the C7 spinal cord of a monkey after an injection of WGA-HRP in the caudal 
red nucleus and adjacent areas. The labeling in the gJay matter represents anterograde labeled rubrospinal 
fibers. Note that in C7 labeled fibers terminate in the intermediate zone and in the dorsolateral motoneuronal 
cell gJOUps innervating distal forelimb muscles, i.e. muscles involved in movements of wrist and digits. 

and observed a strong preference for facilitation of 
extensor muscles (see also Cheney et al. this 
volume). Martin and Chez, (1988) in the cat 
studied the differential contributions of the motor 
cortex and red nucleus neurons to the initiation of 
a targeted limb response and to the control of 
trajectory. They concluded that both the motor 
cortex and the red nucleus contributed to the 
initiation of the motor responses, but that only 
the motor cortex is involved in the proper scaling 
of targeted responses. 
Direct red nucleus projections to the motoneu
rons in the intermediate subgroup of the facial 
nucleus (orbicularis oculi motoneurons) have been 
described by many authors, and a projection to the 
dorsal part of the dorsomedial facial subnucleus 
(pinna muscle motoneurons) by Courville, (1966b) 
and Holstege et al. (1984a). However, the litera
ture is not clear about the red nucleus projections 
to the lateral facial subnuclei (containing peri-oral 
muscle motoneurons). Martin and Dom (1970) in 
the opossum, Edwards (1972) and Robinson et al. 

(1987) in the cat and Miller and Strominger (1973) 
in the monkey, have reported such projections, 
but Courville, (1966b) and Holstege et al. (1984a) 
found only fibers of passage and no terminations 
in this motoneuronal cell group. In a recent study 
in the cat Holstege and Ralston ( 1989) at the 
electron microscopical level observed only occa
sional terminals in the peri-oral muscle motoneu
ronal cell group after large injections of WGA
HRP in the red nucleus. On the other hand, 
abundant terminals (at least 200 times as many as 
in the lateral and ventrolateral facial subnuclei) 
were present in the orbicularis oculi and pinna 
muscle motoneuronal cell groups, indicating that 
the red nucleus fibers observed among the peri
oral muscle motoneurons were fibers of passage. 
Figure 42 gives an overview of the rubr6bulbospi
nal projections. 
The red nucleus may have a function in motor 
learning (Tsukahara, 1981). Schmied et al. (1988), 
studied the participation of the red nucleus in 
motor initiation, by training cats to release or not 
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Fig. 41. Schematic representation of the labeled fibers (small dots) in the spinal cord of a monkey with an in
jection of WGA-HRP in the rubrospinal red nucleus. The injection-site extended into the area of the interstitial 
nucleus of Cajal (INC-RF). The retrogradely labeled neurons are indicated with large dots. Note the contralateral 
projections to the intermediate zone throughout the length of the spinal cord and to the lateral motoneuronal 
cell groups in the cervical and lumbosacral enlargements. Note also the ipsilateral (interstitiospinal) fibers in 
the ventral funiculus on the ipsilateral side. Note further the vezy few ipsilateral rubrospinal fibers, some of 
which terminate in the lateral motoneuronal cell groups in rostral Tl, (from Holstege et al. 1988}. 
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Fig. 42. Schematic overview of the rubrobulbospinal projections in the cat. In the monkey the rubrobulbospi
nal projections are almost identical, with the exception of more extensive projections to the motoneuronal cell 
groups (see fig. 41). 
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release a lever with its forepaw in response to a 
certain auditory signal, while other auditory sig
nals were no-go cues. The results led them to 
propose that the red nucleus responses to a sen
sory signal depend on its triggering significance, 
and thus be modifiable by training. In this regard 
the role of the red nucleus in the conditioned blink 
reflex is interesting. The conditioned blink reflex 
or nictitating membrane response (NMR) is a 
learned response. When a neutral stimulus (visual 
or auditory) is repeatedly followed by an airpuff to 
the cornea, the animal will soon develop reflex 
blinking (i.e. NMR and closure of the eyelids) to 
the neutral stimulus alone. The reflex pathway 
goes via the trigeminal nucleus, inferior olive (Yeo 
et al., 1986), cerebellar cortex (lobule VI), (Yeo et 
al., 1985b), nucleus interpositus (Yeo et al., 1985a) 
and red nucleus to the orbicularis oculi and retrac
tor bulbi motoneurons (Holstege et al., 1986a,b). 
In the latter pathway the pontine blink premotor 
area may also play a role (Holstege et al., 1986b). 
It has been demonstrated that lesioning the red 
nucleus abolishes the conditioned blink reflex 
(Rosenfield and Moore, 1983) and recently it has 
been reported that injecting GABA in the red 
nucleus has also this effect (Haley et al., 1988). 
The face area of the red nucleus not only receives 
afferents from the interpositus nucleus, but also 
directly from the trigeminal nuclei (Holstege et 
al., 1986b). These projections might be involved 
in the R2 component of the unconditioned blink 
reflex, in which the pontine blink premotor area 
may also be involved (see section 2 d 3 b). 
As the evolutionary scale is climbed, the rubrospi
nal red nucleus becomes smaller, and in humans 
only very few rubrospinal neurons seem to exist, 
which do not descend further than C3 (see Nathan 
and Smith, 1982 for review). The most likely 
reason for such a regression is the development of 
the corticospinal tract, which is extremely well 
developed in humans and might render the 
rubrospinal tract redundant (see Massion, 1988). 
It remains to be determined whether this is also 
true for the contralateral rubrobulbar projections 

4bl b. The mbro-olivary projections. The rubro
olivary projections form part of a large mesenceph
alo-olivary projection system. In the cat, many 
neurons in the nucleus of Darkschewitsch, nu
cleus accessorius medialis of Bechterew, the area 
of the interstitial nucleus of Cajal, rostral red 
nucleus and Field H of Forel all contribute to the 
fiber projections to the inferior olive. Somewhat 
surprising is that the termination pattern of all 

these structures is very similar (Saint-Cyr and 
Courville, 1982; Oka, 1988; Holstege and Tan, 
1988; Fig. 43). Although the upper mesencephalic 
projections to the inferior olive, including the 
rubro-olivary ones, are already quite extensive in 
the cat, climbing the evolutionary scale to hu
mans, the rubro-olivary red nucleus, its projec
tions to the inferior olive via the central tegmen
tal tract as well as the inferior olive itself becomes 
larger (Nathan and Smith, 1982). In all likelihood, 
this is due to the enormous growth of the cerebral 
cortex, because rubro-olivary projections play an 
important role in the relay cerebral cortex-cere
bellum. According to Kuypers and Lawrence 
(1967) and Humphrey et al. (1984) in the monkey, 
both the rubrospinal and rubro-olivary neurons 
receive afferents from the precentral (motor) cor
tex. However, the projection to the rubro-olivary 
neurons is much stronger and originate not only 
in the precentral gyrus, but also in the premotor 
and supplementary motor areas. It has been 
demonstrated (Gibson et al., 1985; Cheney et al., 
1988) that the discharge of most rubrospinal 
neurons precede the onset of movement. Part of 
this discharge might be elicited by cortical projec
tions to the rubrobulbospinal neurons, which are 
partly collaterals of corticospinal fibers (Humphrey 
and Reitz, 1976). Another, (possibly stronger) 
source of input might be the projections from 
various motor and premotor cortical areas via the 
rubro-olivary neurons and the cerebellum, i.e. via 
the circuit rubro-olivary neurons-inferior olive
cerebellar cortex-deep cerebellar nuclei-rubrobul
bospinal red nucleus. A similar pathway exists for 
the conditioned blink reflex (trigeminal nuclei
inferior olive-cerebellar cortex-deep cerebellar 
nuclei-face part of the rubrobulbospinal red nu
cleus). Such a concept, (the cortico-rubrospinal 
red nucleus projections go via the cerebellum) 
would provide the anatomic framework for the 
observation that the rubrospinal red nucleus is so 
heavily involved in conditioned motor responses 
(Schmied et al., 1988). 

4b 2. The corticobulbar and corticospinal 
pathways. The enormous outgrowth of the cere
bral cortex in humans, compared to other mam
mals, is also reflected In the motor cortico-bulbos
pinal tract, which in primates but especially hu
mans is the most important descending pathway 
within the somatic motor system. The motor cor
tex is somatotopically organized with a foreleg 
area projecting to the cervical cord, a hindleg area 
projecting to the lumbosacral cord (Armand et al., 
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Fig. 43. Schematic diagram of the unfolded inferior olive after Brodal {1940), illustrating the extent of the 
projections of the rostral mesencephalon. Note the strong overlap of the fiber distributions in the cases with 
injections of 3H-leucine in the rostral iMLF and Field H of Fore] (case 1077), the nucleus of Darkschewitsch and 
the JNC-RF. Note the relatively small contribution of the more caudally located injection sites (cases 1304 and 
1383}. Injections in the most caudal portion of the red nucleus did not produce labeling in the inferior olive. 
(From Holstege and Tan, 1988}. l=lateral; m=medial; MAO=medial accessory olive; dmce=dorsomedial cell 
column; h=nucleus Beta; vl=ventrolateral; dl=dorsolateral; Princ.=principal inferior olive; vla= ventrolateral 
outgrowth; d. cap=dorsal cap; DAD= dorsal accessory olive. 

1985) and a face area projecting to the lateral 
tegmental field of caudal pons. and medulla 
(Kuypers, 1958c; Holstege, unpublished results). 
In cat, monkey, apes, and humans the motor 
cortex not only projects mainly contralaterally to 
the laterally located intemeurons in the spinal 
cord, but, in contrast to the red nucleus, also 
bilaterally to more medially located interneurons 
(lamina Vlll). These projections are derived from 
the so-called common zone. In the cat this area is 
located in the medial part of the motor cortex next 
to area 6 and extends caudally between the fore
and hindleg areas (Armand and Kuypers, 1980). 
Stimulation in the area tends to carry the repre
sentations of axial movements, i.e. neck, trunk 
and proximal forelimb movements (Nieoullon 

and Rispal-Padel, 1976). Strictly speaking, this 
cortical projection system belongs to the medial 
descending system, but is presented together with 
the other corticospinal projections, because it rep
resent a relatively small portion of the descending 
corticospinal tract. Not surprisingly, neurons in 
the common zone, possibly via collaterals of the 
corticospinal fibers, project to the pontine and 
upper medullary medial tegmental field, one of 
the most important parts of the medially .descend
ing system (see sections 4 a 1 and 4 b 5-6). 
In the monkey (Kuypers, 1958b; Ralston and 
Ralston, 1985), but not in the cat (Armand et al., 
1985) there exist direct cortical projections to 
motoneurons, innervating the most distal muscles 
of the extremities. Ralston and Ralston (1985) 
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found electron microscopically that two thirds of 
the corticomotoneuronal terminals contained 
round vesicles, suggesting excitatory effects on 
the motoneuron, and one third pleomorphic or 
flattened vesicles, suggesting inhibitory effects. It 
is questionable, however, whether there exist 
monosynaptic inhibitory corticomotoneuronal 
connections, but disynaptic connections have been 
demonstrated (Landgren et al., 1962; see also 
Cheney et al. this volume). Jankowska et al., 

Rubrospin proj. 

Cat 

Rhesus mon 

Human 

(1975), stimulating the motor cortex in monkeys, 
observed EPSP's with response latencies of 0.6-1.0 
ms, indicating monosynaptic contact. The rubro
and corticospinal tract in the monkey are very 
similar, but there are some differences; 1) the 
motor cortex projects also to more medial parts of 
the intermediate zone; 2) corticospinal fibers are 
at least 100 times more numerous than the 
rubrospinal ones (Holstege et al., 1988). For the 
differences between the cortico-motoneuronal and 

Corticospinal proj. 

Fig. 44. Schematic representation of the rubrospinal and corticospinal projections in cat, rhesus monkey and 
human at the level of CB. The gray areas in the white matter represent the descending pathways, those in the 
gray matter represent termination zones. Dark gray areas represent strong projections, lighter gray areas 
represent light projections. 



rubro-motoneuronal cells, see Cheney et al. (this 
volume). In chimpanzees and humans direct 
cortico-motoneuronal projections are more ex
tensive than in the monkey and terminate also on 
motoneurons, innervating more proximal muscles 
of the body (Kuypers, 1958a,b; Schoen, 1964). 
However, the degeneration findings of Kuypers, 
1964 and Schoen, 1964, do not reveal corticospi
nal projections to the medial motoneuronal cell 
column in chimpanzee and human. It is possible 
that more modem tracing techniques in the chim
panzee would reveal direct cortical projections to 
medial column motoneurons, but such studies 
have not yet been done. Since the corticospinal 
and rubrospinal systems are so similar, it is not 
surprising that collaterals of the corticospinal 
tract terminate in the magnocellular red nucleus 
in a sornatotopically organized manner (Kuypers, 
1981; Holstege unpublished observations). 

Behavioral studies on the lateral system of Law
rence and Kuypers (1968a,b) in the monkey have 
demonstrated that immediately after pyramidot
omy, (interruption of the corticospinal fibers at 
the level of the medulla oblongata), the animals 
can sit, walk, run and climb, but cannot pick up 
pieces of food with their hands. After some 
recovery they regain this capacity, but individual 
finger movements such as the thumb and index 
finger precision grip do not return. In pyramidoto
mized monkeys, the red nucleus as well as the 
cortico-rubral fibers are still intact and the recov
ery of hand movements is probably related to the 
rubrospinal tract taking over many of the func
tions of the corticospinal tract. Ablation of the 
precentral motor cortex in adult monkeys, (thus 
lesioning the corticospinal as well as the cortico
rubral fibers) results in a stronger deficit, i.e. a 
flaccid paresis of the contralateral extremity 
muscles. In chimpanzee and humans (patients 
with stroke or tumor interrupting the cortico
bulbospinal fibers) this flaccid paresis is more 
severe than in monkeys and much more than in 
cats. The reason for this difference probably is 
that the rubrospinal neurons in monkey and cat 
are much more numerous than in chimpanzee and 
humans. Correspondingly, if in a monkey a bilat
eral pyramidotomy is combined with an interrup
tion of the rubrospinal tract on one side, the motor 
deficit on that side is much more pronounced. 
The monkey is able to sit up, walk and climb, but 
in the examining chair the fingers and wrist of the 
arm ipsilateral to the side of the rubrospinal lesion 
are noticeably limp. In reaching for food, the hand 
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is brought to the food by turning the arm in the 
shoulder. 
Figure 44 gives a summary on the rubro- and 
corticospinal pathways, based on the findings of 
Kuypers, 1964; Schoen, 1964; Kuypers and Brink
man, 1970; Kuypers, 1973; Kuypers, 1981; Ralston 
and Ralston, 1985; Armand et al. 1985; Holstege, 
1987a; Holstege et al., 1988. The corticospinal 
fibers become more and more numerous and con
trol larger parts of the spinal gray, going from cat, 
via monkey to human, which is not true for the 
rubrospinal tract. The enormous predominance 
of the corticospinal tract over the rubrospinal 
tract in humans leads to great clinical problems in 
stroke patients with interruption of the cortico
spinal tract in the internal capsule. Recovery 
from such a lesion is much more difficult than in 
monkeys or cats with similar lesions, because 
humans do not have the disposal over a well 
developed rubrospinal tract. 
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5. Descending pathways involved m limbic motor control systems 

Sa. Introduction 
It is well known that hemiplegic patients with 
damage to corticobulbar fibers, resulting in a 
complete central paresis of the lower face on one 
side, are able to smile a spontaneously, for ex
ample when they enjoy a joke. On the other hand, 
in cases with postencephalitic parkinsonism, 
patients are able to show their teeth, whistle, 
frown, i.e. there is no facial palsy, but the patients' 
emotions are not reflected in their countenance 
and they have a stiff, masklike facial expression 
[poker face). Patients with irritative pontine le
sions sometimes suffer from non-emotional laugh
ter and crying, and patients with pseudo-bulbar 
palsy [for example with lesions in the mesencepha
lon) often suffer from uncontrollable fits of crying 
or laughter. Such fits are usually devoid of feeling 
of grief, joy, or amusementi they may even be ac
companied by entirely incompatible emotions. 
Fits of crying and laughter may occur in the same 
patients, other patients show only one of them 
[Poeck, 1969i Rinn, 1984). Crying and laughter 
belong to an expressive behavior, which in ani
mals is called vocalization. It has been shown in 
many different species that stimulation in the 
caudal part of the periaqueductal gray [P AG) pro
duces vocalization. Recently Holstege, G. [1989) 
has demonstrated that vocalization is based on a 
specific final common pathway, originating from 
a distinct group of neurons in the P AG that project 
to the nucleus retroambiguus, which in tum has 
direct access to all vocalization motoneurons 
[section 3 a 34i see Holstege, G. 1989). In all 
likelihood, in humans this projection forms the 
anatomical framework for laughing and crying. 
The vocalization neurons in the P AG receive their 
afferents from structures belonging to the limbic 
system, but not from the voluntary system [sec
tion 4). All this clinical and experimental evi
dence shows that there exists a complete dissocia
tion between the voluntary and emotional or 
limbic innervation of motoneurons. 

