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Figure 1. 

Figure 1. 
Summary of the interactions between natural and adaptive 
immunity. Lymphokines activate macrophages and NK cells. 
Activated macrophages produce complement components locally 
which are involved in the development of the inflammatory 
response. C3a is cytolytic and chemotactic for neutrophils 
while C3b induces macrophage enzyme release. K cells are armed 
by antibody from tumor specific B cells. This scheme should be 
interpreted in the awareness that amplifying mechanisms only 
are shown (Roitt et al., 1988). 
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Chapter 1. 

GENERAL INTRODUCTION 

Macrophages play an essential role in 
natural resistance to infections, in mediation of specific 
immunological responses, in inflammatory processes and in 
expression of antitumor activity (Riott et al., 1988) (Figure 
1). Expression of various macrophage functions, including 
antitumor cytostatic and cytotoxic events are usually related 
to a process defined as "macrophage activation". Activation is 
induced by various substances including products released from 
macrophages (cytokines and eicosanoids) and is characterized by 
several morphological, biochemical and metabolic changes (Adams 
and Hamilton, 1988). 

Macrophage-mediated tumor cell destruction 
is predominantly a cell-to-cell contact mediated event 
involving secretion of effector substances from activated 
macrophages (Adams et al., 1980; and 1982). Activated 
macrophages can also inhibit growth of tumor cells (cytostasis) 
either by cell-to-cell contact (Ophir et al., 1987) or, by 
releasing soluble factors (Schiller et al., 1987; and Lovett et 
al., 1986). Among the many substances released by macrophages 
in response to inflammatory stimuli are eicosanoids 
(prostanoids and leukotrienes), which act as mediators of 
macrophage activation. Prostanoids (Prostaglandin E2 and 
prostaglandin I2l have negative effects whereas leukotrienes 
enhance macrophage/monocyte antitumor activity (Taffet and 
Russell, 1981a; Dinarello et al., 1984; and Rola-Pleszczynski 
and Lemaire, 1985a). 

Using resident peritoneal macrophages, this 
study was focussed on the activating role of endogenous 
leukotrienes in the regulation of macrophage antitumor 
cytostatic activity in response to inflammatory stimuli. 
Inhibitors and inducers of leukotrienes synthesis were used to 
modulate the macrophage antitumor cytostatic function and to 
identify the essential leukotriene(s) and enzymes involved in 
inhibition of tumor cell growth by activated macrophages. 
Induction of high macrophage antitumor activity by modulation 
of leukotriene biosynthesis might represent an efficient 
immunotherapeutic tool. 
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Chapter 2. 

REVIEW OF THE LITERATURE 

I. MACROPHAGE FUNCTIONS IN THE IMMUNE RESPONSE TO TUMOR CELLS 

Mononuclear phagocytes can lyse tumor cells as well as 
mediate the killing of microorganisms. The role of macrophages 
in.the immune response to tumor cells was reviewed in the 
context of the cellular events occurring in the inflammatory 
reaction. 

1. Macrophage activities in natural resistance and in immunity 

Macrophages have major functions in natural resistance and 
immune responses: 

- Fe- (crystallizable fragment of immunoglobulin) receptor­
mediated phagocytosis (associated with respiratory burst 
CH202 and 02- generation) protects against pathogens. 

secretion of products (tumor necrosis factor (TNF), 
interferon (IFN) a/~, interleukin-1~ (IL-l~), prostaglandins 
(PGs), leukotrienes (LTs), platelet activating factor 
(PAF), proteases, lysozymes and components of the 
complements cascade) make crucial contributions to 
generation and control of inflammation. 

- stimulation of both T- and B- lymphocytes, 'processing' and 
'presenting' antigens (Ags) associated with "immune 
response- associated antigens" (Ia)- and IL-l~- expression 
(Beller and Unanue, 1981; and Unanue and Allen, 1987). 

- inhibition of tumor cell growth (cytostatic activity) and 
destruction of microbes, viral-infected cells and tumor 
cells (cytotoxic activity) (Adams and Hamilton, 1988; and 
Johnston, 1988). 

Mast cells and resident tissue mononuclear phagocytes 
involved in the cellular events during the immune response are 
already present in the tissues, while leukocytes 
(polymorphonuclear leukocytes (neutro-, eosine- and basophils) 
and mononuclear cells (monocytes and lymphocytes)) in the blood 
have to actively migrate through the blood vessel wall. The 
development of new mononuclear phagocytes starts in the bone 
marrow with differentiation of colony-forming-unit-granulocyte 
progenitors and monoblasts from self-renewing pluripotential 
hemopoietic stem cells (Figure 2.). Monoblasts develop into 
immature promonocytes, which differentiate further into 
monocytes and eventually develop into macrophages. In the 
steady state, peripheral blood monocytes (PBM) (less phagocytic 
and with fewer lysosomes than mature macrophages) migrate into 
the tissue at a constant rate and form the various pools of 
local resident tissue macrophages (Adams and Hamilton, 1988). 
Under these circumstances, small amounts of IL-l~ may be 
released spontaneously (Martin and Resch, 1988) and little 
biologically active TNFa is present within macrophages (Michie 
et al., 19S8). The primary function of macrophages is 
phagocytosis of damaged cells, of cellular debris and of 
foreign invaders. Thus, resident macrophages of peritoneal 

- 8 -



Figure 2. 

Hematopoesis of cells participating in immunological response, 
including derived cytokines, which regulate inflammatory 
reactions; ------> release of cytokines 

differentiation/proliferation of cells 
stimulation of cells 

monoblast------

megakaryocytes----

or alveolar space could provide a first line of (non)specific 
defense against microbial and parasitic infections. 

At the site of an acute inflammation, many monocytes 
entering the tissue are confronted with a variety of 
inflammatory mediators (IL-l~, TNFa, PGE2, Granulocyte 
/Macrophage-Colony Stimulating Factor (GM-CSF) and IFN-•) while 
they mature and develop into large inflammatory macrophages 
(Adams and Hamilton, 1988). This network of polypeptides and 
eicosanoids influences macrophage inflammatory activities 
(phagocytosis, Ag-Antibody (Ab) presentation, eicosanoids-, 
TNFa-, and IL-l~ release), increases recruitment of peripheral 
monocytes (by GM-CSF) and increases destructive activities of 
macrophages (increase in high affinity Fe receptors, generation 
of oxygen radicals (H202l release and Ia molecules expression) 
(Hogg, 1986; and van Furth and van Dissel, 1989). Increased 
plasma levels of TNFa and adrenocorticotropic hormone (ACTH) 
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Abbreviations used in Figures 2 and 3. 

A23187 
BCG 
BCGF 
BMDM 
CF 
G-CSF 
GM-CSF 
IFN 
IL 
LAK cells 
LPS 
LT 
M~ 
PBM 
PG 
PHA 
PMA 
P815 
s 
ToT H cells 

TE cells 
TGL 
T& 1 r cells 
TK cells 
TNF 

The calcium ionophore A23187 
= Bacillus Calrnette-Guerin 

B cell growth factors 
Bone marrow derived rnacrophages 
Cytolytic factor 
Granulocyte-colony stimulating factor 
Granulocyte/Macrophage- CSF 
Interferon 
Interleukin 
Lyrnphokine activated killer cells 
Lipopolysaccharide 
Leukotrienes 
Macrophage 
Peripheral blood rnonocytes 
Prostaglandins 
Phytohearnaglutinin 
Phorbol rnyristate acetate 
P815 murine mastocytoma tumor cells 
Stern cells 
Thymus derived delayed-type­
hypersensitivity cells 
Thymus derived effector cells 
Thioglycollate 
Thymus derived helper/inducer cells 
Thymus derived killer cells 
Tumor Necrosis Factor 

were detected in humans, 2 hours after administration of 
lipopolysaccharide {LPS) intravenously {i.v.), whereas the 
plasma levels of IFN-c and IL-l~ did not change (Michie et al., 
1988). The mechanism by which stimulated macrophages increase 
and control TNFa- {Michie et al., 1988) and IL-l~- production 
and -release {Rola-Plezszynski and Lemaire, 1985al was the 
topic of extensive research: 

Stimulants that induce monocyte IL-l~ synthesis and 
release act on the plasma membrane: LPS {Lasfargues et al., 
1987; and Bakouche et al., 1987), muramyldipeptide {MDP), Ag­
Ab-complexes (Openheirn et al., 1986), leukotrienes (LTsl (Rola­
Pleszczynski and Lemaire, 1985a) or lymphokines (IFN-c and GM­
CSF) (Moore et al., 1980) are very potent IL-l~ inducers. IL­
l~ release can also be elicited by nonspecific membrane 
perturbation, including exposure to cellular debris, adherence, 
phagocytosis or cell injury (Gery et al., 1981). Ca2 • 

ionophore (A23187) and phorbol esters are also potent IL-l~ 
inducers, pointing to a role of protein kinase C (PKC) in the 
stimulus-response relationship for the synthesis of IL-l~ 
{Matsushima and Oppenheim, 1985; Oppenheim et al., 1986; and 
Martin and Resch, 1988). 
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It was suggested that PKC- and calmodulin stimulated kinase­
dependent pathways in macrophages are involved in the induction 
of IL-l mRNA by LPS or muramyldipeptide (MDP) (Vermeulen et 
al., 19S7), whereas TNFa mRNA expression was only PKC-dependent 
(Kovacs et al., 19SS). LPS treatment was associated with 
enhanced phosphorylation of a characteristic set of proteins, 
similar to those induced by stimulating PKC with phorbol 
myristate acetate (PMA), by alteration of c-fos and c-myc 
oncogene expression (Introna et al., 19S6; and 19S7) and by 
enhancement of protein synthesis (Hamilton et al., 19S6b). 
However, after second round of administration of LPS, 
macrophages failed to secrete TNFa in vivo and in_vit~~· This 
phenomenon, termed endotoxin tolerance, could be a mechanism of 
the host to desensitize its inflammatory response. 

Each immune response requires the interaction of Ag-specific 
lymphocytes and accessory cells. Macrophages have a regulatory 
role in the immune response to proteins by the activation of an 
Ag-specific T helper (Th) subset of lymphocytes (CD4+). The 
activation of the CD4+ cells initiates the diverse cellular 
interactions that result in B cell activation, development of 
inflammatory reactions and activation of cos+ positive cells to 
become cytotoxic T lymphocytes (CTL) (Unanue and Allen, 19S7). 
The specificity of CD4+ cell activity is restricted to 
recognition of products from the I region (in mice) of the 
major histocompatibility complex (MHC) expressed by 
macrophages. Therefore, this specific function of macrophages 
in activating T cells generates a much more effective and 
selective immune response for particular invading organisms. 
IL-l~ production and -release from macrophages during the 
immune response appears also to be dependent on Ia products 
restricted- T cell contact (Oppenheim et al., 19S6). Binding 
of Ag in association with MHC products to the helper/inducer 
subsets of T cells initiates the synthesis of the T cell­
specific mitogen IL-2 (Gillis, 19S3), a lymphokine that 
stimulates growth of, and IFN-c production by Lyt-2+ spleen 
cells (Johnson and Torres, 19S4). Both lymphokines are 
essential for the development of cytotoxic (CDS+) T cells 
(Maraskovski et al., 1989), incapable of self-Ia recognition 
(Oppenheim et al., 1986). Besides the advantage of activation 
and generation of specific Th cell clones, one likely 
explanation for existence of this genetic control of the immune 
response, could be the cytotoxic effects of an unlimited 
lymphokine-induced activation of macrophages, which threatened 
survival of the host in the past. The toxic effects observed 
from IL-2 treated patients in the immune therapy towards 
malignancies (Rosenberg et al., 1987) supports this view. 

M(macrophage)-CSF and GM-CSF (not found in normal serum) are 
regulators of tissue macrophage prol-iferation and 
differentiation (Chen et al., 1988). M-CSF can be considered 
as a regulator of new tissue macrophage production under normal 
steady state conditions, whereas locally produced GM-CSF acting 
with M-CSF hastes the production of' new tissue macrophages (Lin 
et al., 1989). During inflammation, the concentration in the 
circulation of G(granulocyte)-CSF produced by· macrophages 
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increases a 1000 times. It has been reported that this 
growth factor causes proliferation of immature monocytes (Hogg, 
1986). Other lymphokines (TNF-~ (lymphotoxin)) and B cell 
growth factors (IL-4 and 6) from T cell populations, which 
mediate important functions in the immune system has been 
reviewed by Mosmann (1987) (see Figure 2.). 

2 •· Macrophage activities towards tumor cells 

2.1 Cytotoxic- and cytostatic effects on tumor cells 

Most results regarding antitumor cytotoxicity have been 
obtained by assays on the expanded release of ~ 1 Cr- or 1 2~I 

incorporated into tumor cells, reflecting the degree of tumor 
cell lysis. The results of monocyte-mediated cytotoxicity 
against tumor cells were not always comparable from laboratory 
to laboratory because of considerable variation in the method 
of isolation of the cells, the choice of target cells, the 
duration of the cytotoxic phases of the response and the 
technique used for detecting the extent of cytotoxicity. 

Carswell and coauthors first described in 1975 an activity 
in the sera of mice infected with BCG and subsequently injected 
with LPS. The active principle induced hemorrhagic necrosis of 
certain transplantable tumors in mice. The authors suggested 
that this activity was mediated by a macrophage derived product 
which they termed 'Tumor necrosis factor' (TNF). In 1986, TNF 
was purified from serum of mice, obtained at 2 hours after an 
i.v. injection with endotoxin (10 ]lg LPS) (Haranaka et al., 
1986). Urban and coauthors (1986) demonstrated with 
recombinant TNFa and TNF-sensitive and -resistant tumor cells 
that TNFa is an important mediator of macrophage-dependent 
tumor cell cytotoxicity. Demonstrated with anti-TNFa-, anti­
IL-l~- and anti-IFN-~ monoclonal Abs, TNFa appears to enhance 
and mediate monocyte-mediated antitumor cytotoxicity in 
response to LPS, IFN-~ , IL-l~ and TNFa (Philip and Epstein, 
1986) (Figure 3.). Weinberg and coauthors (1978) characterized 
macrophage differentiation in ~ivo (by infection of irritants) 
toward the tumoridal state, which parallels the responsiveness 
of macrophages to LPS in vitro: Less LPS is needed to trigger 
expression of antitumor activity in vit~o by macrophages in a 
more differentiated stage (Figure 3.). Adams and coauthors 
(1980, 1982) recognized a cytolytic factor (CF) (1980) and 
selective tumor cell binding (1982) from BCG-activated 
macrophages in its effector function of tumor cell destruction. 
Ruco (1978) and Meltzer (1982) decribed a required completion 
of three phases of reactions for development of macrophage 
antitumor cytotoxicity activation; first, differentiation of 
immature blood-derived mononuclear phagocytes, second, a 
macrophage response to priming signals by IFN-~ (Pace et al., 
1983) and third, primed macrophages respond to a trigger by LPS 
(Pace and Russell, 1981). Changes in protein expression by 
bone marrow derived macrophages has been described in 
traversing stages of macrophage differentiation to a macrophage 
tumoricidal state (MacKay and Russell, 1986) (Figure 3.). 
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Figure 3. 

Macrophage differentiation toward tumoricidal state. 
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It has been demonstrated that IFN-c modulates the Ca2 +­

dependent PKC in peritoneal macrophages (Hamilton et al., 1984; 
and Hamilton and Adams, 1987). Intracellular Ca2 • mobilization 
(Johnson and Torres, 1985 and Drysdale et al., 1987) and PKC 
activation (Hamilton et al., 1986a; and Celada and Schreiber, 
1988) appears to be essential steps in the pathway of required 
signals for IFN-c-dependent induction of tumoricidal activity 
during macrophage maturation. Human macrophages activated by 
IFN-c induces specifically messenger (m)RNA for human 
leukocytes antigen (HLA)-DR. Regarding TNFa-mRNA, INF-c did not 
induce expression of TNFa-mRNA in murine macrophages, but IFN-c 
enhanced the accumulation of LPS-induced TNFa-mRNA (Koerner et 
al., 1987). It has been demonstrated that induction of 
macrophage-mediated tumor cytotoxicity could depend on the 
amount and type of INF (a/~ or c) used, the presence of a 
second signal and the type of tumor cell used (Koestler et al., 
1987). 
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Monocytes activated by INF-• contribute also to control of 
tumor cell growth by exerting cytotoxic responses (Fidler and 
Kleinerman, 1984; and Braun et al., 1989) (Figure 3.). 

Resident peritoneal macrophages also express cytotoxic 
activity towards tumor cells. The magnitude of response to LPS 
and INF-• appears to increase with cell size (Lee et al., 
1981). The results from this study also suggests that 
macrophages can exist in a continuum of activated states, 
depending on the nature of the activation signals. 

TNF~ exerts similarly to IL-l~ profound effects on several 
biological processes, including PGE2 synthesis, endogenous 
pyrogen activity and proliferation of thymocytes (Ranges et 
al., 1988). Many investigators observed also a direct cytotoxic 
effect of IL-l~ (Onozaki et al., 1985b; and Lachman et al., 
1986) and TNF~ on tumor cells in vitro (Ruggiero et al., 1987; 
and Nakano et al., 1986) and a cytotoxic effect of TNF~ in vivo 
(Carswell et al., 1975 and Sohmura et al., 1986). It has been 
reported that IL-l~ and TNF~ released from monocytes have 
parallel and additive cytotoxic effects on tumor cells 
(Ichinose et al., 1988). TNF~ binding and penetration through 
membranes in target cells appeared to be pH-dependent (Baldwin 
et al., 1988). 

Mononuclear phagocytes and their cytokines appear also to 
play an important role in the control of the immune response to 
malignant cells by natural killer (NK) cells (de Boer et al., 
1982, Rola-Pleszczynski et al., 1983; and Bloom and Babbitt, 
1985), cytotoxic T lymphocytes (CTLs) (Schulof et al., 1981) 
and lymphokine activated killer (LAK) cells (Roth and Golub, 
1988; and Chouaib et al., 1988). Recently, efforts were made 
to test lymphokines (IL-2 (Rosenberg et al., 1987; and 
Rosentahl et al., 1988,), and INF-• (Laszlo et al., 1983)) in 
immunotherapy to cancer patients. But it remains to be seen 
whether this manipulation of immunity by biological response 
modifiers (Ruddon, 1981; Klein, et al. 1983; and Palladino and 
Finkle, 1986) will be of benefit to the patient. 

Summarized, the expression of a macrophage antitumor 
function appears to depend on the signal(s) recieved from the 
polypeptide network of immunoregulators. Additionally, the 
presence or absence of receptors on macrophages and 
membranephospholipids containing arachidonic acid, could 
influence how macrophages express antitumor activity (Fidler, 
1985; and Old, 1987). 

Macrophage mediated cytostasis can be defined strictly as 
the inhibition of target cell division. Most results regarding 
studies of tumor cell cytostasis were obtained by the ability 
of tumor cells to incorporate 3 H-thymidine used in replication 
of their DNA. Inhibited uptake of label reflected thus reduced 
tumor cell growth. Tumor cell cytostasis requires a coculture 
of tumor cells and a relatively large number of macrophages 
(60% or more of the total cell population). Cytostasis appears 
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not to be selective for tumor cells, since both normal and 
transformed target cell types were susceptible (Adams and 
Hamilton, 1988). Macrophage cytostasis has also been effective 
across histocompatibility barriers, since targets from 
allogenic or xenogenic sources are sensitive. Because there is 
little evidence for effector cell-tumor cell contact, the 
actual cytostatic effect is likely carried out by soluble 
mediators that act upon proliferating cells. Candidate 
molecules from activated macrophages for such mediators are 
prostaglandins (Balazsovits et al., 1988), IL-l (Lovett et al., 
1986; and Tsai and Gaffney, 1987), TNFa (Schiller et al., 1987) 
thymidine (Adams and Hamilton, 1988) and unidentified released 
cytostatic product(s) (Lepoivre et al., 1988). The primary 
anti-proliferative effect appears to be at the level of DNA 
synthesis, preventing the target cell entering into S phase 
and/or, replicating its DNA. Therefore, it was suggested that 
cytostasis is associated with a differentiation step after 
which tumor cells no longer have the capacity to proliferate. 

2.2 Mechanisms by which macrophages attack tumor cells 

As mentioned before, macrophage antitumor cytotoxic 
activity is dependent on cell-cell contact (Adams and Hamilton, 
1988). It was suggested that macrophage-tumor cell 
interactions are initiated by a recognition phase (Ruco and 
Melzer, 1978) that might result in extracellular release of 
lysosomes (containing proteolytic enzymes) through macrophage 
exocytosis into the cytoplasm of the tumor target cells (Bucana 
et al., 1976). Increasing evidence supports that proteolytic 
enzymes are involved in monocyte-mediated killing of tumor 
cells and that 02- or H202 release may not play a critical role 
in the mechanism of monocyte-mediated tumor cell killing 
(Coletta et al., 1985; and Adams and Hamilton, 1988). 
Additionally, it was demonstrated that injure of neoplastic 
cells by cytotoxic macrophages in cell culture was accompanied 
by inhibition of mitochondrial respiration (Kilbourn et al., 
1984) at the level of NADH dehydrogenase and succinate 
dehydrogenase (Granger and Lehninger, 1982), and iron loss 
(Wharton et al., 1988). However, these injured tumor cells 
demonstrated inhibited thymidine incorporation, but they were 
not lysed. 
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II. REGULATION OF MACROPHAGE ACTIVATION BY PROSTANOIDS AND 
LEUKOTRIENES 

1. Biochemistry of prostanoid and leukotriene synthesis 

Arachidonic acid (AA) release is assumed to be the rate­
limiting step in the synthesis by oxygenation of cyclooxygenase 
metabolites (prostanoids; prostaglandins (PG), prostacyclin 
(PGI2l and thromboxanes (TX)), whereas oxygenation by 5-
lipoxygenase requires Ca2•. Prostaglandin was first discovered 
by von Euler in 1936 in human semen and he believed the 
prostate gland to be their major source. This conception is 
now known to be incorrect but the name prostaglandin has 
remained. Leukotrienes (5-lipoxygenase metabolites) recieved 
their name as being first found in leukocytes and containing a 
conjugated 'triene' structure (Samuelsson, 1982; and Borgeat et 
al., 1985). Prostanoids and leukotrienes are formed by 
oxydation of free AA, a polyunsaturated fatty acid released 
from membrane phospholipids. 

