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CHAPTER 1 

INTRODUCTION 

SACCADES 

Saccades are the rapid eye movements that allow us to voluntarily shift our gaze from 

one visual target to another. They serve to bring newly selected targets to the small and 

central area of the retina which is called the fovea, where visual acuity is high. The size 

of saccades can range between a minimum of about 3 min arc (Haddad and Steinman, 

1973) up to a maximum of about 90 deg. Although saccades have been studied 

extensively under various experimental conditions, there are, to my knowledge, no 

reliable data on the metrics of normal human saccades, i.e., saccades we make in 

every-day life. However, it is generally assumed that most of our normal saccades have 

magnitudes of less than about 15 deg and that larger saccades are usually associated with 

movements of the head. 

A prominent characteristic of saccades is that they are fasL They therefore enable us to 

direct our gaze over a wide range in a short period of time. Peak-velocities of saccades 

rise as the magnitudes of saccades become larger. This is a quite close relationship. At 

saccadic magnitudes larger than about 40 deg, the peak-velocities saturate. Peak-velocities 

may then reach values of up to about 600 deg/s (e.g. Westheimer, 1954; Boghen et al., 

1974; Bahill et al., 1975a; Collewijn et al., 1988a,b ). There is also a quite close 

relationship between the duration of a saccade and its magnitude in the sense that the 

execution of a large saccade takes more time than the execution of a small saccade. A 

saccade with a magnitude of 10 deg takes about 50 ms to be made, whereas a 40 deg 

saccade has a duration of about 130 ms. Another prominent characteristic of saccades 

is that they are remarkably accurate, despite their high velocities. Saccades are generally 

thought to fall short of their target by about 10% of the angular distance between the 

previous target and the new target. The residual error is compensated by so-called 
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corrective saccades. This 10% undershoot is, however, observed under rather unnatural 

experimental conditions. Collewijn et al. (1988a) showed recently that under more natural 

conditions, this undershoot was considerably less than 10%. I shall go further into this 

in Chapter 4. 

CONTROL OF SACCADES 

The high accuracy of a saccade obviously requires a very strict control of its execution 

by the central nervous system, which drives the eye-muscles that move the eye in its 

orbit. The high velocities of saccades put special demands on this control, as will now 

be explained. When the eye makes a saccade, the visual image of the outside world on 

the retina sweeps with approximately similar velocity across the retinal surface. Because 

velocities of the retinal image higher than only a few deg/s degrade visual acuity, the 

central nervous system is very unlikely to receive useful visual feedback on the position 

of the target during a saccade. In addition, the time-delay associated with the transport 

of any in-flight visual information on the position of the target, and also the time 

required for the processing of that visual information, would be too long to adjust the 

trajectory of a saccade in time. Under certain experimental conditions, however, the 

trajectory of saccades can indeed be changed in mid-flight by retinal signals (Van 

Gisbergen et al., 1987). 

In spite of the minor role, if any, of visual feedback during the execution of a saccade, 

saccades are remarkably accurate over the full range of magnitudes. Therefore, the 

trajectory of a saccade has to be accurately pre-programmed. Evidence is gathering that 

the central nervous system obtains non-visual, or extra-retinal, information on the 

positions of the eye during the execution of a saccade, primarily by keeping track of the 

actual motor commands to the eye-muscles (the so-called efference copy) which, in turn, 

allows for the in-flight adjustment of deviations from the pre-programmed trajectory. 
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BINOCULARITY 

Because humans have two eyes with largely overlapping visual fields, it is important that 

each eye be always positioned in such a way that the image of a visual target lies, within 

certain limits of tolerance, on the fovea of each eye. This positioning of the two eyes is 

called binocular foveation. If a visual target were not binocularly foveated, each fovea 

would contain the image of a different visual object. This would presumably lead either 

to the perception of double images, or to the suppression of one of the two images, in 

which case we would effectively end up with monocular vision. In conclusion, if a visual 

target were not foveated binocularly, it would probably be more of a nuisance than of 

a benefit to have two eyes. 

HERING'S LAW 

To maintain binocular foveation at all times, eye movements are generally thought to 

obey Hering's law of equal innervation. According to this law, the eyes make movements 

of equal size (Hering, 1868). A simple illustration of this law is that if one eye is 

covered, it apparently follows the movements of the viewing eye closely. However, the 

validity of this law was already challenged in Hering's time and it has been subject to 

debate for more than a century. I will elaborate on Hering's law and also on its 

violations in Chapter 2, because of its relevance to the present thesis. 

ADAPTATION 

As already mentioned, the central nervous system presumably receives very little, if any 

visual feedback during the execution of a saccade. Because saccades are so very accurate, 

the central nervous system must be very well informed about the properties of the 

extra-ocular muscles, as well as about the forces of resistance that act on the eyeball 

during its movement, caused by the tissues in which the eye is suspended. As the 

eye-muscles that move the eye, as well as the tissues in which each eye is suspended are 

subject to change due to growth, ageing, disease or fatigue, the motor commands that 

drive the eye-muscles need to be recalibrated frequently, in order to make accurate 
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saccades possible throughout a person's entire life. The central nervous system itself is 

also subject to changes. Moreover, as all these changes will probably not have the same 

time-course and magnitude in the various parts of the eye movement system, a 

differential recalibration is required to adapt to these changes in an appropriate way for 

the eye movements to remain accurate. More specifically, changes that involve one eye 

more than the other eye, require asymmetrical adaptations. 

An important question in the understanding of how the central nervous system adapts 

to these changes is how it keeps up-to-date with them. In physiological terms, what is 

the appropriate stimulus for these adaptations? A very likely candidate for such a 

stimulus is the visual information that reaches the central nervous system after the 

completion of each saccade. I hypothesize that the existence of any consistent 

discrepancy between the actual position of the eye at the end of a saccade, as judged 

from the visual information that enters the central nervous system, and the required 

position of the eye, forms the stimulus for adjusting the motor commands. 

Changes caused by growth, ageing, disease or fatigue are obviously not restricted to the 

oculomotor system, but take place continuously in all parts of the body. How the central 

nervous system adapts to these changes is poorly understood. A close examination of 

adaptations to these changes by the eye movement system may contribute to the 

understanding of how the central nervous system is capable of responding to similar 

changes in the rest of the body. 

Recently, Erkelens et al. (1989b) found that subjects made saccades of unequal size, thus 

violating Hering's law of equal innervation, after they had adapted to anisometropic 

spectacles. These are spectacles that have lenses of unequal refractive powers, and 

therefore have unequal magnifying factors for each of the two eyes. Because such 

different magnifications of the visual world lead to images of different size in each eye, 

the appropriate adaptation to these spectacles would be a change in size between the 

movements of each of the two eyes. Such adaptations were already evident after wearing 

anisometropic spectacles for about 8 hours. 

In the present thesis, the asymmetrical adaptations to anisometropic spectacles are 

studied and discussed in greater detail. 
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OUTLINE OF 1HE PRESENT 1HESIS 

In Chapter 2, a review of the relevant literature will be presented. It will focus primarily 

on the literature on asymmetrical adaptations of saccades both to changes caused by the 

wearing of spectacles and to pathological or experimental weakening of external eye

muscles. In addition, Hering's law will be commented on in detail. 

The study of asymmetrical adaptation to anisometropic spectacles requires accurate 

recordings of the movements of both eyes simultaneously. The geometrical principles, 

which underly a clear description of the recorded movements of each eye, will be 

discussed in detail in Chapter 3. This chapter will also deal with the materials that were 

used and the general methods that were employed in the experiments of the following 

chapters. 

Saccades are usually elicited experimentally by having subjects make gaze shifts to 

suddenly moving targets. Because such an experimental design deals with saccades as if 

they are reflex-like movements, rather than voluntary movements to continuously present 

targets, as is the case in every-day life, the effects of the target condition on the 

execution of saccades, notably their accuracy, is examined and discussed in Chapter 4. 

A way of measuring the amount of adaptation of saccades to anisometropic spectacles, 

is to assess to what extent Hering's law is violated. This can be done by measuring the 

sizes of the saccades in each eye in monocular viewing. The change in size of the 

movements of the covered eye reflects the actual hard-programmed adaptation. In 

Chapter 5 accurate baseline data are obtained of the movements of a covered eye before 

any adaptation has taken place. 