The limbic system is closely involved in the 
elaboration of emotional experience and expres
sion [MacLean, 1952) and is associated with a 
wide variety of autonomic, visceral and endocrine 
functions. The limbic system consists of several 
cortical and subcortical structures, although there 
is no agreement on exactly which structures be-

long to it. Some authors argue that the use of the 
term limbic system should be abandoned [for 
example Brodal, 1981). Nevertheless, many sci
entists still use it and they consider the cingulate, 
insular, entorhinal, piriform, hippocampal, retro
splenial and orbitofrontal cortex to belong to the 
limbic system. Subcortical regions usually in
cluded in the limbic system are the hypothalamus 
and the pre-optic region, the amygdala, the bed 
nucleus of the stria terminalis, the septal nuclei, 
and the anterior and mediodorsal thalamic nuclei. 
As early as 1958, Nauta pointed out that the 
limbic system has extremely strong reciprocal 
connections with mesencephalic structures such 
as the periaqueductal gray [PAC) and the laterally 
and ventrally adjoining tegmentum, [Nauta's 
limbic system-midbrain circuit). More recent 
findings strongly support Nauta's concept and has 
led Holstege, [1990) to consider the mesenceph
alic periaqueductal gray [P AG) and large parts of 
the lateral and ventral mesencephalic tegmentum 
to belong to the limbic system. Nieuwenhuys, 
[1985i see also Nieuwenhuys et al. 1988), intro
duces the term "core of the neuraxis" for "a set of 
neuromediator-rich centers and pathways, which 
corresponds partly with the limbic system". 
Nieuwenhuys' core not only involves major parts 
of the limbic system as defined earlier, but also the 
ventral parts of the striatum, the thalamic midline 
nuclei, the parabrachial nuclei, the dorsal vagal 
complex, the superficial zones of the spinal trigemi
nal nucleus and of the spinal dorsal hom, and the 
spinal substantia intermedia centralis. Further
more Nieuwenhuys [see Nieuwenhuys et al. 1988) 
introduces the medial and lateral paracore zones. 
The medial paracore is constituted by the series of 
raphe nuclei, which extends throughout the brain 
stem. The lateral paracore consists of the lateral 
tegmentum of mesencephalon, pons and medulla. 
It comprizes the substantia nigra, the locus coer
uleus and subcoeruleus [A6 group), the nucleus 
Kolliker-Fuse, and the bulbar lateral tegmental 
field as defined by Holstege et al. [1977). 
Although it is well known that the limbic system 
exerts a strong influence on somatic and auto
nomic motoneurons, lesion-degeneration studies 
did not reveal strong limbic projections to levels 
caudal to the mesencephalon. This led to the idea 
that the limbic pathways to caudal brainstem and 
spinal cord were multisynaptic [Nauta, l958i 



Nauta and Domesick, 1981). Since 1975 this view 
changed dramatically mainly because new tracing 
techniques became available, such as retrograde 
tracing using horseradish peroxidase (HRP) (La
Vail and LaVail, 197~ Mesulam, 1978), antero
grade autoradiographic (Lasek et al., 1968; Cowan 
et al., 1972) and immuno-histochemical fiber
tracing techniques. Kuypers and Maisky (1975), 
using the retrograde HRP technique, demonstrated 
direct hypothalamo-spinal pathways in the cat. 
Subsequently, the autoradiographic tracing tech
nique has revealed many new limbic system path
ways to caudal brainstem and spinal cord. One of 
the most interesting of thes~ projections are the 
limbic system projections to the nucleus raphe 
magrms (NRM) and pallidus (NRP) as well as to 
the adjacent ventral part of the caudal pontine and 
medullary reticular formation (the caudal part of 
the medial paracore of Nieuwenhuys et al., 1988). 
These findings are important, because NRM, NRP 
and adjoining reticular formation in tum project 
diffusely, but very strongly to all parts of the gray 
matter throughout the length of the spinal cord 
There exist also strong limbic projections to the 
pontine paralemniscal region and to the area of 
the locus coeruleus and/or nucleus subcoeruleus, 
which take part in the lateral paracore of 
Nieuwenhuys et al. (1988), and also these areas in 
tum project diffusely to the spinal gray through
out its total length. Therefore, the diffuse brain
stem-spinal projections will be discussed in the 
framework of the descending limbic motor con
trol systems. It should be kept in mind that 
almost all projections presented in this section 
have been discovered in the last 15 years. 

Sb. Pathways projecting diffusely to the 
spinal gray matter 
5b 1. Projections from the nuclei raphe magnus 
(NRM), pallidus (NRP) and obscurus (NRO) and 
the ventral part of the caudal pontine and medul
lary medial reticular formation. Retrograde HRP 
results (Kuypers and Maisky, 1975; Tohyama et 
al., 1979; Holstege, G. and Kuypers, 1982; Hol
stege, 1988b) indicate that a great number of 
neurons in the nuclei raphe magnus and pallidus 
and ventral part of the caudal pontine and medul
lary medial reticular formation project to the 
spinal cord (Fig. 32). It was also demonstrated by 
means of retrograde double labeling tracing tech
niques that many of these neurons project to 
cervical as well as lumbar levels of the spinal cord 
and to the caudal spinal trigeminal nucleus (Mar-
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tin et al.,1981b; Hayes and Rustioni, 1981; Huis
man et al., 1982; Lovick and Robinson, 1983). 
Basbaum et al. (1978), using the autoradiographic 
tracing technique, were the first to demonstrate in 
the cat that the NRM projects to the marginal 
layer of the caudal spinal trigeminal nucleus and 
in the spinal cord to laminae I, IT, V, VI and VII, and 
to the thoracolumbar intermediolateral cell col
umn. Similar projections were observed from the 
tegmentum located next to the NRM, i.e. the 
ventral part of the medial tegmental field at the 
level of the facial nuclei, also called the nucleus 
reticularis magnocellularis. The results of Bas
baum et al. (1978) were confirmed in the opossum 
and rat (Martin et al.,1981a; 1985) and in the cat 
(Holstege et al., 1979; Holstege, G. and Kuypers, 
1982; Fig. 45 left). Moreover, Holstege, G. and 
Kuypers (1982) demonstrated that the NRM and 
adjoining tegmentum project to the sacral inter
medial and intermediolateral cell column. Fur
thermore they showed that the rostral portion of 
the NRM and adjoining reticular formation does 
not project specifically to laminae I and V, but to 
all laminae of the dorsal horn. Another very 
important finding was that the NRP and its ad
joining reticular formation does not project to the 
dorsal hom of caudal medulla and spinal cord, but 
to all other parts of the spinal gray matter, i.e. the 
intermediate zone and the somatic and autonomic 
motoneuronal cell groups of the spinal cord (Fig. 
45 right) and to the motoneuronal cell groups V, 
VII, X and XI1 in the caudal brainstem (Holstege, 
J.C. and Kuypers, 1982 in the rat; Martin et al., 
1979a; 1981a in the opossum; Holstege et al., 
1979, Holstege, G. and Kuypers, 1982 in the cat). 
Such projections have also been shown in the 
monkey, (Holstege, unpublished observations, Fig. 
46). In the rat the projections to the somatic 
motoneurons have also been demonstrated at the 
ultrastructural level (Holstege J.C and Kuypers, 
1982, 1987). Further caudally, at the level of 
rostral pole of the hypoglossal nucleus, the medul
lary medial reticular formation projects mainly to 
the somatic motoneuronal cell groups, and to a 
lesser extent to the intermediate zone (Holstege, 
G. and Kuypers, 1982). Caudal NRM and rostral 
NRP also project to the thoracolumbar and sacral 
intermediolateral cell groups (IML), i.e. the auto
nomic (sympathetic and parasympathetic) pre
ganglionic motoneuronal cell groups (Fig. 45). The 
rostral NRM and adjacent reticular formation and 
the ventral part of the medullary medial reticular 
formation at the level of the rostral pole of the 
hypoglossal nucleus do not project to the IML. 
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Fig. 46. Darkfield photomicrograph of a section througb 
the lumbar spinal cord in the monkey, after injection 
of 3H-leucine in the ventral part of the medullary 
medial tegmental field. Note the diffuse projections to 
the motoneuronal cell groups. 

Summarizing, NRM, NRP and NRO, with their 
adjoining reticular formation, send fibers through
out the length of the spinal cord, giving off collat
erals to all spinal levels. These descending sys
tems are extremely diffuse and are not topographi
cally organized. Furthermore, a strong heteroge
neity exists in these projections, in which 1) the 
rostral NRM and adjoining reticular formation 
project to all parts of the dorsal hom; 2) the caudal 
NRM and adjoining reticular formation project 
mainly to laminae I and V and the autonomic 
motoneuronal cell groups; 3) the NRP, NRO and 
ventromedial medulla projects to the intermedi
ate zone and the ventral hom, including the auto
nomic and somatic motoneuronal cell groups and 
4) the ventral part of the medial reticular forma
tion at the level of rostral pole of the hypoglossal 
nucleus projects mainly to the somatic motoneu
ronal cell groups. 
Physiological studies are consistent with the anat
omy of the descending pathways outlined above. 

Fig. 45: On the left. 
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Electrical stimulation in the NRM inhibits neu
rons in the caudal spinal trigeminal nucleus (Hu 
and Sessle, 1979; Lovick and Wolstencroft, 1979; 
Sessle et al., 1981) and spinal dorsal hom (Engberg 
et al., 1968; Fields et al., 1977, Willis et al., 1977). 
More recently, stimulation in the NRM was found 
to produce an inhibitory postsynaptic potential 
(IPSP) in neurons in laminae I and ll of the dorsal 
hom at a latency consistent with a monosynaptic 
connection (Light et al., 1986). Not only NRM 
stimulation, but also stimulation in the adjacent 
ventral part of the caudal pontine and/or upper 
part of the medullary medial reticular formation 
produces inhibition of neurons in the dorsal hom 
(Fields et al., 1977; Akaike et al., 1978). 
The diffuse organization of NRP, NRO and ven
tromedial medulla projections to the motoneu
ronal cell groups suggests that they do not steer 
specific motor activities such as movements of 
distal (arm, hand or leg) or axial parts of the body, 
but have a more global effect on the level of 
activity of the motoneurons. Stimulation of the 
raphe nuclei has a facilitory effect on motoneu
rons (Cardona and Rudomin, 1983). There exist 
many different neurotransmitter substances in 
this area, of which serotonin the best known. 
Serotonin plays a role in the facilitation of mo
toneurons, probably directly by acting on the 
Ca2+ conductance or indirectly by reduction of K+ 
conductance of the membrane of the motoneuron 
(McCall and Aghajanian, 1979; White and Neu
man, 1980; VanderMaelen and Aghajanian, 1982; 
Hounsgaard et al., 1986). Thus serotonin en
hances the excitability of the motoneurons for 
inputs from other sources, such as red nucleus or 
motor cortex (McCall and Aghajanian, 1979). In 
mammals, there are many serotonergic fibers 
around the motoneurons (Steinbusch, 1981 and 
Kojima, 1983b in the rat, Kojima et al., 1982 in the 
do& Kojima, 1983a in the monkey). The cell 
bodies of these serotonergic fibers are mainly 
located in the NRP, and to a limited extent in the 
NRO, but not in the NRM (Alstermark et al., 

Brigbtfield photomicrographs of autoradiographs showing tritiated leucine injection sites in the raphe nuclei and 
darkfield photomicrographs showing the distributions of the labeled fibers in the spinal cord. On the left an 
injection is shown in the caudal NRM and adjoining reticular formation. Note that labeled fibers are distributed 
mainly to the dorsal hom (laminae I, the upper part of II and V), the intermediate zone and the autonomic 
motoneuronal ceil groups. On the right the injection is placed in the NRP and immediately adjoining 
tegmentum. Note that the labeled fibers are not distributed to the dorsal hom, but very strongly to the ventral 
hom (intermediate zone and autonomic and somatic motoneuronal cell groups, (from Holstege, G. and Kuypers, 
1982). 
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1987a). 
Not only serotonin, but, at least in the rat, several 
peptides are also present in the spinally projecting 
neurons in the ventromedial medulla and NRP 
and NRO. Many neurons contain substance P, 
thyrotropin releasing hormone (TRH), somato
statin, methionine (M-ENK) and leucine-enkeph
alin (L-ENK), while a relatively small number 
contains vasoactive intestinal peptide (VIP) and 
cholecystokinin (CCK). It has been demonstrated 
that most of these peptides coexist to a variable 
extent with serotonin in the same neuron (Chan 
Palay et al., 1978; Hokfelt et al., 1978; Hokfelt et 
al., 1979; Johansson et al., 1981; Hunt and Lovick, 
1982; Bowker et al., 1983; Mantyh and Hunt, 
1984; Taber-Pierce et aL 1985; Helke et al, 1986; 
Leger et al., 1986; Bowker et al., 1988). Johansson 
et al. (1981) have also demonstrated the coexis
tence of serotonin, substance P and TRH in one 
and the same neuron. This coexistence of sero
tonin with different peptides not only occurs in 
the neuronal cell bodies, but also in their termi
nals in the ventral horn, (Pelletier et al., 1981; 
Bowker, 1986; Wessendorf and Elde, 1987). Ac
cording to Hokfelt et al. (1984), at the ultrastruc
tural level, serotonin, substance P and TRH is 
stored in the terminal in dense core or granular 
vesicles, terminals with such vesicles are called 
G-type terminals (G=granular). Ulfhake et al., 
(1987) has recently shown that some of the G-type 
terminals lack synaptic specialization, suggesting 
that the content of dense core vesicles may be 

released at non-synaptic sites of the terminal 
membrane. 
it must be emphasized that a major portion of the 
diffuse descending pathways to the dorsal horn 
and the motoneuronal cell groups is not derived 
from serotonergic neurons (Bowker et al., 1982; 
Johannessen et al., 1984). At the light rnicroscopi
callevel, Holstege, G. and Kuypers, (1982) showed 
in the cat that the appearance of the labeling in the 
motoneuronal cell groups after tritiated leucine 
injections in the area of the ventral nucleus raphe 
pallidus, with more than 90% serotonergic neu
rons, or in the laterally adjacent medullary medial 
tegmentum, with almost no serotonergic neurons 
(Wiklund et al., 1981 ), was clearly different (Fig. 
47). This suggests that non-serotonergic neurons 
terminate differently in the motoneuronal cell 
groups than the fibers of the serotonergic neurons, 
which may or may not contain other peptides as 
welL Orie possible neurotransmitter is ace
tylcholine, since some of the neurons in the ven
tromedial medulla are ChAT positive (Jones and 
Beaudet, 1987). Another candidate is somato
statin, which is present in many of the neurons in 
especially the more caudal portions of the ven
tromedial medulla, and in some of the more dor
sally located giant cells in the medial tegmentum. 
Somatostatin containing neurons are not very 
numerous in the raphe nuclei (Taber-Pierce et aL 
1985) and coexists to a small extent with sero
tonin (Bowker et al. 1988). Electrophoresis of so
matostatin in the brain always produces an inhi-