1.1 Arachidonic acid release from phospholipids 

Membrane phospholipids are the most imporant pool of AA. 
Phosphatidylcholine (PC) is the principal phospholipid of 
macrophages, with phosphatidylethanolamine (PEl, -inositol (PI) 
and -serine (PS) present to a lesser extent. Macrophage 
stimulation by certain stimuli results in release of AA from 
phospholipids through activation of phospholipase(s) (PL) 
(Gerrard, 1988). 

Concentrations of free AA are under control of numerous 
mechanisms (for review, see Irvine (1982)). Three general 
mechanisms have been implicated in the releasing process of AA: 
1. Degradation of phopholipids by phospholipase A2, which 
releases AA principally from PC, 2. Sequential methylation of 
PE to PC whereafter AA is liberated by PLA2 and 3. Liberation 
of AA by PLC through the generation of diacylglycerol (DAG) 
(from phophatidylinositol-4,5- diphosphate (PIP2ll, from which 

AA is released by a diaglycerol lipase (Nishizuka, 1984a and b). 

Exchange of free AA between immuno-competent cells can modulate 
the characteristic individual AA metabolism in a cell (Goldyne 
et al., 1982; Salari and Chang-Yeung, 1989). The availabilty 
of the eicosanoids precursor AA appears also to be regulated by 
the rate of reincorporation of the free fatty acids (Goppelt-

·Stuebe et al., 1986) in phospholipids (reacetylation). 
Activation of AA-releasing enzymes have been suggested to be 
dependent on the availibility of adenosine triphosphate (ATP) 
and cytosolic free Ca2+ in macrophages (Wightman et al., 1981a 
and b) . 

Phospholipases A2 and C are found in macrophage lysosomes 
and in unidentified locations of macrophages (Hsueh et al., 
1981). Release of AA from intracellular stores has been 
reported to be activated by many physiological and experimental 
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agents, including calmodulin (Wong and Cheung, 1979), 12-0-
tetradecanoate phorbol-13-acetate (TPA) (Hoffmann et al., 
1988), divalent cation ionophore A23187 (Emilsson and Sundler, 
1985; and Hoffmann et al., 1988), IL-l~ and TNF~ (Chang, et al. 
1986; Godfrey et al., 1987; and 1988), phagocytosing stimuli 
(Aderem et al., 1986b; Hoffmann et al., 1988) and immune 
complexes of IgG orE (Pawlowski et al., 1983). However, it is 
not always clear to what extent the stimulatory effect of these 
compounds on AA release is mediated by activation of PLA2 . 
Triggering of AA release in Fe receptor-mediated phagocytosis 
in resident macrophages requires Na• influx and protein 
synthesis. This receptor-mediated induction of PL activity can 
be bypassed by a Ca2• influx mediated by A23187 (Aderem et al., 
1986a). 

1.2 Biosynthesis and metabolism of prostanoids 

Liberated AA can be converted by an enzyme prostaglandin 
endoperoxide (PGH) synthetase I cycle-oxygenase (CO) to the PG 
endoperoxide intermediate PGG2 through insertion of two oxygen 
molecules in AA, and is further transformed by hydroperoxidase 
into PGH2. Both of these activities require (probably the iron 
(Fe2+) in) heme. PGH2 is further transformed to various PGs 
(PGD2, PGE2, PGF2a, PGI2l (Johnson et al., 1976) or TXA2 
(Hamberg et al., 1975) (reviewed by Stenson and Parker, 1982) 
by PG endoperoxide isomerases (synthetases) or non­
enzymatically. 

Most non-steroid anti-inflammatory drugs (NSAIDs) inhibit 
oxygen insertion into substrate fatty acids by CO and are 
believed to interact with the substrate-binding site of the 
enzyme, although inhibitory effects on Ca2• mobilization and 
increased cAMP levels in neutrophils have also been reported 
(Abramson et al., 1985). 

The prostanoids PGI2 and TXA2 are intermediates which 
rapidly inactivate, when released from macrophages into aqueous 
solutions. They undergo a non-enzymatic degradation to less 
biologically active and stable products 6-keto PGF1a and TXB2, 
respectively. PGE2 can be metabolized to PGF2a by 9-
ketoreductase or to PGA2 and further to PGC2 and PGB2 
enzymatically or non-enzymatically. 

Most enzymes of CO pathway have been found in the 
microsomal subcellular fraction (Jackschik and Ko, 1983). 

1.3 Biosynthesis and metabolism of leukotrienes 

The biosynthesis and metabolism of leukotrienes have been 
extensively reviewed (Lewis and Austen, 1984; Borgeat et al., 
1985; Samuelsson. et al., 1987; and Levi and Krell, 1988). 5-
Lipoxygenase (LO) catalyzes two reactions (Rouzer et al., 1986) 
in the biochemical pathway of the formation of the leukotrienes 
from AA. First the addition of oxygen resulting in 5(5)­
hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), which is 
further transformed to the unstable 5,6-oxido-7,9,11~14-
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eicosatetraenoic acid (LTA4) or conjugated to a triene 
(Pawlowski et al., 1982). LTA4 can be converted either to LTB4 
by LTA4 hydrolase, or with glutathione to LTC4 by glutathion-S­
transferase. LTB4 transformes in cultured PMNs in vitro to 20-
hydroxy- and further in 20-carboxy-LTB4 by oi:nega-oxydation. 
Non-enzymatic hydrolysis of LTA4 results in biologically 
inactive isomers of LTB4 . 

Recently, human LO, a single polypeptide chain of 75-80 K 
Daltons has been cloned and expressed in a osteosarcoma cell 
line (Rouzer et al., 1988a). It appears that maximal activity 
of LO requires Ca2 • (Lefer and Yanagisawa, 1987), ATP (Ahnfelt­
Ronne and Bang Oisen, 1985; and Rouzer and Samuelsson, 1987) 
and a microsomal membrane preparation (Rouzer et al., 1985). 
A23187 treatment of intact leukocytes results in a Ca2 •­

dependent translocation of 5-lipoxygenase (Rouzer and Kargman, 
1988b) from the specific granules (Stuning et al., 1985) to a 
membrane bound site where it is utilized for LT synthesis and 
where it is consequently inactivated. 

LTC4 is a product of the conjugation of glutathione and 
LTA4, by glutathione-S-transferase activity. Location of this 
enzyme appears to be the microsomal and cytosol subcellular 
fractions and not in supernatants of granulocytes (Raulf et 
al., 1985) and hepatocytes (Soderstrom et al., 1985). LTC4 can 
be converted to LTD4 by cleavage of a c-glutamyl residue by c­
glutamyltranspeptidase (GGT) (Orning and Hammerstrom, 1980; and 
Morris et al., 1982) and metabolized further to LTE4 by 
cysteinyl-glycinase (CG) by elimination of glycine. Both 
enzymes are present in supernatants of A23187-stimulated 
granulocytes (Raulf et al., 1985), in plasma and in granules of 
unstimulated granulocytes (Raulf et al., 1985) and PMNs (Lee et 
al., 1983). Formation of the cysteinyl LTs, LTC4 and LTD4 is 
also regulated by intracellular glutathione levels (Rouzer et 
al., 1982), probably by competition for GGT. The addition of 
glutathione and GGT to LTE4 in _ _y_:i,..t_:t:Q results in the formation 
of LTF4 (Bernstrom and Hammarstrom, 1982). 

12- and 15-HPETEs can be formed from free AA by 
lipoxygenase, respectively. These metabolites 
further into 12- and 15-hydroxyeicosatetraenoic 

12- and 15-
can transform 
acids (HETE) . 

-----------------

Leukotriene C4 

COOH 
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It has been reported that 12- and 15-HETE can inhibit 
zymozan-induced LTC4 , -PGE2 and -TXB2 release from leukocytes 
(Vanderhoek et al., 1980) and resident macrophages (Camp and 
Fincham, 1985; Chang et al.,1985; and Humes et al., 1986). 
PGE2 can inhibit stimulated macrophage LTB4 release (Elliott et 
al., 1989) and exogenous LTC4 stimulates PGE2 release from 
macrophages (Feuerstein et al., 1981). This indicates a 
regulatory role of PGE2 on macrophage -eicosanoids formation 
and -function (Schenkelaars and Bonta, 1986) and it appears 
that leukotrienes regulate their own production through a self­
induced inhibitor, that is PGE2. This proposal was launched 
several years ago (Bonta and Farnham, 1982). 

Exogenous AA inhibits 5-LO metabolism in macrophages 
(Elliott et al., 1988; and Peters-Golden and Shelly, 1988), 
probably by ATP depletion. Additionally, there are reports of 
enhancement of A23187-increased LTB4 formation (Docherty and 
Wilson, 1987; and Elliott et al., 1989) and activation of 15-LO 
(Vanderhoek and Bailey, 1984) by cyclooxygenase inhibitors. 

Platelet- activating factor (1-0-alkyl-2-acetyl-sn-glycero-
3-phosphocholine: PAF) induced production is associated with 
macrophage- (Albert and Snyder, 1983; and Elstad et al., 1988) 
and PMN- (Sisson et al., 1987) activation. This 
immunomodulating phospholipid appears to regulate macrophage 
(Huang et al., 1988) and T cell activity (Braquet and Rola­
Pleszczynski, 1987; and Rola-Pleszczynski et al., 1988). 

1.4 Arachidonic 
macrophages 

acid metabolism in resident peritoneal 

Resident macrophages synthesize and release more 
eicosanoids in response to inflammatory stimuli or A23187 than 
in vivo elicited/activated macrophages. This could be due to 
the ·fa-ct that a high (25% of the total) fatty acid content in 
the membrane phospholipid pool of resident macrophages is 
composed of AA (Scott et al., 1980). In ~esident peritonal 
macrophages two different phospholipases A2 (Ca2+-dependent and 
independent) and phospholipase C have been characterized, 
biochemically (Wightman et al., 1981a and b.) and it has been 
suggested that in resident macrophages the prostaglandin 
synthetase and 5-lipoxygenase can obtain substrate AA from two 
different sources (Humes et al., 1982). In other types of 
macrophages, like BCG-activated alveolar macrophages, free AA 
is derived from PE and PC only, whereas it has been suggested 
that lyso(bis)phosphatidic acid may also provide an additional 
source of AA in stimulated resident alveolar macrophages 
(Cochran et al., 1987). 

A23187, immune complexes and phagocytos~s of opsonized 
particles (serum-treated zymozan) induce both the release of 
leukotrienes (Rouzer et al., 1980; Bonney and Humes, 1984; 
Emilsson and Sundler, 1985; and Hoffmann et al., 1988) and 
prostanoids release (Bonney et al., . 1979; Scott et al., 1980; 
and Chandler and Fulmer, 1987) in (alveolar and peritoneal) 
macrophages and monocytes, whereas TPA, PMA and ·LPS (largely 
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independent of calcium) , induce prostanoid and 15-lipoxygenase 
metabolite synthesis (Humes et al., 1980; and Hoffmann et al., 
1988). It has been observed that immune complexes and 
opsonized zymozan induce predominately prostanoid release, 
whereas A23187 induces AA metabolism in favor of leukotriene 
release by macrophages. Combined treatment of A23187 in 
addition to PMA (Tripp et al., 1985), TPA (Weyand Baxter, 
1986) or LPS (Aderem and Cohn, 1988) synergistically stimulates 
LO.metabolites release, but not the prostanoid release in 
macrophages (Wey and Baxter, 1986). 

Results from these studies indicate that certain products 
(LPS, TPA and PMA) appears to stimulate AA release by a Ca2 •­

insensitive pathway and products (A23187 and phagocytic 
stimuli), which cause Ca2 • influx and therefore stimulate PL 
activity and AA release of macrophages (Hoffman, et al., 1988). 

Concerning the relation between Ca2 • mobilization and AA 
metabolism observed in macrophages exposed to certain stimuli, 
it could be suggested that resident peritoneal macrophages 
appear to use, like monocytes (Hoffmann et al., 1988); 1. a 
Ca2 •-dependent pathway of AA metabolism (LO- together with CO 
metabolite release) upon phagocytic stimuli (Rouzer et al., 
1980) or dual Ab binding (Aderem et al., 1986a) and 2. a Ca2 •­

independent pathway of AA -metabolism (CO- together with 15-
lipoxygenase metabolite release) initiated by soluble products, 
like TPA-, LPS- and PMA- stimulation. Thus, stimulation of LO­
metabolites release can be associated with co- metabolites 
release from macrophages, but co- metabolites release is not 
always associated with LO- metabolites release. This is because 
LO activity requires Ca2• where a CO activity can be observed 
in the absence of measurable Ca2• influx in macrophages. 

2. Macrophage activation 

2.1. Macrophage activation by A23187 

Macrophage activation by Ca2+ ionophore A23187 is related 
with, 
-increasing glucose consumption (Onozaki et al., 1983), 
-IL-l~ production (Matsushima and Oppenheim, 1985), 
-secretion of lysosomal enzyme (Takenawa et al., 1982), 
-reactive oxygen production (Lim et al., 1983), 
-increased cAMP, prostanoid- and LT formation (Gemsa et al., 

1979 and Gerrard, 1988), 
-increased macrophage antitumor cytotoxicity (Wright et al., 
1985)' 

-PKC activation and down regulation of macrophage transferrin 
receptor-phosphorylation and expression (May et al., 1985), 

-induction of 90% macrophage antitumor cytostasis towards P815 
cell growth by (trehalose dimycolate) TOM-elicited macrophage 
(Grand-Ferret et al., 1986). 

The calmodulin- (Ca2 •-binding protein) dependent 
activation of macrophages by A23187 may be mediated by AA 
metabolites, because calmodulin stimulates PLA2 (Wong and 
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Figure 4. 

Arachidonic acid metabolism-mediated macrophage 
stimulated by A23187. 
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Cheung, 1979), A23187 causes AA release from PC, PE and PI by 
PLA2 deacylation and PLC mediates DAG generation from PI, PC 
and PE (Emilsson and Sundler, 1985). The phosphoinositol­
derived messenger molecule DAG stimulates PKC activity (Majerus 
et al., 1986), which is involved in IFN-c-mediated macrophage 
activation (Hamilton and Adams, 1987), in transmembrane 
signaling (Takai et al., 1985) and tumor promotion (Nishizuka, 
1984a and b). 

Ca2+ influx and not cyclic nucleotides (cAMP and cGMP) 
appeared primarily important in the activating effect of A23187 
(Onozaki et al., 1983). It has been reported that A23187-
induced macrophage leukotriene release is about 70% of the 
total induced eicosanoids release (Gerrard, 1988). Therefore, 
leukotrienes might be involved in transduction of signals 
required to induce macrophage activation in response to 
increased cytosolic [Ca2+]. Nishizuka (1984) suggested that PI 
turnover results in a Ca2+ mobilization and increased turnover 
of AA. Metabolites of AA could than further modulate cell 
activation (Figure 4). 

It has been reported that Ca2 + influx induced by A23187 
(.1 -.4 pM) can enhance synergistically LO metabolite release 
by macrophages incubated with LPS (Aderem and Cohn, 1988), 
zymosan, or PMA (Tripp et al., 1985). A23187 also enhances 
lysosomal enzyme release from neutrophils incubated with DAG 
(Nishizuka, 1984). 

Besides DAG, metabolism of PI can also give rise to 

Abbreviations used in Figure 4. 

A23187 
AA 
AC 
ATP 
cAMP 
CG 
DAG 
GDP 
GGT 
GTP 
IP3 
LT 
PC 
PE 
PG 
PI 
PIP 
PIP2 
PL 
PLA2 
PLC 
PK 
R 

Calcium ionophore A23187 
Arachidonic acid 
Adenylate cyclase 
Adenosine triphosphate 
cyclic adenosine monophosphate 
cysteinyl glycinase 
Diacylglycerol 
Guanine diphosphate 
c-glutamyl transpeptidase 
Guanine triphosphate 
Inositol triphosphate 
Leukotriene 
Phosphatidyl choline 
Phosphatidyl ethanolamine 
Prostaglandin 
Phosphatidyl inositol 
Phosphatidyl inositol phosphate 
Phosphatidyl inositol diphosphate 
Phospholipid 
Phospholipase A2 
Phospholipase C 
Protein kinase 
Receptor 
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inositol triphosphate (IP3). IP3 diffuses to endoplasmatic 
reticulum (Hirata et al., 1984 and O'Flaherty, 1987), where it 
releases Ca2+ and thus increases cytosolic [Ca2+] (Berridge and 
Irvine, 1984 and Taylor, 1987). Increased concentrations of 
LTB4 , synthesized by stimulation of LO pathway in macrophages 
(Bonney et.al., 1985) could also affect the formation of IP3 
(Andersson, et al., 1986) and therefore the enhancement of 
cytosolic free Ca2+. 

An increase in intracellular Ca2 • in macrophages was 
observed after incubation with inflammatory stimuli; Fc­
receptor mediated phagocytosis (Young et al., 1984; and di 
Virgilio et al., 1988), dual Fe receptor binding mediated by 
Abs (Aderem et al., 1986a), potentiation of PGE1-induced 
increase in cAMP (Ishitoya and Takenawa, 1987) and PAF (Conrad 
and Rink, 1986). Regarding macrophage antitumor functions, a 
calcium-dependent process is involved in activation of 
macrophages tumoricidal state by LPS or A23187 following IFN-• 
treatment (Wright et al., 1985). 

2.2 Leukotriene receptors 

There is no data of leukotriene (LT) receptors on 
peritoneal macrophages at this moment. Specific LTB4 receptors 
(Kd= 10.9 nM) are found in PMNs (Goldman and Goetzl, 1982) and 
LTB4 receptor activation results in an increase of IP3 in HL60 
cells. Binding studies of 3H-LTB4 in guinea pig alveolar 
macrophages demonstrated a specific high affinity LTB4-receptor 
(Kd =3. 85 nM) (Cristol et al., 1988) and with 3 H-LTD4 a specific 
high affinity LTD4-(Kd=3.8 nM) receptor was demonstrated in 
human alveolar macrophages, which has a relatively low affinity 
for LTC4 (Opmeer and Hoogsteden, 1984). 

It has been demonstrated that LTC4 receptors are associated 
with membranes (one-third) and with lysosomal granules (two­
third) in PMNs (Baud et al., 1987). 

LTD4 and E4 receptors appear to be linked to the turnover 
of inositol phosphates via activation of PLC. Regulation of 
the activity of PLC appears to be coupled to the receptor via a 
guanine nucleotide binding protein (Halushka et al., 1989). 
Current data support that at least for LTD4/LTE4 receptors PIP2 
hydrolysis with subsequent Ca2• mobilization and generation of 
AA metabolism constitute important transduction mechanisms 
(Halushka et al., 1989). A signal transduction system, which 
involved the LTD4 receptor is postulated by Crooke and 
coauthors (1989). 

3. Effect of prostanoids and leukotrienes 
activation 

on macrophage 

3.1 Regulation of macrophage inflammatory activ'ity 

LPS primes resident macrophages for enhanced AA release in 
yj._!:ro (Aderem et al., 1986b) and t.he AA metabolites PGE2 and 
PGI2 down regulate macrophage functions in vitro (Cantarow et 
al., 1978; Snyder et al., 1982; Farnham et al., 19~3; and Tripp 
et al, 1986b). Exogenous LTs B4, C4 and D4 (> 2nM) are able to 
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replace the IL-2 requirement for IFN-• production by Lyt-1- ,2+ 
cells (Johnson and Torres, 1984) in vitro and LTs can enhance 
monocyte IL-l~ release (Rola-Plezszyns-ki--and Lemaire, 1985al. 
IFN-• decreases macrophage PG- and LT synthesis (Browning and 
Ribolini, 1987; and Boraschi et al., 1984a; and 1987) and 
stimulates Ia expression (Fertsch-Ruggio et al., 1988) and IL­
l~ production (Boraschi et al., 1984b; and Brandwein, 1986) ~~ 
vitro. IFN-• could so immunoregulate a specific immunological 
response (including T cell activation) mediated by macrophages 
in _yiv~. I.v. administration of LPS leads to macrophage 
activation, expressed by induction of increased Ia expression, 
and TNFa release (Michie et al., 1988). Monocytes migrate into 
acute inflammatory tissue (Issekutz et al, 1981) and diminished 
macrophage PGE2- and PGI2-, but not TXB2- release appears to be 
a consequence of the in __ ~ivQ activated state of recruited 
(elicited) mononuclear phagocytes (Stringfellow et al., 1978; 
Humes et al., 1980; Scott et al., 1982; and Tripp et al., 
1986a). GM-CSF activates bone marrow-derived macrophages in 
synthesis and presentation of the transient expressed Ia 
molecule (Beller and Unanue, 1981; and Fischer et al., 1988). 
These events may constitute the mechanism by which macrophages 
could decrease PG release and therefore could decrease its 
mediator function during inflammation. Reduced eicosanoid 
release by activated macrophages could therefore play a role in 
resistance to infectious and neoplastic diseases (Stringfellow 
et al., 1978). 