Chapter 6 presents data on the metrics of saccades in a number of subjects who have 

been wearing anisometropic spectacles for many years. This chapter deals with the 

adaptations of horizontal and vertical saccades to the long-term wearing of such 

spectacles. Chapter 7 focusses on the time-course and limits of short-term adaptation to 

anisometropic spectacles. Both horizontal and vertical saccades will be examined. As 

different areas of the central nervous system are involved in the generation of horizontal 
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and vertical saccades, I address the question whether saccades can be selectively adapted 

in one eye and in one meridian (horizontal or vertical) only, without affecting saccades 

in the other eye and also without affecting saccades in the orthogonal meridian. This 

question is dealt with in Chapter 8. This chapter is followed by an assessment, in Chapter 

9, whether adaptations to anisometropic spectacles can be specific for any meridian, or 

whether such adaptations always consist of adaptations of the horizontal and the vertical 

components of oblique saccades. Finally, Chapter 10 will present a general discussion of 

the main findings of the research described in this thesis. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

This review will be limited to the literature that is of direct relevance to the topic of 

asymmetrical saccadic adaptation. For a comprehensive survey of the oculomotor system, 

including the saccadic subsystem, see e.g. Carpenter (1988). A general overview of the 

literature on adaptations of eye movements, also other than saccades, is presented in 

Berthoz and Melvill Jones (1985). In the present chapter, I shall first go into Hering's 

law of equal innervation, because of its pertinence to the adaptation of saccades of two 

eyes. Secondly, I shall focus on the literature that deals with adaptation of saccades in 

general, and finally, I shall discuss the literature on the asymmetrical adaptation of 

saccades, i.e., adaptation of saccades that is different for each of the two eyes. 

HERING'S LAW OF EQUAL INNERVATION 

According to Hering (1868), the eyes move in such a perfectly coordinate way that the 

lines of sight of both eyes are always aimed at the same object. The two eyes can 

therefore, in Hering's terms, be thought of as one organ, which he named the double-eye 

(Doppelauge ). Hering illustrated his concept of the double-eye with his observation that 

linking of the movements of the two eyes also occurs when there is no need for any 

linking, such as when one eye is covered. Hering believed that this coordinate linking 

was innate. His views contrasted sharply, however, with those of his contemporary 

scientific rival Helmholtz, who favoured the notion that each eye was innervated 

independently and that only through experience were coordinate movements achieved 

(see Bridgeman, 1977). 

For eye movements in the horizontal meridian, each eye receives, according to Hering, 

two different innervations, each of which is equal for the two eyes. One innervation 
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results in a turning of both eyes to the right or left (version), and the other innervation 

results in an inward or outward turning of the eyes (vergence). Version movements are 

required for changes in direction of our gaze, whereas vergence movements are required 

for changes in distance. In Hering's terminology, vergence movements are therefore, by 

definition, movements of the two eyes in opposite direction, because, for a vergence 

movement, one eye moves to the left and the other eye moves to the right. Movements 

of the two eyes in a direction opposite to each other are frequently referred to as 

disjunctive, whereas movements of the two eyes in the same direction are called 

conjugate. 

According to Hering, any movement of each of the two eyes is composed of a version 

movement that is equally large for each eye and a vergence movement that is also 

equally large for each eye. Hering pointed out that the magnitude of the net movement 

of one eye would be different from the magnitude of the net movement of the other eye 

if a gaze shift required both a change in direction and a change in distance. It is, 

however, a mathematical tautology to consider each eye movement to be the sum of a 

version and a vergence movement, because this is always true and cannot be violated 

(Ono, 1980; Erkelens et al., 1989a). 

Hering's law should be seen in the light of its time, when eye movements had never 

been recorded. Only 35 years after Hering drew up his law of equal innervation did 

Dodge (1903) measure eye movements. In his classical paper, Dodge distinguished five 

types of eye movements. This classification has remained virtually the same over the 

years, although the nomenclature of these five types has changed somewhat. Dodge 

described a slow disjunctive eye movement (type 5), which is currently referred to as a 

vergence eye movement. It has been more or less tacitly assumed that the other four 

types of eye movements (one of which represents saccades) are conjugate. Because of 

the differences in dynamic properties of (fast) saccades and (slow) vergence eye 

movements, Hering's law has been frequently put to the test by examining whether 

normal eye movements can indeed be algebraically broken down to a slow, vergence eye 

movement and a fast, version (saccadic) movement. 

Yarbus (1967) reported that eye movements that required both a change in direction and 
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a change in distance consisted indeed of the arithmetical sum of a (slow) vergence and 

a fast (saccadic) version eye movement. He stated that such composite eye movements 

were in fact triphasic: they consisted of an initial (slow) vergence movement, an 

additional fast saccadic version movement, followed by another (slow) vergence 

movement. Although Yarbus' experiment gained considerable popularity, more recent 

work showed, however, that slow vergence and fast saccadic eye movements are in fact 

not additive in tasks that require gaze shifts with changes both in direction and in 

distance (e.g. Ono et al., 1978; Ono and Nakamizo, 1978; Enright, 1984, 1986; Erkelens 

et al., 1989a ). When a gaze-shift has to be made that requires both a change in direction 

and a change in distance, this gaze-shift can be brought about to a large extent by 

saccades that are of unequal size. These findings appear to undermine Hering's law of 

equal innervation. 

However, Erkel ens et al. (1989a) emphasized recently that the debate about the validity 

of Hering's law in the present century has presumably little to do with Hering's original 

ideas, because Hering never distinguished between different types of eye movements, 

simply because they were unknown at that time. The tenet of Hering's insight was, 

however, that the coordination of the two eyes is so good, that any selected target can 

be binocularly foveated at all times. To achieve this binocular foveation, the central 

nervous system has to take both changes in direction and changes in distance into 

account. In this sense, Hering's law is still valid. 

ADAPTATION OF SACCADES 

As explained in the previous chapter, the motor commands to the eye-muscles that move 

the eye in its orbit need to be recalibrated frequently throughout a lifetime, in order to 

respond adequately to changes that occur anywhere in the structures involved in the 

execution of eye movements. These changes are due to, e.g., growth, ageing, disease or 

fatigue. I also pointed out that saccades are so fast, that they are normally over before 

any useful visual feedback can affect their trajectories, which puts special demands on 

the control of saccades and also on the way the recalibrations take place. All these 

recalibrations are usually denominated by the word adaptation. Before going into the 

literature that deals with the adaptation of saccades, I shall discuss some of the 
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properties of the motor commands that generate saccades. 

The discharge from the motoneurons that drive the eye muscles to generate a saccade 

is characterized by a high frequency burst, or pulse, which creates a large force for a 

short period of time (Robinson, 1964). The large force is required to overcome the 

forces of resistance that act on the eyeball, and, in addition, to obtain the large 

acceleration which is typical of saccades. After the completion of a saccade, the eye is 

held in its new position by a lower frequency discharge from the motoneurons, which 

is called the step, and which serves to counter the elastic forces, caused by the tissues 

in which the eyeball is suspended, that would otherwise drive the eye back to a position 

in which all the elastic forces would be in equilibrium. The magnitude of the step is 

thought to be calculated by the central nervous system through a mathematical 

integration of the pulse (Robinson, 1975). At the end of a saccade, the eye sometimes 

drifts, which is usually attributed to a mismatch between the pulse and the step (Weber 

and Daroff, 1972; Bahill et al., 1975a). These post-saccadic drifting movements are 

sometimes called glissades. If the step is too small relative to the pulse, a backward 

post-saccadic drift will result, whereas a step that is too large relative to the pulse will 

yield an onward post-saccadic drift. Adequate adaptation of saccades to various changes 

within the saccadic subsystem, should therefore entail adaptation of both the pulse and 

the step. Adaptation of the size of saccades to the weakening of an external eye-muscle 

has been demonstrated both in man and in monkey. In humans, the weakening was 

caused by disease, whereas in monkeys the external eye-muscles were weakened 

experimentally. 