Fig. 47. Briihtfield photomicrographs of autoradiographs in the somatic motoneuronal cell groups of the L7 
ventral hom in the cat after injections of 3H-leucine in the ventral part of the medullary medial tegmentum. On 
the left the injection was made at the level just rostral to the hypoglossal nucleus, not involving the raphe nuclei. 
Note the dominance of clusters of silver grains in the motoneuronal cell groups. On the right the injection was 
made in the NRP (see Fig. 45 right side). Note that the silver grains are located in strings and not in clusters. 
These distinct termination patterns probably represent differences in functions and/or neurotransmitter 
content. Bar represents 0.1 mm. (From Holstege, G. and Kuypers, 1982). 



bition of the neurons in the injection-site, which 
suggests a generalized inhibitory role for somato
statin in the cent.:al nervous system. Also GABA 
may play an important role in these non-seroton
ergic pathways. Holstege, J.C. (1989) in the rat 
showed that after injection of WGA-HRP in the 
ventromedial medulla, 40% of the labeled termi
nals in the L5-L6 lateral motoneuronal cell group 
were also labeled for GABA. Of the double labeled 
terminals "'80% contained flattened vesicles, 
indicating an inhibitory function (Krnjevic and 
Schwartz, 1966). Holstege, J.C. (1989) also found 
that "'10% of the labeled terminals containing 
GABA were of the so-called G-type, which proba
bly contain serotonin and/or peptides such as 
substance P, TRH or enkephalin-like substances 
(Pelletier et al., 1981; Holstege, J.C. and Kuypers, 
1987). This corresponds with the finding of Belin 
et al (1983) and Millhorn et al (1988), who dem
onstrated colocalization of serotonin and GABA 
in neurons in the ventral medulla in the rat. Thus, 
there exist spinally projecting neurons in the ven
tromedial medulla that contain serotonin as well 
as GABA. Nicoll ( 1988) has found that 5HT1A 
and GABA-B receptors are coupled to the same ion 
channeL The functional implication of these 
findings is that some terminals, taking part in this 
diffuse descending system, may have inhibitory 
as well as facilitatory effects on the postsynaptic 
element (i.e. the motoneuron), although the ma
jority is probably either facilitatory or inhibitory. 
Spinal motoneurons display a bistable behavior, 
i.e. they can switch back and forth to a higher 
excitable level (Hounsgaard et al., 1984; 1986; 
1988; Crone et al., 1988). Bistable behavior disap
pears after spinal transection, but reappears after 
subsequent intravenous injection of the serotonin 
precursor 5-hydroxy-tryptophan. Thus, intact de
scending pathways are essential for this bistable 
behavior of motoneurons and serotonin is one of 
the neurotransmitters involved in switching to a 
higher level of excitation. Possibly, GABA may be 
involved in switching to a lower level of excita
tion. 
In summary, the diffuse descending pathways 
originating in the ventromedial medulla, includ
ing the nucleus raphe pallidus and obscurus, have 
very general and diffuse facilitatory or inhibitory 
effects on motoneurons and probably also on in
terneurons in the intermediate zone. Although 
most of the terminals have either a facilitatory or· 
an inhibitory function, recent results suggest that 
there also exist terminals with both facilitatory 
and inhibitory functions 
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5b 2. Projections from the dorsolateral pontine 
tegmental field (A7 cell group). Retrograde HRP 
and anterograde autoradiographic tracing studies 
(Martin et al., 1979b in the opossum; Holstege, 
J.C. and Kuypers, 1982, 1987 in the rat; Holstege 
et al., 1979 and Holstege, G. and Kuypers, 1982 in 
the cat; Westlund and Coulter, 1980 in the mon
key) show that a large number of neurons in the 
locus coeruleus in the rat or the nucleus subcoer
uleus and ventral part of the parabrachial nuclei in 
the cat project diffusely to all parts of the spinal 
gray matter. The diffuse dorsolateral pontine 
projections to the somatic motoneurons have also 
been demonstrated at the E.M level (Holstege J.C. 
and Kuypers, 1987). In the brainstem some fibers 
terminate in the NRM and rostral NRP (Holstege, 
1988a; Fig. 48). Many neurons in the locus coer
ulcus, subcoeruleus and the parabrachial nuclei 
contain noradrenaline (Westlund and Coulter, 
1980; Jones and Friedman, 1983; Jones and Beaudet, 
1987) or acetylcholine (Kimura et al, 1981; Jones 
and Beaudet, 1987). Neurons containing both 
neurotransmitters have not been reported The 
diffuse projection from this area to the spinal cord 
is at least in part noradrenergic, since lesioning 
the dorsolateral pontine tegmental field, the 
number of noradrenergic terminals in the spinal 
gray matter was reduced by 25-50% in the dorsal 
horn and by 95% in the ventral horn (Nygren and 
Olson, 1977). In addition some serotonergic 
neurons are present in the dorsolateral pontine 
tegmental field (Wiklund et al., 1981), and they 
also project to the spinal cord (Lai and Barnes, 
1985). 
Electrical stimulation in the area of the locus 
coeruleusfsubcoeruleus in rat (Chan et al., 1986) 
and cat (Fung and Barnes, 1987) produces a de
crease in input resistance and a concurrent non
selective enhancement in motoneuron excitabil
ity, indicative of an overall facilitation of mo
toneurons. Furthermore there is evidence that in 
the rat noradrenergic fibers derived from the locus 
coeruleus and descending via the ventrolateral 
funiculus have an inhibitory effect on nociception 
(Jones and Gebhart, 1987). 
In conclusion, neurons in the area of locus coerul
eusfsubcoeruleus project diffusely to all parts of 
the spinal gray throughout the length of the spinal 
cord. They have an inhibitory effect on nocicep
tion and a facilitory effect on motoneurons, an in
fluence which is strikingly similar to that ob
tained after stimulation in NRM and NRP and 
their adjacent reticular formation. 
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Fig. 48. Schematic drawings of HRP-labeled neurons in mesencephalon and pons after injection of HRP in the 
NRM/NRP region. Note the dense distribution of labeled neurons in the PAG (except its dorsolateral part} and 
the tegmentum ventrolateral to it. Note also the distribution of labeled neurons in the area of the ventral 
parabrachial nuclei and the nucleus Koll.iker-Fuse (from Holstege, 1988a}. 

Sb 3. Projections from the pontine lateral tegmen
tmn (paralernniscal reticular formation). Accord
ing to retrograde HRP (Fig. 32) and fluorescent 
tracing studies (Martin et al. 1979b; Holstege and 
Kuypers 1982; Huisman et al., 1982) the pontine 
lateral tegmental field contains a cluster of neu
rons, which projects contralaterally throughout 
the length of the spinal cord with a high degree of 
collateraluauon. Anterograde autoradiographic 
tracing studies (Martin et al., 1979b; Holstege et 
al, 1979; Holstege G. and Kuypers, 1982; Carlton 
et al., 1985 and Tan and Holstege, 1986) revealed 
that fibers originating in this area cross just be
neath the floor of the fourth ventricle, and de
scend through the lateral reticular formation of 
caudal pons and medulla into the contralateral 
dorsolateral funiculus of the spinal cord (Fig. 27 
right). In the brainstem caudal to the obex, labeled 
fibers from the pontine lateral tegmental field 
were distributed to the marginal layer of the 
caudal spinal trigeminal nucleus and, at the level 

of C1-C2, a very strong bilateral projection was 
observed to the lateral cervical nucleus, a small 
group of cells lying just lateral to the dorsal hom 
of the C1-C2 spinal cord (Westman 1968). Labeled 
fibers were distributed throughout the length of 
the spinal cord to lamina I, the outer part of II, but 
the strongest projections were to the lateral parts 
of laminae V and VL Almost nothing is known 
about the function of this well defined contra
lateral pathway. The fact that it is contralateral, 
that it is located in the dorsolateral funiculus and 
that it terminates in laminae V and V suggest a 
motor function, similar tv the rubrospinal tract. 
On the other hand, the additional projections to 
laminae I and II and the lateral cervical nucleus 
and the fact that it is highly collateralized suggest 
a function in nocicep'.ion controL In this respect 
it may be noted that electrical stimulation in the 
paralemniscal cell group generated a powerful 
descending inhibitior. of nociception (Carstens et 
al., 1980), although it must be kept in mind that 



many descending fiber systems on their way to 

the NRM and adjacent tegmentum pass through 
the paralemniscd area. 

Sb 4. Projections from the rostral mesencepha
lon/caudal hypothalamus (All cell group). Skager
berg and Lindvall (1985) in the rat demonstrated 
that dopamine containing neurons in the All cell 
group projected throughout the length of the spi
nal cord. The All cell group is located in the 
border region of rostral mesencephalon and dorsal 
and posterior hypothalamus, extending dorsally 
along the paraventricular gray of the caudal thala
mus. Skagerberg and Lindvall (1985) were not able 
to determine in which specific parts of the spinal 
gray matter the All dopaminergic fibers termi
nated. Skagerberg et al. (1982) had demonstrated 
dopaminergic terminals in the intermediolatyeral 
cell column, but Yoshida and Tanaka (1988), us
ing anti-dopamine serum found dopamine-im
munoreactive fibers "throughout the whole gray 
matter at any level of the spinal cord". Final proof 
that these dopaminergic fibers originate exclu
sively in the All neurons is still lacking. How
ever, none of the other dopaminergic cell groups 
(AS to AlO and Al2 to Al4) project to the spinal 
cord (Skagerberg and Lindvall, 1985; see also 
Albanese et al. 1986), which strongly suggests that 
the All cell group is the only source of the 
doparninergic fibers in the spinal cord 
The distribution of the dopaminergic fibers in the 
spinal gray strongly resembles that of the norad
renergic fibers in the spinal cord, originating in 
the AS and A7 cell groups. Therefore the possibil
ity of labeling dopamine as a precursor of noradre
nalin must be kept in mind, (for discussion see 
Yoshida and Tanaka, 1988). Functionally there is 
also a resemblance between noradrenergic and 
doparninergic fiber projections to the spinal cord 
Infusion of dopamine in the spinal cord increases 
(sympathetic) motoneuron activity (Simon and 
Schramm, 1983) and has an inhibitory effect on 
noxious input to the spinal cord (Jensen and Smith, 
1982; Jensen and Yaksh, 1984). 

Sc. Projections from the mesencephalon 
to caudal brainstem and spinal cord 
In recent years specific information became avail
able about the anatomy and function of the de
scending projections of the mesencephalon in re-· 
lation to emotional behavior. Stimulation in the 
mesencephalon has been shown to result in pain 
inhibition, vocalization, aggressive behavior, blood 
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pressure changes, lordosis and locomotion. Many 
of the neurons involved in these functions are 
located in the PAG, but neurons in the mesenceph
alic tegmentum lateral and ventral to the PAG 
also play a role. 

Sc L Descending projections to the NRM, NRP 
and ventral part of the caudal pontine and medul
lary medial tegmentum 
Retrograde HRP tracing studies (Abols and Bas
baum, 1981; Holstege, 1988a) indicate that an 
enormous number of HRP labeled neurons in the 
P AG and laterally and ventrolaterally adjoining 
areas project to NRM, NRP and ventral part of the 
caudal pontine and medullary medial tegmentum 
(Fig. 48). Anterograde (autoradiographic) tracing 
studies (Jiirgens and Pratt, 1979; Mantyh, 1983; 
Holstege, 1988a; Fig. 49) show that different parts 
of the PAG and adjacent tegmentum project in the 
same basic pattern to the caudal brainstem. The 
descending mesencephalic fibers pass ipsilater
ally through the mesencephalic and pontine lat
eral tegmental field, but gradually shift ventrally 
and medially at caudal pontine levels. They 
terminate mainly ipsilaterally in the ventral part 
of the caudal pontine and medullary medial re
ticular formation and in the NRM (Fig. 49). On 
their way to the medulla they give off fibers to the 
area of the locus coeruleus and nucleus subcoerul
eus and the paralemniscal cell group. Neurons in 
the ventrolateral portion of the caudal P AG and 
the ventrally adjoining mesencephalic tegmen
tum send fibers to the NRP (Fig. 49 left). There 
exists a mediolateral organization within the 
descending mesencephalic pathways. The main 
projection of the medially located neurons, i.e. 
neurons in the medial part of the dorsal PAG, is to 
the medially located NRM and immediately adja
cent tegmentum. On the other hand, neurons in 
the lateral P AG, the laterally adjacent tegmentum 
and the intermediate and deep layers of the supe
rior colliculus project mainly laterally to the 
ventral part of the caudal pontine and upper 
medullary medial tegmentum with virtually no 
projections to the NRM (Holstege, 1988a). Figure 
50 from Cowie and Holstege, ( 1990) is a schematic 
diagram, showing this mediolateral organization 
in the descending pathways from the dorsal 
mesencephalon. 

Scl a. Involvement of the descending mesenceph
alic projections in control of nociception 
In animals (see Besson and Chaouch, 1987 and 
Willis, 1988 for reviews) as well as in humans 
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Fig. 49. Darkfield photomicrographs of the brainstem in the cases 1434 and 1338 with injections in respectively 
the ventrolateral PAC and more rostrally in the lateral PAC. Note the strong projections to the NRM and the 
ventral part of the medial tegmentum of caudal pons and medulla in both cases. Note that in case 1434, but not 
in case 1338 labeled fibers were also distributed to the NRP (from Holstege, 1988a). 
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Fig. 50. Schematic representation of the ipsilateral descending pathway, originating from the intermediate and 
deep layers of the superior colliculus and dorsal PAC. The mediolateral ozganization of this descending system 
is illustrated. The lateral (gray) component projects ·to the lateral aspects of the ventral part of the medial 
tegmentum of caudal pons and medulla oblongata. The medial (black) component projects to the medial aspects 
of the medial tegmentum, including the NRM. A similar mediolateral ozganization exists for the descending 
pathways originating in more ventral part of the mesencephalic tegmentum, (from Cowie and Holstege, 1990}. 
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(Hosobuchi, 1988; Meyerson, 1988) the PAG is 
well known for its involvement in the supraspinal 
control of nociception. The strong impact on 
nociception is partly mediated via its projections 
to the NRM and adjacent reticular formation, 
because in cases with reversible blocks of the 
NRM and adjacent tegmentum, PAG stimulation 
results in reduced analgesic effects (Gebhart et al., 
1983; Sandkuhler and Gebhart, 1984). However, 
the analgesic effects do not completely disappear 
after blocking the NRM and adjacent tegmentum, 
which suggests that other brainstem regions also 
play a role. In this respect the PAG projections to 
the paralemniscal cell group are of interest, since 
part of the antinociceptive action of the P AG may 
be exerted through this pathway (see section 5 b 3). 