3.1.1 The role of cyclooxygenase metabolites 

Macrophage release of PGE2 is increased in response 
to acute inflammatory stimuli, like 
- LPS (Stringfellow et al., 1978), 

bacteria in vivo (Edwards III et al., 1986), 
immune complexes (Bonney et al., 1979; Pawlowski et al., 
1983; Chandler and Fulmer, 1986; and Ferreri et al., 1986), 
phagocytic stimuli (Scott et al., 1980; Pawlowski et al., 
1983; Bonney et al., 1978; and Bonney and Humes, 1984; 
Chandler and Fulmer, 1986; Tripp et al., 1986a; and Balter et 
al., 1989), 
TNFa (Lehmmann et al., 1988), 
IL-l~ (Browning and Ribolini, 1987). 

LPS stimulates the hydrolysis of PIP2 by macrophages, but 
did not cause substancial increases in intracellular Ca2+ 
(Prpic et al., 1987). IL-l~ appears to provoke rapid increase 
in IPa and a decrease in PIP2 in macrophages, which suggested a 
mechanism of IL-l~ receptor activation by the generation of the 
second messengers IPa (Wijelath et al., 1988) and cAMP 
(Shirakawa et al., 1988). 

PGE2 and PGI2 modulate the development of cell-mediated 
immunity (CMI) (Leung and Mihich, 1980) by inbiting macrophage 
.inflammatory re~ponses, like; 
- Ia expression (Snyder et al., 1982; and Tripp et al., 198Gb), 
-hydrolase release (Bonney et al., 1978), 
-Il-l~ and TNFa release (Renz et al., 1988) and 
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-adhesion and spreading of the macrophages (Cantarow et al., 
1978). 

The inhibitory role of PGs in regulating macrophage 
activation appears to be mediated by an increase in the second 
messenger, cAMP, formation (Lim et al., 1983; Adolfs and Bonta, 
1982; and Bonta et al., 1984) via the regulatory subunit of 
cAMP-dependent protein kinases (Yamamoto and Suzuki, 1987; 
Kammer, 1988; and Riabowol et al., 1988). In resident 
peritoneal macrophages, [PGE2] >10 ng/ml reduces LPS-mediated 
mRNA for TNF~ (Kunkel et al., 1988) and suppresses TNF~ release 
(via cAMP) , whereas lower dose stimulates TNF~ release (Renz et 
al., 1988). Splenger and coauthors (1989) can desensitize the 
suppressive function of PGE2 by PGE2-pretreatment. This 
immunoregulatory role of PGE2 could be important maintaining 
local TNF~ levels during an inflammation. It has also been 
reported that GM-CSF primes macrophages for enhanced TNF~ and 
PGE2 release (Heidenreich et al., 1989) and that it modulates 
the functional state (Fe receptor expression and membrane bound 
IL-l~, but not Ia expression) of mature resident peritoneal 
macrophages (Morrissey et al., 1988). 

PGE2 , cyclic nucleotides and INF-c can regulate IL-l~ 
production (Brandwein, 1986) and INF-c appears to block IL-1~­
induced PGE2 release from monocytes (Browning and Ribolini, 
1987; and Edwards III et al., 1986). The autocrine TNF~ 
stimulates antitumor cytotoxicity, PGE2 production, 
intracellula-r cAMP formation and metabolic activation in 
peritoneal macrophages (Lehmmann et al., 1988). Endogenous 
PGE2 could down regulate TNF~ release and therefore control 
macrophage antitumor cytotoxic functions. However, 
inflammation can be associated with decreased (in comparison 
with resident macrophagesl stimulation of macrophage PGE2 
release (Humes et al., 1980; Scott et al., 1982; and Edwards 
III et al., 1986). This reduced PGE2 release could be due to 
the prior stimulus in vivo, for example by IFN-c, which 
appeared to reduce induced--PG release, or may be affected by 
reduced incorporation of free AA in phospholipids of recruited 
cells (during maturation) in inflammation. 

3.1.2 The role of Ca2+ and 5-lipoxygenase metabolites 

Recent studies suggest that the LTB4 , C4 , D4 and E4 may 
be important mediators of inflammatory and allergic reactions 
(Barnes et al., 1988; Levi and Krell, 1988; and Ohuchi et al., 
1988). It has been demonstrated that LO- metabolites are 
required in IL-l~ induced IL-2 production, IL-2 mediated T cell 
proliferation and in INF-c production (Dinarello et al., 1983; 
Farrar and Humes, 1985; and Russell et al., 1987). 
Theoretically, LO metabolites could 'bypass' MHC-restricted T 
cell mediated IFN-c production (Rola-Plezszynski, 1985b). 
However, in_y_:i,_yg only LTB4 remains likely, because c-glutamyl­
transpeptidase (GGT) and cysteinylglycinase (CG) are present in 
plasma (Lee et al., 1983), and can be released by activated 
granulocytes (Raulf et al., 1985)_ Thus, although LTs could 
accelerate inflammatory responses, the type of LT formed 
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appears to be dependent on the presence of GGT and CG and also 
on the stimulus and/or maturation stage of the cell: 

In mice (Scott et al., 1983 and Locksley et al., 1985) 
and in porcine (Paterson et al., 1985), macrophages may be a 
major source of LTC4 and LTD4 release (upon opsonized zymosan 
challenge) in acute inflammation and of LTC4 release in 
immediate-type hypersensitivity reactions (by Ag challenge with 
IgE Abs) (Scott et al. 1983; and Rankin et al., 1984). 

Extensive comparative studies of 5-lipoxygenase 
metabolism in murine and human peritoneal macrophages (Du et 
al., 1983; Scott et al., 1983; and Laviolette et al., 1988), -
lung macrophages (Hsueh et al., 1982; Fels et al., 1982; and 
Schonfeld et al., 1988) and -monocytes (Ferreri et al., 1986; 
Bigby and Holzman, 1987; and Balter et al., 1989) stimulated 
with A23187, Ags or aggregated Abs have been reported. 

It has been demonstrated that different amounts of LTC4 
are released from alveolar macrophages and peritoneal 
macrophages stimulated under identical conditions (Rankin et 
al., 1984). A23187-stimulated lung macrophages release more 5-
HETE and LTB4 than stimulated peripheral blood monocytes. This 
indicates that enhanced 5-lipoxygenase product synthesis could 
be related to enhanced maturation (not accelerated by 
infection) of alveolar macrophages (Bigby and Holzman, 1987) in 
the alveolar space (Peters-Golden et al., 1990) or/and could be 
due to compartalization of endogenous AA and of 5-LO in blood 
monocytes (Balter et al., 1989). 

Besides CO metabolites, human monocytes release LTB4 and 
C4 on stimulation of their phagocytic receptor (Williams et 
al., 1984; and Ferreri et al., 1986), although it is not clear 
whether eicosanoids stimulation by zymosan challenge in 
monocytes is in favour of CO metabolites release (Balter et 
al., 1989) or LO metabolites release (Ferreri et al., 1986). 
In response to exogenous AA, monocytes release more CO and LO 
metabolites than alveolar macrophages (Balter et al., 1989). 

The role of LTB4 in immunoregulation involves 
predominantly, chemotactive activity, endogenous activator in 
certain lymphocyte functions (Rola-Plezszynski, 1985b), 
activator of monocyte cytotoxicity (Gagnon et al., 1989) and 
macrophage IL-l~ production (Rola-Plezszynski and Lemaire, 
1985a). 

Cysteinyl-LTs C4 and D4 have slow reacting substance of 
anaphylaxis activity, mediate blood flow, increase vascular 
permeability during inflammation (Samuelsson, 1982; and Ford­
Hutchinson, 1985) and can replace mouse Tb cells or IL-2 in 
inducing the production of IFN-• (Rola-Plezszynskiski and 
Lemaire, 1985a; and b). Endogenous LTC4 and LTD4 appear to be 
essential metabolites in T cell activation (Johnson and Torres, 
1984; and Dornant et al., 1987), in CSF-stimulated myeloid 
colony formation (Miller et al., 1986; and Ziboh et al., 1986) 
and in macrophage IL-l~ production (Dinarello et al., 1984). 
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Endogenous LTD4 appears to stimulate Fc-t2b- receptor 
expression (Rhodes et al., 1985), which is involved in 
macrophage phagocytosis (Yamada and Suzuki, 1989). Thus, it 
can be suggested that reduced formation of the bioactive LTs 
could limit macrophage activation and maturation during 
inflammation. There are reports providing arguments that the 
activating role of endogenous LTs is mediated by GTP (Rola­
Plezszynski, 1985b): 
1. Macrophage growth is mediated by endogenous LTC4 and LTD4 
(Miller et al., 1986; and Ziboh et al., 1986). 
2. Colony stimulating factor (CSF)-1 induces activation of a 
GTP-binding protein in monocytes (Immamura and Kufe, 1988). 
3. The LTD4 receptor appears to be coupled to a guanine 
binding protein (Halushka et al., 1989). 
4. PMA and a lymphokine macrophage mitogenic factor stimulate 
macrophages growth and increase macrophage cGMP levels in vitro 
(Hadden et al., 1982). 

3.2 Regulation of macrophage antitumor activity 

Inflammation can be related to decreased AA metabolites 
formation in macrophages. Resident macrophages were chosen to 
study the role of endogenous AA metabolites in mediating their 
ability to inhibit tumor cell growth, as their membrane 
phospholipids have a high content of AA and have a high 
eicosanoid release. If macrophage antitumor cytostasis is 
regulated by endogenous leukotrienes, stimulation of 
biosynthesis of these 'endogenous immunomudulators' should be 
most effective in resident macrophages. Additionally, size of 
resident macrophages is related to the degree of macrophage 
antitumor cytostatic activity (Lee et al., 1981). Based on the 
analogy to inflammation, that PGE2 and PGI2 inhibit and LTs 
enhance macrophage activity, we hypothesized that increased 
production of LTs could enhance macrophage antitumor 
cytostasis. Studies with calmodulin blockers and calcium 
channel blockers indicate that a calcium-dependent process is 
involved in activation of macrophages tumoricidal state by LPS 
with IFN-c treatment (Wright et al., 1985). 

3.2.1 The role of cyclooxygenase metabolites 

PGE2 has been reported to regulate CMI (Leung and Mihich, 
1980) and it has been demonstrated that macrophage mediated 
antitumor cytotoxicity is regulated by PGE2 (Schultz et al., 
1978; and 1979; Taffet, 1982; and Adams and Hamilton, 1988). 

Macrophage antitumor cytotoxic activity appeared to be 
regulated by the polypeptide network of immunoregulators: IL-l, 
IFN-c, LPS, GM-CSF, TNF and eicosanoids (Grabstein et al.,l986; 
and Hamilton and Adams, 1987; and Adams and H~milton, 1988). 
These immunoregulators affect macrophage eicosanoids release 
and therefore mediate macrophage antitumor activity: 
-IFN-c maintains macrophage cytotoxicity by inhibition of PGE2 
release (Edward III et al., 1988), 

-prolonged PGE2 administration could maintain macrophage 
functions by desensitization of PGE2 receptors ~Spengler et 
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al., 19S9). 
IFN-• induced expression of macrophage antitumor cytotoxicity 
appears to be transient phenomenon, which can be be inhibited 
by 12 hr incubation with PGE2, but not PGI2 or 6-keto PGFta 
(Taffet and Russell, 198la; and Taffet, 1982). IFN-• could 
thus maintain macrophage antitumor cytotoxicity by inhibiting 
endogenous macrophage PGE2 release (Edwards III et al., 1988). 

Additionally, macrophage cytotoxicity mediated by TNFa 
can be inhibited by PGE2 by inhibitory effect of PGEz on TNF-a 
release by macrophages (Renz et al., 1988). 

Macrophages from mice transplanted with MC-16 
fibrosarcoma show enhanced PGEz synthesis (Pelus and Bockman, 
1979), although the PGEz production of macrophages from tumor­
bearing mice had no direct effect on tumor cell killing in 
vitro (Shaw et al., 1979). Treatment with indomethacin or 
ibuprofen of tumor-bearing rats reduced tumor growth (Karmali 
and Marsh, 1986). 

Impairment of cimetidine-induced transformation of 
monocytes from cancer patients was suggested (Giulivi et al., 
1986), although IFN-• and LPS- induced monocyte antitumor 
cytotoxicity in vitrQ from cancer patients does not differ from 
monocytes of normal subjects (Peri et al., 1981). It has been 
reported that exogenous and endogenous PGEz stimulate resident­
and elicited macrophage cytotoxicity towards L cells i.rL .. yi t:r.e>. 
(Snider et al., 1982). 

PGEz appears 
inhibit cytolysis 
et.al., 1984) and 1 
derived macrophage 
Bauknecht, 1986). 

to mediate macrophage cytostasis and to 
a lens epithelial cell line (Mochizuki 
~M PGEz can reverse CSF-induced bone-marrow 
cytoxicity towards P815 cells (Meerpohl and 

LPS-induced cytostatic activity of granulocytes towards 
P815 cells can be prevented by indomethacin or by exogenous 
PGEz (Drapier and Petit, 1986). This could be due to the 
suggested direct inhibitory effect of PGs (by decreased 
cytosolic [Ca2 •]) on P815 cell proliferation (Balazsovits et 
al., 1988). Direct antitumor cytostatic effect towards several 
cell lines, including P815 cells (Balazsovits et al., 1988) was 
found with PGD2 and PGJ2 (Simmet and Jaffe, 1983; Narumiya and 
Fukushima, 1985 and 1987; Bregman et al., 1986; and Todo et 
al., 1986). Loss of PGEz receptors during progression of rat 
mammary tumors indicates differentiation of cells to autonomous 
growth (Abou-Issa and Minton, 1986) and increased PG production 
in breast cancer was associated with high metastatic potential 
(Rolland et al., 1980). 

Toxic effects from TNFa, released by endotoxin 
administration ~~_yivg could be prevented by CO inhibitors 
(Kettelhut et al., 1987), however PGs were not involved in TNF­
induced weight loss (Mahony and Tisdale, 1989). 

These results indicated that PGEz exerts a differential 
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role in controling macrophage antitumor function based on their 
prior state of activation and/or type of cocultured tumor cell. 

3.2.2 The role of Ca2 + and 5-lipoxygenase metabolites 

Macrophage-like tumor cells require Ca2 + influx for 
induction of their antitumor activity mediated by IFN-c + LPS 
(Gorecka-Tisera et al., 1986). Macrophage activation mediated 
by LPS occurs without Ca2 • mobilization, but release of a 
cytolytic factor (Matthews, 1981) from activated macrophages 
does required ca• (Drysdale et al., 1987) . 2 Hr. exposure of 
the calcium ionophore A23187 to trehalose dimycolate (TDM)­
elicited macrophage induced antitumor cytostatic activity 
(Grand-Perret et al., 1986). 

It has been reported that exogenous LTB4 augments 
macrophage antitumor activity (Gagnon et al., 1989), NK and 
CTL antitumor cytotoxicity (Rola-Plezszynski et al., 1983 and 
1985b). Additionally, LTB4 release from T cells involved in 
allograft rejection, is also related to their allograft 
cytotoxicity (Jordan et al., 1988). 5-Lipoxygenase inhibitors 
decrease macrophage production of IL-l~ (Dinarello et al., 
1984) and thus expression of cytostatic- (Lovett et al., 1986 
and Tsai et al., 1987) and cytotoxic (Onozaki et al., 1985a and 
Lachman et al., 1986) activity towards certain tumor cells. 

Nordihydroguaiaretic acid (NDGA), a LO/CO inhibitor, does 
not inhibit antitumor cytostatic activity gx__yivp (Mochizuki et 
al., 1984). No effects were found on macrophage tumoricidal 
activity towards P815 cells iQ __ vi_t_ro cultured with various 
inhibitors of AA oxygenation (Schultz et al., 1985). However, 
in these studies LO/CO inhibitors were used (NDGA, E.T.Y.A or 
BW755C). 

Inhibition (by 12-HETE) of lipoxygenase metabolites 
synthesis reduced neuroblastoma- (Werner et al., 1985) and (by 
Nafazatrom) B16a melanoma growth (Honn et al., 1982). 
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III. PHARMACOLOGY OF PROSTANOID AND LEUKOTRIENE SYNTHESIS 

1. Prostanoid synthesis inhibitors 

Anti-inflammatory steroids, like dexamethason, prevents 
prostanoid and leukotriene synthesis by induction of the 
biosynthesis of a PLAz inhibitor (Flower and Blackwell, 1979). 

The term non-steriodal anti-inflammatory drug (NSAID) is 
related to their ability to reduce (mostly) acute inflammatory 
effects (pain, oedema) in vivo. Their role is may be related to 
inhibition of co meta-bolite formation in acute inflammation. 
These drugs could affect vascular effects by TXAz released from 
macrophages and could inhibit the effect of PGE2 on Ts cells 
(Goodwin and Ceuppens, 1983). However, the role of NSAIDs in 
chronic inflammation is controversial. Stimulated prostanoid 
synthesis in macrophages can be inhibited by the 
cyclooxygenase inhibitors, indomethacin, benoxaprofen, 
ibuprofen and asp1r1n, whereas BW755C demonstrated to be an 
inhibitor of both CO and LO (Yoshimoto et al., 1982 and Humes 
et al., 1983). 

2. Leukotriene synthesis inhibitors 

Nordihydroguaiaretic acid (NDGA), reported to be an 
inhibitor of LO, also inhibits PGE2 release (> 3 ~M) (Humes et 
al., 1983). AA861 inhibits 5-LO from elicited peritoneal 
leukocytes (IDoo= .8 ~M). The inhibition is of a competitive 
type and 12-lipoxygenase and CO are not affected by [AA861] <10 
~M (Yoshimoto et al., 1982). Also specific inhibition by AA861 
of A23187-induced LTB4- (ICoo= .3 ~M) and LTC4- (ICoo= .08 ~M) 
release has been reported in PMN (Mita et al., 1986). L-Serine 
has been reported to bind the active •-glutamyl site of GGT 
(Thompson and Meister, 1977), while a serine-borate-complex has 
been reported to inhibit the conversion of LTC4 to LTD4 (Orning 
and Hammerstrom, 1980). 
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IV. AIM OF THE PRESENT STUDY 

Increased cytosolic [Ca2 +] in macrophages and enhanced 
leukotriene release from macrophages have been described in 
response to certain inflammatory stimuli (Rouzer et al., 1980; 
Young et al., 1984; Aderem et al., 1986a; Ferreri et al. 1986; 
and di Virgilio et al., 1988). It has also been demonstrated 
that increased 5-lipoxygenase metabolite (leukotrienes} release 
from macrophages requires Ca2 + (Lefer and Yanagisawa, 1987). 
Additionally, it has been reported that leukotrienes enhance 
macrophage antitumor activities (Dinarello et al., 1984; and 
Rola-Pleszczynski and Lemaire, 1985a). In view of the above 
quoted reports, we hypothesized that endogenous leukotrienes, 
released by increased cytosolic [Ca2 +] in macrophages, could 
have an activating role in the regulation of macrophage 
antitumor cytostatic activity. 

Calcium ionophore (A23187) stimulates leukotriene release 
from resident peritoneal rnacrophages (Humes et al., 1982). 
Therefore, an A23187-induced macrophage antitumor cytostatic 
coculture-assay (P815 tumor cells and resident peritoneal 
macrophages) was developed and served as a model to study the 
role of endogenous leukotrienes in macrophage activation by 
increased cytosolic [Ca2 •]. Agents which affect the macrophage 
leukotriene biosynthesis stimulated by A23187 were studied. 
The aim of this study was to gather more information concerning 
the activating role of a specific leukotriene released from 
macrophages, in enhancing macrophage activity against tumor 
cell growth in vitro. This modulation of macrophage antitumor 
cytostasis could -be a tool for new applications of 
immunotherapy to cancer. 
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Chapter 3. 