Kommerell et al. (1976) reported in detail on one of three patients who had developed 

a left-sided peripheral abducens paralysis. The affected eye had good visual acuity, 

whereas the acuity of the right eye was, by chance, very poor. Several weeks after the 

onset of the paralysis, the retinal image of the right eye was suppressed. The paretic eye 

with the better visual acuity then made leftward saccades (i.e., in the direction of the 

paretic lateral rectus muscle) that were orthometric, i.e., of the correct size, whereas the 

fellow eye made leftward saccades that were too large (hypermetric ). Rightward saccades 

were orthometric in both eyes. After covering the left, paretic eye for three days, the 

saccades of the right, viewing eye had become orthometric in all directions, whereas the 
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covered, paretic eye then made saccades that were hypometric (too small) towards the 

left. In conclusion, the adaptative changes in saccade-size were reversible, and the 

changes that occurred in the viewing eye were parallelled by equal changes in the other 

eye. 

In addition, the saccades of the right eye were, before patching, characterized by a very 

large rightward post-saccadic drift, notably for saccades made towards the left, suggesting 

a pulse-step mismatch. Mter patching of the left, paretic eye for three days, the 

post-saccadic drift of the right eye disappeared, with a concomitant increase in 

post-saccadic drift of the covered, left eye. In conclusion, the adaptations of 

post-saccadic drift were also reversible, and they were also parallelled by similar changes 

in the covered eye. All these findings support Hering's law in the sense that the adaptive 

changes in innervation were equal for each of the two eyes. As the adaptations of both 

the saccade-size and the post-saccadic drift were different for movements to the left than 

for movements to the right, Kommerell et al. (1976) concluded that such adaptations can 

be direction-specific. The velocities of the saccades made by the paretic eye in the 

direction of the palsy were always, i.e., before and after adaptation, lower than the 

velocities of the saccades of the same eye in the opposite direction, and also lower than 

the saccades of the unaffected eye in both directions. Similar results were reported by 

Abel et al. (1978), who elaborated on a patient with a sudden one-sided medial rectus 

paresis, secondary to a partial third nerve palsy, and also by Optican et al. (1985) who 

discussed four patients who all had one-sided lateral rectus palsies of various durations 

and of various degrees of severity. 

In monkeys in which both horizontal recti muscles of one eye were weakened by 

tenectomy, the ensuing hypometric saccades of that eye became orthometric after three 

days of patching of the contralateral eye (Optican and Robinson, 1980). The 

post-saccadic drift that was prominent in the tenectomized eye shortly after the 

operation had by then disappeared. The patched eye, however, then made saccades that 

were hypermetric and were followed by a post-saccadic drift that was in a direction 

opposite to the direction previously observed in the tenectomized eye. 

All the experiments described above indicate that symmetrical adaptations of saccades 

to weakened external eye muscles take place, and that these adaptations presumably 

encompass adaptations of both the step and the pulse. Optican and Robinson (1980) 
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demonstrated by partial ablation studies of the cerebellum in monkeys, that adaptations 

of either the pulse, or the step are independent and that they correspond with different 

parts of the cerebellum. 

An important question in the understanding of the adaptation of saccades is which 

stimuli are adequate to induce these adaptations. A likely candidate is the visual 

information that enters the brain at the end of each saccade. Support for the likelihood 

of this candidate comes from the following experiments. It was recently demonstrated 

in monkeys (Vilis et al., 1985; Viirre et al., 1987), that after continuous patching of one 

eye for one week, the properties of the saccades of that eye changed, while the saccades 

of the viewing eye showed no changes. These findings suggest that visual information is 

essential to the calibration of each eye. 

The importance of visual information at the end of a saccade to the calibration of the 

saccadic oculomotor subsystem is also supported by work of Miller et al. (1981) and 

Deubel et al. (1986). These workers had subjects make saccades by letting them track 

a visual target that jumped. Whenever a saccade was made, the target jumped again 

during the execution of the saccade. The second, intra-saccadic target jump was, 

consistently, either in the same direction as the saccade, thereby making the required 

gaze-shift larger than the initially planned gaze-shift, or it was consistently in a direction 

opposite to the saccade, thus decreasing the size of the required gaze-shift, relative to 

the planned saccade. After some experience, subjects responded to the first target-jump 

by making saccades which had magnitudes that were adapted to the second target-jump, 

i.e., they were larger after a period of onward intra-saccadic target displacements and 

they were smaller after a period of backward intra-saccadic target displacements. Deubel 

et al. (1986) found that these adaptations were direction-specific, which supported similar 

findings by Miller et al. (1981 ). 

In addition, Deubel et al. (1986) observed that the adaptive changes that were induced 

by the intra-saccadic target-displacements at a specific saccade size, was also reflected 

in the magnitude of saccades of a different size in the same direction. From this, Deubel 

et al. concluded that adaptation in one direction takes place in a simple, parametric 

manner: one single gain element determines adaptive changes in saccade-sizes for all 

target eccentricities. This notion of a simple, direction-specific, gain element had been 
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suggested earlier by Miller et al. (1981). However, this notion is still under debate. In 

an experiment to be described below, Erkelens et al. (1989b) found that the adaptation 

of saccades appeared to be different for each target eccentricity, suggesting a 

point-by-point adaptation rather than an adaptation determined by one uniform 

parametric gain element. Despite this controversy, it is evident that visual feedback plays 

an important role in the adaptation of saccades. Visual feedback may not only affect 

saccadic size. Deubel (1987) demonstrated, both in man and in monkey, that an 

intra-saccadic target displacement could produce adaptive changes in saccadic direction. 

In the experiments described by Miller et al. (1981 ), and also by Deubel et al. (1986), 

nothing was mentioned about the occurrence of post-saccadic drift. This may suggest that 

post-saccadic drift, if at all present, was not a very prominent characteristic of saccades 

adapting to a visual stimulus, which contrasts sharply with the adaptations of saccades 

adapting to weakened external eye-muscles, in which post-saccadic drift was very 

conspicuously present (Kommerell et al., 1976; Abel et al., 1978; Optican et al., 1985). 

This contrast suggests that the adaptations that occur either to the weakening of external 

eye-muscles or exclusively to a changed visual feedback, may occur at different levels, 

as was also suggested by Erkel ens et al. (1989b ). Visual feedback can also induce 

post-saccadic drift, without affecting saccade-size, as was demonstrated by Optican and 

Miles (1985), by artificially generating a slip of the retinal image in monkeys after every 

saccade that the monkeys made. The post-saccadic slip of the monkeys' eyes that was 

experimentally induced helped to stabilize the retinal image. 

ASYMME1RICAL ADAPTATION OF SACCADES 

In the adaptation experiments described above, in which external eye muscles were 

weakened either by disease or experimentally, the adaptive changes were equally large 

for both eyes. Asymmetrical adaptation, i.e., adaptation that is different for each eye, was 

not required, because one of the two eyes was either patched or its retinal image was 

suppressed. In normal life, however, asymmetrical adaptation is presumably called for 

more frequently than symmetrical adaptation, because the changes in the oculomotor 

system caused by growth, ageing, disease or fatigue are very unlikely to affect each eye 

with exactly the same time course and to exactly the same degree. Therefore, I shall now 
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discuss the literature on asymmetrical adaptation in greater detail. 

Snow et al. (1985) demonstrated asymmetrical adaptation of saccades in monkeys in 

which both horizontal recti muscles of only one eye were tenectomized. When both eyes 

remained unpatched for several weeks, the saccades of both eyes became orthometric 

and the post-saccadic drift that followed shortly after the tenectomy almost disappeared. 

In a similar experiment by Viirre et al. (1988), only one horizontal rectus muscle was 

surgically weakened in monkeys. After sufficient binocular experience, the normal yoking 

of saccades was virtually restored, which showed that asymmetrical adaptations to a 

paretic, external eye muscle could also be direction-specific. 

Severing the tendons of one or more external eye-muscles brings about very dramatic 

changes to the oculomotor system. Because of their very sudden onset, combined with 

a high degree of severity, these changes presumably closely resemble an acute palsy of 

an eye muscle. However, such a tenectomy poorly resembles the presumably slight and 

gradual wear and tear that usually occurs within the oculomotor system throughout a 

lifetime. Therefore, considerably less invasive experimental designs are required to study 

adaptations to more natura~ i.e., more moderate changes. 