5c1 b. Involvement of the descending mesenceph
alic projections in the lordosis reflex 
Stimulation in the P AG also facilitates the lordo
sis reflex (Sakuma and Ffaff, 19.79a,b). Lordosis, 
a curvature of the vertebral column with ventral 
convexity, is an essential element of female copu
latory behavior in rodents. The lordosis reflex is 
facilitated by stimulation of the ventromedial 
hypothalamic nucleus (Ffaff and Sakuma, 1979a,b) 
and the PAG (Sakuma and pfaff, 1979a,b). Stimu
lation of the Ll through S1 derrnatomes is suffi
cient for eliciting the lordosis reflex, but several 
studies suggested that it was oestrogen depend
ent, ie. would only occur when copulation can 
result in fertilization. This led to the concept that 
the lordosis reflex cannot be produced in the 
absence of facilatory forebrain influences. How
ever, it was recently demonstrated that the lordo
sis reflex can also be elicited in decerebrate rats 
(Rose and Flynn, 1989). It is also known that 
descending fibers in the ventrolateral funiculus 
play a role in the facilitation of the reflex (Kow et 
al., 1977)_ It is not possible that these fibers 
originate from neurons in the ventromedial hy
pothalamic nucleus or the PAG, because none of 
the two structures projects directly to the lum
bosacral spinal cord (Holstege, 1987b; Holstege, 
1988a). 
Perhaps, the lordosis reflex should be considered 
as a spinal reflex, in which the Ll-S1 cutaneous 
input from flank, rump, tailbase and perineum 
serves as the afferent loop, and the fibers of the 
back and axial muscle motoneurons form the 
efferent loop_ Both loops are interconnected by 
spinal interneurons and short and long propriospi
nal pathways. Neurons in the dorsal two thirds of 
the pontine and upper medullary medial tegmen-

tum may coordinate the back and axial muscle 
inter- and motoneuronal activity via their de
scending pathways through the ventral funiculus 
of the spinal cord (see section 4 a 1). These 
neurons receive afferents from the P AG, although 
their number is much lower than the P AG fibers 
terminating in the ventral parts of the medial 
tegmentum (Fig. 49). However, lordosis behavi
our occurs only when the membrane excitability 
of the motoneurons is high. This level of excita
bility is determined by descending pathways, 
which originate in the ventral part of the medul
lary medial tegmentum and project diffusely to all 
inter- and motoneuronal cell groups in the ventral 
hom throughout the length of the spinal cord 
(section 5 b 1). The ventral part of the medial 
tegmental field receives its afferents from P AG 
and anteromedial hypothalamus, but not from the 
ventromedial hypothalamic nucleus (see Fig. 54). 
Thus, a concept is put forward in which the ven
tromedial hypothalamic nucleus controls the lor
dosis reflex by means of its projections to the 
dorsal and ventral parts of the caudal pontine and 
medullary medial tegmentum, using the anter
omedial hypothalamus and the P AG as relay struc
tures. Neurons in the dorsal two thirds of the 
medial tegmentum coordinate the back and axial 
muscle motoneuronal activity while the medul
lary ventromedial tegmentum increases the ex
citability of the motoneurons to such a level that 
cutaneous Ll-S1 afferent stimulation, which is 
otherwise ineffective, results in lordosis. Actu
ally, during oestrus the female rat shows several 
forms of stressful behavior, characterized by fre
quent locomotion and other stress like phenom
ena (Ffaff, 1980). It is well known in mammals 
that various forms of stress, whether it is aggres
sion, fear or sexual arousal, set the motor system 
at a "high" leveL In such circumstances spinal 
reflexes such as the lordosis reflex can easily be 
elicited. Ffaff ( 1980) points to the lateral vestibu
lospinal tract to play an important role in lordosis 
behavior, although the lateral vestibular nucleus 
does not receive afferents from the hypothalamus 
or P AG. Lesions in the lateral vestibular nucleus 
led to decreases in lordosis (Modianos and Ffaff, 
1979). In this respect it should be recalled that the 
lateral vestibulospinal tract has an important 
influence on all axial movements, thus including 
the lordosis movements. The question remains 
whether the lateral vestibular nucleus is specifi
cally involved in lordosis behavior. 



5cl c. Involvement of the descending mesenceph
alic projections in locomotion 
Just lateral to the brachium coniunctivum, just 
ventral to the cuneiform nucleus and just rostral 
to the parabrachial nuclei is located the so-called 
pedunculopontine nucleus. The area contains 
many ChAT positive neurons (Jones and Beaudet, 
1987). Stimulation in the pedunculopontine 
nucleus induces locomotion in cats (Shik et al., 
1966), which is the reason that this area is also 
termed the mesencephalic locomotor region 
(MLR). The MLR not only comprises the pedun
culopontine nucleus, but extends into the cunei
form nucleus, which is located just dorsal to the 
pedunculopontine nucleus. Garcia Rill and Skin
ner, (1988) found that during locomotion neurons 
in the cuneiform nucleus were related preferen
tially to rhythmic (bursting) activity, while neu
rons in the pedunculopontine nucleus are prefer
entially related to the onset or termination of 
cyclic episodes (on/ off cells). 
Anatomical studies (Moon Edley and Graybiel, 
1983; Holstege, unpublished results) revealed that 
the descending projections from this area are or
ganized similar to those from the P AG and adja
cent tegmentum. The mainly ipsilateral fiber
stream first descends laterally in the mesencepha
lon and upper pons. and then gradually shifts 
medially to terminate bilaterally, but mainly 
ipsilaterally in the ventral part of the caudal pontine 
and medullary medial tegmental field (see also 
Garcia Rill and Skinner, 1987b). Only sparse 
projections exist to the nucleus raphe magnus and 
almost none to the dorsal portions of the caudal 
pontine and medullary medial tegmentum. By 
means of low-amplitude (<70 J.IA.), high frequency 
(5-60 Hz) stimulation or via injection of choliner
gic agonists in this same area, Garcia Rill and 
Skinner (1987a) were able to elicit locomotion in 
the ventral portion of the caudal pontine and 
medullary medial tegmentum. They also demon
strated that the locomotion in the medioventral 
medulla could control or override the stepping 
frequency induced by the mesencephalic locomo
tor region. Moreover, Garcia Rill an.d Skinner, 
(1987b) reported that =;35% of the cells in this area 
project through the ventrolateral funiculus of the 
C2 spinal cord and half of these cells received 
short latency orthodromic input from the 
mesencephalic locomotor region. Somewhat 
surprising was that they also found such cells as· 
far rostral as the caudal pontine ventral tegmen
tum. The latter area, according to the anatomic 
findings, only projects to the dorsal hom via the 
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dorsolateral funiculus and not to the intermediate 
zone or ventral hom via the ventrolateral funicu
lus. Nevertheless, the findings of Garcia Rill and 
Skinner, (1987a,b) indicate that locomotion, elic
ited in the mesencephalic locomotor region, is 
based on the projections from this area to the 
medial part of the ventral medullary medial teg
mentum and on the diffuse projections from the 
latter area to the rhythm generators in the spinal 
cord. 
The afferent connections of the mesencephalic 
locomotor area are derived from lateral parts of 
the limbic system, such as the bed nucleus of the 
stria terrninalis, central nucleus of the amygdala 
and lateral hypothalamus (Moon Edley and Gray
biel, 1983). Strong projections are also derived 
from the entopeduncular nucleus, subthalamic 
nucleus and the substantia nigra pars reticulata, 
but motor cortex projections to the MLR are very 
scarce (Moon Edley and Graybiel, 1983). These 
findings indicate that the MLR is influenced by 
extrapyramidal and lateral limbic structures, and 
virtually not by somatic motor structures. This 
corresponds with the fact that the descending 
projections from the MLR terminate in the ven
tromedial part of the caudal pontine and medul
lary tegmental field, which area receives afferents 
from many other limbic system related areas, but 
not from the somatic motor structures. 
Another area, stimulation of which produces lo
comotion is the so-called subthalamic locomotor 
region, which seems to correspond with the cau
dal hypothalamus (see Armstrong, 1986 and Gel
fand et al., 1988 for reviews). After bilateral 
lesions in the subthalamic locomotor region the 
cat cannot walk spontaneously for 7-10 days, and 
neither food nor nociceptive stimuli evoke loco
motion, although the animal eats food which it 
can reach without making a step or responds by 
aggression to pain. Stimulation of the MLR dur
ing this period elicits locomotion. The animal 
walks or runs depending on the strength of stimu
lation without bumping the walls of the room. 
Lesioning the MLR, with an intact subthalamic 
locomotor region does not interfere essentially 
with motor activity (Sirota and Shik, 1973). In this 
respect it is important to note that the subtha
lamic locomotor region (caudal hypothalamus) 
not only projects to the MLR but also directly to 
the ventral part of the caudal pontine and medul
lary medial tegmental field (see section 5 d 3). 
The last region in which locomotion can be elic
ited is the so called pontomedullary locomotor 
strip, located in the lateral tegmental field of pons 
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and medulla. This non-continuous tract consists 
of mainly short propriobulbar axons (Shik, 1983) 
and probably must be considered as the rostral 
extent of the spinal interneurons involved in step
ping (see section 2 d). 

Sc 2. PAG projections to the ventrolateral me
dulla; involvement in blood pressure control 
In section 3 c it has been shown that neurons in 
the rostral part of the ventrolateral tegmental field 
of the medulla (subretrofacial nucleus) are essen
tial for the maintenance of the vasomotor tone 
and reflex regulation of the systemic arterial 
blood pressure. Neurons in the rostral part of the 
subretrofacial nucleus project specifically to the 
IML neurons, innervating the kidney and adrenal 
medulla, while neurons in the caudal part of it 
innervate more caudal parts of the IML, with 
neurons innervating the hindlimb (Lovick, 1987; 
Dampney and McAllen, 1988). In a recent study 
Canive et al (1989) have been shown that neurons 
in the dorsal portions of the caudal half of the P AG 
have an excitatory effect on the neurons in the 
subretrofacial nucleus (increase of blood pres
sure), while neurons in the ventral part of the 
PAG have an inhibitory effect (decrease of blood 
pressure). The same authors have also shown that 
neurons in the subtentorial portion of the P AG 
project to the rostral part of the subretrofacial 
nucleus, which neurons send fibers to the IML 
motoneurons that innervate the kidney and adre
nal medulla. On the other ha:ri.d, neurons in the 
caudal part of the pretentorial PAG project to the 

caudal subretrofacial nucleus, which in tum proj
ect to IML motoneurons innervating the hin
dlimb. In conclusion, there exists a precise or
ganization in the mesencephalic control of blood 
pressure in different parts of the body. All these 
projections take part in a descending system in
volved in the elaboration of emotional motor 
activities. For an extensive review of this control 
system, see Richard Bandler et al., (1990). 

Sc 3. P AG projections to the nucleus retroam
biguus; involvement in vocalization 
In many different species, from leopard frog to 
chimpanzee (see Holstege, G., 1989 for review), 
stimulation in the caudal P AG results in vocaliza
tion, ie. the nonverbal production of sound. In 
humans laughing and crying are probably ex
amples of vocalization (see section Sa). Holstege, 
G. (1989) has demonstrated that a specific group 
of neurons in the lateral and to a limited extent in 
the dorsal part of the caudal P AG send fibers to the 
NRA in the caudal medulla (Fig. 51). The cell 
group in the P AG differs from the smaller cells 
projecting to the raphe nuclei and adjacent teg
mentum or the larger cells projecting to the spinal 
cord. The NRA in tum projects to the somatic 
motoneurons innervating the pharynx, soft pal
ate, intercostal and abdominal muscles and proba
bly the larynx (see section 3 a 3-4; Fig. 52). Direct 
P AG projections to these somatic motoneurons 
do not exist (Holstege, 1989). In all likelihood, the 
projection from the PAG to the NRA forms the 
final common pathway for vocalization, because 

Fig. 51. Darkfield photographs of the caudal medulla in a cat (1434, see also fig. 48 left) with an iniection of 3H
leucine in the ventrolateral part of the caudal PAC. Note the strong bilateral proiections to the NRA, (ftom 
Holstege, G., 1989). 
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Fig. 52. Schematic representation of the pathways for 
vocalization from the limbic sysrem to the vocaliza
tion muscles, (from Holstege, G., 1989). 

DeRosier et al., (1988) found that during vocaliza
tion the NRA neurons were more closely related 
to the vocalization muscle EMG than the P AG. 
This finding is important, because it shows that a 
specific expressive motor activity (fixed action 
pattern) such as vocalization is based on a distinct 
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descending pathway, suggesting that all the other 
specific motor activities displayed during expres
sive behavior are based on separate descending 
pathways. 

Sc 4. PAG projections to the spinal cord 
Only limited P AG projections to the spinal cord 
exist (Fig. 32 1-N). Some neurons in the lateral 
P AG and laterally adjacent tegmentum send fi
bers through the ipsilateral ventral funiculus of 
the cervical spinal cord to terminate in laminae 
VIII and the adjoining part of vn (Martin et al., 
1979c; Holstege, 1988a,b; see section 4 a 2 c). A 
very few fibers descend ipsilaterally in the lateral 
funiculus to terminate in the Tl-T2 1ML (Hol
stege, 1988a,b). The projections to the spinal cord 
may play a role in the defensive behavior observed 
by Bandler and Carrive (1988), stimulating the 
P AG. For example, the projection to the medial 
part of the intermediate zone of the cervical cord 
may be involved in the contralateral head turning 
movements as part of defensive behavior, while 
the projection to the Tl-T21ML may produce the 
pupil dilation described by Bandler and Carrive 
(1988). 
Figure 53 gives a schematic overview of the de
scending projections from the P AG and peduncu
lopontinepontine and cuneiform nuclei to the 
caudal brainstem and spinal cord, including the 
functions in which these projections might be in
volved. 
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Fig. 53. Schematic overview of the descending projections from the FAG and pedunculopontine and cuneiform 
nuclei to different regions of the caudal brainstem and spinal cord. The functions in which each of the projections 
might be involved are also indicated. It should be emphasized that these functional interpretations are only 
tentative. 
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Left NRM-injection 
Right, Cz-injection 

Fig. 54. Schematic drawing of HRP neurons in the hypothalamus, amygdala and bed nucleus of the stria 
terminalis. On the left the pattem of distribution of labeled neurons in after a large iniection of HRP in the NRM, 
rostral NRP and adioining tegmentum is indicated. On the right the pattem of distribution of HRP-labeled 
neurons after hemi-infiltration of HRP in the C2 spinal segment is shown. (From Holstege, 1987b). 

Sd. Projections from the hyPothalamus 
to caudal brainstem and spmal cord 
The descending hypothalamic projection systems 
differ greatly, depending on which part of the 
hypothalamus is considered. In this section the 
hypothalamus will be subdivided into the ante
rior hypothalamus, the paraventricular hypotha
lamic nucleus, the posterior hypothalamus and 
the lateral hypothalamus. 

Sd 1. Projections from the anterior hypothala
mus/preoptic area. According to retrograde HRP 
studies in the rat, opossum, and cat (Kuypers and 

Maisky, 1975; Saper et al., 1976; Crutcher et al., 
1978; Basbaum et al., 1978 and Holstege, l987b) 
neurons in the anterior hypothalamus/preoptic 
area project strongly to the caudal brainstem, but 
not to the spinal cord (Fig. 54). Neurons in the 
medial part of the anterior hypothalamus project 
(via a medial fiber stream, see large arrows in Fig. 
55) to the PAC, the dorsal and superior central 
raphe nuclei in the pontine tegmentum, and to the 
ventromedial tegmentum of caudal pons and 
medulla, including the NRM and NRP (Figs. 55 
and 56B). 
The anterior hypothalamus receives afferent fiber 



connections from caudal brainstem structures 
such as the lateral parabrachial nucleus, the soli
tary nucleus, and neurons in the ventrolateral 
medulla (Berk and Finkelstein, 1981; Saper and 
Levisohn, 1983), which suggests that it is involved 
in cardiovascular regulation. Moreover, applica
tion of cholinergic drugs in the anterior hypo
thalamus results in an emotional aversive re
sponse, which includes defense posture and auto
nomic (e.g., cardiovascular) manifestations 
(Brudzynski and Eckersdorf, 1984; Tashiro et al., 
1985). 