METHODOLOGY: 

I. Separation of peritoneal macrophages: 

Resident peritoneal cells were harvested by rinsing twice 
the peritoneal cavity from BALBic mice with 5 ml Dulbecco's 
Modified Eagle Medium (DMEM). Cells were resuspended in 2.5 ml 
of 4 % FBS (Fetal Bovine Serum)-PBS (Filtered Dulbecco's 
Phosphate Buffered Saline) and viability was determined by 
trypan blue exclusion. Macrophages were separated on the basis 
of cell size by sedimentation at unit gravity at 4°C on a 
discontinuous FBS-gradient column (r= 2 em) according to a 
modification of the method described by Miller and Phillips 
(1969): The gradient maker, (three connected columns (r= 1 
(8%), 2 (16%) and 2 em (30%FBS-PBS)), including stirring-rods, 
was placed 1 meter above the connected, autoclaved and 
silliconized separation-column. It filled slowly the column by 
unit gravity at a constant rate, approximately. A 35 ml 
buffered step discontinuous gradient of FBS (8-30%)-PBS, was 
thus made under the 2.5 ml peritoneal cell suspension in the 
column and was used to stabilize the layers of separated cells 
during 2 hours sedimentation. This separation method of 
macrophages was developed in order to obtain nonadherent 
peritoneal macrophages, because it has been demonstrated that 
adherence and incubation of macrophages in conditioned medium 
could affect macrophage eicosanoids release (Bockman, 1981). 
2.5 and 1.25 ml cell fractions were collected, after two hours 
sedimentation, at a rate of 0.5 mllmin. and sampled in samples 
I (v>6). II (v>5), III (v>4) and IV (v>3 mmlhr). (Chapter 8 ; 
Figure 5). Velocity sedimentation (v) {v = h I sedimentation 
time (h sedimentation volume I 3.14 x (2 cm) 2 )} of each 
sample was calculated accordingly: 

< 4 em > Sample; sed.Vol.; h 
FBS-PBS 

sed. t.; v (mmlhr) 

PC 

h 

10 ml .80 em 120 1 +50 1 _=2-!l..J.....hr. __ _;l_,_? __ 
IV 

•------"~--5 ml .99 em 120 1 +45 1 =2.71 hr. ~7_­
III 

16.25 ml 1_. 32 em 120 I +37__~~ =2_,_§_3 __ h~-'---~ __ _ 
II 

__ ___,18. 7 5 ~1_~,_ 48 Cl!L_120 I +32. 5 .:_==2 ._!!_~_h~_.,___§_,_~_ 

I 

___J_§_ __ m.LJ,'J:'otal Vol,_,.,_,l,_ __ ___,2 hrs. 
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II. Separation of elicited peritoneal macrophages: 

Murine macrophages were elicited by in vivo administration 
of .5, .2, or .05 mg carrageenan (Thomson et al., 1979) (1 
mg/ml) in peritoneal cavity. After three days the mice were 
killed and peritoneal cells were obtained by two 5 ml lavages 
with DMEM. Macrophages were isolated using 1500 g 
centrifugation (30 min.) on a Percell gradient (LymphoprepR) 
(Ulmer and Flad, 1979; and Gmelig-Meyling and Waldmann, 1980). 

III. Characterization of peritoneal macrophages: 

Cells separated by velocity sedimentation were 
characterized using morphological criteria (May-Grunewald 
Giemsa staining) and immuno-~-galactosidase staining (Leenen et 
al., 1987), using MAC-1 (Springer et al., 1979; and Garner et 
al., 1987) and MAC-2 (Ho and Springer, 1982; and Holmes and 
Morse III, 1988) monoclonal antibodies. This immunochemical 
technique involved briefly, incubation of cells with either 
MAC-1 (affinity for macrophages, granulocytes and NK cells) or 
MAC-2 (affinity for macrophages) monoclonal antibodies and with 
a second antibody (affinity purified rabbit anti-rat IgG and 
IgM) conjugated with ~-galactosidase (E. Coli). After two 
hours incubation, positive identification of cell surface 
antigens stained the cells green. Additional DNA staining 
according to Feulchen (see Leenen et al., 1987) was performed 
to visualize the negative cells. 

Based on experience of more than 100 separations a 
representative characteristic pattern of cells/ml obtained in 
each fraction with its corresponding velocity sedimentation (3 
< v < 8 mm/hr) was observed (Figure 5). 

IV. Preparation of supernatants 
eicosanoids release 

and determinations of 

Cells from samples I,II and/or III were washed and 
resuspended in serum free DMEM. Supernatants were taken out in 
triplicate after various minutes of incubation at 37°C in DMEM 
or serum containing tumor cell growth medium ('TGM') with or 
without the calciumionophore A23187 in a microwell (in __ v:i,~:l:'9l. 
Supernatants for TXB2-, 6-keto PGF1a- or LTB4- determinations 
by radioimmunoassay (RIA) , were centrifuged and stored 
separately at -70°C. 

In the first series of experiments, cells were preincubated 
(5 min. in DMEM) with or without the inhibitors AA861 or NDGA. 
Triplicate supernatants were obtained after an additional 60 
min. incubation in DMEM in the presence of A23187 (Chapter 4). 

In the second series of experiments, cells from samples I, 
II and III were pooled before kinetic studies of A23187-induced 
macrophage eicosanoids release in serum free DMEM . Triplicate 
supernatants were obtained after 5, 10, 20 and 40 min. 
incubation with or without A23187 at 37°C (Chapter 7). 

In the third series of experiments, cells from samples I 
and II were pooled and incubated either during 20 minutes in 
the presence of A23187 (with or without AA861 or L-serine 
preincubation), or during 24 hrs. with or without L-serine in 
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DMEM or TGM (Chapter 5 and 6). Supernatants were collected and 
applied to a Sep-Pak C1e cartridge, diluted in ethanol and 
stored in -70 oc, dried and filtered through a .45 ~M filter 
before separation of leukotrienes by high-performance liquid 
chromatography and the absorbtion was measured at 280 nm 
(Zijlstra and Vincent, 1984). 

V. Target cell growth and macrophage antitumor 
activity in vitro: 

cytostatic 

P815 murine mastocytoma tumor cells were gifts from Dr. 
T.A. Hamilton (Cleveland, U.S.A.) and Prof. Zan-Bar (Tel 
Aviv, Israel). They were cultured in vitro at 37° C in TGM of 
10% FBS and RPMI 1640 with 2 mM L-glutamine, 2 g/1 NaHCo3, 5 x 
10-~M ~-mercaptoethanol and 100 IU/ml penicillin I streptomycin 
in 7.5% C02 air. 10~ cells were transfered each third day of 
culture (viability> 95%). 

6 x 103 P815 cells were cultured and assayed in vitro for 
macrophage cytostatic activity (Gyongyossy et al~-1979; and 
Lee and Barry, 1977; and Lee et al., 1981) in RPMI+10% FBS 
tumor cell growth medium ('TGM'). NDGA-, AA861- and L-serine 
pretreated macrophage samples were assayed simultaneously in 
TGM. The macrophage cytostatic assay involved 24 hrs coculture 
of tumor cells with the separated peritoneal cell samples I, 
II, III and IV in a effector cell (macrophage) target cell 
(P815) ratio 2:1 with of without A23187 in a total volume of 
100 ~1 TGM. After an additional 16 hrs. incubation with 3H­
thymidine (.5 ~Ci), cells were collected onto filtermats using 
a cell harvester. 3H-thymidine uptake by target cells on dried 
filtermats was measured using a scintillation a-counter and 
expressed as c.p.m .. Cytostatic activity was calculated in 
terms of c.p.m., as follows; 

P815= 
R 

A 

s 

A+S= 

(P815AtS/A+s - RA/S/A+sl X 100% 
P815AtS/A+S 

c.p.m. of target cells. 
c.p.m. of target cells and separated peritoneal cells in 
cocultured ratio 2. 
c.p.m. of target cells or in cocultured ratio 2 in the 
presence of A23187. 
c.p.m. of target cells or in cocultured ratio 2 in the 
presence of L-serine. 
c.p.m. of target cells or ratio 2 (with serine-(200 mM) 
pretreated effector cells) in the presence of (100 mM) 
serine and A23187. 

Inhibition of cytostatic activity was calculated with; 

A+AA/N 

JP8 __ 15A-RAl - (P815A+AA/N - RA+AA/Nl X 100% 
P815A -RA 

c.p.m. of target cells or ratio 
NDGA-pretreated effector cells) 
A23187. 
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VI. Statistical analysis: 

Data are represented as means + S.D. of triplicate samples 
and are identical to two other experiments. All data regarding 
% cytostatic activity are represented as mean of three or six 
experiments each from triplicate determinations and were 
statistically analysed by Mann-Whitney U or unpaired 
Student's -t test (p< 0.05 and 0.01). 
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Chapter 4. 

SPECIFIC LIPOXYGENASE INHIBITION REVERSES MACROPHAGE CYTOSTASIS 
TOWARDS P815 TUMOR CELLS ;i,-~----~it!'_Q INDUCED BY THE 

CALCIUM IONOPHORE A23187 

J.~. van Hilten, G.R. Elliott and I.L. Bonta 

(Prostaglandins, Leukotrienes and Essential Fatty Acids 34 
(1988): p. 187-192). 

- 36 -



Prostaglandins ~ukotrienes and Essential Fatty Acids (1988) 34.187-192 
Itt Longman Group UK Ltd 1988 

Specific Lipoxygenase Inhibition Reverses 
Macrophage Cytotasis Towards P815 Tumor Cells 
In Vitro Induced by the Calcium lonophore 
A23187 

J. A. VAN HILTEN, G. R. ELLIOTT and I. L. BONTA 

Institute of Pharmacology, Faculty of Medicine, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR 
Rotterdam, The Netherlands (Reprint requests Jo J.A. V.H.) 

_ Abstract- A23187-stimulated cytostatic activity of peritoneal macrophages towards P815 
tumor cells served as a model for macrophage activation: A macrophage enriched 
preparation, separated on the basis of cell size in a discontinuous FCS gradient column, 
expressed cytostatic activity when stimulated by A23187. This was inhibited dose­
dependently, by AA-861 but not by nordihydroguaiaretic acid (NDGA). AA-861 inhibited 5-
lipoxygenase specifically, NDGA inhibited both 5-1 ipoxygenase- and cyclooxygenase 
activity. The ratio cyclooxygenase/lipoxygenase products increased with AA-861 but not 
with NDGA. These results show that lipoxygenase products are necessary for expression 
of cytostatic activity of these arachidonic acid metabolite-producing macrophages and that 
the ratio cyclooxygenase/lipoxygenase metabolites plays an important role in macrophage 
activation. 

Introduction 

Resident macrophages (MPs) have a high 
concentration of arachidonic acid (AA), present 
in membrane phospholipids (I) and a character­
istic pattern of AA metabolism (2-4): The 
calcium ionophore (A23187) stimulates phospho­
lipase activity (5-8) and hence oxygenation of 
the released AA via the cyclooxygenase and 
lipoxygenase pathway (9-12). A23187 stimu­
lation in resident MPs is thought to prime MPs 
for tumor cell cytolysis (13, 14) and stimulating 
MP glucose consumption and migration inhi-

bition (15, 16 ). Leukotrienes (lipoxygenase 
products) can also enhance interleukin-.1 (lL-1), 
!)-glucuronidase and prostaglandin release (17-19) 
and cytostatic activity of MPs towards syngeneic 
tumor cells (20). It is therefore conceivable that 
lipoxygenase metabolites could play an important 
role in the mechanism by which A23187 activates 
MPs. We studied the effect ··of 2 lipoxygenase 
inhibitors AA-861 (21) and NDGA (22) on 
A23187 activated MP cytostasis towards P815 
tumor cells. Murine resident peritoneal cells 
were separated into MP - rich and poor 

187 
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samples, based on differences in cell sizes, using 
a discontinue fetal calf serum (FCS)-gradient 
column (23, 24). The cytostatic activity of each 
cell fraction was compared with its ability to 
release eicosanoids. 

Materials and Methods 

Materials 
The calcium ionophore A23187 (diluted in 
ethanol: 4X 10-3M) was purchased from Calbi­
ochem and nordihydroguaiaretic acid (NDGA) 
(diluted in ethanol: 10-2 M) and lipopolysac­
charide (LPS, 01Jl:B4) from Sigma Chern. Co. 
Leukotriene 84(L TB4 ) antiserum was ordered 
from Wellcome Diagnostics .and 6-keto PGF1a 

antisera from Seragen. 3H-LTB4 , 3H-6-keto 
PGF1" and 3H-thymidine were obtained from 
Amersham. AA-861 (2, 3, S-trimethyl-6-( 12-
hydroxy-S, 10-dodecadinyl)-1, 4-benzoguinone) 
(diluted in ethanol: 10-2M) was a gift from Dr. 
S. Terao (Takeda Chemical Research Division, 
Osaka, Japan). RPMI 1640 and Dulbecco's 
Modified Eagle Medium (DMEM) were purchased 
from Gibco Europe BY. L-Glutamine, F.C.S., 
penicillin/streptomycin from Flow Laboratories 
and 13-mercaptoethanol was purchased from 
Merck. Pathogen free female BALB/c ByJ!co 
mice were bought from Iffa-crcdo, Lyon, 
France. Filtermats (Skatron) for a 12 well cell 
harvester (Colinca, Tel Aviv, Israel) and cell 
culture flasks were ordered from Costar.' The 96-
microwell flat-bottom trays were purchased from 
NUNC. 

Macrophages and target cells 
Resident peritoneal cells were obtained from 6-8 
week old female BALB/c mice. They were 
harvested by two peritoneal lavages of S ml 
DMEM. 10-12.S x 106 cells were pooled from 
4 mice, washed, resuspended in 2.S ml 3% FCS­
PBS (Dulbecco"s Phosphate Buffered Saline) 
and vi,ability was determined by trypan blue 
exclusion . Vigorous resuspcnsion of cells with 
a S ml syringe and 19G needle was essential to 
disrupt cell clusters. PSIS mastocytoma target 
tumor cells (gift from Dr. T. A. Hamilton, 
Cleveland, U.S.A.) were cultured in vitro at 
37°C in complete medium (10% FCS RPM! with 
2mM L-glutamine, 2 g/1 NaHC03, S x w-~M 
B-mercaptoethanol and 100 !U/ml 
penicilin/streptomycin) in 7, S % C02 air. For 
cytostasis experiments PSIS cells were resus­
penued at an amount of 2.4 x 105/ml. 

Fractionation of Ml's by discontinue gradient 
sedimentation 
Fractionation was performed by a modification 

·of the method of Miller and Phillips (21): 
Sepa,ration of 107 cells (2, S ml) on the basis of 
size by velocity sedimentation at unit gravity was 
performed at 4oC in a siliconized and autoclaved 
column (4 em diameter). A buffered step discon­
tinue gradient of FCS (8-30%) diluted in filtered 
PBS (40 ml) was used to stabilize the layers of 
separated cells (Fig 1). After a sedimentation 
time of 2 hours, 2.5 and 1.25 ml fractions were 
collected at a rate of O,S mVmin.. The cell 
number in each fraction was determined (Fig. 
!b) and pooled in 4 samples (I-IV). Total 
recovery was >70% with a viability >98%. Cells 
were washed twice in DMEM and characterizsed 
using morphological criteria (May-Grunewald 
Giemsa) and immuno-B-galactosidase staining 
(2S) . using the MAC-1 antibodies. Briefly, this 
involved incubating cells with MAC-!- (affinity 
for macrophages, granulocytes and NK cells) 
monoclonal antibodies (Ab's) (gift from drs. 
P. J. Leenen, Erasmus University, Rotterdam ) 
and with a second Ab (affinity purified rabbit 
anti-rat IgG+ IgM) conjugated with !3-galacto- · 
sidase (E.coli) (Sigma). After 2 Ius. incubation 
the MAC-I+ cells stained green. The MAC-!+ 
cell population was 4I% of the total resident 
peritoneal cells .. MP enriched - (morphological 
criteria: >85% MPs) and MAC-I+ (85-95%) 
phenotype enriched peritoneal cell populations 
were obtained in sample I as well as in sample 
II (Fig. I b). Sample Ill was a mixture of .MPs 
, granulocytes and lymphocytes (morphological 
criteria) and 70% MAC+ cells. Sample IV 
represented lymphocytes (i;';90%) and 30% 
MAC+ cells. 

Assay for cytostatic effect of samples I-IV 
The cytostatic effect of cells from samples I-IV 
on PSIS cells was manifested as inhibition of 3H­
thymidine uptake, a measure of tumor cell 
growth. 25 J.Ll (Sx 105/ml) of samples I-IV were 
incubated with 25 J.Ll A23187 and 2S J.Ll PSIS 
cells (Ratio = MP:P815 = 2:1) in a total volume 
of 100 J.Ll complete medium for 24 hours. The 
cells were incubated for an additional 18 hours 
with 3H-thymidine (0.5 J.LC\1100 J.LI) and were 
collected onto tiltermats · using a Col inca cell 
harvester. The filtermat was dried and 3H­
thymidine uptake was measured using a 
Beckman scintillation B-counter (c.p.m.). 3H­
Thymidine uptake of each peritoneal cell sample 
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Nucle1ted cells/ml 
(lidO-S) 

1a 

12 

10 

1b 

I 
I 
I 
I 
I 
I 

Fig Ia Separation of resident peritoneal cells by sedimentation in a discontinue ·FCS-gradient column. A = Three gradient 
makers with 8, 16, and 30% FCS, rcspectivily, B = peritoneal cell band, C = Discontinue FCS column, D = Flow rate 
regulator, E = 4 sampled fractions. 

Fig lb Characterization of cells separated from FCS-gradient column hy immuno·fl-galactosidase staining, expressed as % 
MAC-t• cells (variations from the means of duplicate samples were <10%) of sampled cell number. 

(12, Sx !OJ cells) was <500 c. p.m. Calculation of 
cytostatic activity was as follows: 

[(c.p.m.P815,) - (c.p.m.R,)] x 100% 

c.p.m. P815 

Inhibition of cytostatic effect of A23187 was 
calculated with: 

(Sx 105/ml) and tumor cells (2, 5 X 105/ml) were 
exposed in DMEM to different conce1itrations of 
NDGA or AA-861 in addition of A23187. At the 
end of the incubation, the 100 p,l and 20 p,l 
supernatants were taken out and frozen at 
-70°C for assay of LTB4 and 6-keto PGFtcr. 
respectively, by direct radioimmunoassay (R.I.A.). 

Statistical analysis 
[(c.p.m.P815,)-(c.p.m.R,)]-[(c.p.m.PHI5,.,;,)-(c.p. Data are represented as means ± S.D. of tripli-
..;_ ______ m_._R:",-"•"'"-4!.)'-1 _x_H_n_J0_Yo _________ • cate samples and are typical of two other exper-

c.p.m.l'815, - c.p.m.R, iments. Significant values were assessed using the 
Mann-Whitney U-test (*= p<0.05) 

X = AA- 861 
y = NDGA 
z = A23187 
R =Ratio 2 

R.l.A. of supematants 
During an incubation period of 60 min. at 37°C 
the peritoneal cells from samples I,ll,lll and IV 

Results 

Cells from samples I,ll and 111 were cocultured 
with P815 tumorcells in a non-cytostatic ratio 2:1 · 
ami stimulated with non-cytostatic 3, 5 x w-7M 
A23187. This could induce the expression of 
cytostatic activity with 49%, 37% and 0% of 
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Fig 2 Effccl of A23187 on 'H-thymidinc uptake of P815 
cells, cocullured with peritoneal cell samples l,ll,lll and IV 
(ratio: peritoneal-/tumor cell = 2) was expressed as mean 
c.p.m. ± S.D. of triplicate wells. (•) = Control, ·'H-thyoni­
dinc uptake by P815 cells alone. (o) = Ratio 2. (* =P < 
0.05). 

samples I, II and III, respectively (Fig. 2). 
Sample IV promoted cell growth (Fig. 2). Super­
natant studies of AA metabolites of samples 
I-III stimulated with 3, 5 x 10-7M A23187 
showed increased lipoxygenase (LTB4 release) 
and eyclooxygenase (6-keto FGF1n release) 
activity (Fig. 3). AA metabolites release of cell 
sample IV and PSIS cells was less than 16 pg 
LTB./ml and 0.8 ng 6-keto PGF1r/ml (unpub­
lished data). 3.5 X 10-RM A23187 and LPS 
( <12.5 p.g/ml, unpublished data) had no signifi­
cant eytostati~ effect in this MP/tumor cell 
model. NDGA did not inhibit this A23187 
induced cytostatic effect (Fig. 4). Inhibition of 
L TB4 release >57% and inhibition of 6-keto 
PGFt .. -release >15% was caused by NDGA 
(~1.25 p.,M) (Fig. 5). Comparative studies wilh 
AA-861 showed an increasing cytostatic inhi­
bition upto max. 66% (sample 1) and 25% : 
£sample II) with o:6 i,tM, while the thymidine 
uptake by P815 cells alone was elevated (Fig. 4). 

pg LTBq/ml 
(-) 

qoo :-r: 
I I 
',....,__•· 
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rT 
-r 

t- +. 
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Fig 3 The basal and A23187 induced LTB, (pg/ml) and 6-
keto PGF1• (nglonl) release of peritoneal cell samples 1-lll 
(5x 10'/ml). Results arc means ± S.D. of triplicate super­
natants or each sample. - = control. + = 3.5 x t0:- 7 M 
A23187. 

,; 
c. 

" 
,. 

u 15 

10 

.32 ,6) 1.25 2.5 0 .16 ,]2 .63 1.15 

_..M NDCA ~tM AA 161 

Fig 4 Comparative inhibition ~.f..!'-23187-induced cytostatic 
activity by NDGA and AA-861. P815 cells were cocultured 
with samples 1.11 and lll (Ratio = 2) in addition of 3, 5 x 
1o-7 M A23187 and NDGA (Fig. A). or AA-861 (Fig. B) for 
24 hr .. 'H- Thymidin uplake by P815 cells (•) and ratio 2 
(I = o, II = A. Ill = D) was expressed as mean c.p.m. ± 
S.D. of triplicate wells. 
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Fig 5 Inhibition of cyclooxygenasc· (6-keto PGF1.) (··) and 
lipoxygcnase· (L TB,) ( - ) metabolites release from pooled· 
cell samples 1.11 and Ill (5x 10'/ml) with NDGA (closed 
symbols) and AA-861 (open symbols). Sti"1Ulation with 
A23187 (3.5X 10-7) increased 6-keto PGF,. (19 nglml) and 
LTB4 (250 pglml) release. Results are expressed as means 
± S.D. of triplicate samples. 

· 0.6 !LM AA-861 inhibited L TB4 release (57%) 
and did not inhibit 6-keto PGFt" release of the 
pooled samples !, II and III (Fig .. 5). 