Henson and North (1980) showed that when a base-up prism was applied in front of one 

eye, the ensuing vertical phoria largely disappeared after just over three minutes of 

binocular visual experience, which reflects short-term adaptation to an asymmetrical 

change in visual information. These results were later confirmed by Henson and 

Dharamshi (1982). When a subject wears anisometropic spectacles, he initially develops 

a phoria, whose magnitude depends on the eccentricity of the target that is binocularly 

fixated. Henson and Dharamshi (1982) found that the induced phoria largely disappeared 

after 2.5 hours of binocular visual experience. Similar results had been reported by 

Ellerbrock (1948) and Allen (1974). These results show something on end positions 

(perceptual, not recorded), but not on the dynamics of saccades. 

Recently, Erkelens et al. (1989b) reported on a subject who had been wearing 

anisometropic spectacles for many years. They observed that this subject made saccades 

that were of unequal size for the two eyes, thus representing asymmetrical adaptation 

to the unequal sizes of the images on each retina, caused by the anisometropic 
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spectacles. Adaptations were almost complete for vertical saccades, but less complete for 

horizontal saccades. These asymmetrical adaptations differed in magnitude, depending 

on the eccentricity of the target, suggesting a point-to-point adaptation, instead of a 

simple adaptational change of a single gain parameter, as proposed by Deubel et al. 

(1986). Erkelens et al. (1989b) further demonstrated that asymmetrical adaptations of 

saccades were already present in two normal subjects after wearing anisometropic 

spectacles for about 8 hours. Short-communications of these and similar results had also 

been made by Collewijn et al. (1988c), Horner et al. (1988) and Levi et al. (1988). 

Little is known, however, about the time course and the limits of these asymmetrical 

adaptations. In addition, there are, to my knowledge, no data available on the 

meridian-specificity of these adaptations. These problems will be dealt with in the 

following chapters. 
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CHAP1ER 3 

GENERAL METHODS 

GEOME1RICAL PRINCIPLES 

Spherical coordinate systems 

Measuring eye movements requires a clear way of describing eye-positions. The most 

suitable way of describing eye-positions is in spherical coordinates. These are angles, 

expressed in degrees of arc (abbreviated to deg), which correspond with angular 

rotations of the eye in its socket. The centre of rotation of the eye is located, in 

normal human adults, approximately 13.5 mm posterior to the corneal vertex, which is 

the most anterior pole of the eye. As eye movements have three degrees of freedom, 

it is customary to describe each rotation of the eye in relation to a set of three axes, 

which intersect in the centre of rotation of the eye. Any rotation of the eye can 

therefore be geometrically broken down to its three axis-related rotational components. 

Before going any further, I shall define the straight-ahead position of the eye as its 

primary position. The position of the head then has to be also straight-ahead and 

upright. With the head in this position, purely horizontal and purely vertical 

eye-positions are called secondary positions, whereas all other eye-positions are referred 

to as tertiary positions. 

When the eye is in the primary position, the three axes of rotation are assumed to run 

horizontally in the frontoparallel plane, vertically and perpendicularly to the 

frontoparallel plane. They form the basis of three commonly used and slightly different 

coordinate systems, each of which describes the position of the eye in the head. The 

three systems have iri common, that they all consider one of the three axes to be fixed 

in the head, while the other two axes are nested within the fixed axis. Therefore, in 

each coordinate system there exists a hierarchy of nested axes. The three systems differ 
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from each other in that they all have a different fixed axis, and, as a consequence, a 

different hierarchy of nested axes. I shall elaborate on two of these systems, because 

they are relevant to the present thesis. The third system will be discussed only in brief. 

The first two coordinate systems to be discussed are frequently referred to as Pick's 

and Helmholtz's coordinate systems, named after their inventors in the nineteenth 

century (Von Helmholtz, 1867; for a treatise on both systems, see Carpenter, 1988). 

In Pick's coordinate system it is the vertical axis that is fixed in the head, whereas in 

Helmholtz's coordinate system the horizontal axis is fixed in the head. This difference 

is best demonstrated by a model of the eye in its orbit, in which the eye is suspended 

in gimbals (Fig. 3.1 ). 
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Fig. 3.1 Schema illustrating the hierarchy of nested axes in Pick's coordinate system (left panel) and 
in Helmholtz's coordinate system (right panel). In Pick's system, the vertical axis is fixed to the head, 
whereas in Helmholtz's system, it is the horizontal axis that is fixed to the head. For further details, see 
text. 

In Pick's coordinate system, a horizontal rotation of the eye is described in terms of 

its longitude ( ¢) and a vertical rotation in terms of its latitude (e). In Helmholtz's 

coordinate system, horizontal and vertical rotations are described in terms of azimuth 

(p,) and elevation ( >..), respectively. Rotations around the third axis, i.e., the visual axis, 
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relate to torsional eye-positions. These torsional eye-positions will not be considered 

here, because they are not related to the scope of this thesis. 

When the eye moves from its primary position to a secondary position, only one of the 

three axes of rotation is involved in either coordinate system. In each system, the 

involved axis then has the same orientation in space. Therefore, for secondary positions, 

Pick's longitude equals Helmholtz's azimuth, and, in addition, Pick's latitude equals 

Helmholtz's elevation. This obviously applies also to primary eye-positions, in which the 

magnitudes of all four coordinates are, by definition, equal to 0 deg. 

However, when the eye moves from its primary position to a tertiary position, both the 

horizontal and the vertical axes are involved in either system. Because of the different 

nesting of axes in the two systems, all four axes then become differently oriented in 

space. Therefore, for a tertiary position, Pick's longitude does not equal Helmholtz's 

azimuth, nor does Pick's latitude equal Helmholtz's elevation. 

The relevance of the difference between these two systems is that Helmholtz's 

coordinate system is convenient for describing and comparing the positions of both eyes 

in one subject, whereas Pick's coordinatesystem does not offer such a convenient 

description. This difference will now be explained. 

If a subject binocularly foveates a target in a tertiary position, the lines of sight will 

both lie in the same plane, which is called the plane of regard. In Helmholtz's 

coordinate system, each eye will have the same elevation, because both eyes share the 

same fixed, horizontal, axis. In Pick's coordinate system, however, both eyes will not 

have the same latitude, because the latitude depends on the longitude, which is 

different for each eye, because the centres of rotation of the two eyes do not coincide. 

The angle subtended by the lines of sight is, by definition, the angle of vergence. I shall 

first discuss the angle of vertical vergence in either coordinate system. In Helmholtz's 

coordinate system, the angle of vertical vergence is given by the difference between the 

elevation of the left eye and the elevation of the right eye. In case of binocular 

foveation of a target in any position (primary, secondary or tertiary), the elevation of 

the two eyes will be identical. Therefore, the angle of vertical vergence will then be 0 
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deg. In contrast, if the angle of vertical vergence is similarly calculated in Pick's 

coordinate system by subtracting the latitude of the left eye from the latitude of the 

right eye, the vertical angle of vergence will not be equal to zero when a subject 

foveates a tertiary target with both eyes. This is due to the fact that the latitude 

depends on the longitude. Therefore, in Pick's coordinate system, the vertical angle of 

vergence is a less clear measure than the vertical angle of vergence in Helmholtz's 

coordinate system. 

The angle of horizontal vergence can be simply calculated in Helmholtz's coordinate 

system by subtracting the azimuth of the left eye from the azimuth of the right eye. In 

Pick's coordinate system, however, the angle of horizontal vergence is again not very 

clear, because the longitude is expressed as the angle of rotation of the eye after 

projection onto a horizontal surface. As this projection changes as a function of the 

latitude, the angle of horizontal vergence is also an unclear measure. 