Sd 2. Projections from the paraventricular hy
pothalamic nucleus (PVN). Using the retrograde 
HRP method in the cat, Kuypers and Maisky 
(1975) were the first to demonstrate PVN projec
tions to the spinal cord {Fig. 54). Their findings 
were later confirmed by Hancock (1976) in the rat, 
Crutcher et al. (1978) in the opossum, Blessing and 
Chalmers (1979) in the rabbit, Holstege (1987b) in 
the cat, and Kneisley et al. (1978) in the monkey. 
The PVN is best known for its projections to the 
hypophysis, but Hosoya and Matsushita (1979) 
and Swanson and Kuypers (1980) have shown that 
the neurons projecting to the hypophysis differ 
from the ones projecting to the spinal cord. Ac
cording to Holstege (1987b), the PVN neurons in 
the cat send their fibers to the caudal brainstem 
and spinal cord via the medial forebrain bundle 
and more caudally via a well defined pathway 
through the lateral part of the mesencephalon and 
upper pons. At this level they gradually shift 
medially, filtering through (but not terminating 
in) the pontine nuclei, to arrive in a very periph
eral position lateral to the pyramidal tract (Fig. 
58). The PVN fibers descend further into the 
lateral and dorsolateral funiculus of the spinal 
cord throughout its total length {Fig. 57). Via this 
pathway the PVN sends fibers to the NRM , rostral 
NRP and adjoining reticular formation (Figs. 58 
and 56D), and specific parts of the medullary 
lateral tegmental field (Holstege, 1987b; Fig. 58 D
I). In this area lie parasympathetic motoneurons 
(see section 1 d) and the noradrenergic brainstem 
nuclei A1 and A2. Specific projections have been 
demonstrated to the nor-adrenergic AS area and to 
the parasympathetic motoneurons in the saliva
tory nuclei, (Hosoya et al. 1990). Furthermore, 
PVN fibers terminate in mainly the rostral half of 
the solitary nucleus (Figs. 58 E-G), in all parts of" 
the dorsal vagal nucleus (Swanson and Kuypers, 
1980 in the rat; Berk and Finkelstein, 1983 in the 
pigeon and Holstege, 1987b in the cat; Fig. SSG), 
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and in the area postrema (Hosoya and Matsushita, 
1981 in the rat; Holstege, 1987b in the cat; Fig. 
58H). 
According to the autoradiographic tracing find
ings of Holstege (1987b; Fig. 57), in the spinal cord 
the PVN projects bilaterally, but mainly ipsilater
ally, to lamina X next to the central canal, the tho
racolumbar (Tl-14) intermediolateral (sympa
thetic) motoneuronal cell group, and to the sacral 
intermediomedial and intermediolateral (parasym
pathetic) motoneuronal cell groups. The projec
tions to the sympathetic intermediolateral cell 
column at the levels 12, L3 and upper L4 are 
especially strong and extensive. Finally, the PVN 
projects to the nucleus of Onuf (Holstege, 1987b; 
Holstege wd Tan, 1987). One might speculate, in 
view of the strong PVN projections to the L2-L4 
intermediolateral sympathetic motoneurons, the 
sacral intermediolateral parasympathetic mo
toneurons and the nucleus of Onuf (Fig. 57 bottom 
left), that the PVN might play a role in sexual 
activity and/or control of the uterus contractions 
in pregnant women (see Holstege and Tan, 1987 
for a review). On the other hand, the PVN projects 
to all preganglionic motoneurons (sympathetic 
and parasympathetic), which suggests a more 
general function, for example a similar function as 
the hormone ACTH. According to Strack et al 
1989, the PVN neurons projecting to the upper 
thoracic IML are located more medially in the 
PVN than the neurons projecting to the caudal 
thoracic and upper lumbar IML, which suggests 
that there exist some specificity within the PVN 
spinal pathways (see also Loewy, this volume). 
The PVN sends its fibers to lamina I of the caudal 
spinal trigeminal nucleus and throughout the 
length of the spinal cord (Holstege, 1987b, Fig. 57). 
This, together with the fact that stimulation in 
the area of the PVN produces inhibition of spinal 
dorsal hom neuronal responses to noxious skin 
heating (Carstens, 1982), suggests a role of the 
PVN in nociception control mechanisms. 
The PVN contains a large number of transmitter 
substances such as oxytocin, vasopressin, soma
tostatin, dopamine, methionine-enkephalin, leuc
ine-enkephalin, neurotensin, cholecystokinin, 
dynorphin, substance P, glucogen, renin, and cor
ticotropin releasing factor (see Swanson and Sawch
enko, 1983 for a review). Swanson (1977) and 
Nilaver et al. (1980) traced a pathway containing 
neurophysin (a carrier protein for oxytocin and 
vasopressin) from the PVN through the MFB to 
the caudal brainstem and spinal cord, distributing 
fibers to the parabrachial nuclei, the nucleus of 
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Fig. 55. Darkfield photomicrographs of the brainstem in a case with a 3H-leucine injection in the medial part 
of the anterior hypothalamic area. Note the strong projections, via a medial fiberstream (see large arrows in B 
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to F) to the medially located NRM/NRP and to the ventral part of the caudal pontine and upper medullary medial 
tegmentum. Note also that only the most rostral part of the NRP receives labeled fibers. (From Holstege, 1987b). 
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Fig. 56. Darkfield photomicrographs of the NR.M, rostral NRP and adjoining tegmental field at the level of the 
facial nuclws in 8 cases with injections in the lateral hypothalamic area {A, C and E), the medial part of the 
anterior hypothalamic area (B), the PVN of the hypothalamus (D), the medial part of the caudal hypothalamus 
{F), the central nuclws of the amygdala {G) and bed nucleus of the stria terminalis (H). Note the relative small 
number of labeled fibers in the NRM/NRP after lateral injections in the limbic system {A, E, G and H) and the 
strong projections to the NRM/NRP after medial injections in the limbic system (B, D and F). The injection in 
C involved the lateral hypothalamus but extended into the medial hypothalamus, which explains the labeled 
fibers in NR.M/NRP in this case. Bar represents 2 mm. (From Holstege, 1987b}. 



the solitary tract, the dorsal vagal nucleus and the 
thoracic intermediolateral cell column and Rexed's 
laminae I and X. Similar oxytocmergic brainstem 
projections were found by Hermes et al. (1988) in 
the garden dormouse, but they also reported 
oxytocinergic fibers terminating in the nuclei 
raphe magnus, pallidus and obscurus. Further
more, Holstege and Van Leeuwen in the cat 
-(unpublished observations) observed oxytociner
gic and vasopressinergic fibers in the nucleus of 
Onuf and the sacral intermediolateral (parasym
pathetic) cell group. Oxytocin and vasopressin in 
the spinal cord are only derived from the PVN 
(Hawthorn et al., 1985), but according to Sawch
enko and Swanson (1982) only 20% of the PVN
spinal neurons contain oxytocin or vasopressin 
and another 5% contain tyrosine hydroxylase 
(presumably dopamine) and met-enkephalin. 
Therefore, other neuro-active substances must be 
involved in this PVN-caudal brainstem/spinal 
pathway. 
The PVN is believed to play an important role in 
cardiovascular regulation as well as in the feeding 
mechanism. Feeding behavior in satiated rats can 
be· elicited by injecting clonidine (a noradrenergic 
agonist) intraperitoneally or in the PVN itself 
(McCabe et al., 1984). The neural circuitry for this 
feeding system is believed to start in the norad
renergic neurons of the locus coeruleus (A6 nu
cleus) that project to the PVN by way of the dorsal 
pons and dorsal midbrain (Leibowitz and Brown, 
1980). The PVN neurons in turn iunervate neu
rons in the dorsal vagal nucleus, which play a 
crucial role in the noradrenaline-elicited eating 
response (Sawchenko et al., 1981). 

Sd 3. Projections from the medial part of the 
posterior hypothalamic area_ Retrograde tracing 
studies have demonstrated that the posterior 
hypothalamus projects to the spinal cord (Kuypers 
and Maisky, 1975 and Holstege, 1987b in the cat; 
Fig. 54; Saper et al., 1976; Hancock, 1976 and 
Hosoya, 1980, in the rat) as well as to the NRM and 
NRP (Holstege, 1987b). Anterograde autoradi
ographic tracing studies have revealed that the 
posterior hypothalamic area sends fibers via a 
medial pathway to the caudal raphe nuclei and 
adjoining reticular formation (Hosoya, 1985; 
Holstege, 1987b). The caudal hypothalamic pro
jections to the NRM are weaker and those to the 
NRP are much stronger than the PVN projections 
to this area (compare figs. 56D (=PVN) and 56F (= 
caudal hypothalamus). The posterior hypothala
mus also projects to the caudal parts of the NRP, 
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which region does not receive afferents from the 
PVN or other hypothalamic areas (Holstege, 
1987b). 
The medial part of the posterior hypothalamus 
sends fibers into the lateral funiculus of the spinal 
cord, where they terminate in the upper thoracic 
intermediolateral cell column and in lamina X 
throughout the length of the spinal cord (Hol
stege, 1987b). There seems to exist a rostrocaudal 
organization in the medial hypothalamic projec
tions to the raphe nuclei and spinal cord, in which 
the rostral portion of the hypothalamus projects 
to the rostral parts of the raphe nuclei (i.e. the 
NRM and the rostral NRP), while the caudal 
hypothalamus projects to all parts of the NRP and 
to the spinal cord. Functionally, such differences 
in projections may be important, because NRM 
and NRP project to different parts of the spinal 
gray. 
The dorsomedial region of the caudal hypothala
mus plays an important role in temperature regu
lation, and it contains the primary motor center 
for the production of shivering (Stuart et al. 1961). 
Shivering is an involuntary response of skeletal 
muscles which are usually under voluntary con
trol and all skeletal muscle groups can participate 
(Hemingway 1963). Shivering does not take place 
in spinalized animals, indicating that supraspinal 
mechanisms, i.e. the caudal hypothalamus con
trol this activity. On the other hand, the rhythm 
of the shiver is probably determined in the spinal 
cord under the control of the proprioceptive in
flow (Birzis and Hemingway, 1957). Possibly the 
strong caudal hypothalamic projections to the 
NRP and adjacent tegmentum plays an important 
role in this "shivering pathway", similar to its 
role in the descending pathways involved in loco
motion, which is also a rhythmical activity. 

Sd 4. Projections from the lateral hypothalamic 
area_ Functional and anatomical studies on the 
lateral hypothalamus have always been difficult, 
because the fibers of the medial forebrain bundle 
pass through it. This important fiber bundle not 
only contains fibers originating in the lateral hypo
thalamus, but also in many other areas, and stimu
lation or lesions in this area not only affect lateral 
hypothalamic neurons, but also fibers derived 
from many other limbic structures (cf. 
Nieuwenhuys et al., 1982 for a review). Retro
grade HRP studies (Saper et al., 1976; Hosoya, 
1980 and Holstege, 1987b) reveal that many neu
rons in the more caudal portions of the lateral 
hypothalamus project to the spinal cord. Autora-
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Fig. 57. Darkfield pbatomicrographs of 9 brainstem sections of a cat witb an injection of 3H-leucine in tbe area 
of tbe PVN of tbe bypotbalamus. Note tbe distinct descending patbway in tbe area next to tbe pyramidal tract 
and its fiber distribution to tbe NRM/NRP, dorsal vagal nucleus, area postrema and rostral solitary complex. 
(From Holstege, 1987b). 
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Fig. 58. Darkfield photomicrographs of the spinal cord of the same cat as illustrated in fig. 57, with a 3H-leucine 
iniection in the area of the PVN of the hypothalamus. Note the proiection to lamina I {C8, 72 and L7), the 
sympathetic intermediolateral cell grdup {12, L2, L3 and JA), the nucleus of Onuf {S1) and the parasympathetic 
intermediomedial and intermediolateral cell group {S2). The arrows in L3 probably indicate proiections to distal 
dendrites of the motoneurons located in the sympathetic intermediolateral cell group. {From Holstege, 1987b). 
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diographic tracing studies (Berk, 1987 in the pi
geon; Hosoya and Matsushita, 1981 and Berk and 
Finkelstein, 1982 in the rat; Holstege, 1987b in 
the cat), which do not label fibers of passage (Lasek 
et al., 1968; Cowan et al., 1972), show that the 
lateral hypothalamus sends fibers to the P AG, the 
cuneiform nucleus, the parabrachial nuclei and 
nucleus Kolliker-Fuse, the nucleus subcoeruleus, 
the locus coeruleus, the caudal pontine and me
dullary lateral tegmental field, (as defined by 
Holstege et al., 1977, see section 2 d), and to the 
ventral part of the caudal pontine and medullary 
medial tegmentum. Only very few fibers termi
nate in the area of the NRM and none in the NRP 
(Fig. 56 A and E). Some fibers terminate in the 
periphery of the dorsal vagal nucleus and in the 
rostral half of the solitary nucleus. The rostral 
portion of the lateral hypothalamus also projects 
strongly to the area just ventral and medial to the 
mesencephalic trigeminal tract, probably repre
senting Barrington's (1925) nucleus or the M
region of Holstege et al. (1986c). This last area is 
strongly involved in micturition control (section 
3 b), and an anterior hypothalamic projection to it 
corresponds with the observation of Grossman 
and Wang (1956) that stimulation of the preoptic 
area, which, according to Bleier (1961) is the same 
as the anterior part of the anterior hypothalamic 
area, produces micturition-like bladder contrac
tions. Only the caudal portion of the lateral 
hypothalamus sends fibers throughout the length 
of the spinal cord via the lateral and dorsolateral 
funiculi to the intermediate zone, lamina X and 
the thoracolumbar sympathetic intermediolateral 
cell column. Kohler et al. (1984) have demon
strated that at least part of the lateral hypotha
lamo-spinal neurons contain o:MSH, and that some 
of the spinally projecting cells also send fibers to 
the hippocampus. 
The lateral hypothalamic projection to the caudal 
pontine and medullary lateral tegmental field and 
to the intermediate zone throughout the length of 
the spinal cord is interesting, since the caudal 
brainstem lateral tegmentum can be considered 
as the rostral continuation of the spinal interme
diate zone (see section 2 d). No direct lateral hy
pothalamic projections exist to the oculomotor, 
trochlear, trigeminal, abducens, facial and hypo
glossal nerve motor nuclei, nor to the retractor 
bulbi motoneuronal cell group, dorsal group of the 
nucleus ambiguus or the interneurons in the 
nucleus retroambiguus. On the other hand, the 
many parasympathetic motoneurons located in 
the caudal brainstem lateral tegmentum, such as 

those innervating the salivatory glands (Hosoya et 
al., 1983), receive lateral hypothalamic afferents. 
In summary, the lateral hypothalamus has direct 
access to autonomic motoneurons in brainstem 
and spinal cord, and indirect access, via premotor 
intemeurons, to the somatic motoneurons of brain
stem and spinal cord 
Many of the brainstem motoneurons are involved 
in activities such as swallowing, chewing and 
licking. It is interesting that the lateral hypo
thalamus is involved in feeding and drinking 
behavior (Grossman et al., 1978) as well as in 
salivation (Epstein, 1971). It is probably also 
involved in cardiovascular control (Stock et al., 
1981) and defense behavior (see next section). 

Se. Projections from amygdala and bed 
nucleus of the stria terminalis to caudal 
brainstem and spinal cord 
Hopkins and Holstege (1978), using the autoradi
ographical tracing method, were the first to de
scribe direct projections from the central nucleus 
of the amygdala (CA) to the caudal brainstem and 
first cervical spinal segment. fiRP injections in 
the dorsomcdial medulla of Schwaber et al. [1980) 
and in the NRM and NRP by Holstege et al. (1985) 
revealed many HRP-labeled neurons in the CA 
and in the lateral part of the bed nucleus of the 
stria terminalis (BNSTL). A continuum of HRP 
labeled neurons was observed in both studies 
extending from the CA dorsomedially along the 
medial border of the internal capsule into the 
BNSTL. Such a distribution pattern is suggestive 
of a nucleus split into two different parts by the 
fibers of the internal capsule in the same way as 
the caudate nucleus and the putamen. As early as 
1923 Johnston considered the central and medial 
amygdaloid nuclei and the BNST as a single 
anatomic entity, and many others have accepted 
this concept (see De Olmos et al., 1985, Holstege 
et aL, 1985 and Heimer et al. 1990, this volume). 
In agreement with this concept is that both areas 
(CA and BNSTL) receive afferents from the same 
brainstem structures such as the solitary nuclei 
(Ricardo and Koh, 1978 in the rat, however see 
Russchen et al.,l982 in the cat and Beckstead et 
al.,l980 in the monkey) and parabrachial nuclei 
(Saper and Loewy, 1980). In addition, both areas 
contain neurons with the same neuropeptides, for 
example neurotensin, substance P, cholecystoki
nin, vasoactive intestinal polypeptide, enkeph
alin, somatostatin and dynorphin. Some of these 
neurons have also been shown to project to the 
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Fig. 59. Darkfield photomicrographs of 11 brainstem sections of a cat with an injection of 3H-lrucine in the bed 
nucleus of the stria terminalis. Note .the strong projection to the PAC, 'With the exception of its dorsolateral part. 
Note also the strong projection to the bulbar lateral tegmental field and the projection to the ventral part of the 
caudal pontine and upper medullary medial tegmentum. (From Holstege et al., 1985}. 
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Fig. 60. Darkfield photomicrographs of 3 different rostrocaudallevels of the lateral tegmental field in a cat with 
an injection centered on the central nucleus of the amygdala. Note the absence of labeled fibers in the motor 
nucleus of the retractor bulbi motor nucleus (A), the dorsal group of the nucleus ambiguus (B) and the caudal 
nucleus retroambiguus (C). Bar represents 1mm. 