Discussion 

A23187 activates several apparently distinct 
phospholipid degrading processes (12). Once 
AA is released from phospholipids, it is available 
for conversion ·by cyclooxygenase and lipoxy­
genase (14). Our studies showed that the large 
p"eritoneal MAC-!+ cell populations are the 
major source of both types of AA metabolites. 
A23187 also stimulated the cytostatic activity of 
MP enriched samples (1, 11>85% MP). AA-861 
(0.6 !LM) inhibited generation of L TB4 (IC50 = 
0.27 !LM ) in pooled cell samples I, II and Ill, 
which confirms with the finding of Mita et. al. 
(27) in human polymorphonuclear leukocytes . 
AA-861 also reversed the MP cytostatic func­
tion. It is generally accepted that the cyclooxy­
genase product PGE2 inhibits MP activity (18) 
and it has been shown that leukotrienes activate 
MPs (20). Our studies with AA-861 indicate that 
a 5-lipoxygenase product is required for 
expression of MP cytostatic activity by A23187. 

· NDGA, a non specific inhibitor had no effect on 
MP cytostasis (Fig. 4). However, lipoxygenase 
inhibition by NDGA (>0.3 !LM) was associated 
with cyclooxygenase inhibition (Fig. 5). Thus 
synthesis of potentially inhibitory cyclooxygenase 
metabolites was prevented (i.e. the ratio cyclo­
/lipoxygenase metabolites remained low) in 
A23187 activated MPs, exposed to NDGA. This 
emphasizes the importance of the balance 
between cyclo-/lipoxygenase eicosanoids in 
regulating MP functions. The mechanism by 
which A23187 increases cytostatic activity 
towards P815 cells remains speculative; reactive 
oxygen production (25), tumor necrosis factor 
(T.N.F.) release and cell-cell contact could be 
important. Our results clearly demonstrate 
however that 5-lipoxygenase products play an 
important role in Ca2+ -mediated activation of 
MP cytostasis. 
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ABSTRACT 

Resident peritoneal macrophages incubated with 3.5 x 10- 7 M 
Calciumionophore A23187 in tumor cell growth medium (TGM} 
release large amounts of leukotriene (LT}E4 and an unidentified 
5-lipoxygenase product, whereas A23187-stimulated macrophages 
produce in serum free medium LTD4, predominately. LTC4 and 3 H­
LTC4 incubated for 20 minutes at 37°C in serum containing TGM, 
convert into LTE4 and 3 H-LTE4, respectively. Thus, LTC4 
released from A23187-stimulated macrophages is an intermediate 
in TGM which rapidly converts into LTE4 probably because of 
presence of gamma-glutamyl transpeptidase and cystenyl­
glycinase in TGM. Macrophages express antitumor cytostatic 
activity towards P815 cells (49-53 %} in a cocultured ratio 
(macrophage: tumor cell} 2:1 when stimulated with 3.5 x 10- 7 M 
A23187 in TGM. The 5-lipoxygenase inhibitor AA861 reverses the 
cytostatic activity by 42-58% and it inhibits also the 
formation of A23187-induced 5-lipoxygenase products from 
macrophages. Restoration of 38% macrophage- antitumor 
cytostatic activity by exogenous LTC4 (10- 8 M} indicates that 
LTC4 is an essential 5-lipoxygenase intermediate in the pathway 
of required signals underlying A23187-induced macrophage 
antitumor cytostatic activity. Macrophages not stimulated by 
A23187 do not express cytostatic activity in the presence of 
LTC4 . This implicates that besides LTC4, increased cytosolic 
[Ca 2 •] is required for A23187 induction of macrophage 
cytostatic activity. 

INTRODUCTION 

Activated macrophages can selectively destroy neoplastic ·cells 
(1} and increased cytosolic [Ca2 •] appear to be an important 
feature in macrophage antitumor cytostatic activity (2} and in 
priming macrophage antitumor cytotoxic functions (3,4} at·a 
certain stage of macrophage maturation. It has also been 
demonstrated that the development of macrophage antitumor 
activity towards P815 cells in vitro is regulated by 
eicosanoids (5}. Therefore, many investigators gave great 
attention to elucidate the signal transduction pathway in 
macrophage activation that involves increased cytosolic [caz•] 
and eicosanoids release. 
We assayed previously 
peritoneal macrophages 

Calciumionophore A23187-stimulated 
for their cytostatic activity and 

- 45 -



eicosanoids release. Macrophages were separated on the basis 
of cell size in a discontinuous fetal bovine serum (FBS) 
gradient column and cocultured with A23187 and P815 tumor cells 
in vitro. Under these circumstances macrophages expressed 
antitumor cytostatic activity and showed an increased 5-
lipoxygenase and cyclooxygenase metabolites release (2). By 
preincubation of macrophages with inhibitors of eicosanoids 
release, this assay could serve as a model to study the role of 
endogenous AA metabolites in regulation of resident macrophage 
activation by increased cytosolic [Ca2 +]. Our previous work 
demonstrated that the expression of resident macrophage 
cytostatic activity by A23187 in a fetal bovine serum (FBS) 
conditioned-RPM! tumor cell growth medium (TGM) towards P815 
tumor cells required endogenous 5-lipoxygenase metabolites 
synthesis (2). 
The ~ascade of signals involved in the mechanism by which 
A23187 (increased cytosolic [Ca2 +]) could induce macrophage 
activation are undefined but in the presence of sufficient Ca2 + 

and an intact energy metabolism, liberated AA released from 
phospholipids can be further metabolized by 5-lipoxygenase (6), 
into 5-hydroperoxy eicosatetraenoic acid (5-HPETE) and 
leukotriene (LT) A4. There are reported data, showing that 
A23187 generates 5-lipoxygenase- and cyclooxygenase metabolites 
release also in other tissue macrophages (7-9) and it has been 
reported that A23187 induces cytosolic 5-lipoxygenase 
translocation to a membrane bound site where it will be 
utilized and consequently inactivated (10). The sulfidopeptide 
LTC4 can be catalyzed by cytosolic glutathione transferases and 
glutathione from LTA4 (11) and it is now widely appreciated 
that LTC4 rapidly undergoes sequential peptide cleavage 
reactions to LTD4 and LTE4 in the presence of gamma-glutamyl 
transpeptidase and cysteinyl-glycinase (12), respectively. 
Supernatants of other cells like polymorphonuclear granulocytes 
stimulated with A23187 revealed these two enzymes activities 
(13). LTE4 can be further converted by N-acetyl-transferase 
and oxidated by omega-oxidation in hepatocytes (14) , or LTF4 
can be derived from LTE4 by transpeptidase and glutathione 
(15). 
The aim of the present work was to determine the cascade of LTs 
formation from A23187-stimulated macrophages as related to 
expression of cytostatic activity towards P815 tumor cells. 

MATERIALS AND METHODS 
Materials 

A23187 ( Antibiotic A23187, Calciumionophore), free acid 
(diluted in ethanol absolute: 1 mM) was purchased from 
Calbiochem-Behring, U.S.A .. LTB4 and LTD4 were bought from 
Sigma U.S.A .. LTE4 and LTC4 were gifts from Dr. J. Rokach 
(Merck Frost, Canada). AA-861 ( 2,3,5-trimethyl-6-(12-hydroxy-
5,10-dedocadinyl)-1,4-benzoguinone) (diluted in ethanol 
absolute 5 mM) was a gift from Dr. S. Terao (Takeda Chern. 
Reseach Div., Osaka, Japan). 3H-LTC4 and 3H-thymidine were 
obtained from Amersham (England). RPMI 1640 and Dulbecco's 
Modified Eagle Medium (DMEM) were purchased from Gibco Europe 
BV. L-Glutamine, penicillin/streptomycin were ordered from 
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Flow Laboratories, ~-mercaptoethanol was purchased from Merck 
(F.R.G.). 96-Microwell flat-bottom trays were purchased from 
NUNC (Denmark) and Fetal Bovine Serum (FBS 1064) was bought 
from Sanbio BV biological products (The Netherlands). 
Filtermats (Skatronl for a 12 well cell harvester (Colinca, Tel 
Aviv, Israel) and cell culture flasks were ordered from Costar 
(The Netherlands). Sep-Pak C1a cartridges were purchased from 
Waters Assoc.(U.S.A.) and 0.45 ~m disposable filters aero LC3A 
were obtained from Gelman Sci. (The Netherlands). HPLC-solvent 
filters HVLP (0.45 ~m) were purchased from Millipore Corp .. 
Prepacked HPLC columns Nucleosil 5Cla (250 x 3 mm) were from 
Chrompack (The Netherlands). A 1082B high-performance liquid 
chromatograph (Hewlett-Packard, U.S.A. ) was used, consisting 
of double-head pump, temperature-controlled column compartment, 
variable-volume injector and variable-wavelength detector. 
LTD4/C4 antibodies were obtained from Advanced Magnetics Inc. 
U.S.A .. 

Macrophage separation and target cells 

Resident peritoneal cells were obtained from 6-8 week old 
female BALB/c mice (ordered from Iffa-Credo, Lyon, France), 
killed by cervical dislocation. Cells were harvested by two 
peritoneal lavages using 5 ml DMEM. Approximately 10 x 106 

cells were obtained from 4 mice and resuspended in 2.5 ml 3% 
FBS-PBS (Dulbecco's Phosphate Buffered Saline) and viability 
was determined by trypan blue exclusion .. The separation and 
identification of macrophages have been described previously 
(2); briefly, peritoneal macrophages were separated on the 
basis of cell size by velocity sedimentation on a discontinue 
8-30% FBS gradient in a siliconized and autoclaved column (4 em 
diameter) column. Fractions were collected after 2 hrs. of 
sedimentation, the cell number in each fraction was determined 
and velocity sedimentation (v as mm/hr) of each fraction was 
calculated. The fractions containing macrophages were sampled 
and numbered I-III; vz>7 , vzz>5 , VIII>4 mm/hr. Cells were 
washed and characterized by morphological criteria (May­
Grunewald Giemsa) and by identification of cell surface 
antigens with immuno-~-galactosidase staining, using MAC-1 (2) 
antibodies. Samples I and II are macrophage enriched fractions 
(>85% ). Sample III represents a mixture of macrophages, 
granulocytes and lymphocytes (70% MAC-1+) and cells with a v< 
4 mm/hr are lymphocytes (>90%). The incubation experiments 
with A23187 were performed with pooled samples I and II. P815 
tumor cells were a gift from Prof. I. Zan-Bar, Dept. Human 
Microbiology, Tel Aviv University, Israel and were cultured in 
vitro at 37° C in TGM (stored at 0-4°C) of 10% FBS and RPMI 
1640 with 2mM L-glutamine, 2 g/1 NaHC03, 5 x 10- 5 M ~­
mercaptoethanol and 100 IU/ml penicilin/streptomycin in 7,5 % 
C02 air. For cytostasis experiments P815 cells were 
resuspended at an amount of 2,4 x 10 5 /ml and 105 cells were 
transfered each third day of culture (viability >95%). 

Macrophage antitumor cytostasis assay. 

The cytostatic activity of cells from macrophage enriched 
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samples I and II on P815 cells was manifested as inhibition of 
3H-thymidine uptake by tumor cells. Twentyfive pl (5 x 10 5 /m1) 
of samples I or II were preincubated with 25 pl TGM or AA861 
diluted in TGM and subsequently exposed to 25 pl A23187 and 25 
ul P815 cells (ratio macrophage:P815= 2:1) in a total volume of 
100 pl TGM for 24 hours. LTC4 and LTE4, were diluted in a 
AA861/TGM on ice. Biological activity of LTC4 was checked on 
smooth muscle contraction of human bronchiolar segments (16). 
The cells were incubated for an additional 18 hours with 3 H­
thymidine (0.5 pCi/150 pl) and were collected onto filtermats 
using a cell harvester. The filtermat was dried and 3 H­
thymidine uptake was measured using a scintillation ~-counter 
(c.p.m.). Data are expressed as means± S.D. and represents 
one out of two other experiments. 3 H-thymidine uptake of 1,25 x 
104 macrophages was < 350 c.p.m. and cytostatic activity was 
calculated in terms of c.p.m., as follows: 

(P815A - RA) X 100% 
P815 

R= ratio 2 
A= A23187 

Inhibition of cytostatic activity was calculated with: 

(P815A - RA)-(P815A+AA - RA+AA) X 100% 
P815A - RA 

AA= AA861 

Preparation of supernatants from macrophages and P815 cells 

2-3 x 106 cells from separated samples and P815 cells were 
preincubated for 5 min. with and without AA861 and subsequently 
exposed to A23187 (3,5 x10- 7 M) at 37°C in 600 pl DMEM (pooled 
samples I-III: 20 min.) or in 600 pl TGM ( pooled samples I and 
II:20 min.). At the end of the incubation, the cells were 
centrifuged ( 1 min.;12000 g) and supernatant was collected and 
applied to a Sep-Pak C1a cartridge. The cartridge has been 
prewashed with ethanol and water. The eluates experiments with 
AA861 and/or A23187 stimulated cell samples were pooled at 
70°C and dried in vacuum. The dried samples were dissolved in 
100 pl methanol and filtered through an Aero LC3A filter (.45 
urn) . Sampled volumes of 40-75 pl were injected onto the HPLC 
column. Supernatants of 3 H-LTC4 incubated in TGM were prepared 
identically. 

Separation of LTs by reversed phase HPLC 

Reversed-phase HPLC of LTs of the methanol-sampled volumes were 
carried out on a Nucleosil 5 C1a column, using the solvent 
system: Tetrahydrofuran-methanol-water-acetic acid 
{25:30:45:0.1) adjusted to pH 5.5 with ammonium hydroxide 
filtered by vacuum filtering through a Millipore filter and 
degassed with helium {17). The flow rate was .35 ml/min. and 
the column was equilibrated with the mobile phase at an oven 
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temperature of 37°C and the absorption was measured at 280 nm. 
Fractions were collected for LTs detection by R.I.A .. After 
each run the column was rinsed with methanol for at least 30 
min. The elution position of the LTs was defined, before and 
after the runs of the samples, by using the chemically 
identical standards of LTB4 , LTC4 , LTD4 and LTE4 . 
Radioactivity in the 3H-labeled substances were counted on-line 
in a Berthold radioactivity flow-cell, type LB506C. 

Radioimmunoassay of leukotrienes 

Fractions collected between 7-8, 10-11 and 12-13 minutes from 
the HPLC run were evaporated and dissolved in radioimmunoassay 
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Determinations of leukotrienes after 20 min. incubation at 37°C 
in conditioned 'tumor cell growth' medium (TGM). Eluates from 
cell free TGM (Figure 1al, 100 ng LTC4 incubated in TGM (Figure 
1b) and 3H-LTC4 incubated in TGM (Figure 1c, separate 
experiment, not corrected for time-delay). Figure 1d 
represents eluates from supernatant from non stimulated 
macrophages (2x10 6 cells from pooled Samples I and II). 
Elution positions: 
•= LTC4, 0= LTD4, &= LTE4, or 3H-labeled metabolites. 
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(R.I.A.) buffer for assay of LTC4, LTD4 and LTE4 by direct 
R.I.A. with LTC4/D4 antibodies ( cross reactivity: (LTD4 100%, 
LTC4 64% and LTE4 7.3%). 

Statistical analysis 

All data regarding % cytostatic activity are represented as 
mean of three or six experiments each from triplicate 
determinations and were statistically analysed by unpaired 
Student's -t test (p< 0.01). 

RESULTS 

In the first series of experiments the effect of incubation of 
TGM (without macrophages) at 37°C for 20 min. on LT 
concentrations was determined. As shown in Figure 1a, fresh 
TGM contains detectable amounts of LTD4 at elution time (tR) of 
10.5 min. when incubated for 20 min. at 37°C. Under similar 
conditions, LTC4 (100 ng) incubated in TGM induces increase in 
formation of LTD4 and LTE4 (tR 10.5 and 12.0 min., 
respectively: Figure 1b). This finding has been confirmed by 
the formation of 3H-LTE4 from 3 H-LTC4 incubated at 37°C for 20 
min. in TGM (Figure 1c). Macrophages nonstimulated with A23187 
of pooled samples I and II, do not release detectable amounts 
of LTC4 ,LTD4 and LTE4 over the amounts released in TGM alone 
(Figure 1d) . Macrophages from pooled samples I and II 
stimulated by A23187 in DMEM release LTC4 (Measured by RIA: 400 
pg in fraction 6-7 min.), mainly LTD4, a small amount of LTE4 
and an unidentified 5-lipoxygenase product at tR 9 min. (Figure 
2a). On the other hand, A23187 stimulated macrophages from 
pooled samples I and II, release in TGM large amounts of LTE4 
at tR 12.0 min. and of the unidentified 5-lipoxygenase product 
at tR 9 min. (Figure 2b). Incubation of macrophages with 2.5 
pM AA861 (17) before stimulation with A23187 in TGM resulted in 
inhibition of release of LTE4 and of the unidentified 5-
lipoxygenase product (Figure 2c) . 
It. seemed to be of interest to determine if P815 tumor cells 
release leukotrienes when incubated with A23187. As shown in 
Figure 3, P815 tumor cells incubated with A23187 release 
detectable amounts of LTD4 when kept either in DMEM (Figure 3a) 
or in TGM (Figure 3b) for 20 min. at 37°C. We found that a 
concentration of 3,5 x 10- 7 M Ca.ionophore A23187 was not 
cytostatic by itself against P815 tumor cells, but induced 
cytostatic activity in macrophages from sample I (53% ± 5) and 
sample II (49% ± 10, n=6). We reported previously (2), that 
this cytostatic activity induced in macrophages by stimulation 
with A23187 was significantly inhibited by preincubation with 
AA861. We confirmed these data with 5 pM AA861 (Sample I: 19% 
± 6 and Sample II: 17% ± 12 cytostatic activity, n=3, p< 0.01, 
.representative experiment: Figure 4). Exogenous LTC4 (10 -aM) 
restores the AA861 (5 pM) inhibited-cytostatic activity 
towards P815 cells of macrophages treated with A23187 ( 38% 
cytostatic activity, n=3, p<0.01, representative experiment: 
Figure 4a), whereas a similar treatment with LTE4 was not 
effective (Figure 4b). Macrophages not stimulated with A23187 
but incubated with LTC4 (< 10- 7 M) do not express antitumor 
cytostasis towards P815 cells (Figure 5). 
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Figures 2 and 3: 
Determinations of leukotrienes 
released from macrophages 
(Sample I and II} after 20 
min. incubation in the 
presence of A23187 at 37°C in 
DMEM (Figure 2a} , and in 
conditioned 'tumor cell 
growth' medium only ("TGM": 
Figure 2b}. Eluates of 
supernatants from A23187 
stimulated macrophages 
pretreated with 2,5 ~M AA861 

10 12 14 min. were illustrated in Figure 2c. 
Determinations of leukotrienes 
after incubation of P815 cells 

in the presence of A23187 at 37°C in DMEM (Figure 3a} and in 
TGM (Figure 3b} . Elution positions: e = LTC4 , 0 = LTD4 , & = LTE4 . 
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Fiaure 4a: 3 H-Thymidine uptake of P815 cells alone ( A 
cocultured with AA861 (S~Ml + LTC4 - pretreated macrophages 
from Samples I (e) and II (o) (Ratio 2), in the presence of 
3.5xl0- 7 M A23187. The bar-diagrams represent 3 H-thymidine 
uptake of P815 cells alone and in coculture with Sample I (Rr) 
and II (Rrr) in addition of A23187. Figure 4b: Similar 
experiment as illustrated in Figure 4a but with AA86l ( 5 ~M ) 
+ LTE4-preincubated macrophages from Samples I (el and II (o) 
and P815 cells (A). Data are presented as mean c.p.m. ~ S.D. 
of triplicate determinations. 

DISCUSSION 

We reported previously (2) ,that A23187 stimulated the 
cytostatic activity of murine peritoneal macrophages towards 
P815 tumor cells. This activity was correlated with induced 
release of 5-lipoxygenase products by A23187 from macrophages, 
because a specific 5-lipoxygenase inhibitor, AA861 (18) 
prevented generation of this antitumor cytostatic activity by 
the Ca. ionophore (2). 
The aim of the present work was to determine the type of LTs 
responsible for expression of cytostatic activity towards P815 
tumor cells by A23187 stimulated macrophages. The presence of 
LTs was determined in medium alone, medium with unstimulated 
macrophages and medium containing macrophages stimulated with 
A23187. We looked also on the effect of a 5-lipoxygenase 
inhibitor, AA861, on the release of LTs. The data obtained 
were evaluated in terms of correlation between various 
situations of LT release or inhibition of LT release and the 
expression of cytostatic activity towards P815 tumor cells. 
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Figure 5. 3 H-Thymidine uptake of P815 cells alone (x) 
cocultured with macrophages from Samples I (e) and II (o) 
(Ratio 2) in the presence of LTC4. S.D. of triplicate 
determinations was less than 10%. 