In the third coordinate system to be discussed, the fixed axis runs perpendicularly to 

the frontoparallel plane. This system has three different names: 1) Listing's coordinate 

system, 2) the perimetric coordinate system, 3) the polar coordinate system. In this 

system, it is not the eye that rotates around the head-fixed axis. Instead, it is the axis 

which in the hierarchy of nesting comes second to the head-fixed axis, that rotates 

around the head-fixed axis. Therefore, rotations of the eye around its visual axis (i.e., 

torsional movements) cannot be described in Listing's coordinates. In other words, this 

coordinate system has only two degrees of freedom. This system has another drawback 

in that it cannot be easily used to describe and compare the positions of both eyes in 

one subject. This is due to the fact that, as in Pick's coordinate system, the fixed axes 

of both eyes do not coincide. In conclusion, Helmholtz's coordinate system is the most 

elegant system for describing eye positions of two fellow eyes. 

Interchanging the 3 coordinate systems 

In view of the considerations discussed above, I expressed the eye-positions in 

Helmholtz's coordinates. The positions of my target-stimuli, were, however, for 

practical reasons, controlled in a Pick's coordinate configuration. Therefore, I needed 

a convenient way to convert the coordinates of one system into the coordinates of the 

20 



other system, and vice versa. As no suitable solution could be found in the literature, 

I derived the appropriate equations, which will now be discussed in detail. 

Figure 3.2 shows the angles in either coordinate system, which describe the position of 

point P in space in a fixed set of 3 orthogonal axes. 

z 

X 

Fig. 3.2 Schema illustrating how the position of point P may be described in terms of Pick's, 
Helmholtz's or Listing's coordinates. For further details, see text. 

>.. and f.L apply to Helmholtz's coordinate system, and ¢ and 8 apply to Fick's 

coordinate system. The coordinates of point P are given by 

(Helmholtz) 

X = f.COSf.L.COSA 

y = r.Sillf.L 

Z = f.COSf.L.Sin).. 

(Fick) 

x = r.cos 8 .cos¢ 

y = r.cos8 .sin¢ 

z = r.sin8 
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It can be shown by eliminating x, y, z and r that, 

.A = arctan( tan e /cos¢) 

/.L = arcsin( cos 8 .sin¢) 

¢ = arctan(taTI~.L/cos>..) 

e = arcsin( cos~.t.sin >..) 

(1) 

(2) 

(3) 

(4) 

Fick's coordinates can be transformed into Helmholtz's by applying (1) and (2), whereas 

(3) and ( 4) serve to transform Helmholtz's coordinates into Fick's. 

Because eye movements are frequently descnbed in Listing's coordinate system, I shall 

also present the appropriate equations to transform these coordinates into the 

coordinates of both Helmholtz's and Fick's coordinate systems, and vice versa. These 

equations were derived in a way similar to the equations (1) through ( 4). Listing's 

coordinates specify the position of the eye in terms of its meridional angle (o) and its 

eccentricity ( -y ), as indicated in Fig. 3.2. 

To interchange the coordinates of Listing's and Helmholtz's coordinate systems, use 

>.. = arctan(tan'Y .sino) 

/.L = arcsin( coso.sin -y) 

o = arctan(sin>../taD,LL) 

-y = arccos( cos~.t.cos >..) 

(5) 

(6) 

(7) 

(8) 

To interchange the coordinates of Listing's and Fick's coordinate systems, use 
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¢ = arctan(tan-y .coso) 

e = arcsin(sino.sin-y) 

o = arctan( tan 8/sin¢) 

-y = arccos( cos 8 .cos¢) 

(9) 

(10) 

(11) 

(12) 



Stimulus presentation 

The main object of this thesis was to study differential adaptation of saccadic 

movements of the two eyes to anisometropic spectacles. To avoid confusion with 

vergence eye-movements, I had to employ stimuli that did not require any vergence 

changes. To achieve this, a special stimulus screen was constructed. The geometrical 

principles of this screen will now be explained. 

p 

c 

f3\ 
' \P 

a b c 
Fig. 3.3 illustration of the geometrical principles of an iso-vergence circle. Displayed are three different 
positions of point P located on a circle that passes through the centres of rotation of the two eyes (L 
and R). Irrespective of the position of P on this circle, the angle subtended by the centres of rotation 
of the eyes and point P is constant. For further details, see text. 

When the centres of rotation of both eyes (L and R) are located on a circle, and point 

P is also located on that circle (Fig. 3.3), the angle a subtended by the centres of 

rotation and point P is independent of the position of point P. This general property 

of points on a circle will now be clarified. Three different cases can be distinguished: 

1) C lies on the line LP (Fig. 3.3a) 

In this case 

f3=a+p 

In addition, 

CP = CR 

(13) 

(14) 
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Therefore 

P =a 

By substitution of (15) in (14), it follows that 

{3 = 2a 

which equals 

a = {3/2 

2) C lies within a (Fig. 3.3b) 

Then 

a 1 = {3tf2 (case 1) 

az = {3zf2 (case 1) 

By addition of (18) and (19), it follows that 

Therefore, also in this case 

a = {3/2 

in which 

and 
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(16) 

(17) 

(18) 

(19) 
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3) C lies outside a (Fig. 3.3c) 

Then 

a + a' = ({3 + {3')/2 (21) 

a' = {3'/2 (22) 

By subtracting (22) from (21), one can show once more that 

a = {3/2 

If a subject foveates point P with both eyes, a equals the angle of vergence. 

Therefore, the circle is an iso-vergence locus (Collewijn et al., 1988a). When this circle 

is rotated around the line between the centres of rotation of the two eyes, it describes 

a surface, which is called a torus. Such a toroid surface contains also vertical 

iso-vergence loci, if eye-positions are expressed in a Helmholtz coordinate system, 

because the plane of regard in Helmholtz's coordinate system coincides with the plane 

of the iso-vergence circle. For each angle of horizontal vergence, there exists a toroid 

surface that contains horizontal and vertical iso-vergence loci. At an infinite distance, 

the toroid surface is flat and runs parallel to the frontoparallel plane. 

THESTThSULUSSCREEN 

I constructed a toroid screen of glassfiber and polyesther. The diameter of the 

iso-vergence circle was 80 em. The surface was painted white. In the properly placed 

subject, the screen covered almost the entire visual field. Subjects were positioned with 

reference to their corneal vertices, which were supposed to lie 13.5 mm anterior to the 

centres of rotation of their eyes. Head movements of the subjects were restricted by 

adjustable forehead- and chin-supports, with additional strapping of the head. 
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TARGETS 

The targets consisted of 2 bright-red He-Ne laser spots with a diameter of 5 min arc. 

For each target, a laser beam (LB) was first projected onto a front-surfaced mirror, 

which was mounted on the axle of a galvanometer (General Scanning) (see Fig. 3.4a). 

This axle was positioned horizontally, so that, by rotation of the axle the beam could 

be shifted in a vertical plane (mirror VP). Next, the beam was reflected to another 

front-surfaced mirror, which was mounted on a vertically positioned axle which, in turn, 

allowed for beam-shifts in a horizontal plane (mirror HP). This axle was positioned on 

the iso-vergence circle that was described above, to allow for a simple control of the 

horizontal target position (Fig. 3.4b ). Finally, the beam was projected on the toroid 

screen. 

···············-~ 
HP 

LB -Frontal view 

a 

Top view 

(not to seale) 

f Iso-vergence 
circle 

b 

LB 

eye 

Fig. 3.4 Schema of the positioning of the scanning mirrors, the centres of rotation of the two eyes and 
the iso-vergence circle. a: frontal view. b: top view (not to scale). For further details, see text. 

Note that the position in space (Fig. 3.4b) of the axis of rotation of mirror VP is, after 

reflection in mirror HP, virtually located on the line through the centers of rotation of 

both eyes. This configuration allowed for the simple control of beam shifts in the 

vertical plane. When mirror HP rotates about its fixed vertical axis, the position of the 

axis of rotation of the virtual mirror VP' changes in space. This spatial arrangement 

of axes, with a fixed vertical axis and a horizontal axis that is nested within the vertical 

axis, follows the hierarchy of axes in Fick's coordinate system. In principle, a Helmholtz 

configuration of axes of rotation would have been more convenient in the present 
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experimental set-up, if it had not been for the fact that the mirrors would then have 

to be located within the subject's head. 