brainstem (cf. Price et al., 1987, for review). 
Moreover, the projections from CA and BNST to 
the caudal brainstem are virtually identical 
(Hopkins and Holstege, 1978; Holstege et al., 
1985). Both structures send many fibers to the 
lateral hypothalamic area, and via the medial fore
brain bundle, into the lateral part of the 
mesencephalon, pons, apd medulla oblongata 
(amygdala: Hopkins and Holstege, 1978 in the cat; 
Price and Amaral, 1981 in the monkey; BNST: 
Holstege et al., 1985 in the cat; Fig. 59). At 
mesencephalic levels fibers were distributed from 
this fiber bundle to the PAG (except its dorso
lateral part), the ventrolaterally adjoining nucleus 
cuneiformis and pedunculopontine nucleus, and 
the mesencephalic lateral tegmental field, includ
ing the paralemniscal nucleus. Part of these fibers 
(at least those derived from the BNST) probably 
contain vasopressin as a neurotransmitter (De 
Vries and Buijs, 1983). In the pons, fibers termi
nate laterally in the tegmentum, i.e. the medial 
and lateral parabrachial nuclei, the nucleus 
Kolliker-Fuse, the nucleus subcoeruleus and the 
locus coeruleus. With respect to the projections 
to the locus coeruleus, Price and Amaral (1981) in 
the monkey did not observe fibers terminating in 
the nucleus itself, but just lateral to it. At the level 
of the motor trigeminal nucleus some fibers branch 
off from the lateral descending fiber bundle, pass
ing ventrally and medially to terminate in the 

ventral part of the caudal pontine and upper 
medullary medial tegmentum. A few fibers ter
minate in the NRM, but none in the NRP (Fig. 56 
G-H). At medullary levels many fibers terminate 
in the lateral tegmental field as defined by Hol
stege et al. (1977) (section 2 b) as well as in the 
rostral and caudal parts of the solitary nucleus and 
the peripheral parts of the dorsal vagal nucleus. In 
the same way as the projections from the hypo
thalamus, no direct projections exist from CA and 
BNST to the oculomotor, trochlear, trigeminal, 
abducens, facial and hypoglossal motor nuclei, 
and also none to the motoneurons in the nucleus 
retractor bulbi and dorsal group of the nucleus 
ambiguus, nor to the intemeurons in the nucleus 
retroambiguus (Fig.60). Both CA and BNSTL send 
a few fibers to the intermediate zone of the Cl 
spinal cord, but not beyond that leveL This 
corresponds with the finding that a hemi-infiltra
tion of HRP at the level of C2 does not produce 
HRP labeled neurons in CA or BNSTL, (Holstege 
et al., 1985; Holstege, 1987b). Thus, there is no 
evidence for amygdaloid projections to the spinal 
cord other than to the intermediate zone of the 
first cervical segment (Mizuno et al., 1985; San
drew et al., 1986). 
A great similarity exists between the caudal brain
stem projections originating in the CA and BNSTL 
on the one hand and the lateral hypothalamic area 
on the other. All three areas have very strong 



mutual connections. Neurons in CA and BNSTL 
receive many afferent fibers from other (baso
lateral and basomedial) amygdaloid nuclei (Krettek 
and Price, 1978), but these connections are not re
ciprocal (see also Price et al., 1987 for review). Ap
parently, both CA and BNSTL serve as "output 
nuclei" for other parts of the amygdala/bed nu
cleus of the stria terminalis complex to reach the 
caudal brainstem. The lateral hypothalamus also 
may have this function, although its afferent con
nections are less clearly defined, mainly because 
of the many fibers of passage in the medial fore
brain bundle. 
The direct projections from CA, BNSTL and the 
lateral hypothalamus to the caudal brainstem lat
eral tegmental field may form the anatomic frame
work of the final output of the defense response of 
the animal Electrical stimulation in the amygdala 
(especially the basal and central nuclei), bed nu
cleus of the stria terminalis, lateral hypothala
mus, and P AG elicits defensive behavior (Fernan
dez de Molina and Hunsperger, 1962; Bandler et 
al, 1990). In fact there exists a column of electri
cal stimulation sites from CA, BNST, lateral 
hypothalamus, and PAG through the lateral 
mesencephalic tegmentum into the lateral teg
mentum of the caudal brainstem, which elicits 
defensive behavior (Abrahams et al., 1960, Coote 
et al., 1973). Kaada (1972) gives an excellent 
description of the defense response in cats. The 
initial phase of such a response is arrest of all 
spontaneous ongoing activities, and the whole 
attitude of the animal changes to one of attention. 
The arousal is followed by orienting or searching 
movements towards the contralateral side, fre
quently accompanied by sniffing, swallowing, 
chewing, and by twitching of the ipsilateral facial 
musculature. Later in the defense reaction the cat 
retracts its head and crouches with the ears flat
tened to a posterior position. The cat growls or 
hisses, the pupils are dilated and there is piloerec
tion, elevation of blood pressure with bradycardia, 
increased rate of breathing, alteration of gastric 
motility and secretion. On stronger stimulation 
an "affective" attack may take place, in which the 
cat strikes with its paw with claws unsheathed, in 
a series of swift, accurate blows. lf the stimulus 
continues, the cat will bite savagely. Many of the 
activities in the beginning of the defense response 
are coordinated in the caudal brainstem lateral 
tegmental field. The observation that part of this 
behavior appears to be ipsilateral corresponds with 
the predominantly ipsilateral projection of CA, 
BNSTL and lateral hypothalamus to the caudal 
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brainstem lateral tegmentum. Edwards and Flynn 
(1972) have shown that during the strike move
ment in the "affective" attack, a pure facilitation 
of the pyramidal tract neurons of the ipsilateral 
motor cortex takes place. In addition there are 
mainly facilitatory influences at the motoneu
ronallevel in the spinal cord, which might be the 
result of the CA, BNST, lateral hypothalamus, 
and mesencephalic projections to the ventral part 
of the medullary medial reticular formation, which 
in tum projects diffusely to all motoneuronal cell 
groups in the spinal cord 
Figure 61 gives a schematic overview of the de
scending projections to the caudal brainstem from 
hypothalamus, amygdala and BNST. Similar to 
the descending projections from the mesencepha
lon, there· is a mediolateral organization within 
this descending system in which the medial hypo
thalamus forms the medial, and the lateral hypo
thalamus, amygdala and BNST the lateral compo
nent. The PVN, with its direct projections to all 
preganglionic (sympathetic and parasympathetic) 
motoneurons in brainstem and spinal cord, occu
pies a separate position within this framework. 

5 f Projections from the prefrontal cortex 
to caudal brainstem and spinal cord 
In recent years it has been shown that the prefron
tal cortex projects directly to the caudal brain
stem. Most of these studies are done in the rat, in 
which the medial frontal cortex sends fibers to the 
solitary nuclei (NTS), the dorsal parts of the par
abrachial nuclei, the PAG and the superior colli
culus (Vander Kooy et al. 1984; Neafsy et al1986; 
Terreberry and Neafsy 1987). The insular cortex 
projects also to the NTS and PAG (Ruggiero et al, 
1987; Neafsy et al. 1986). Ruggiero et al. (1987) 
also found that electrical stimulation of the rat's 
insular cortex leads to elevation of arterial pres
sure and cardioacceleration. Also in the rat pro- · 
jections from the infralimbic cortex to the spinal 
cord have been reported by Hurley-Gius et al.( 1986). 
After WGA-HRP injections in this part of the 
cortex, they observed labeled fibers descending 
contralaterally in the base of the dorsal column 
and bilaterally in the dorsolateral funiculi. These 
fibers terminated in laminae I and N-V through
out the length of the spinal cord and a few in the 
intermediolateral cell column. Projections from 
the prefrontal cortex to the NRM, NRP and adja
cent tegmentum have not been described. In ani
mals other than the rat studies on the prefrontal 
cortical projections to the brainstem are extremely 
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Descending Pathways from Limbic System to Caudal Brain Stem and Spinal Cord 
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Fig. 61. Schematic overview of the mediolateral organization of the limbic system pathways to brainstem and 
spinal cord and its possible functional implications. Tbe strongest projections are indicated by thick arrows. 
(From Holstege, 1988a). 

scarce. In the cat, Willett et al. (1986), by means 
of the WGA-HRP method, found that the orbital 
gyrus, anterior insular cortex and infralimbic cor
tex project to the nucleus tractus solitarius. In the 
monkey, Amsten and Goldman-Rakic (1984), us
ing the anterograde autoradiographic tracing tech
nique, demonstrated that the dorsolateral and 
dorsomedial prefrontal cortex projects to the lo
cus coeruleus and nucleus raphe centralis supe
rior. They did not observe labeled fibers beyond 
the level of the locus coeruleus, and suggested 
that frontal cortical fibers to more caudal brain
stem areas do not exist. It must be emphasized 
that Amsten and Goldman-Rakic (1984) in their 
autoradiographic tracing study used survival times 
of only 24-48 hours. However, much longer sur
vival times are nece.."5a1)' to adequately label the 
fibers over longer distances (see Holstege 1987b 
for an extensive review of the use of the autoradi
ographic tracing technique). Therefore, in the 
light of the findings in rat and cat, it is extremely 
unlikely that the frontal cortex in the monkey 
does not project to the caudal brainstem. In 

section 4b it has been pointed out that there exist 
major differences between cat, monkey and 
humans in respect to the projections and the 
functions of the motor cortex. The motor cortex 
in primates has taken over many of the "motor 
tasks", performed by brainstem structures in rat 
and cat. This might also be the case for the fronto
orbital cortical projections in primates. 



C. Conclusions 
An enormous number of new studies have been 
published in the last 10 years on the descending 
motor pathways to caudal brainstem and spinal 
cord and about the physiological and pharmacol
ogical properties of them. Nevertheless all the 
new pathways seem to belong to one of three 
major motor systems in the central nervous sys
tem, which determine the activity of the somatic 
and autonomic motoneurons. In this concept the 
motoneuronal cell columns themselves are not 
considered a central motor system, but the begin
ning of the peripheral motor system (motoneu
ronal cell body-motor nerve-muscle). 

1. The first motor system 
The first system (fig. 62) is formed by the premotor 
interneuronal projections to the motoneurons. 
These neurons receive direct or indirect afferent 
information from the periphery via peripheral af
ferent nerves and from the second and/or third 
motor system. They are of paramount importance 
for determining the final output of the motoneu
rons. It is not always true that these intemeurons 
are located close to their target motoneurons. For 
example those involved in back-musculature con
trol travel over large distances through the spinal 
cord. Also the interneurons involved in the cuta
neus trunci muscle (CfM) reflex send their fibers 
over large distances, because part the afferent in
formation for the CTM reflex enters the spinal 
cord far from where the CfM motoneurons are lo
cated. 
As has been pointed out in section 2 d, the bulbar 
lateral tegmental field can be considered as the 
rostral extent of the spinal intermediate zone. 
Correspondingly this area contains interneurons, 
not only for the brainstem motoneurons of the 
cranial nerves V, vn, X and xn, but also for some 
motoneuronal cell groups in the spinal cord. Also 
these interneurons belong to the first system. 
Examples are the medullary interneurons project
ing to the phrenic and other respiratory related 
motoneuronal cell groups. Since most of the affer
ent information from the respiratory organs does 
not enter the central nervous system via the 
spinal cord, but via the brainstem (vagal nerve), it 
is natural that the intemeurons involved are lo
cated in the region of entrance. The author of this 
paper reckons the micturition related interneu
rons in the dorsolateral pons also to this system. 
They are of enormous importance for micturition, 
because via their long descending pathways they 
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determine whether bladder and bladder-sphincter 
function synergistically. The question arises why 
these neurons are located so far from their target 
motoneurons. In that respect it is important to 
realize that micturition is strongly correlated with 
the emotional state of the individual. Therefore, 
the micturition interneurons need to receive af
ferent information from the limbic system, which 
is available in the dorsolateral pons, but not in the 
sacral cord. The interneurons involved in blood
pressure control and projecting to the sympa
thetic motoneurons in the intermediolateral cell 
column of the thoracolumbar cord are located in 
the ventrolateral medulla. Their afferent infor
mation enters the central nervous system via the 
brainstem (vagal nerve), while afferent informa
tion from the limbic system, which plays an 
extremely important role in determining the level 
of the blood pressure, is also available. 
The bulbar lateral tegmental field corresponds 
with the caudal part of Nieuwenhuys' paracore 
(Nieuwenhuys et al.,l988), mainly because it re
ceives many afferent connections from the lateral 
limbic system and because it contains adrenergic 
(Cl and C2) and nor-adrenergic (Al-A6) cell groups. 
However, the great majority of the neurons in the 
bulbar lateral tegmental field serve as interneu
rons for motoneurons in caudal brainstem and 
spinal cord. Although it is true that many of them 
play a role in the generation of so-called fixed 
action patterns, such as biting, swallowing and 
licking, which can be elicited in the limbic sys
tem, the same interneurons also receive many 
afferents from second system structures such as 
motor cortex and red nucleus. In the present 
concept the interneurons in the bulbar lateral 
tegmental field belong to the first and not to the 
third system. 
In summary, the first motor system is formed by 
the interneuronal projections to the motoneu
rons. They are present in the caudal brainstem, 
the spinal cord, and between brainstem and spinal 
cord. 