The TGM itself (without macrophages) contained detectable 
amounts of LTD4 probably present in FBS. · In view of the fact 
that LTC4 added to TGM was converted into LTE4 , it seems likely 
that gamma-glutamyl transpeptidase and cysteinyl-glycinase are 
present in TGM, because these enzymes are required for the 
formation steps of LTC4 into LTD4 (19) and further into LTE4 
(20). This assumption was further strenghtened by the 
difference observed in LTs release by A23187 stimulated 
macrophages in DMEM (serum-free medium) in comparison with 
A23187 stimulated macrophages in TGM. Thus, incubation . of 
macrophages with A23187 in DMEM resulted in accumulation of 
released LTD4 whereas incubation in TGM led to release of high 
amounts of LTE4 and of an unidentified 5-lipoxygenase product 
probably by rapid conversion of released LTC4 . · 
Macrophages stimulated by A23187 in TGM were cytostatici towards 
P815 tumor cells. The cytostatic activity was pr~vented by 
treatment with AA861, a 5-lipoxygenase inhibitor. It appears 
therefore, that release of 5-lipoxygenase products is 
correlated with occurence of antitumor activity in macrophages. 
The fact that LTC4 is the 5-lipoxygenase produ~t involved in 
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macrophage antitumor activity was indicated by the finding that 
treatment with LTC4 in addition to AA861 treatment, restored 
antitumor cytostatic activity of A23187-stimulated macrophages. 
This observation suggest that endogenous LTC4 is an essential 
intermediate in the pathway of required signals in induction of 
macrophage antitumor cytostasis by increased cytosolic [Ca2+). 
However exogenous LTC4 could not induce antitumor cytostasis 
towards P815 cells in untreated macrophages (not incubated with 
A23187 and AA861). This implicates that besides LTC4, also 
increased cytosolic Ca2 + is required for induction of A23187-
stimulated macrophage antitumor cytostatic activity. 
Detection of LTD4 in supernatants of P815 cells exposed to 
A23187 in TGM suggests that the formed LTC4 (21) rapidly 
converts into LTD4 by gamma-glutamyl transpeptidase present 
plausibly in TGM. We also observed that A23187 - induced 
macrophage 5-lipoxygenase metabolites release is enhanced in 
TGM (Figure 2a and 2b). This could confirm the observations of 
Kouzan et.al. (22), who demonstrated a shift of alveolar 
macrophage AA metabolism towards 5-lipoxygenase metabolites 
release by FBS. 
Increasing LTC4 release (23,24) from macrophages and/or 
increased cytosolic [Ca2+] (25,26) in macrophages have been 
described in response to many inflammatory stimuli. This study 
with A23187 demonstrated the importance of these increases in 
macrophage antitumor cytostasis. 
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Summary 

1. Murine peritoneal macrophages are cytostatic towards P815 
murine mastocytoma tumour cells when treated with 100 mM L­
serine: 62-78% inhibition of 3H-thymidine incorporation. 
2. Murine peritoneal macrophages are cytostatic towards P815 
tumour cells when incubated with A23187 Calcium Ionophore: 49-
53% inhibition of 3H-thymidine incorporation by 0.35 pM. 
3. Combination of L-serine and A23187 had an additive effect: 
91-95% inhibition of 3H-thymidine incorporation. 
4. The following patterns of leukotrienes (LT) release was 
observed; small amounts of LTC4 and LTE4 by unstimulated 
macrophages, large amounts of LTE4 and of unidentified LT by 
A23187-treated macrophages and large amounts of LTC4 by either 
L-serine treated or L-serine plus A23187 treated macrophages. 
5. Our results indicate that accumulation of LTC4 in 
macrophages is correlated with high antitumour cytostatic 
activity. 

Introduction 

Macrophage antitumour activity in vitro was found to be 
regulated by eicosanoids (Drapier & Petit, 1986), so that 
exogenous leukotrienes (LTs) (5-lipoxygenase metabolites) 
augment (Gagnon et al., 1989; Ophir et al., 1987) and 
prostanoids (cyclooxygenase metabolites) reduce (Schultz et 
al., 1978; Taffet et al., 1981; Renz et al., 1988; Lehman et 
al., 1988) macrophage antitumour activity. 
Stimulated by the calcium ionophore A23187, murine macrophages 
release increased quantities of 5-lipoxygenase and 
cyclooxygenase products (Duet al., 1983; Laviolette et al., 
1988; Balter et al., 198~nd acquire cytostatic activity 
against P815 tumor cells (van Hilten et al., 1988). Under our 
assay conditions, macrophages stimulated by A23187 induced the 
biosynthesis of LTC4 , which converts rapidly into LTE4 and in 
an unidentified LT (van Hilten et al., 1990). 
It has been reported that L-serine binds to the active (gamma­
glutamyl) site of gamma-glutamyl transpeptidase (Thompson & 
Meister, 1979), which is important in the peptide cleavage of 
LTC4. Accordingly, high concentrations of L-serine can inhibit 
the conversion of LTC4 into LTD4, by competitive binding of 
gamma-glutamyl transpeptidase (Orning & Hammerstrom, 1980), and 
could so induce accumulation of LTC4 in macrophages. 
Conceivably, accumulation of LTC4 in macrophages might be 
related to induction of antitumor cytostatic activity of these 
cells. The aim of the present research was to investigate this 
possibility by determination of the effect of L-serine alone or 
in combination with A23187, on induction of macrophage 
antitumour cytostatic activity against P815 murine mastocytoma 
cells. 

Methods 

Materials. A23187 (Antibiotic A23187, Calciumionophore), free 
acid (diluted in ethanol absolute: 1 mM) (Calbiochem-Behring, 
U.S.A.), 3H-thymidine (Amersham, England), RPMI 1640 and 
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Dulbecco's Modified Eagle Medium (DMEM) (Gibco Europe BV), L­
Glutamine, penicilin/streptomycin (Flow Laboratories, The 
Netherlands) and ~-mercaptoethanol (Merck F.R.G.) were used. 
96-Microwell flat-bottom trays were purchased from NUNC 
(Denmark) and Fetal Bovine Serum (FBS 1064) was bought from 
Sanbio BV biological products (The Netherlands). Filtermat~ 
(Skatron) for a 12 well cell harvester (Colinca, Tel Aviv, 
Israel) and cell culture flasks were ordered from Costar (The 
Netherlands). Sep-Pak C1a cartridges were purchased from 
Waters Assoc. (U.S.A.) and 0.45 ~m disposable filters aero 
LC3A were obtained from Gelman Sci. (The Netherlands). HPLC­
solvent filters HVLP (0.45 ~m) were purchased from Millipore 
Corp .. Prepacked HPLC columns Nucleosil 5Cla (250 x 3 mm) were 
from Chrompack (The Netherlands). A 1082B high-performance 
liquid chromatography (Hewlett-Packard, U.S.A.) was used, 
consisting of double-hed pump, temperature-controlled column 
compartment, variable-volume injector and variable-wavelehgth 
detector. Leukotrienes were a gift from Dr. J. Rokach (Merck 
Frost, Canada) and L-serine was bought from Aldrich-Europe 
(Belgium) . 
Macrophage separation and tarqet cells. The separation and 
identification of macrophages have been described previously 
(van Hilten et al., 1988): Briefly, murine BALB/c peritoneal 
cells were separated on the basis of cell size by velocity 
sed{mentation on a discontinue 8-30% FBS gradient in a 
siliconized and autoclaved column. Macrophage enriched samples 
I and II (> 85%), were collected after 2 hrs. of sedimentation. 
Leukotrienes were determined in supernatants from pooled 
samples I and II. Exposure of 2 hrs. to 200 mM L-serine did 
not affect macrophage viability. P815 tumour cells were 
cultured in 10% serum containing tumor growth medium ('TGM': 
stored at 4°C), as described (van Hilten et al., 1988). 
Macrophage antitumour cytostasis as~ The cytostatic 
activity of macrophage samples I and II cocultured with P815 
tumour cells, was manifested as inhibition of 3 H-thymidine 
uptake by tumour cells (van Hilten et al., 1988). Twentyfive 
~1 (5x10~/ml) of samples I and II were preincubated (5 min.) 
either with 25 ~1 L-serine (400 mM) dilut~d in tumour growth 
medium (TGM, pH 7.2), or with TGM only. Twentyfive ~1 of 
macrophage samples were subsequently mixed without washing, 
with 25 ~1 P815 cells (Effector cell: P815 cell ratio= 2:1) and 
cultured for 24 hrs. with or without 25 ~1 A23187 (1.4 ~M) in a 
total volume of 100 ~1 TGM. Data in Figs. 1 apd 2 are 
expressed as means + S.D. and represent one out of two similar 
experiments. Mean -% cytostatic activity was calculated ±S.D. 
of three or six experiments. Calculations of % inhibition of 
tumour cell growth was performed as described (van Hilten et 
al., 1988). 
Preparation of supernatants from macrophages. The macrophage 
pooled samples I and II (2 x 10 6 cells/ 250 ~1) were incubated 
for either 20 min. or 24 hrs at 37°C. Supernatants collected 
after 20 min. incubation originated from macrophages first 
incubated for 5 min. with (Fig. 4B) or without (Fig. 4A) 250 ~1 
L-serine (400 mM L-serine in TGM) and subsequently diluted and 
incubated without washing in the presence of A23187 (250 ~1 of 
1.4 ~M). Supernatants collected after 24 hrs. incubation 
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originated in a similar way from macrophages first incubated 
with (Fig. 3B) or without (Fig. 3A) L-serine for 5 min. and 
subsequently incubated without washing for 24 hrs in a total 
volume of 1 ml TGM. The final L-serine concentration in the 
serine pretreated macrophage suspensions was 100 mM. At the 
end of the incubation, the cells were centrifuged (5 min.,1500 
g) and supernatants were collected and applied to a Sep-Pak Cia 
cartrige. The cartridge was prewashed with ethanol and water. 
The eluates were stored at -70° C and dried in vacuum. The 
dried samples were dissolved in 75 ~1 methanol, filtered 
through an Aero LC3A filter (0.45 ~m) and injected onto the 
HPLC column. 
Separations of LTs by reversed phase HPLC: Reversed-phase HPLC 
of LTs of the methanol-volumes were carried out on a Nucleosil 
5 Cia column, using the solvent system: Tetrahydrofuran­
methanol-water- acetic acid (25:30:45:0.1) adjusted to pH 5.5 
with ammonium hydroxide filtered by vacuum filtering through a 
Millipore filter and degassed with helium (Zijlstra & Vincent, 
1984). The flow rate was 0.35 ml/min. and the column was 
equilibrated with the mobile phase at an oven temperature of 
37°C and the absorption was measured at 280 nm. After each run 
the column was rinsed with ethanol for at least 30 min .. The 
eluation position (TR) of the LTs was defined, before the runs 
of the samples, by using the chemically identical standards of 
LTC4, LTD4 and LTE4. Results shown in Fig. 4 were obtained 
separately and results shown in Fig. 3 were subsequently 
performed with new columns. 
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Figure 1. The effect of L-serine on 3 H-thymidine uptake of P815 
cells alone <•) or cocultured with macrophages from sample I 
( •) and II (&). Data are presented as mean c.p.m. + S.D. of 
triplicate determinations. 

- 62 -



C. P.M. 
(xl o- 3) 

so 

40 

30 

20 

10 

0 

Figure 2. 

r--

PBl 5 R
1 

R
11 

Serine 

P815 R
1 

R 11 
A23187 

PBl 5 R
1 

R
11 

Serine+A23187 

Figure 2. The effect of L-serine (100 mM), A23187 (0.35 pM) and 
L-serine + A23187 on 3 H-thymidine uptake of P815 cells alone 
(P815), or cocultured with sample I (Rr) and with sample II 
(Rrr). Data are presented as mean c.p.m. +S.D. of triplicate 
determinations. -

Results 

The highest concentration of L-serine used (100 mM), had no 
cytostatic activity towards P815 tumour cells. On the contrary, 
L-serine concentration > 10 mM promoted P815 cell growth (Fig 
1). Macrophage preparations from samples I and II expressed 
antitumor cytostatic activity (78% + 18 and 62% + 25 inhibition 
of thymidine incorporation by P815 cells, respectively, n=3), 
when preincubated with 200 mM L-serine and subsequently exposed 
(by dilution) to 100 mM L-serine during 24 hrs in coculture at 
a ratio of 2:1 (macrophage/tumor cell) (Fig. 1 and Fig. 2). In 
confirmation with previous results (van Hilten et al., 1988; 
1990), macrophages from samples I and II stimulated with A23187 
(0.35 pM) expressed antitumour cytostatic activity of 53% + 5 
and 49% + 10 inhibition of thymidine incorporation, 
respectively (n=6). L-serine preincubated macrophages 
expressed enhanced antitumour cytostasis (sample I: 95% + 2 and 
sample II: 91% ± 6, n=3) when subsequently exposed to 0.35 pM 
A23187 in addition to 100 mM L-serine. Untreated macrophages 
were not cytostatic (Fig. 2). 
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Figure 3. Determinations of leukotrienes released from 
macrophages ( 2 x 106 cells from pooled sample I and II) 
without pretreatment (3A) and with serine pretreatment (3B) 
after 24 hours incubation at 37°C. 
Figure 4. Determination of leukotrienes released from 
macrophages ( 2 x 10 6 cells from pooled sample I and II) after 
20 min. incubation with 0.35 pM A23187 alone (Figure 4A). 
Figure 4B represents the determination of leukotriene released 
from serine (200 mM)-pretreated macrophages after subsequently 
incubation during 20 min. with 0.35 pM A23187 and 100 mM 
serine. e =LTC4 0 =LTD4 .& =LTE4 . 

Small amounts of detectable LTC4 at TR 7 min. and LTE4 at TR 11 
min. have been observed in supernatants of unstimulated 
macrophages from pooled sample I and II (Fig. 3A), whereas 
serine-treated macrophages released a large amount of LTC4 and 
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a small detectable amount of LTE4 (Fig 3B) after 24 hrs. 
incubation at 37°C (we noticed a small shift from both LTC4 and 
LTE4 in Fig. 3B). Shown previously (van Hilten et al., 1990) 
and in Fig 4A, A23187 stimulated macrophages from pooled sample 
I and II release large amounts of LTE4 at TR 12.5 min. and an 
unidentified LT at TR 9 min., whereas macrophages treated with 
A23187 and L-serine (100 mM) release only LTC4 at TR 7.5 min. 
after 20 min. incubation at 37°C (Fig 4B). 

Discussion 

Previous research indicated that increased [LTC4] and increased 
cytosolic [Ca2 +] are essential in A23187-induced macrophage 
antitumour cytostasis (van Hilten et al., 1990). Based on the 
implication that the rapid conversion of LTC4 into the not 
effective LTE4 (van Hilten et al., 1990), could limit A231.87-
induced macrophage cytostatic activity, we used L-serine 
(inhibitor of LTC4 conversion) for further studies of 
cytostatic activity and LTs formation. We demonstrated that L­
serine induced antitumour cytostatic activity in macrophage 
samples I and II was related to increase in LTC4 formation by 
comparison with macrophages nonstimulated by L-serine. In 
confirmation with previous results (van Hilten et al., 1990), 
A23187 induced both macrophage cytostatic activity and LT 
formation. Neither L-serine, nor A23187, were cytostatic for 
tumour cells in ~bsence of macrophages. Serine pretreatment of 
macrophages and subsequent exposure to A23187 induced a 
cytostatic effect much higher than either L-serine or A23187 
alone. The enhanced cytostatic activity by macrophages treated 
with both L-serine and A23187 was again related to increase in 
LTC4 accumulation. Moreover, we found recently (results not 
shown here), that a lower concentration of A23187 (0.3 ~M), 
which by itself, did not induce significant macrophage 
cytostatic activity, was still able to enhance the cytostatic 
activity of L-serine. The findings presented here favour the 
assumption that endogenous LTC4 accumulation in macrophages 
induced by L-serine treatment, is related to induction of 
macrophage antitumour cytostasic ~ctivity by the agent. It is 
also suggested that low [A23187] treatment in combination with 
L-serine could increase macrophage cytostatic activity by 
increased macrophage 5-lipoxygenase activity (van Hilten et 
al., 1988) and rapid accumulation of formed endogenous LTC4 in 
macrophages (fig. 4). 
In conclusion, using serine and A23187 we developed a stimulus 
for immunomodulation of resident peritoneal macrophage 
functions expressed by strong inhibition of tumour cell growth. 
In context to our observed relation of mature resident 
macrophage cytostatic activity to increased [Ca2 +] and LTC4 
biosynthesis, the enzyme gamma-glutamyl transpeptidase affects 
macrophage activation by decreasing macrophage endogenous 
[LTC4 ] . 
{This study was partially funded by the Dutch Cancer Society 
(Nederlandse Organisatie voor de Kankerbestrijding) }. 
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CALCIUM IONOPHORE A23187 INDUCES DUAL CHANGES IN THE RELEASE OF 
5-LIPOXYGENASE AND CYCLOOXYGENASE PRODUCTS BY MACROPHAGES 

J.A. van Hilten, S. Ben Efraim and I.L. Bonta 

(Archives Internationales de Pharmacodynamie et de Therapie 
(1990)) (in press). 
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Calcium Ionophore A23187 Induces Dual Changes in the Release of 
5-Lipoxygenase- and Cyclooxygenase Products by Macrophages 

Abstract 

J. A. van Hiltenl, S. Ben Efraim2 and I. L. Bonta1 

1. Institute of Pharmacology, Erasmus University 
Rotterdam, Faculty of Medicine, P.O.Box 1738, 
3000 DR Rotterdam, The Netherlands. 

2. Dept. of Human Microbiology, Sackler School of 
Medicine, Tel Aviv University, Tel Aviv, Israel. 

A23187-treated murine peritoneal macrophages release increased 
quantities of the immunoreactive 5-lipoxygenase metabolite 
leukotriene B4 (LTB4 I and the immunoreactive cyclooxygenase 
products 6-keto prostaglandin F1a (6-keto PGF1al and tromboxane 
B2 ITXB2l during a 40 minutes incubation period. The increase 
in release of LTB4 was marked already after 5 minutes of 
incubation and was maximal after 20 minutes incubation. The 
increase in release of 6-keto PGF1a and TXB2 started in most 
cases after 5 minutes of incubation and augmented gradually up 
to 40 minutes of observation period of incubation. The ratio 
of increase of LTB4/6-keto PGF1a and of LTB4/TXB2 revealed an 
increase in favour of LTB4 in the first 5 minutes of 
incubation. 

Running title: A23187-induced macrophage eicosanoids release. 
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Introduction 

Certain inflammatory stimuli as •-Interferon (Celada and 
Schreiber, 1986), or dual Fe receptor binding (Aderem et al., 
1986) gener~te Ca2 + mobilization in macrophages (M~s). This 
could induce M~ activation as expressed by interleukin-1 
release (Matsushima and Oppenheim, 1985), tumor cytostatic­
Ivan Hilten et al., 1988), or cytotoxic effects (Celada and 
Schreiber, 1986), superoxide release (Sakata et al., 1987), 
lysosomal release (Takenawa et al., 1982), phagocytosis (Young 
et al., 1984) and transferrin receptor expression (Weiel et 
al., 1985). Ca2 +- mobilization in M~s by the calciumionophore 
A23187 increases 5-lipoxygenase- and cyclooxygenase metabolites 
release from M~s (van Hilten et al., 1988). This increase may 
account for induction of antitumor activity in M~s by A23187, 
because increase in leukotrienes (5-lipoxygenase products) 
production by M~s during incubation with A23187 was correlated 
to occurrence of cytostasis against P815 tumor cells (van 
Hilten et al. 1988). These authors concluded that the balance 
between lipoxy-/cyclooxygenase products release is important in 
regulating the antitumor M~ function. The aim of the present 
work was to determine the relative (with respect to baseline 
production) changes induced in release of lipoxygenase and 
cyclooxygenase products in murine M~s as related to the period 
of incubation with A23187. Determinations of leukotriene B4 
(LTB4), of 6-keto prostaglandin F1a (6-keto PGF1al and of 
thromboxane Bz (TXB2l release from murine M~s stimulated with 
A23187 revealed a marked increase of LTB4 in the first 5 min. 
and a gradual increase in the cyclooxygenase products 6-keto 
PGF1a and TXB2 up to 40 min. of observation period. 

Materials and Methods 

Materials 
The calcium ionophore A23187 (diluted in ethanol: 1.5 mM) was 
purchased from Calbiochem and Dulbecco's Modified Eagle medium 
(DMEM) was ordered from Gibco Europe BV. 96-Microwell flat­
bottom trays were bought from NUNC. LTB4~, 6-keto PGF1a- and 
TXB2-antisera were ordered from Advanced Magnetics Inc., 
Cambridge, Massachusetts. 3 H-LTB4, 3 H-6-keto PGF1a and 3 H-TXBz 
were obtained from Amersham Laboratories, England. Fetal 
Bovine Serum (FBS: heat inactivated by 30' ,56°C.) was ordered 
from Flow Laboratories, England. LTB4, 6-keto PGF1a and TXB2 
were obtained from Sigma (St. Louis, U.S.A.). 

Separation and characterization of peritoneal M~s 
The method has been descibed in detail elsewhere (van Hilten et 
al., 1988). Briefly, resident peritoneal m~s obtained from 
BALB/c ByJico mice were harvested in DMEM and resuspended in 3% 
FBS-PBS (Dulbecco's Phosphate Buffered Saline supplied with 
fetal bovine serum) . M~s were separated on the basis of size 
by velocity sedimentation (Miller and Phillips, 1969; van 
Hilten et al.,1988). Four samples, namely I, II, III and IV 
were separated. Samples I.II and III contained respectively 
80%, 63% and 15% M~s as identified by use of anti MAC-2 
monoclonal antibodies. Sample IV included mostly, lymphocytes. 
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For kinetic determinations of the effect of incubation with 
A23187 o~ eicosanoids release, the fractions I, II and III were 
pooled in order to obtain all the M~s present in the peritoneal 
cell population. As reported previously (Paubelle et al., 
1987), lymphocytes show no detectable LTB4 and 6-keto PGF1a 
release. Accordingly, contamination of M~ containing fractions 
with lymphocytes could not interfere with the effect of A23187 
on M~ eicosanoid release. 