Two of such sets (of two mirrors each) were mounted in a fixed frame with one set 

on each side of the subject's head. The lateral positions of these two sets were taken 

into account in the equations that converted Pick's coordinates of the target-positions 

into Helmholtz's coordinates, and vice versa. All four scanners were driven 

independently by a computer. I therefore had two targets that were independently 

controlled and could be positioned anywhere on the screen. Position errors were less 

than 1%. Each scanner had a built-in transducer which supplied analog output signals 

representing the real angular positions of the mirrors. These signals were always 

recorded simultaneously with the signals that represented the eye-positions (see below). 

If necessary, one or both targets could be extinguished, either manually or by a 

computer-controlled shutter. 

EYE MOVEMENT RECORDING-TECHNIQUE 

Eye movements of both eyes were recorded simultaneously by magnetic sensor coils, 

introduced by Robinson (1963) and modified by Collewijn et al., (1975). This is the 

most accurate and precise recording technique with a large range that is currently 

available. Briefly, a copper coil, which is embedded in a specially molded soft-silicone 

ring, is pressed gently onto the eyeball, after local anaesthesia with a few drops of a 

topical agent. The silicone ring is shaped in such a way, that it adheres to the eyeball 

through suction. Slip of the coil is virtually absent (Collewijn et al., 1981). The properly 

placed ring lies over the cornea-conjunctival border, or limbus. A very thin copper wire 

leaves the coil, preferably at the inner canthus of the eye. 

In Robinson's design, the subject is placed in an alternating current (a.c.) 

electromagnetic field, which induces an a.c. potential in the coil. This potential can be 

recorded from the wire that leaves the coil. As the amplitude of the potential depends 

on the magnetic flux through the coil, the a.c. potential is maximal when the plane of 

the coil is perpendicular to the direction of the field, and it is zero when the plane of 

the coil runs parallel to the direction of the field. Therefore, the a.c. potential relates 
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sinusoidally to the angular rotation of the coil, with reference to the direction of the 

field. 

If two orthogonal magnetic fields are employed simultaneously, one being directed 

horizontally and the other vertically, the induced voltage is composed of the inductions 

by each magnetic field. If these magnetic fields are also 90 deg out of phase with each 

other (i.e., orthogonal in phase), it is possible to break the a.c. potential recorded from 

the sensor coil down to its horizontal and vertical components. It is therefore possible 

to measure vertical and horizontal eye movements simultaneously. 

The frequency of my magnetic fields was 1245 Hz. Decomposition into two analog 

voltages, representing vertical and horizontal eye-positions, was done by dual-phase 

lock-in amplifiers (type: EG&G Princeton Applied Research, model 5210). 

Target-positions were recorded simultaneously with the eye-positions. All position signals 

were subsequently low-pass filtered at a cut-off frequency of 125 Hz, digitized with 

12-bit precision and sampled at a rate of 238 Hz. All recordings were stored on disk 

or tape for off-line analysis. The overall noise level was less than 1.5 min arc. 

CALffiRATION PROCEDURES 

The recording-equipment was pre-calibrated. Secondary corrections were carried out 

off-line by a special calibration computer programme to obtain a better accuracy of the 

calibration, to convert the signals to a Helmholtz coordinate system, and also to 

linearize the recordings. The principles of these secondary corrections will now be 

discussed. 

As already mentioned, the amplitude of the a.c. potential induced in a sensor-coil 

relates sinusoidally to the angular rotation of the coil with respect to the direction of 

the magnetic field. After decomposition of this potential into its vertical and horizontal 

d. c. (direct current) components, the horizontal d. c. potential (V J is, in Helmholtz's 

coordinate system, given by 

(23) 
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where k is a constant, f.L is the azimuth and Ox is an offset, introduced by various 

amplifiers and illters, through which the signal-current passes, before it is digitized and 

sampled. Ox was appropriately zeroed by adjusting the position of serial coils, which 

were mounted in the magnetic field, when sensor coils that were fitted on a calibration 

device, were put in the primary position. After this procedure, equation (23) becomes 

(24) 

However, f.L is composed of 1) the azimuth of the eye (f.Le) with respect to an arbitrary 

zero-position, and 2) the position of the coil on the eye (f.Lc) with respect to the 

direction of the magnetic field when f.Le = 0 deg. Therefore, equation (24) becomes 

(25) 

Equation (25) is equivalent to 

f.Le = arcsin(V jk:) - f.Lc (26) 

If a subject foveates a target with a (horizontal) target-position f.Lv then f.Le equals f.Lt· 

Equation (25) then becomes 

V xt = k.sin(f.Lt + f.Lc) (27) 

By measuring Vx while a target is foveated, f.Lc can be calculated, provided k is known. 

If k varies between coils, which may occasionally occur if a coil has an extra tum, k 

and f.Lc can be calculated from two steady fixations of two known targets (tl and t2). 

For targets t1 and t2, equation (27) becomes 

(28) 

and 

V xt2 = k.sin(f.Lt2 + f.Lc) (29) 
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It can be shown from equations (28) and (29) that, 

f.Lc = arctan[(sir.p.11 - p.s~12) I (p.COSJ.L12 - COSJ.Ln)] (30) 

in which 

(31) 

In addition, 

(32) 

The vertical d.c. potential (Vy) in Helmholtz's coordinate system is given by 

(33) 

where c is a constant, >-e and >-c relate to the elevation of the eye, and the position of 

the coil on the eye, respectively. Oy represents an offset caused by the recording 

equipment, which in my experimental set-up was zeroed by serial coils, just as described 

above for Ox. Equation (33) is then equivalent to 

(34) 

It can also be shown that 

>-c = arctan[(sin>-n - q.sin.At2) I ( q.cos.A12 - cos.A11)] (35) 

in which 

(36) 

In addition, 

(37) 
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By applying equations (30) through (32), and equations (35) through (37), I computed 

f-Lo k, >..c and c for each eye, for every subject and for every experiment from steady 

fixations of targets with known positions. All raw recordings were then digitally adjusted 

to these values by application of equations (26) and (34), to obtain well calibrated, as 

well as linearized recordings expressed in Hehnholtz's coordinates. The accuracy of the 

calibrations was better than 1%. Target-positions were also expressed in Hehnholtz's 

coordinates. All recordings were subsequently submitted to specially designed computer 

programmes for their analysis. If any statistics were required, the data were submitted 

in a next step to an SPSS-X statistical programme. 
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CHAPTER 4 

DIFFERENCES IN ACCURACY OF HUMAN SACCADES 

BETWEEN STATIONARY AND JUMPING TARGETS1 

INTRODUCTION 

It is generally assumed that saccadic eye movements undershoot their target by 

approximately 10% of the angular distance between the new target and the previous 

target and are then followed by corrective saccades, which make up for the residual 

position error. These generalizations originate from work by Becker and Fuchs (1969) 

and, for smaller saccades, from work by Henson (1979). Recently Collewijn et al. (1988a) 

found that their subjects made saccades that were far more accurate: they undershot 

their targets by about 0.5 deg, irrespective of the target amplitude, which was varied over 

a very wide range (1.25 - 80 deg). Saccadic undershoot, therefore, ranged between a 

minimum of less than 1% up to a maximum of only 5%. 

One of the possible explanations for this unexpectedly good accuracy was that Collewijn 

et al. (1988a) ran their experiments in conditions that were far more natural than 

customary laboratory conditions. They used stationary, continuously visible targets within 

a structured visual context (a normally lit laboratory). Traditionally, however, experiments 

on saccades are conducted with targets that jump, flash, appear or disappear suddenly 

on a dark or homogeneous background (e.g. Westheimer, 1954; Becker and Fuchs, 1969; 

Prablanc and Jeannerod, 1975; Hallett and Lightstone, 1976; Becker and Jurgens, 1979; 

Deubel et al., 1982; Van Gisbergen et al., 1987). Such discontinuous stimulus 

presentations are useful in the study of the timing of saccades, such as saccadic latency. 

It is less clear, however, that such stimuli are best suited for studying saccadic accuracy. 

Zingale and Kowler (1987) pointed out recently that experiments in which such 

1 A slightly modified version of this chapter has been accepted for publication in 
Vzsion Research. 
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discontinuous stimuli are employed are designed as if saccades were reflex-like 

movements, instead of voluntary gaze shifts. 