2. The second motor system 
The second motor system (fig. 62) is discussed in 
section 4. The projections of this system have 
been studied for some time, mainly because they 
exist of thick fibers, which could be detected with 
the lesion-degeneration techniques in the nine
teenfifties and sixties. The fibers of this system 
terminate to only a limited extent directly on rna-
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toneurons, but for the most part on the intemeu- of body and head (Kuypers, 1981). On the other 
rons of the first motor system. Kuypers was the hand, the lateral component of this second motor 
first to point out the mediolateral organization system is formed by laterally descending fibersys
within this system. The medial component origi- terns, terminating in laterally located inter- and to 
nates mainly in the brainstem (dorsal two thirds a more limited extent motoneurons in caudal 
of the pontine and medullary medial tegmentum, brainstem and spinal cord [the lateral motor col
vestibular nuclei, superior colliculus, interstitial urnn). These systems are represented by the the 
nucleus of Cajal and caudal Field H of Forel), rubrospinal tract, (in humans of minor impor
descends medially in the ventral funiculus of the tance) and the lateral corticospinal tract, [in 
spinal cord and terminates on inter- and to a lesser humans extremely well developed). The lateral 
extent motoneurons of the medial motor column motor column in the spinal cord innervates the 
in the spinal cord. The medial motor column distal body musculature, i.e. those of the distal 
controls eye- and neck-movements and axial and limbs. The lateral component of the voluntary 
proximal body movements. The function of the motor system produces independent flexion-hi
medial system is maintenance of erect posture ased movements of the extremities, in particular 
[antigravity movements), integration of body and of the elbow and hand (Kuypers, 1981). 
limbs, synergy of the whole limb and orientation 
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3. The third motor system 
The third motor system (fig. 62) is discovered only 
recently. Althou!Sh there was clinical evidence 
that a separate motor system had to exist, ana
tomical studies did not find any evidence for such 
a system. In the last 15 years that has changed 
drastically. It appeared that modern tracing tech
niques were able to demonstrate a large number of 
new pathways. They all consisted of thin fibers, 
which was the reason that the lesion-degenera
tion techniques were not able to demonstrate 
them earlier. The development of the immu
nohistochemical techniques has revealed a large 
number of neurotransmitters or neuromodulators 
within the central nervous system. Interestingly, 
with the exception of acetylcholine, glutamate 
and aspertate, all these new monoamines and 
peptides were found in the third motor system. 
The third motor system, which largely corre
sponds with the core and medial paracore of 
Nieuwenhuys et al. (1988), is strongly connected 
with the limbic system and systematically skips 
the areas belonging to the second one, such as red 
nucleus, interstitial nucleus of Cajal and other 
peri-oculomotor areas, the dorsal two thirds of the 
caudal brainstem medial tegmentum, vestibular 
nuclei or precerebellar structures as pontine nu
clei, inferior olive or lateral reticular nucleus. 
Reversely, the second motor system does not 
overlap in its projections with the third motor 
system. An exception on this rule are the monam
inergic projections originating in the raphe nuclei 
and locus coeruleus/subcoeruleus complex. These 
structures, which belong to the third system, send 
fibers to many structures in the central nervous 
system, including some belonging to the second 
system (e.g. the inferior olive and cerebellum). 
A mediolateral organization is present within the 
third motor system. The medial component origi
nates in the medial portions of hypothalamus and 
in the mesencephalon and terminates in the area 
of locus coeruleus/subcoeruleus and in the ven
tral part of the caudal pontine and medullary 
medial tegmental field. The latter structures 
determine the final output of this system. The 
lateral component originates laterally in the lim
bic system, i.e. in the lateral hypothalamus, cen
tral nucleus of the amygdala and bed nucleus of 
the stria terrninalis. These structures project to 
the lateral tegmental field of caudal pons and 
medulla, but not to the somatic motoneurons in · 
this area. In how far the prefrontal cortex plays a 
role within these systems remains to be deter
mined. 
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There are some exceptions on this general subdi
vision into medial and lateral third motor sys
tems; I) Within the PAG and lateral adjacent 
tegmentum, some specific groups of neurons ex
ist, projecting to areas outside the caudal brain
stem ventromedial tegmental field, such as the 
nucleus retroambiguus, cervical spinal cord or 
subretrofacial nucleus. These neurons are proba
bly related to specific functions, such as vocaliza
tion, head movements involved in emotional 
behavior or blood pressure control. They may 
serve as final common pathways for especially the 
lateral component of the third motor system. 2) 
Some of the fibers of the lateral component of the 
third descending system terminate in the ven
tromedial tegmentum at levels around the facial 
nucleus. Neurons in this area in turn project 
diffusely to the dorsal hom of the spinal cord. Via 
these fibers the lateral component structures may 
have some control over nociception. 
The functional implications of the third system 
motor pathways differ, depending on whether 
they belong to the medial or lateral system. The 
medial system, via its projections to the locus 
coeruleus/nucleus subcoeruleus and NRM and 
NRP /NRO and the diffuse coeruleo- and raphe
spinal pathways, has a global effect on the level of 
activity of the somatosensory and motoneurons 
in general by changing their membrane excitabil
ity. In other words, the emotional brain has a great 
impact on the sensory as well as on the motor 
system. In both systems it sets the gain or level of 
functioning of the neurons. The emotional state 
of the individual determines this level. For ex
ample it is well known that many forms of stress, 
such as aggression, fear and sexual arousal, induce 
analgesia, while at the same time the motor sys
tem is set at a "high" level and motoneurons can 
easily be excited by the second motor system. In 
this concept the brainstem structures, which 
project diffusely to all parts of the spinal cord, can 
be considered as tools for the limbic system con
trolling spinal cord activity. The diffuse descend
ing system is also used to trigger rhythmical (loco
motion, shivering) or other (lordosis) in essence 
spinal reflexes. Whether functions such as loco
motion, shivering and lordosis use different or the 
same diffuse pathways from the caudal brainstem 
to the spinal cord is not yet clear. If they use the 
same pathways, the differences lie in the function 
of the spinal generators for each of these func
tions. 
The lateral component of the third motor system 
project to the caudal brainstem lateral tegmental 
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field, which contains first motor system intemeu
rons involved in specific functions such as respi
ration, vomiting, swallowing, chewing, and lick
ing. These activities are displayed in the begin
ning of flight or defense response and can be easily 
elicited by stimulation of the lateral parts of the 
limbic system. Therefore it seems that the lateral 
component of the third motor systems is involved 
in more specific activities, related to emotional 
behavior. 
It is intriguing that both the medial and lateral 
components of the second and third motor sys
tems are involved in similar activities. The medial 
components are involved in general activities 
such as in integration of body and limbs and 
orientation of body and head for the second sys
tem and level setting of neurons for the third 
system. On the other hand, the lateral compo
nents are involved in specific activities such as 
independent movements of the extremities for 
the second motor system and blood pressure and 
respiration control, vocalization, vomiting, swal
lowing, chewing, and licking for the third motor 
system. 
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E. Abbreviations 
AA 
AC 
ACN 
AD 
AH 
AL 
AM 
AP 
Aq 
AV 
BC 
BIC 
BL 
BM 
BNST 
BNSTL 
BNSTM 
BP 
CA 
cc 
Cd 
CGL 
CGLd 
CGLv 
CGM 
CGMd 
CGMint 
CGMp 
CI 
CL 
CL 
CM 
CN 
co 
CP 
CR 
cru 
cs 
CSN 
cu 
CUN 
D 
DBV 
DGNA 
DH 
DMH 
DTN 
EC 
ECU 
En 
EW 
F 
fRF 
G 
GP 
Hab 
Habl 
Habm 
HC 
HPA 
IC 
IN 

anterior amygdaloid nucleus 
a<1terior commissure 
nucleus of the anterior commissure 
anterodorsal nucleus of the thalamus 
anterior hypothalamic area 
lateral amygdaloid nucleus 
anteromedial nucleus of the thalamus 
area postrema 
aqueduct of Sylvius 
anteroventral nucleus of the thalamus 
brachium conjunctivum 
brachium of the inferior colliculus 
basolateral amygdaloid nucleus 
basomedial amygdaloid nucleus 
bed nucleus of the stria terminalis 
lateral part of the bed nucleus of stria terminalis 
medial part of the bed nucleus of the stria terminalis 
brachium pontis 
central amygdaloid nucleus 
corpus callosum 
caudate nucleus 
lateral geniculate body 
lateral geniculate body (dorsal part) 
lateral geniculate body (ventral part) 
medial geniculate body 
medial geniculate body, dorsal part 
medial geniculate body, interior division 
medial geniculate body, principal part 
capsula intema 
claustrum 
nucleus centralis lateralis of the thalamus 
centromedian thalamic nucleus 
cochlear nuclei 
cortical amygdaloid nucleus 
posterior commissure 
corpus restiforme 
cruciate sulcus 
superior colliculus 
nucleus raphe centralis superior 
nucleus cuneatus 
cuneiform nucleus 
nucleus of Darkschewitsch 
nucleus of the diagonal band of Broca 
dorsal group of the nucleus ambiguus 
dorsal hypothalamic area 
dorsomedial hypothalamic nucleus 
dorsal tegmental nucleus 
external cuneate nucleus 
external cuneate nucleus 
entopeduncular nucleus 
nucleus Edinger-Westphal 
fornix 
fasciculus retroflexus 
nucleus gracilis 
globus pallidus 
habenular nucleus 
lateral habcnular nucleus 
medial habcnular nucleus 
hippocampus 
posterior hypothalamus area 
inferior colliculus 
interpeduncular nucleus 
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INC 
IO 
IP 
IVN 
KF 
Latiss 
LD 
LGN 
LH 
LL 
LONGISS 
LOTR 
LP 
LRN 
LTF 
LV 
LVN 
MA 
:MB 
MC 
MD 
MesV 
ML 
MLF 
motV 
MTF 
mV 
MVN 
MTN 
NCL 
NLL 
NOT 
NOTL 
NOTM 
NPC 
NTB 
NR 
NRA 
NRAc 
NRM 
NRP 
NRTP 
NSC 
N1B 
nVI 
nVII 
nVIII 
OBL. EXT. 
OBL. INT. 
oc 
01 
OR 
OT 
p 
PAG 
PbL 
PBM 
TMT 
PC 
PCN 
PEA 
PH 
PON 
PONTMedRF 
pp 

interstitial nucleus of Cajal 
inferior olive 
interpeduncular nucleus 
inferior vestibular nucleus 
nucleus Kolliker-Fuse 
latissimus dorsi muscle 
nucleus lateralis dorsalis of the thalamus 
lateral geniculate nucleus 
lateral hypothalamic area 
lateral lemniscus 
longissimus dorsi muscle 
lateral olfactory tract 
lateral posterior nucleus of the thalamus 
lateral reticular nucleus 
lateral tegmental field 
lateral ventricle 
lateral vestibular nucleus 
medial amygdaloid nucleus 
mammillary body 
nucleus medialis centralis of the thalamus 
nucleus medialis dorsalis of the thalamus 
mesencephalic trigeminal tract 
medial lemniscus 
medial longitudinal fasciculus 
motor trigeminal nucleus 
medial tegmental field 
motor trigeminal nucleus 
medial vestibular nucleus 
medial terminal nucleus 
nucleus centralis lateralis 
nucleus of the lateral lemniscus 
nucleus of the optic tract 
lateral nucleus of the optic tract 
medial nucleus of the optic tract 
nucleus paracentralis of the thalamus 
nucleus of the trapezoid body 
red nucleus 
nucleus retroambiguus 
caudal nucleus retroambiguus 
nucleus raphe magnus 
nucleus raphe pallidus 
nucleus reticularis tegmenti pontis 
nucleus subcoeruleus 
nucleus of the trapezoid body 
abducens nerve 
facial nerve 
vestibulocochlear nerve 
external oblique abdominal muscle 
internal oblique abdominal muscle 
optic chiasm 
olivary pretectal nucleus 
optic radiation 
optic tract . 
pyramidal tract 
periaqueductal gray 
lateral parabrachial nucleus 
medial parabrachial nucleus 
mammillothalamic tract 
pedunculus cerebri 
nucleus of the posterior commissure 
anterior part of periventricular hypothalamic nucleus 
periventricular hypothalamic nucleus 
pontine nuclei 
pontine medial reticular formation 
posterior pretectal nucleus 



Pt 
PT 
PTA 
PTM 
Pu 
Pul 
PV 
PVA 
PVG 
PVN 
R 
RB 
RB 
RE 
RECTUS 
RF 
RFmed 
RFlat 
RiMLF 
RM 
RN 
Rpo 
RST 
s 
sc 
sc 
SI 
SM 
SN 
so 
SON 
spin V 
ST 
STT 
SUB 
VII 
SVN 
Transv. 
TMT 
TS 
VA 
VB 
vc 
VL 
VM 
VMH 
VPL 
VTA 
VTN 
ZI 
m 
lV 
Vm 
Vn 
Vpr. 
Vprinc. 
Vsp. 
V sp.cd. 
Vspin.caud. 
VI 
VII 
VIIn 
XII 

parataenial nucleus of the thalamus 
Probst tract 
anterior pretectal nucleus 
medial pretectal nucleus 
putamen 
pulvinar nucleus of the thalamus 
posterior paraventricular nucleus of the thalamus 
paraventricular nucleus of the thalamus (anterior part) 
periventricular gray 
paraventricular hypothalamic nucleus 
reticular nucleus of the thalamus 
restiform body 
retractor bulbi motor nucleus 
nucleus reuniens of the thalamus 
rectus abdominis muscle 
reticular formation 
medial reticular formation 
lateral reticular formation 
rostral interstitial nucleus of the MLF 
nucleus raphe magnus 
red nucleus 
nucleus raphe pontis 
rubrospinal tract 
solitary complex 
suprachiasmatic nucleus 
nucleus subcoeruleus 
substantia innominata 
stria medullaris 
substantia nigra 
superior olivary complex 
supraoptic nucleus 
spinal trigeminal complex 
subthalamic nucleus 
stria terminalis 
subiculum 
facial nucleus 
superior vestibular nucleus 
transversus abdominis muscle 
mammillothalamic tract 
tract of the solitary nucleus 
ventroanterior nucleus of the thalamus 
ventrobasal complex of the thalamus 
vestibular complex 
ventrolateral nucleus of the thalamus 
ventromedial nucleus of the thalamus 
ventromedial nucleus of the hypothalamus 
nucleus ventralis posterolateralis of the thalamus 
ventral tegmental area of Tsai 
ventral tegmental nucleus 
zona incerta 
oculomotor nucleus 
trochlear nucleus 
motor trigeminal nucleus 
trigeminal nerve 
principal trigeminal nucleus 
principal trigeminal nucleus 
spinal trigeminal complex 
spinal trigeminal complex pars caudalis 
spinal trigeminal complex pars caudalis 
abducens nucleus 
facial nucleus 
facial nerve 
hypoglossal nucleus 
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F. Conclusies 
Gedurende de laatste 10 jaar zijn een enorm aantal 
publicaties verschenen over de afdalende motori
sche banen naar de lagere hersenstam en rugge
merg en over hun fysiologische en farmacologi
sche eigenschappen. Niettemin kunnen al deze 
nieuwe baansystemen worden ondergebracht bij 
een van 3 grote motorische subsystemen in het 
centraal zenuwstelsel, die de activiteit van de 
somatische en autonome motoneuronen bepalen. 
In dit concept worden de motoneuronen zelf niet 
beschouwd tot het centraal zenuwstelsel, maar 
tot het perifere zenuwstelsel te behoren. 

1. Het eerste motorische systeem. 
Het eerste motorische systeem wordt gevormd 
door de premotorische intemeuronale projecties 
naar de motoneuronen. Deze interneuronen 
ontvangen directe of indirecte afferente informa
tie vanuit de periferie via perifere afferente 
zenuwen en van het tweede en/of derde motori
sche systeem. Deze interneuronen zijn van enorm 
belang voor het bepalen van de uiteindelijke acti
viteit van de motoneuronen. Het is niet altijd zo 
dat deze interneuronen vlakbij de motoneuronen 
gelegen zijn waarop zij projecteren. Bijvoorbeeld 
de intemeuronen die betrokken zijn bij de con
trole over de rugmusculatuur verlopen over lange 
afstanden binnen het ruggemerg. Ook de in
temeuronen betrokken bij de cutaneus trunci 
spier (CTS) reflex sturen hun vezels over grate 
afstanden, omdat een deel van de afferente infor
matie voor de crs reflex het ruggemerg binnen
treedt op grote afstand van de crs motoneuronen. 

Zoals in hoofdstuk 2d wordt uiteengezet, kan het 
bulbaire laterale tegmentale veld worden be
schouwd als het rostrale vervolg van de spinale 
intermediaire zone. Daarom bevat dit gebied niet 
aileen de intemeuronen voor de motoneuronen 
van de V, VII, X en Xll hersenzenuwen, maar ook 
voor een aantal motoneuronale celgroepen in het 
ruggemerg. Ook deze intemeuronen behoren tot 
het eerste systeem. Voorbeelden zijn de medul
laire intemeuronen die naar de nucleus phrenicus 
en andere bij de ademhaling betrokken spinale 
motoneuronale celgroepen projecteren. Omdat 
het merendeel van de afferente informatie van de 
ademhalingsorganen het centraal zenuwstelsel 
niet via het ruggemerg maar via de hersenstam 
(nervus vagus) binnenkomt, is het begrijpelijk dat 
de betrokken interneuronen in het gebied van de 
binnenkomende afferente zenuw zijn gelegen. De 

auteur van deze publicatie rekent de interneu
ronen in het dorsolaterale ponsgebied betrokken 
bij de rnictie-controle ook tot het eerste systeem. 
Deze intemeuronen zijn van overwegend belang 
voor het verloop van de normale rnictie, omdat zij, 
via hun lange descenderende banen de sarnenwer
king (synergie) van de blaas en zijn sphincter 
bepalen. Dit werpt de vraag op waarom deze 
intemeuronen zo ver van hun motoneuronen in 
het sacrale ruggemerg zijn afgelegen. Wat dat 
betreft is het van belang zich te realiseren dat de 
mictie sterk onder invloed staat van de emo
tionele hoedanigheid van het individu. Daarom 
staan de rnictie interneuronen onder sterke invloed 
van het lirnbisch systeem, dat het dorsolaterale 
ponsgebied gemakkelijk maar het sacrale rugge
merg vrijwel niet kan bereiken. De interneuronen 
betrokken bij de bloeddrukcontrole en die naar de 
sympathische motoneuronen in het thoracolum
bale ruggemerg projecteren, zijn gelegen in de 
ventrolaterale medulla. Hun perifere afferente 
informatie komt het centraal zenuwstelsel bin
nen via de hersenstam (nervus vagus), terwijl 
andere afferenten afkomstig zijn van het lirnbisch 
systeern, dat een zeer grate invloed uitoefent op de 
vaststelling van de hoogte van de bloeddruk. 
Het bulbaire laterale tegmentale veld komt over
een met het caudale deel van Nieuwenhuys' para
core (Nieuwenhuys et al. 1988), voornamelijk 
omdat het vele afferente verbindingen ontvangt 
vanuit het laterale limbische systeem en omdat 
het adrenerge (Cl en C2) en nor-adrenerge (Al-A6) 
celgroepen bevat. Het grootste deel van de in
terneuronen in de bulbaire laterale tegmcntale 
veld zijn interneuronen die naar motoneuronen in 
lagere hersenstam en ruggemerg projecteren. 
Hoewel deze laatste interneuronen een belang
rijke rol spelen bij de totstandkoming van de 
zogenaamde vastliggende actiepatronen (fixed 
action patterns), zoals bijten, slikken en likken, 
die in het limbisch systeem opgewekt kunnen 
worden, ontvangen dezelfde interneuronen ook 
afferenten van structuren behorend bij het tweede 
systeem, zoals motor cortex en nucleus ruber. In 
het in dit proefschrift gepresenteerde concept 
behoren de interneuronen in het bulbaire laterale 
tegmentum tot het eerste en niet tot het derde 
systeem (wat wel het geval is in het concept van 
Nieuwenhuys et al. 1988). 
Sarnenvattend wordt het eerste systeem gevormd 
door de interneuronale projecties naar de mo
toneuronen. Deze bevinden zich in de lagere 
hersenstam, het ruggemerg en tussen hersenstam 
en ruggemerg. 