Eicosanoids determinations 
Cells from samples !,II and III were gathered, washed, 
resuspended in DMEM (5 x 10~/ml), and exposed to 3.5 x10- 7 M 
A23187 in a microwell. Supernatants were taken out in 
triplicate after 5, 10, 20 and 40 minutes incubation at 37°C. 
followed by 12000 g centrifugation ( 1 min.) to remove cells 
and stored separately at -70°C. for each eicosanoid 
determination. Eicosanoid determinations of 6-keto PGF1a, TXB2 
and LTB4 in supernatants were performed by R.I.A.. The 
detection limits of the R.I.A. for these eicosanoids were 0.8 
ng/ml, 20 pg/ml and 10 pg/ml, respectively. The recovery of 
these cyclooxygenase products is > 97% and of LTB4 is > 90%. 
(Measured after 20 minutes incubation at 37°C of these 3 H­
labelled eicosanoids). The A23187-induced net release of 
eicosanoids is: 

Eicosanoid release stimulated by A23187 minus non-stimulated 
eicosanoid release 

Statistical analysis 
Eicosanoid release data are presented as mean ± 
experiments in triplicate and statistically 
unpaired Student's -t test (P<0.05 and P< 0.01). 

Results 

S.D. of three 
analysed by 

Incubation for 60 minutes with 3.5 x 10- 7 M A23187 increased 
markedly the release of immunoreactive LTB4 and immunoreactive 
6-keto PGF1a (Fig. 1). The quantity released of these products 
was in correlation with the percentage of MAC-2+ cell 
population in fractions !,II and III (Fig. 1). The kinetics of 
eicosanoid-induced release by A23187 was determined in pooled 
samples of fraction I,II and III. The A23187-activated cells 
showed a markedly enhanced release of LTB4 which was already 
significant (p<0.01) after incubation for 5 min. with A23187 
(Fig. 2a). Incubation with A23187 induced also a gradual 
increase in release of 6-keto PGF1a at up to the end of 40 min. 
observation period (Fig 2bl . A gradual increase in 
immunoreactive TXB2 release was also evident in 3 experiments 
performed with A23187 (Table). In one of the 3 experiments 
the induced increase by A23187 of TXB2 was observed only after 
10 min. of incubation by comparison with the release from cells 
not incubated with A23187 ( Exp III., Table). The results 
presented in Fig. 2a and 2b and in Table I indicated that 
incubation with A23187 induced in the first 5 min. relatively 
enhanced increase in LTB4 release than in 6-keto PGF1a and in 
TXB2 release. Accordingly, the net ratios of LTB4/6-keto 
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Figure 1 

-- -o---
"0 " cc co 

'=< "' [ll * .. CD 
0 

"' 0 
., 

0 400 LTB4 80 Gl 
b _.., 
0 Q 
0 .._ 
" "' !2. 0 
in 60 9 300 0 

0 

6 keto-PGF1 a 0 

" !2. 
in 

200 40 

100 20 

0 20 40 60 80 100% (MAC-2+) 

Ill II Samples 

Relations between A23187- induced Leukotriene B4- (LTB4l (e) 
or 6- keto Prostaglandin Fta release (6-keto PGFtal (D)/5 x 105 

sampled cells + S.E.M.) during 60 minutes (of samples I,II,III 
and pooled sample I-III) and % MAC-2+ cells of the sampled cell 
number + S .E .M .. 

PGFta- and of LTB4/TXB2- release were in the first 5 minutes of 
incubation in favour of LTB4 release. This fact is exemplified 
in Fig. 3 in which calculated ratios of these relative (with 
respect of baseline line eicosanoid production of nonstimulated 
cells) net LTB4/6-keto PGFta- and of LTB4/TXB2- release are 
presented. 

Discussion 

Stimulation of murine M~s by the Ca2 • ionophore A23187 induces 
a relativily enhanced increase of a immunoreactive 5-
lipoxygenase product LTB4 followed later on by more marked 
increase in the immunoreactive cyclooxygenase products 6-keto 
PGFta and TXB2. Although the population studied still includes 
other types of cells besides M~s, it seems most likely that the 
M~ is the type of cell stimulated by A23187, based on the 
relationship of A23187-induced eicosanoids release and the 
presence of MAC-2• cells studied. Non stimulated cells 
released also LTB4, 6-keto PGFta and TXB4 after 40 min. of 
incubation, however the quantities released were significantly 
less than A23187 stimulated cells. It is plausible to consider 
that the initial production of eicosanoid release observed in 
non - stimulated MAC-2• cells could be due to the 
increase in temperature between separation (t=O, 4°C) and 
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Figure 2: The mean lipoxygenase- and cyclooxygenase products 
release ± S.D. of pooled cell samples I-III (5 x 10 5 

/ml). The data were statistically analysed by 
unpaired Student's -t test (**P< 0.01 and *P< 0.05). 

2a: Leukotriene B4 (LTB4 )-release of non stimulated (~) and 
with A23187 stimulated (e) cells during 40 minutes. 

2b: 6-keto Prostaglandin F1a (6-keto PGF1al-release of non 
stimulated ( ~) and with A23187 stimulated (e) cells during 
40 minutes. 

Table~ 

Thromboxane Bz (TXBz)-release (pg/ml) of A23187- (+) and non­
stimulated (-) pooled samples I-III (5 x 105 cells/ml) during 
40 minutes from three individual experiments + S.D. of 
triplicate incubations. 
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Figure 3 
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The mean A23187-induced net LTB4 I TXB2-!0l and net LTB4 I 6-
keto PGF1a (e) release ratios within 40 minutes of pooled cell 
samples I-III. Data were obtained from Figure 3a (mean net 
LTB4 release ) , 3b (mean net 6-keto PGF1a release ) and Table I 
( calculated means of TXB2 release from the three experiments, 
followed by mean net TXB2 release). The ratiost=o were 
represented as ratiost=~ of unstimulated eicosanoids release. 

incubation (t=5 min., 37°C). Lack of continuation of 
eicosanoids release could be explained by the absence of the 
necessary requirements (Ca2• mobilization) for continuation of 
enzymatic reactions, which are characteristic for the feature 
of M~ activation. 
The dual changes of M~ eicosanoids release induced by A231~7 
might represent a crucial event in the process of calmodulin 
dependent activation of M~s (Wright et al. 1985). Lipoxygenase 
products are involved in expression of antitumor activity by 
M~s (van Hilten et al. 1988) and cyclooxygenase products 
deactivate M~s ( Bonta et al. 1984). Conceivably, the initial 
increase in LTB4 release by A23187 overcomes the deactivating 
effect by PGI2 (precursor of 6-keto PGF1al. The decrease in 
the 5-lipoxygenaselcyclooxygenase products ratio is caused by 
the subsequent increase in of the cyclooxygenase products. The 
marked increase in release of cyclooxygenase products by A23187 
might have induced a decrease in LTB4 generation, because·PGEz 
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was shown.to inhibit A23187-induced LTB4 release with M¢s 
(Elliott et al.1989). 
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Chapter 8. 

OUTLINE OF THE RESULTS 

l.Cell separation by velocity sedimentation in a discontinuous 
FBS gradient: Purification of peritoneal macrophages by cell 
size without adherence: 

Many investigators use a technique to purify a macrophage 
population by the ability of macrophages to adhere to a 
microwell bottom or to glasswool and subsequently vigerously 
wash the microwells to remove non adherent cells (Adams, 1979). 
By modification of a method of cell separation described by 
Miller and Phillips (1969), we obtained macrophage- enriched 
samples separated on the basis of cell size in a discontinuous 
FBS gradient. With this technique, highly purified macrophage 
preparations were obtained with 1. a high viability 2. exact 
amounts of purified macrophages 3. a high recovery (number of 
total purified cells I peritoneal cells from lavages x 100%) 
and 4. no eicosanoids loss upon cell adherence. Determination 
of macrophages by Ab recognition of MAC-1 and -2 markers and 
May Grunwald Giemsa staining were performed in order to obtain 
a most accurate specific macrophage identification. 

Macrophage-enriched (>85% by morphological criteria) samples 
I and II from peritoneal lavages (erythrocytes containing 
lavages (visually red) were excluded) were collected after 2 
hrs sedimentation from the discontinuous FBS gradient. Sample 
I ( 8 > v > 6 mm/hr) contained 85% phenotypical MAc-1• (Chapter 
4) and 80% phenotypical MAC-2+ cells (Figure 5). Sample II (6 
> v > 5 mm/hr) contained 95% MAC-1+ (Chapter 4) and 63% MAC-2+ 
cells (Figure 5). The latter difference might be due to 
contamination of granulocytes in Sample II. The viability of 
cells from both samples was > 99%. This could be explained by 
the observation earlier by Miller and Phillips (1969), that 
death cells either don't sediment in the FBS gradient or adhere 
to the tube during collection of cells. Samples I and II were 
the major source used in eicosanoid release- and antitumor 
cytostasis studies. 

Sample III ( 5 > v > 3.5 mm/hr ) represents a mixture of 
macrophages, granulocytes and lymphocytes (morphological 
criteria). It contained 70% MAC-1+ (Chapter 4) and 15% MAC-2+ 
cells (Figure 5). The difference in phenotypical MAC-1+- and 
MAC-2+ expression of cells in sample III can be explained by 
the presence of granulocytes. This sample was used in some 
eicosanoids release- and antitumor cytostasis studies (Chapters 
4 and 8). 

Sample IV (3.5 > v > 3 mm/hr) is the lymphocyte-sample (> 95% 
by morphological criteria). It contained 30% MAC-1+ (Chapter 
4) and no MAC-2• cells (Figure 5). This lymphocyte-enriched 
sample incubated with or without A23187 release no detectable 
LTB4 (Chapter 4), which confirmed the data from Paubelle et al. 
(1987). 41% of the total viable separated peritoneal cells were 
MAC-1• and 26% MAC-2•. This suggests that <15% of the 
peritoneal cells were granulocytes. 
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Figure 5. 

Velocity sedimentation and identification of peritoneal cell­
samples separated on a FBS-gradient column. 
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2. Macrophage eicosanoids release detected by RIA and HPLC 

2.1 Non-stimulated macrophage eicosanoids release under in 
vitro conditions: 

Separated peritoneal cell from samples I, II and III 
release detectable concentrations of eicosanoids in DMEM at 
37°C in the initial 60 minutes: Leukotriene B4 (LTB4): 50, 25, 
20 pg/5 x 10~ cells and 6-keto Prostaglandin Ftu (6-keto 
PGFtu): 22, 17 and 1.5 ng/5 x 10~ cells, respectively (Chapter 
4). 

Cells from pooled samples I-III release under these 
circumstances in the sequential 5, 10, 20, 40 and 60 minutes: 
LTB4: 20-25 (t=5-40 min.) and 45 pg/5 x 10~ cells (t=60 min.), 
6-keto PGFtu: 1.8, 3, 3, 7.5 and 4 ng/5 x 10~ cells and 
Thromboxane B2 (TXB2): 90 (t=5-20), 100 and 208 pg/5 x10~ 
cells, respectively (Chapter 7). 

This emphasizes that nonstimulated macrophages cocultured 
under these "steady state" in vitro conditions in DMEM, have an 
initial eicosanoids production (t=5 min.), with a "stable" 
baseline (no significant increase) of eicosanoids 
concentrations in the additional 35 min (Chapter 7). After 60 
min. of incubation in DMEM nonstimulated macrophages show an 
significant increase of eicosanoids production. This could be 
due to the effect of cell adherence to the microwell bottom. 

The stable base line (t=5-40 min.) of eicosanoids 
concentration was extended theoretically to t=O, because this 
reflects, by approximation, the most real steady state 
condition of nonstimulated macrophage eicosanoids release in 
vitro. 

2.2. A23187-induced macrophage eicosanoids release. 

2.2.1 6-keto PGFtu-, TXBz- and LTB4 release: 

Samples I,II, and III stimulated with .35 ~M A23187 show 
increased eicosanoids release: LTB4: 350, 250. and 50 pg/5 x 10~ 
cells, 6-keto PGFtu: 80, 42, and 4 ng/5 x 10~ cells, 
respectively (Chapter 4). 

Cells from pooled samples I-III stimulated with A23187 
show also significant (p<0.05 and 0.01, n=3) increased 
eicosanoids release under these circumstances in the sequential 
5, 10, 20, 40 and 60 min.: LTB4: 170, 205, 245, 240 and 220 
pg/5 x 10~ cells, 6-keto PGFtu: 6, 8.5, 12, 22 and 20 ng/5 x 
10~ cells and TXB2 (not significant): 210, 310, 400, 600 and 
518 pg/5 x 10~ cells, respectively (Chapter 7). 

The net A23187-induced macrophage eicosanoids release 
(A23187-induced release less baseline release) was used for 
further study of ratios. 

2.2.2 Ratio of A23187-induced net 5-lipoxygenase/cyclooxygenase 
metabolites release: 

A23187-induced 5-lipoxygenase/cyclooxygenase 
release ratio could be of importance in regulation of 
induced macrophage activation, because certain 
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cyclooxygenase metabolites are described in down-regulation of 
macrophage activation and some released 5-lipoxygenase 
metabolites are suggested to activate macrophages. Using the 
net A23187-induced LTB4, 6-keto PGF1a and TXB2 release, the 
A23187-induced 5-lipoxygenase/cyclooxygenase products release 
ratio could be demonstrated by calculation of A23187-induced 
LTB4/6-keto PGF1a and LTB4/TXB2. Determination of the time 
course of this ratio could help to understand how leukotrienes 
activate macrophages, although A23187 stimulated macrophages 
release much more 6-keto PGF1a or TXB2 than LTB4. Using these 
net induced release ratios, with respect of the steady state 
situation of nonstimulated macrophages, the change in steady 
state of macrophages eicosanoids formation by A23187 could be 
demonstrated: 

Cells from pooled samples I-III stimulated with .35 ~M 
A23187 revealed an increase in both LTB4/6-keto PGF1a- and 
LTB4/TXB2 ratios in the initial 5 minutes, which decreased in 
the additional 35 minutes of incubation with A23187 (Chapter 
7). This indicates an A23187-induced macrophage eicosanoids 
release first in favor of 5-lipoxygenase metabolites and in the 
additional 35 minutes in favor of cyclooxygenase metabolites. 

2.2.3 Effect of NDGA and AA861 on A23187-induced eicosanoids 
release from resident peritoneal macrophages: 

Two 5-lipoxygenase inhibitors, nordihydroguaiaretic acid 
(N.D.G.A.) and 2, 3, 5-trimethyl-6-(12-hydroxy-5, 10-
dodecadinyl)-1, 4-benzoquinone (AA861) were used for 
eicosanoids release inhibition studies: 

[NDGA] > .6 ~M inhibited both A23187-induced 
cyclooxygenase metabolites (6-keto PGF1a: 32% and TXB2: 39%) 
and 5-lipoxygenase metabolites (LTB4: 42%) release of resident 
cells from pooled Samples I-III. The IC~o of N.D.G.A for 
cyclooxygenase metabolites release is 1.25-2 ~M and the IC~o 
for 5-lipoxygenase metabolites release is 1 ~M (Chapter 4) . 

. 04 ~M < [AA861] < 10 ~M inhibited A23187-induced 5-
lipoxygenase metabolites (LTB4) release of resident cells from 
samples I-III, specifically; IC~o= .3 ~M (Figure 6A and Chapter 
4). 

2.2.4 Effect of AA861 on A23187-induced eicosanoids release 
from elicited peritoneal macrophages: 

Carrageenan-elicited macrophages stimulated in_yitro with 
.35 ~M A23187 enhanced the release of eicosanoids during 60 
minutes (.5 mg carrageenan/mouse), compared with nonstimulated 
cells: 
.5 mg carrageenan: 22-->250 pg, 
.2 mg carrageenan: 9 -> 150 pg and 
.05 mg carrageenan: 1 -> 229 pg LTB4 release/5 x 10~ 
.5 mg carrageenan:502-> 838 pg TXB2 release/5 x 10~ 

2.1->4.2 ng 6-keto PGF1a/5 x 10~ 
The induced enhanced release of LTB4 could be 

by lQ-B-lQ-~ M AA861, specifically (Figure 26): 
!Coo (.5 mg)= .08 ~M with max. inhibition of 70% 
!Coo (.2 mg)= .04 ~M with max. inhibition of 86% 

cells, 
cells, 
cells. 
inhibited 

IC~o (.05mg)= .02 uM with max. inhibition of 90% (Figure 6B.). 
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Figure 6. 

% inhibition of A23187-induced L TB 4 release 
from resident & elicited macrophages 
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2.3 Separation of leukotrienes released from macrophages and 
P815 cells stimulated with A23187. 

2.3.1 A23187-induced cysteinyl-leukotrienes release. 

Cells from pooled samples I and II, stimulated with .35 
~M A23187 in DMEM during 20 minutes, release LTD4, 
predominantly. Also LTE4 and an unidentified LT (TR= 9 min.) 
were detected and separated by HPLC in these supernatants 
(Chapter 5). 400 pg LTC4 was detected by RIA from the 6-7 min. 
(LTC4) fraction after HPLC separation. This indicates that 
A23187-stimulated macrophages induce 5-lipoxygenase metabolites 
release and further metabolize LTC4 into LTD4 , thus suggesting 
the presence of (active) GGT from A23187-stimulated 
macrophages. 

P815 tumor cells release in supernatants (DMEM) a small 
amount of LTD4, detected by HPLC (Chapter 5). 

2.3.2 Effect of serum containing-TGM on cysteinyl-leukotrienes 
formation. 

In TGM alone and in supernatants of macrophages from 
pooled samples I and II in TGM incubated for 20 minutes at 37°C 
no detectable LTs by HPLC was observed. Exogenous LTC4 and 3 H­
LTC4 incubated in serum containing TGM, convert partially into 
LTE4 and 3 H-LTE4, respectively (Chapter 5). This suggests the 
presence of GGT and cysteinyl-glycinase in serum. 

Macrophages from pooled samples I and II incubated with 
.35 ~M A23187 release LTE4 and an unidentified LT (TR= 9 min.) 
separated by HPLC (Chapter 5 and 6). This indicates that the 5-
lipoxygenase metabolite LTC4 from A23187-stimulated macrophages 
is an intermediate metabolite in the formation of LTE4, by the 
presence of GGT (in serum and from A23187 activated 
macrophages) and cysteinyl-glycinase (in serum). 

P815 tumor cells incubated with .35 ~M A23187 release 
LTD4 in TGM (Chapter 5). 

2.3.3 Effect of AA861 and L-serine on cysteinyl-leukotrienes 
formation. 

Macrophages from pooled sample I and II, 
with 2.5 ~M AA861 and stimulated additionally 
during 20 min. release no LTs in supernatant as 
HPLC separation (Chapter 5) . 

pre incubated 
with A23187 
detected by 

L-serine (200 mM)- pretreated macrophages from sample I 
and II stimulated with A23187 (and 100 mM serine) during 20 
min. release LTC4 in the supernatant, as detected by HPLC 
separation (Chapter 6). Macrophages from samples I and II 
incubated with 100 mM L-serine in TGM during 24 hrs. release a 
large amount of LTC4 and a small amount of LTE4 , whereas 
macrophages from samples I and II incubated in TGM alone during 
24 hrs. release small amounts of LTC4 and LTE4 (Chapter 6). 
These results indicate that L-serine induces accumulation of 
macrophage LTC4 by inhibition of conversion of LTC4 into LTD4. 
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3. Cytostatic activity of macrophages under cocultured 
conditions with P815 tumor cells. 

3.1 Macrophage/P815 cell ratio dependency 

Non-stimulated macrophage-enriched samples I and II, 
cocultured for 40 hrs. with 6 x 103 P815 tumor cells in 
effector cell (macrophage): tumor cell ratios (R) > 2:1 express 
cytostatic activity (Figure 7A), whereas cells from samples III 
and IV (with ratios > 2) do not express antitumor cytostatic 
activity under these conditions in vitro. This indicates that 
resident macrophages have small endogenous cytostatic activity 
by theirselves under these in vitro conditions. 

3.2 Increased macrophage antitumor cytostatic activity by 
A23187 

Concentrations A23187 > .1 ~M and < .25 ~M promote P815 
tumor cell growth, as measured by increased 3H-thymidine 
uptake, whereas [A23187] >.35 ~M is toxic for P815 cells 
(Figure 7B). Within the narrow concentration range between .25 
and .35 ~M, A23187 induces antitumor cytostatic activity 
towards P815 cells cocultured with the macrophage- enriched 
samples I and II in a non-cytostatic ratio 2:1 (Figure 7B). 
Cells from samples I and II exposed for 24 hrs. to .35 ~M 
A23187, express 53-49% (n=6 experiments) inhibition of P815 
tumor cell growth (Chapter 4, 5 and 6) whereas cells from 
samples III and IV do not express significant antitumor 
cytostatic activity under these circumstances (Chapter 4). 
Preliminary experiments demonstrated that macrophage express 
cytostasis towards the cocultured P815 cells without A23187 (in 
100 ~1 TGM), when they were preincubated with .35 ~M A23187 
during at least 1 hr .. Supernatants from macrophages incubated 
more than 1 hr. with .35 ~M A23187 were not cytostatic towards 
P815 cells ~~vitrQ. This indicates a requirement of at least 
1 hr exposure of macrophages to .35 ~M A23187 for the induction 
of macrophage antitumor cytostasis. 