In the present study I compared the accuracy of saccades made between stationary 

targets to the accuracy of saccades elicited by a jumping target. To my knowledge, such 

a direct comparative study has not been done before. I found that saccadic undershoot 

was two to five times smaller with stationary targets. In parallel with this increased 

accuracy, the number of corrective saccades was significantly reduced. In addition, the 

total time required to foveate the target was approximately 60 ms shorter with stationary 

targets than with a jumping target. My results confirm and take into account the 

expectation drift prior to an expected target displacement, reported by Kowler and 

Steinman (1979a,b, 1981) and Kowler et al., (1984). 

To assess the_effects of some other commonly employed, though unnatural, experimental 

conditions on saccadic accuracy, I extended the scope of the present study further by 

studying two other variables: monocular versus binocular viewing and a dark versus an 

illuminated background. With monocular viewing, saccadic accuracy of the viewing eye 

turned out to be as good as with binocular viewing. A dark background, however, led 

to an increase in the time required to foveate the target by about 50 ms. The present 

results have been preliminarily reported in abstract form (Lemij et al., 1988). 

METHODS 

Subjects 

Complete data were obtained from eleven subjects. Their ages ranged between 24 and 

52 years (mean age: 31 years). None of them had any history of ocular or oculomotor 

pathology. Refractive anomalies existed in seven subjects, all of whom were myopic. Five 

of these myopes wore contact-lenses and the other two had spectacles, which they wore 

only on rare occasions, and not during the experiments. Vision was at least 5/5 in each 

eye of the subjects who never wore spectacles. The two myopic subjects who occasionally 

wore spectacles had lower acuities at 5 metres (without corrective lenses) but could 

clearly see the experimental targets at the used target distance of approximately 80 em. 

The refractive power of their spectacles was less than -2.5 diopters. All subjects had 
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good binocular vision, as ascertained by stereopsis test-charts (type: 1NO test for 

stereoscopic vision). Routine cover-examination revealed no marked phorias in any of 

the subjects. Eight of the subjects were completely naive as to the purpose of the 

experiment. 

Recording technique 

The movements of the right eye were recorded by means of magnetic sensor coils as 

developed by Collewijn et al. (1975), combined with Robinson's (1963) phase-locked 

amplitude-detection technique. My field frequency was 1245 Hz and the overall 

bandwidth was estimated at 150 Hz. All recordings were low-pass filtered at a cut-off 

frequency of 250 Hz, digitized with 12-bit precision at a sampling rate of 400 Hz and 

stored on disk or tape for off-line analysis. The recording equipment and search coils 

were pre-calibrated. Recordings of steady fixations of at least three known target 

positions allowed for slight additional off-line corrections of offsets and gains, if 

necessary. The required adjustments never exceeded 3 deg (offset) and 1% (gain). 

Stimuli 

Targets consisted of one or two bright red laser spots with a diameter of 5 min arc, 

projected onto the white iso-vergence screen that was described in detail in Chapter 3. 

In the dark-background condition the laboratory lights were turned off; subjects could 

then see nothing but the targets. With the lights turned on, the screen was dimly lit, and 

vague shadows of laboratory equipment were cast on it. Head movements were restricted 

by means of a chin and a forehead support, to which the head was strapped. 

Experimental procedures 

The experiment consisted, for each subject, of two similar sessions, run immediately after 

each other. Every session was made up of twenty-four trials of 10 s each. These trials 

were run in a randomised order, which was different for every subject. Subjects were 

allowed to relax for approximately 30 s between successive trials. Half of the trials was 

carried out in the dark (i.e. with only the targets visible). In the remaining trials the 

screen was lit. In either state of illumination (dark or light) the subjects viewed with one 
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eye in half of the cases, and with both eyes in the other half of the cases. To obtain 

monocular viewing, the subjects covered their left eye with a patch, mounted on a stick. 

The patch did not limit the visual field of the viewing, right eye. In half of each of the 

described conditions, subjects had to fixate and follow a single target, which jumped 

horizontally at a constant rate of fifty steps per minute between two fixed positions, 

distributed symmetrically about the midline. These steps had a size of 10, 20 or 40 deg. 

In the remaining half of each of the conditions, subjects had to alternate their gaze 

between two stationary, continuously present targets at a similar pace, marked by the 

sound of a metronome. The angular separations between these two targets were identical 

to those in the jumping target condition. Subjects were instructed to carry out all gaze 

shifts as accurately as possible. No time-pressure was imposed to avoid any possible 

trade-off between accuracy and speed. Subjects were requested to avoid blinking during 

trials, because blinking causes eye movements (Collewijn et al., 1985). Each trial began 

with the presentation of the new experimental condition. Subjects were then allowed 

some practice and when they felt ready, they started the actual data collection 

themselves by pushing a button. This approach was chosen because I was interested in 

steady-state performance and not in transient behaviour possibly associated with the first 

responses to a changed stimulus. Most subjects allowed themselves approximately 4 s of 

practice before starting. 

Data analysis 

All recordings were analysed by computer programmes. Each primary saccade was 

detected by a velocity criterion of 15 degls, combined with an amplitude criterion set at 

30% of the target amplitude. The primary saccade was assumed to have ended, when its 

velocity fell below 15 degls. Velocities were calculated simply by dividing the difference 

in eye position between two successive samples by their time interval. No additional 

filtering, smoothing or window-techniques were used. For each primary saccade three 

parameters were computed: amplitude, duration and peak-velocity. In addition, true 

position error at the end of each primary saccade was determined by subtracting 

absolute eye position from absolute target position. Secondary, corrective saccades were 

scored if they met the following criteria: 1) they had to be preceded by a primary 

saccade; 2) they had to exceed the same velocity criterion of 15 degls; 3) they had to be 

larger than 0.25 deg, because microsaccades associated with fixation (see e.g. Haddad 
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and Steinman, 1973) should not be scored as secondary saccades . Care was taken that 

neither the small return movements associated with dynamic overshoot (see Bahill et al., 

1975b ), nor subsequent primary saccades were scored as secondary saccades. If a primary 

saccade was followed by one or more secondary saccades, I determined the latency of 

the first secondary saccade, i.e., the time between the end of the primary saccade and 

the beginning of the first secondary saccade. After every secondary saccade, position 

error was calculated. The number of secondary saccades which brought the eye within 

0.25 deg of the target was defined as the necessary number of secondary saccades. In 

addition, I calculated the time-lapse between the end of the primary saccade and the end 

of the last necessary secondary saccade. This time-lapse was defined as the post-saccadic 

foveation time. The saccadic amplitudes, the saccadic durations, the position errors at 

the end of each primary saccade and the numbers of secondary saccades were 

transformed into their logarithmic values to meet the requirements of normal 

distributions and homogeneous variances for further statistical analysis. For similar 

reasons, I extracted the square-roots of the post-saccadic foveation times and the 

latencies of the secondary saccades. Peak velocities did not need to be transformed. All 

data were submitted to a multivariate analysis of variance. As it turned out that no 

significant results were observed between the two successive sessions, their data were 

pooled. 

RESULTS 

Magnitude of primary saccades 

Saccades elicited by a jumping target were metrically different from those made between 

two stationary targets. Figure 4.1 shows some typical saccades of one subject (GV) in 

either condition.An important phenomenon associated with saccades which are elicited 

by a jumping target is, that the eyes frequently begin to drift towards the next 

target-position before the target has actually jumped. This pre-saccadic drift was 

discovered and extensively described as expectation-drift by Kowler and Steinman 

(1979a,b , 1981) and Kowler et al. (1984). In my conditions, the magnitude of this 

pre-saccadic drift was on the order of 0.4 deg for all three target amplitudes. 

Occasionally, however, presaccadic drift was as large as 1.5 deg. In Fig. 4.1 this drift is 

most clearly visible in the lower panels, because of the larger scale. In agreement with 
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Fig. 4.1 Typical recordings of saccadic eye movements either between stationary or jumping targets, for 
two target amplitudes. 

Kowler and Steinman (1979a,b, 1981), expectation drift was not observed with stationary 

targets. This, by now well-known, phenomenon has an important bearing upon the 

definition of saccadic accuracy. 