2. Het tweede motorische systeem. 
Het tweede motorische systeem wordt behandeld 
in hoofdstuk 4. De projecties behorend bij dit sys
teem worden al betrekkelijk lang bestudeerd, 
voomamelijk omdat ze uit dikke vezels bestaan, 
die konden worden opgespoord met de lesie-de
generatietechnieken uit de vijftiger en zestiger 
jaren van deze eeuw. De vezels van dit systeem 
eindigen slechts in beperkte mate direkt op mo
toneuronen, maar vooral op interneuronen be
horende bij het eerste systeem. Kuypers (1981) 
was de eerste die erop wees dat er een mediolate
rale organisatie hestand in dit systeem. De medi
ale component heeft zijn oorsprong voomamelijk 
in de hersenstam (dorsale tweederde van het 
pontine en medullaire mediale tegmentum, 
vestibulaire kemen, colliculus superior , intersti
tiale kern van Cajal en het caudale veld H van 
Forel). Deze component zendt zijn vezels door het 
mediale deel van de ventrale funiculus van het 
ruggemerg en eindigt op inter- en in beperkte mate 
op motoneuronen van de mediale motor kolom in 
het ruggemerg. 
De mediale motor kolom verzorgt oog- en 
nekbewegingen en axiale en proximale li
chaamsbewegingen. De functie van de mediale 
component van het mediale systeem is handha
ving van de rechtopstaande houding (antigravi
diteitsbewegingen), integratie van de bewegingen 
van romp en ledematen, synergie van de lede
rnaten en orientatiebewegingen van lichaam en 
hoofd. 
De laterale component van het tweede motori
sche systeem daarentegen wordt gevormd door 
lateraal descenderende vezelsystemen, eindigend 
op lateraal gelegen inter- en in beperkte mate 
motoneuronen in de lagere hersenstam en rugge
merg (de laterale motor kolom). Tot de laterale 
component behoren de rubrospinale baan (bij de 
mens van beperkt belang) en de laterale cortico
spinale baan (in de mens zeer sterk ontwikkeld). 
De laterale motor kolom in het ruggemerg inner
veert voornamelijk de distale lichaamsspieren, 
d.w.z. die van de uiteinden van de ledematen. De 
laterale component van het voluntaire motori
sche systeem brengt onafhankelijke, vooral flexie
achtige bewegingen van de extremiteiten tot stand, 
in het bijzonder die van elleboog en hand (Kuypers, 
1981). 

3. Het derde motorische systeem. 
Het derde motorische systeem is pas recent 
ontdekt. Hoewel er klinische aanwijzingen waren 
dat een dergelijk systeem eigenlijk wel moest 
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bestaan, kon anatomisch een dergelijk systeem 
niet aangetoond worden. Dat is gedurende de 
laatste 15 jaar drarnatisch veranderd. Met behulp 
van modeme vezelopsporingstechnieken kon het 
bestaan van een groat aaantal nieuwe descende
rende banen worden aangetoond. Deze bestonden 
aile uit dunne vezels, hetgeen de reden was dat·ze 
met de 1esie-degeneratie veze1sopsporingstech
nieken niet konden worden aangetoond. Omdat 
verschillende histochemische technieken zijn 
ontwikkeld heeft men een groot aantal neuro
transmitters of neuromodulatoren binnen het 
centraal zenuwstelsel kunnen aantonen. Van 
belang daarbij is dat, met uitzondering van ace
tylcholine, glutamaat en aspertaat, al deze nieuwe 
monoamines en peptiden zich in het derde sys
teem bevinden. 
Het derde motorische systeem, dat grotendeels 
overeenkomt met het "core" en "medial para
core" van Nieuwenhuys et al. (1988), is sterk 
verbonden met het limbisch systeem en slaat 
systematisch de structuren behorend tot het 
tweede systeem over (zoals nucleus ruber, inter
stitiale kern van Cajal en andere peri-oculomoto
rische gebieden, het dorsale 2/3 deel van het 
mediale tegmentum van de lagere hersenstam, de 
vestibulaire kemen of precerebellaire structuren 
als pontine kemen, onderste olijf of laterale reticu
laire kemen). Anderzijds overlappen de projecties 
van het tweede motorische systeem niet met die 
van het derde. Een uitzondering op deze regel 
vormen de monoaminerge projecties die ontstaan 
in de raphe kemen en het locus coeruleusjsubcoe
ruleus complex. Deze structuren, die tot het 
derde systeem behoren, zenden vezels naar vele 
structuren in het centraal zenuwstelsel, inclusief 
een aantal behorend tot het tweede systeem (b.v. 
onderste olijf en cerebellum). 
Er bestaat een mediolaterale organisatie binnen 
het derde motorische systeem. De mediale com
ponent ontstaat in de mediale delen van de hypo
thalamus en in het mesencephalon en eindigt in 
het gebied van de locus coeruleus/subcoeruleus 
en in het ventrale deel van het caudale pontine en 
medullaire mediale tegmentale veld. De laatste 
structuren bepalen het uiteindelijke effect van de 
mediale component. De laterale component 
ontstaat in laterale structuren van het limbisch 
systeem, d.w.z. in de laterale hypothalamus, 
centrale kern van de amygdala en de bed nucleus 

· van de stria terminalis. Deze structuren pro
jecteren naar het laterale tegmentale veld van 
caudale pons en medulla, maar niet naar de sorna
tische motoneuronen in dit gebied. In hoeverre de 
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prefrontale cortex een rol speelt binnen deze sys
temen is nog onduidelijk. Er zijn enkele uitzon
deringen op deze algemene onderverdeling in 
mediale en laterale componenten van het derde 
motorische systeem: 
1) Binnen het periaqueductale grijs (PAG) en het 
lateraal aangrenzende tegmentale veld bestaan 
een aantal specifieke groepen neuronen, die naar 
gebieden projecteren buiten het ventromediale 
tegmentale veld van de caudale hersenstam, zoals 
de nucleus retroambiguus, cervicale ruggemerg of 
nucleus subretrofacialis. Deze neuronen zijn 
waarschijnlijk aan specifieke functies verbonden, 
zoals vocalisatie, hoofdbewegingen als onderdeel 
van emotioneel gedrag of bloeddrukbeheersing. 
Ze dienen waarschijnlijk als de "final common 
pathway" voor in het bijzonder de laterale compo
nent van het derde systeem. 
2) Enkele vezels van de laterale component van 
het derde descenderende systeem eindigen in het 
ventromediale tegmentum ter hoogte van de fa
cialis kern. Op hun beurt projecteren neuronen in 
dit gebied diffuus naar de dorsale hoorn van het 
ruggemerg. Via deze vezels kunnen de laterale 
componentstructuren enige controle uitoefenen 
over nociceptie. 
De functionele irnplicaties van het derde motor 
systeem verschillen naar gelang zij tot het medi
ale dan wellaterale systeem behoren. Het medi
ale systeem, via zijn projecties naar de locus coe
ruleus/subcoeruleus en nucleus raphe magnus, 
pallidus en obscurus met aangrenzende gebieden 
en de diffuse (sub-)coeruleo- en raphe spinale banen, 
hebben een algerneen effect op het activiteitsni
veau van de somatosensibele en motoneuronen 
door hun rnembraan-excitabiliteit te veranderen. 
Met andere woorden, het emotionele brein heeft 
grote invloed op zowel het sensibele als motori
sche systeem. In beide systemen bepaalt het het 
niveau van functioneren van de neuronen. De 
emotionele hoedanigheid van het individu bepaalt 
dus dit Itlvcau. Het is bijvoorbeeld algemeen 
bekend dat vele vormen van "stress", zoals agressie, 
angst en sexuele opwinding analgesie opwekken, 
terwijl op hetzelfde moment het motorische sys
teem op een hoog niveau wordt gezet en de mo
toneuronen gernakkelijk kunnen worden aangedre
ven door het tweede rnotorische systeem. In dit 
concept kunnen de hersenstamstructuren, die 
diffuus naar aile delen van het ruggemerg pro
jecteren, worden beschouwd als werktuigen voor 
het limbisch systeem om ruggemergsactiviteit te 
controleren. Het diffuse descenderende systeem 
wordt ook gebruikt om rhythmische (locomotie, 

huiveren of rillen) of andere (lordose) in principe 
spinale reflexen op te wekken. Onbekend is of 
functies als locomotie, huiverenfrillen en lordose 
gebruik rnaken van verschillende of dezelfde dif
fuse baansystemen. Als ze dezelfde baansyste
men gebruiken liggen de verschillen in de functie 
van de spinale generatoren voor ieder van deze 
functies. De laterale component van het derde 
motorische systeem projecteert naar het laterale 
tegmentale veld van de lagere hersenstam die 
interneuronen bevat behorend bij het eerste mo
torische systeem en die betrokken zijn bij speci
fieke functies zoals ademhaling, braken, slikken, 
kauwen en likken. Deze activiteiten kan men 
waarnemen in het begin van de vlucht of afweer 
respons en kunnen gemakkelijk worden opgewekt 
door stimulatie in het laterale deel van het limbi
sche systeem. Daarom lijkt het dat de laterale 
component van het derde motorische systeem be
trokken is bij meer specifieke activiteiten, ver
bonden aan emotioneel gedrag. 
Het is intrigerend dat zowel de mediale als laterale 
componenten van de tweede en derde motorische 
systemen betrokken zijn bij soortgelijke acti
viteiten. De mediale componenten zijn betrok
ken bij algemene activiteiten zoals wat betreft het 
tweede systeem de integratie van romp- en lede
maatbewegingen en lichaams- en hoofdorientatie 
en wat het derde systeem betreft het bepalen van 
de neuron-activiteit in het algemeen. Aan de 
andere kant zijn de laterale componenten betrok
ken bij meer specifieke activiteiten zoals 
onafhankelijke bewegingen van de extrerniteiten 
wat betreft het tweede rnotorische systeem en 
bloeddruk, ademhalingsbeheersing, vocalisatie, 
braken, slikken, kauwen en likken wat betreft het 
derde motorische systeem. 
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H. Verantwoording 
Dit proefschrift bevat niet een studie, maar is een 
overzichtsartikel over de bouw van het motorisch 
systeem. Het werd geschreven op NASA/Ames 
Research Center in de tweede helft van 1989 als 
laatste hoofdstuk van een in 1991 te verschijnen 
deel van Progress in Brain Research. Het schrijven 
van dit hoofdstuk werd mogelijk gemaakt door 
een verlenging van rnijn NASA-grant. Dank is 
verschuldigd aan Bill Mehler, Peter Ralston, Joan 
Danellis en Cindy Bollens, die mij in deze periode 
met raad en daad hebben bijgestaan. 

Een groot deel van de inhoud van dit hoofdstuk is 
gebaseerd op eigen werk, waaraan een groot aantal 
personen hebben meegewerkt, zoals hoogleraren, 
student-assistenten (zie de co-auteurs bij de ver
schillende artikelen) en technische medewerkers. 
Bij het noemen van de betrokkenen beperk ik rnij 
tot die personen, die meer dan normale invloed 
hebben gehad bij het totstandkomen van de ver
schillende publikaties. In alfabetische volgorde 
zijn dat: Corrie Bijker-Biemond, Han Collewijn, 
Eddy Dalm, Mevr. Holstege-Jacobs, Edith Klink, 
Hans Kuypers en A.M. Vreugdenhil. 

Corrie Bijker-Biemond heeft vooral gedurende het 
begin van de zeventiger jaren een enorme inspan
ning geleverd om de op dat moment nieuwe au
toradiografische tracing techniek tot een goed
lopende routine techniek te maken. Dit is won
derwel gelukt, vooral door Corrie's nauwgezette 
en langdurige inspanningen. Nooit zal ik de 
periode vergeten, waarin we met de dip- dan wel 
ontwikkelsessies om half vijf 's ochtends begon
nen en om tien uur 's avonds eindigden. Het ging 
daarbij om 5 a 800 object-glazen. Zoals met zovele 
technieken waren we enige jaren later in staat 
zonder moeite 3 a 4000 glazen te verwerken tussen 
9 uur 's ochtends en 6 uur 's avonds. 

Han Collewijn heeft mij in het begin van de 
tachtiger jaren kunnen overtuigen dat de autora
diografische resultaten en rnijn ideeen daarover zo 
slecht nog niet waren. Hij heeft daarmee een zeer 
belangrijke rol in mijn wetenschappelijke leven 
gespee1d. 

Wanneer men in het buitenland een wetenschap
per tegen kwam, die ooit op de afdeling neuro
anatomie had vertoefd, was steevast de eerste 
vraag: "Hoe gaat het met Eddie". Dalm had met 

zijn kundigheid bij de operaties zovee1 indruk op 
deze collega's gemaakt dat hij daardoor wereld
wijde faam heeft verworven. Het had soms wel als 
nadeel dat het voor beginnende onderzoekers soms 
moeilijk was de operatietechnieken onder de knie 
te krijgen. Het proefdier was open en dicht voor
dat ze het goed en wel in de gaten hadden. Het 
succes van het urologische deel van het onderzoek 
is voor een groat deel gekomen door de enorrne 
inspanningen van Eddie. 
Last, but not least was Eddie Dalm in tijden van 
spanningen in staat zichzelf te blijven. 

Mijn moeder, Mevr. Holstege-Jacobs, hecft in de 
periode dat mij slechts weinig technische hulp ter 
beschikking werd gesteld, geholpen door thuiswerk 
te verrichten in de vorm van het opslepen van vele 
duizenden coupes op objectglaasjes. Ze bestaan 
nog steeds en worden door vele verschillende 
wetenschappers bestudeerd. 

Edith Klink heeft altijd klaar gestaan om bij het 
adrninistratieve deel van het werk te helpen, ook 
als dat soms slecht uitkwam. Vooral dat laatste is 
belangrijk geweest. 

Hans Kuypers, in de periode 1969-1984 hoofd van 
de afdeling neuro-anatomie in Rotterdam, heeft 
de meeste invloed op mijn wetenschappelijk 
denken gehad. De wijze waarop hij de resultaten 
altijd in het totale systeem wist te plaatsen was 
onnavolgbaar. Terecht heeft Kuypers daar we
reldfaam mee verworven. Het is daarom bijzonder 
jammer dat hij niet in staat was "school te maken", 
omdat bijna alle medewerkers hun carriere in de 
kliniek wensten voort te zetten. Persoonlijk ben 
ik er trots op te behoren tot de Nauta-Kuypers 
school. 

Mijn schoonvader, de heer A.M. Vreugdenhil, 
heeft ook vele jaren thuiswerk verricht. Dit 
"thuiswerk" (vele tienduizenden coupes) heeft 
enorm bijgedragen aan het uiteindelijke resultaat, 
omdat de vele experimenten anders histologisch 
niet verwerkt hadden kunnen worden en dat zou 
zeer vele publikaties hebben gescheeld. 

Aan alle bovengenoemden bijzonder veel dank. 
Tenslotte wil ik mijn dank uitspreken aan Jan 
Voogd en Han Collewijn dat ik dit hoofdstuk als 
proefschrift heb kunnen indienen. 
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