These results indicate that stimulation of macrophage 
eicosanoids release by A23187 could play an important role in 
A23187-induced macrophage antitumor cytostasis. Preliminary 
studies indicate that macrophage-tumor cell contact is required 
in A23187-induced macrophage antitumor cytostasis. 

3.3 Effect of 5-lipoxygenase 
cytostatic activity. 

inhibitors on macrophage 

Preincubation of the specific 5-lipoxygenase inhibitor 
AA861 (.6- 5 ~M) with cells from macrophage-enriched sample I 
and II could inhibit A23187-induced macrophage antitumor 
cytostasis (Chapter 4 and 5) , whereas NDGA, did not affect 
A23187-induced macrophages anti-tumor cytostasis {Chapter 4). 

These results indicate that a 5-lipoxygenase metabolite is 
required in the expression of A23187-induced macrophages 
cytostasis and that the ratio of 5-lipoxygenase-/cyclooxygenase 
metabolites release is important in regulation of this 
macrophage cytostasis. 
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Figure 7. 

Uptake of 3H-thymidine by 6 x 103 P815 tumor cells cocultured 
with separated samples I,II,III and IV with increasing ratios 
(R) macrophages/P815 cells (Fig. 7A) and stimulated with A23187 
(R=2) (Fig. 7B). 
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3.4 Effect of exogenous leukotrienes on macrophage cytostatic 
activity. 

Inhibition of A23187-induced macrophage cytostasis by 5 ~M 
AA861 from cells of sample I could be restored by 10- 8 M 
exogenous LTC4 (38% inhibition of tumor cell growth) (TABLE). 
However, exogenous [LTC4] <10- 7 M could not induce antitumor 
cytostasis in macrophages cocultured with P815 cells (without 
A23187 and AA861) (Chapter 5). Other exogenous LTs (LTB4 and 
LTE4) neither restore (with A23187 and AA861) nor induce 
(without A23187 and AA861) P815 cell cytostasis by macrophages 
(Chapter 5 and unpublished observations). 

These results indicate that LTC4 is the essential 5-
lipoxygenase metabolite in A23187-induced macrophage antitumor 
cytostasis. However, increased cytosolic [Ca2 +] appeared also 
to be required in the mechanism by which A23187 induces 
macrophage antitumor cytostasis. 

3.5 Effect of L-serine on macrophage cytostatic activity. 

Macrophages from sample I and II preincubated with L-Serine 
>100 mM) and exposed subsequently to concentrations of L­

serine >50 mM expressed antitumor cytostasis against P815 cells 
(62-78%). Addition of similar amounts of L-serine, without 
macrophages, promoted tumor cell growth of P815 cells (Chapter 
6). Serine (200 mM)- pretreated macrophages subsequently 
exposed to .35 ~M A23187 (53-49% inhibition of P815 cell 
growth) showed an additive (91-95%) antitumor cytostatic 
activity. This additive cytostatic activity of macrophages was 
related to accumulation of LTC4 formed in serine-treated 
macrophages (with and without A23187) (Chapter 6). 

% CYTOSTATIC ACTIVITY 

TABLE 

SAMPLE A23187 

53 ± 5 

II 49 ± 10 

**&* :p < 0.01 

A23187+AA861 

19 ± 6* 

17 ±1 2* 
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Chapter 9. 

DISCUSSION 

Non-stimulated resident peritoneal macrophages (from 
macrophage-enriched samples I and II) expressed small 
eicosanoid (LTB4-, 6-keto PGF1a- and TXB2l synthesis activity 
under serum-free-medium cultured conditions in vitro (Chapter 4 
and 7) and slight LTC4 synthesis in serum-containing-medium 
(TGM) (Chapter 6). Endogenous leukotrienes could augment 
macrophage/monocyte activity (Rola-Pleszczynski and Lemaire, 
1985a; and Gagnon et al., 1988) and eicosanoid release in favor 
of cyclooxygenase metabolites release might be involved in down 
regulation (Bonta and Farnham, 1982; Taffet and Russell, 1981a, 
band 1982; Adams and Hamilton, 1988; and Elliott et al., 1989) 
of macrophage activity in steady state under in vitro 
circumstances. Cytostatic activity against P815 tumor cells 
was observed with non-stimulated macrophages cocultured in TGM 
in an effector cell:tumor cell ratio > 2:1 (Chapter 8; Figure 
7A). The antitumor cytostatic activity by non-stimulated 
macrophages might be related to release of small amounts of 
prostanoids and leukotrienes. 

Stimulated by .35 ~M A23187, macrophages released 
increased amounts of eicosanoids during 60 minutes (Chapter 
4,5,6 and 7). Although the amounts of 6-keto PGF1a and TXB2 
released were much higher than the amounts of LTB4 released 
during the 40 minutes incubation period, the change in 
macrophage steady state of eicosanoid release induced by 
A23187, was in the first 5 minutes of incubation in favor of 5-
lipoxygenase metabolites release. This initial increase of 5-
lipoxygenase/cyclooxygenase metabolite release of A23187-
stimulated macrophages, could be involved in the mechanism by 
which endogenous leukotrienes could overcome the deactivating 
effect of PGE2 and PGI2 (Cantarow et al., 1978; Bonney et al., 
1978; Leung and Mihich, 1980; Snyder et al., 1982; and Renz et 
al., 1988) on macrophage inflammatory and of PGE2 on 
macrophage antitumor activity (Schultz et al., 1978 and 1979; 
and Taffet, 1982). The differential effect of A23187 on 
increase of 5-lipoxygenase- and cyclooxygenase metabolites 
release might be explained by the Ca2+-dependent 5-lipoxygenase 
activity and the stimulation of LTC4 on cyclooxygenase 
metabolites release (Feuerstein et al., 1981); first (after 5 
minutes incubation) in favor of the Ca2 +-dependent 5-
lipoxygenase activation, which could enhance cyclooxygenase 
metabolites release, subsequently. The cyclooxygenase 
metabolites might inhibit 5-lipoxygenase metabolites release 
(Elliott et al., 1989) and therefore establish a second effect 
(in the additional 35 minutes of incubation) in favor of 
cyclooxygenase metabolites release, because the stimulated LTB4 
release was inhibited and the cyclooxygenase metabolites 
release increased further (Chapter 7). 

The quantity 
cytostatic by itself, 

of 0.35 ~M A23187, which is not 
induced macrophage antitumor cytostasis 
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(53-49% inhibition of thymidine incorporation by P815 tumor 
cells) in serum-containing TGM when cells from macrophage­
enriched samples were cocultured with P815 cells in an effector 
cell:tumor cell ratio 2:1. Enhanced release of cyclooxygenase 
- and 5-lipoxygenase metabolites from resident macrophages by 
A23187 were both inhibited by nordihydroguaiaretic acid (NDGA). 
AA861 inhibited only A23187-induced 5-lipoxygenase metabolite 
release of macrophages. The inhibition of A23187-induced 
macrophage antitumor cytostatic activity by AA861, but not by 
NDGA, indicated the requirement for antitumor cytostatic 
activity of an endogenous 5-lipoxygenase metabolite(s) and 
supported the importance of 5-lipoxygenase-/cyclooxygenase 
metabolites release ratio for expression of macrophage 
antitumor cytostasis (Chapter 4). 

The increase in LTB4 release induced by A23187 was in 
straight relation with increase in relative percentage of MAC-
2+ peritoneal cells. This straight relation supports the 
assumption that A23187-stimulated macrophages are the major 
source of released LTB4 and that contamination of other cell 
types does not affect this stimulated release from macrophages 
(Chapter 7). 

Carrageenan-elicited peritoneal mononuclear 
phagocytes stimulated with .35 ~M A23187 release increased 
amounts of LTB4. The release of LTB4 was inhibited by AA861. 
The IC~o of AA861 of A23187-induced LTB4 release from 
carrageenan-elicited macrophages was 10 x more than the IC~o of 
resident macrophages treated with AA861 and A23187. The shift 
of the inhibition of LTB4 release by AA861 indicated difference 
in site (decompartmentalization; Balter et al., 1989) of 
A23187-induced membrane-translocated (Rouzer and Kargman, 
1988b) 5-lipoxygenase between resident and elicited macrophages 
in vivo. Additionally, we showed that high doses of AA861 
failed to inhibit more than 60% of the A23187-induced LTB4 
release from peritoneal macrophages elicited with .5 mg 
carrageenan. These results might be explained by a disturbance 
of decompartmentalization of translocated 5-lipoxygenase in 
elicited- (by toxic carragenan) macrophages in which 5-
lipoxygenase activation by increased cytosolic Ca2 + was not 
inhibited by high [AA861] 's. 

A23187-induced 5-lipoxygenase metabolites release was 
in favor of LTD4 , but also LTE4 was identified by HPLC 
separation in supernatants of resident macrophages stimulated 
by A23187 in serum free medium. This implicated activation of 
macrophage- •-glutamyl transpeptidase (GGT) and - cysteinyl 
glycinase (CG) by A23187, a finding which was also observed 
with granulocytes (Raulf et al., 1985) (Figure 8). 

' 
Exogenous LTC4 in serum-containing TGM converted into 

LTE4 , which indicated the presence of GGT and CG in serum. TGM 
itself and supernatants of non-stim~lated macrophages incubated 
in TGM during 20 minutes revealed no detectable LTs by HPLC 
separation. A23187-stimulated macrophages in ser~m-containing 
TGM released large amounts of LTE4 and an unidentified LT. 
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Figure 8. 

A23187-induced macrophage leukotriene formation and -release, 
including intracellular translocation of 5-lipoxygenase 
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This release was inhibited by incubation of macrophages with 
2.5 pM AA861. These results indicated that A23187-induced 
macrophage 5-lipoxygenase activity results ultimately in LTE4 
(and an unidentified LT). However, LTC4, but not LTE4 reversed 
AA861-inhibition of macrophage antitumor cytostasis, thus 
indicating that endogenous LTC4 is an essential metabolite in 
the mechanism of induction of macrophage cytostatic activity 
against P815 tumor cells by A23187 (Chapter 5). 

The calcium ionophore can activate many macrophage 
functions, which might be initiated by increased cytosolic 
Ca2 •. Ca2 •-influx may be involved in the activation of 
cascades of metabolites which play a role in the pathway of 
signals involved in enhancement, initiation or inhibition of 
certain macrophage functions (Chapter 1; Figure 4). Increased 
cytosolic Ca2 + and LTC4 release from macrophages were found in 
macrophage responses to certain inflammatory stimuli (Rouzer et 
al., 1980; Young et al., 1984; and Aderem et al., 1986a). 
Endogenous LTC4 was reported to be also essential in other 
macrophage activities (Miller et al., 1986; and Ziboh et al., 
1986). Our study demonstrates the importance of these 
increases in macrophage antitumor cytostasis. However, 
exogenous LTC4 did not induce macrophage antitumor cytostasis 
when macrophages were cocultured with P815 cells alone. This 
result indicates that Ca2 + influx is required for macrophage 
antitumor cytostasis. The failure of exogenous LTC4 to bypass 
the Ca2 + signal may indicate that A23187 has to establish an 
very high concentration of endogenous LTC4 (in the initial 5 
minutes) before decrease in endogenous [LTC4] by breakdown to 
LTE4 and/or to an unidentified LT. 

Our study indicates also that the rate of conversion 
of LTC4 into the non active LTE4 (by GGT and CG in serum and in 
macrophages) might be a limiting factor in expression of 
macrophage antitumor cytostasis. In order to investigate this 
assumption, the effect of L-serine on macrophage antitumor 
cytostasis was determined. L-serine binds to the active •­
glutamyl site of GGT (Thomson and Meister, 1977) and inhibits 
the conversion of LTC4 into LTE4. Indeed, L-serine - (200mM) 
pretreatment of macrophages and subsequent incubation (by 
dilution) with 100 mM serine, with and without 0.35 pM A23187 
revealed release of large amounts of LTC4 only. Moreover, 
macrophages pretreated with 200 mM L-serine and exposed 
subsequently to 100 mM serine induced macrophage antitumor 
cytostasis (62-78%). Additive macrophage antitumor cytostasis 
(91-95%) was observed when serine-pretreated macrophages were 
exposed also to A23187, subsequently. These results support 
the assumption that a high [LTC4] is important for macrophage 
antitumor cytostasis. An accelerated accumulation of endogenous 
LTC4 in A23187+serine-treated macrophages could cause the 
additive macrophage antitumor cytostatic effect (Chapter 6). 

P815 mastocytoma tumor cells release LTC4 when 
exposed to A23187 (Murphy et al., 1979). Our study indicates 
that P815 cells incubated with.A23187 in serum free medium 
release a small amount of LTD4 This release is enhanced,when 
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P815 cells are cultured in TGM in addition to A23187 (Chapter 
5). Compared with leukotriene release from stimulated 
macrophages, the putative effect of leukotrienes released from 
P815 cells on macrophage cytostatic activity is negligible. 

The mechanism by which A23187-stimulated macrophages 
inhibit growth of P815 cells is not fully clear yet. 
Cytostasis of P815 cells by release of IL-l~ from A23187-
stimulated macrophage (Matsushima and Oppenheim, 1985) seems 
not to be involved, because P815 cell growth appears to be 
resistant to the cytostatic effects of IL-l~ (Lovett et al., 
1986). Grand-Perret and coauthors (1986) observed also 
macrophage cytostasis against P815 cells, when macrophages were 
preincubated (2 hrs.) with A23187. Results from our study 
indicated a cell-to-cell contact requirement in the mechanism 
by which A23187-stimulated macrophages express antitumor 
cytostasis, because supernatants from A23187-treated 
macrophages had no cytostatic effect on P815 cells. It was 
also described that growth of P815 cells could be affected by 
PGs (Balazsovits et al., 1988) and TNFa (Carswell et al., 
1975). It is not known whether A23187 induced TNFa release 
from these macrophages, but it is unlikely that PGs express 
antitumor cytostasis directly in this assay of macrophage 
mediated antitumor cytostasis, because supernatants from 
A23187-stimulated macrophages failed to express cytostasis 
towards P815 cells. 

In conclusion, our results indicate that LTC4 is an 
essential 5-lipoxygenase intermediate in A23187-induced 
macrophage antitumor cytostasis. LTC4 converted into LTE4 by 
the presence of ~-glutamyl transpeptidase (GGT) and CG in 
serum, present in TGM and this process was accelerated by 
increased activity of these enzymes due to exposure of 
macrophages to A23187. The conversion of LTC4 into LTE4 can 
limit A23187-induced macrophage antitumor cytostasis. Based on 
our results on the time course of 5-lipoxygenase­
/cyclooxygenase metabolites release ratio, the activating role 
of LTC4 might be exerted in the initial 5 minutes of 
stimulation of macrophages by A23187. Ca2 +-influx-mediated 
macrophage 5-lipoxygenase activation by A23187 could establish 
the required signal of high LTC4 production in the initial 5 
minutes incubation in TGM. Serine inhibits the conversion of 
LTC4 into LTD4 by binding GGT. The straightforward relation 
between induction of accumulation of LTC4 in macrophages and 
induction of macrophage antitumor cytostasis by L-serine, 
indicats the importance of [LTC4] for macrophage antitumor 
cytostasis in vitro. The additive antitumor cytostatic 
activity by combined L-serine and A23187 treatment of 
macrophages may be explained by acceleration of high [LTC4] in 
macrophages. 

Modulation of macrophage LTC4 biosynthesis by L­
serine and A23187 provides an insight into the role of 
endogenous LTC4 in expression of macrophage antitumor 
cytostasis in vitro. Further research is required for the use 
of such combined treatment for cancer immunotherapy. 
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SUMMARY 

The main aim of the present work was to study the 
possible interrelationship between induction of antitumor 
cytostasis and of production of prostanoids and leukotrienes by 
murine peritoneal macrophages stimulated with the calcium 
ionophore A23187. A method of cell separation by velocity 
sed~mentation was adapted for obtaining macrophage-enriched 
preparations from the resident peritoneal macrophage 
population. 

The following results were obtained: 
1. Macrophage antitumor cytostatic activity was induced by 

A23187 (53-49% inhibition of thymidine incorporation by P815 
tumor cells) in an in vitro coculture system of macrophages 
and tumor cells in serum containing medium (TGM). 

2. Induction of increased release of macrophage eicosanoids 
(leukotrienes B4, C4, D4, E4 and the prostanoids~ 6-keto 
prostaglandin Ftu and thromboxane B4) by A23187, including 
demonstration of increased net A23187-induced 5-
lipoxygenase/cyclooxygenase metabolites release ratio in the 
initial 5 min., in respect of the ratio from non-stimulated 
macrophages in 'steady state' conditions in vitro. 

3. Conversion of LTC4 into LTE4 incubated at 37°C in TGM. 
4. Inhibition by AA861 of macrophage cytostatic activity was 

related to inhibition of 5-lipoxygenase metabolites release, 
whereas the failure of inhibition of macrophage cytostatic 
activity by N.D.G.A. was related to inhibition of both 5-
lipoxygenase- and cyclooxygenase metabolites release. 

5. Exogenous leukotriene C4 (10- 8 M), but neither leukotriene 
B4 nor leukotriene E4, reversed AA861-inhibited macrophage 
antitumor cytostasis. 

6. Effect of L-serine, which binds to the active site of •­
glutamyl transpeptidase used for the conversion of 
leukotriene C4 to leukotriene D4, on macrophage antitumor 
cytostatic activity had been studied. Increased leukotriene 
C4 release was related to increased antitumor cytostatic 
activity (62-78%) by serine-(100 mM) treated macrophages. 

7. Additive antitumor cytostatic effect (91-95%) by serine­
(200 mM) pretreated - and subsequently exposure to A23187-
(and by dilution 100 mM serine) treated macrophages was 
demonstrated. This additive effect was related to 
accelerated release of (accumulated) LTC4 and inhibition of 
LTE4 formation in macrophage supernatants. 

The 
induction 
macrophages 
induction 
leukotriene 

main conclusion of the present 
of antitumor cytostatic activity 
treated by A23187 and/or L-serine 
of production of leukotrienes, 
C4. 
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SAMENVATTING 

Het voornaamste doel van dit werk was het onderzoeken 
van de mogelijke relatie tussen het op gang brengen van 
antitumor cytostatische activiteit en de productie van 
prostanoiden en leukotrienen van muis peritoneaal macrofagen 
gestimuleerd d.m.v. het calcium ionofoor A23187. Hiertoe werd 
allereerst een methode geoptimaliseerd voor het verkrijgen van 
een zo zuiver mogelijke peritoneaal macrofaag fractie d.m.v. 
eel scheiding op basis van het verschil in bezinkingssnelheid 
van cellen in een oplopende gradient van FBS (foetale serum van 
het rund). In dit onderzoek werden de volgende resultaten 
verkregen: 

1. 53-49% remming van inbouw van thymidine in P815 tumor cellen 
(antitumor cytostatische activiteit) tesamen gekweekt met 
macrofagen en het calcium ionofoor A23187 in serum-verrijkt 
medium. 

2. Toeneming van productie- en vrijmaking van eicosanoiden 
(leukotrienen B4, C4, D4, E4 en de prostanoiden; 6-keto 
prostaglandine Fta en thromboxaan B2) van macrofagen o.i.v. 
A23187, inclusief een toeneming van de netto verhouding 5-
lipoxygenase I cyclooxygenase metabolieten productie o.i.v. 
A23187 binnen 5 minuten, t.o.v. de verhouding van deze 
vrijgemaakte metabolieten van niet gestimuleerde macrofagen, 
gekweekt _t_n _ _yj.. trg. 

3. Een snelle omzetting van LTC4 in LTE4 werd gevonden in 
serum-verrijkt medium bij 37°C. 

4. A23187 geinduceerde macrofaag antitumor cytostatische 
activiteit werd geremd o.i.v. AA861 en werd in verband 
gebracht met remming van de 5-lipoxygenase metabolieten 
productie van macrofagen, terwijl o.i.v. NDGA, het 
ontbreken van remming van antitumor cytostatische activiteit 
in verband werd gebracht met remming van zowel 5-
lipoxygenase-, als cyclooxygenase metabolieten productie van 
macrofagen. 

5. Noch LTB4, noch LTE4, doch wel LTC4 kon de door AA861 
geremde macrofaag antitumor cytostatische activiteit weer 
tot stand brengen. 

6. Bepaling van antitumor cytostatische activiteit van 
macrofagen o.i.v. L-serine, welke zich hecht aan de actieve 
bindingsplaats van •-glutamyl transpeptidase (dit enzym is 
noodzakelijk voor de omzetting van leukotriene C4 in 
leukotriene D4). Verhoogde macrofaag antitumor 
cytostatische activiteit (62-78%) werd gevonden o.i.v. 
serine (100 mM) en werd in verband gebracht met een toename 
in leukotriene C4 geproduceerd door serine-behandelde 
macrofagen. 

7. Een additieve antitumor cytostatische activiteit (91-95%) 
werd gevonden met macrofagen voorbehandeld met serine (200 
mM) en daarna A23187 (0.35~M) met een verdunning van serine 
(100 mM). Deze toeneming van activatie van macrofagen werd 
in verband gebracht met een snelle stapeling van leukotriene 
C4 formatie en remming van leukotriene E4 vorming in medium 
van gekweekte macrofagen. 
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De voornaamste conclusie van dit werk is dat stimulatie 
van antitumor cytostatische activiteit van peritoneaal 
macrofagen o.i.v. A23187 en/of serine in verband gebracht kan 
worden met toename in productie van 5-lipoxygenase metabolieten 
in het algemeen, en wel leukotriene C4 in het bijzonder. 
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