Saccadic accuracy relates to eye position error at the end of the primary saccade. If a 

saccade begins exactly from the first target position, its accuracy can simply be 

determined by subtracting the saccadic amplitude from the target amplitude. However, 

if a saccade does not have its onset exactly on the first target, such as occurs with 

expectation drift, the size of the saccade is no longer a direct measure of its accuracy. 

For that reason I calculated position error directly. 

Position errors at the end of the primary saccades were about two to five times smaller 

with stationary targets than with a jumping target. This difference was especially marked 

at smaller target amplitudes. For the 10 deg target amplitude the error was, on average, 

0.3 deg with stationaiy targets and 1.5 deg with the jumping target. For a target 

amplitude of 40 deg mean values were 2.3 and 4.3 deg, respectively. These differences 

were all statistically highly significant: F1,10 = 53.2; P<0.0005. Figure 4.2 presents the 
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Fig. 4.2 Mean values of position errors (deg) for all subjects and all three target amplitudes in both 
the stationary targets and the jumping target condition. 

mean values for all subjects and for all three target amplitudes in both conditions. The 

negative sign of the mean position errors represents saccadic undershoot. Note that the 

difference in accuracy would have appeared even larger, if position errors had merely 

been inferred from the saccadic amplitudes, because the expectation drift associated with 

jumping targets decreases the amplitude of a saccade. To give an example: the mean 

saccadic amplitude at the smallest target amplitude (10 deg) was 9.6 deg with stationary 

targets and 7.8 deg with a jumping target. The difference between these two is 1.8 deg, 

which is 50% larger than the actual mean difference in position error, which equalled 

1.2 deg (1.5 versus 0.3 deg). The discrepancy of 0.6 deg is due to expectation drift. 

The distributions of the position errors in the conditions with either stationary targets 

or a jumping target are presented for the three different target amplitudes in the 

histograms of Fig; 4.3. Negative position errors relate to saccadic undershoot and positive 
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Fig. 4.3 Distributions of position errors (binwidth 0.3 deg) for all three target amplitudes in both the 
stationary targets and jumping target condition. Negative position errors indicate saccadic undershoot 
and positive position errors saccadic overshoot. 

errors to saccadic overshoot. All data are included. Figure 4.3 demonstrates a number 

of important features of saccadic accuracy in the various conditions: 1) The distributions 

of position errors of saccades made between stationary targets were almost symmetrical, 
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notably at the 10 and 20 deg target amplitudes, whereas the distributions relating to the 

jumping target condition were significantly skewed in the direction of undershoot; 2) The 

modal values of the position errors of the saccades elicited by a jumping target were 

shifted towards the side of saccadic undershoot, when compared to the findings for the 

stationary target condition. The combined effects of 1) and 2) contnbute to the mean 

increase in saccadic undershoot of saccades made to a jumping target compared to those 

between stationary targets (Fig. 4.2); 3) The variability of the position error increased 

at larger target amplitudes; 4) The distributions shifted towards the left at larger target 

amplitudes, corresponding to a gradual increase in saccadic undershoot at larger target 

amplitudes. At the smallest target amplitude (10 deg), the distribution associated with 

the stationary targets was almost symmetrical around a position error of 0.0 deg. 

The difference in position error between the two target conditions was not a transient 

phenomenon. It occurred throughout the whole period of a trial and did not diminish. 

Even in the second session, which was run immediately after the first session, the 

difference in position error was equally large (Ft,1o = 2.72; P>0.10). 

The peak velocities of primary saccades were lower by about 20 deg/s in the jumping 

target condition than in the stationary target condition (Ft,1o = 6.55; P<0.05). Likewise, 

durations were shortened by about 5 ms (F1,1o = 36.65; P<0.0005). I detennined whether 

these effects were merely epiphenomena of the smaller saccadic amplitudes associated 

with a jumping target or represented a different category of saccades, suggesting a 

possibly different underlying oculomotor programme. For each of the three target 

amplitudes, I matched approximately two-hundred saccades which had been made 

between stationary targets with a similar number of saccades of comparable size which 

had been elicited by a jumping target. Peak velocities and durations of these saccades 

were submitted to an analysis of variance. Neither peak velocities, nor saccadic durations 

proved to be significantly different from each other (peak velocity: F1,1o = 0.29; P>0.5. 

duration: F1,1o = 0.03; P>0.8). Therefore, the lower peak velocities and shorter durations 

of saccades elicited by a jumping target are, most likely, fully accounted for by the 

smaller saccadic sizes. 
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Secondary saccades: magnitude 

Primary saccades which do not end on target are followed by secondary, usually called 

corrective saccades. Visual inspection of recordings suggests that the large majority of 

the secondary saccades does indeed reduce the position error. To quantitatively assess 

whether all secondary saccades are indeed corrective, I counted the total number of 

secondary saccades and the number of secondary saccades that were necessary to foveate 

the target within 0.25 deg. This criterion of 0.25 deg was the same one as used to detect 

secondary saccades. I found that about 95% of all secondary saccades were indeed 

corrective. Only occasionally did secondary saccades increase the position error. The rest 

of my statistics on secondary saccades is based on all secondary saccades in my study 

and not only on those secondary saccades which were truly corrective. 
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Fig. 4.4 Mean number of secondary saccades following each primary saccade for all three target 
amplitudes in either target condition Gumping target or stationary targets). 
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Saccades elicited by a jumping target were followed by a substantially larger number of 

secondary saccades than saccades made between stationary targets. Mean values are 

presented in Fig. 4.4. At the smallest target amplitude in this study (10 deg), the mean 

number of secondary saccades was 0.89 with stationary targets, and 1.31 with a jumping 

target. This increase by approximately 0.4 in the jumping target condition was observed 

at all three target amplitudes. It corresponded to a statistically significant rise in the 

number of secondary saccades by about 25 to 50% (F1,1o = 43.2; P<0.0005). In addition, 

the number of secondary saccades went up at higher target amplitudes, irrespective of 

whether the targets jumped or remained stationary (Fz.20 = 84.3; P<0.0005). At the 

largest target amplitude ( 40 deg) the average numbers of secondary saccades were 1.89 

in the stationary target condition and 1.48 in the jumping target condition. These figures 

also emphasize that the number of secondary saccades in this study was frequently larger 

than one. 

As a next step, I tested whether the number of secondary saccades was correlated with 

the magnitude of the position error after each primary saccade. A positive correlation 

would explain the increased frequency of secondary saccades both at larger target 

amplitudes and with a jumping target. I therefore determined the mean number of 

secondary saccades made for all the various magnitudes of position error at the end of 

every primary saccade in my study. I distinguished between saccades made to a jumping 

target and saccades made between stationary targets. The results are presented in the 

histograms of Fig. 4.5, which demonstrate that the mean number of secondary saccades 

increased at larger position errors, irrespective of whether the position error consisted 

of saccadic undershoot or overshoot. This increase occurred both with stationary targets 

and with a jumping target. A position error at the end of a primary saccade of 0.6 deg 

(either undershoot or overshoot) was followed, on average, by about 1 secondary 

saccade. The mean number of secondary saccades was twice as large after an undershoot 

of 4.5 deg, and increased to 2.6 after an undershoot of 8.7 deg. Note that even with a 

position error of 0.0 deg (range: -0.1 to +0.1 deg), secondary saccades were made (mean 

number: 0.46). 
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Secondary saccades: timing 

The mean latencies of the first secondary saccades, calculated from the moment at which 

the primary saccade ended (velocity < 15 deg/s), are presented in Fig. 4.6, for the three 

different target amplitudes. They depended only on target amplitude and not on any of 

the other stimulus variables of my experimental conditions. The latencies went down at 

larger target amplitudes, with a high level of statistical significance: F2,20 = 73.2; 

P<0.0005. At the smallest target amplitude in the present study (10 deg) the mean 

latency of the first secondary saccade was 208 ms. At the 20 deg target amplitude it 

averaged 171 ms and at the largest target amplitude ( 40 deg) the mean value equalled 

138 ms. 
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Fig. 4.6 Mean latencies of secondary saccades for all subjects and all three target amplitudes. Secondary 
saccades made in either target-condition (jumping target or stationary targets) are pooled, because no 
significant differences were observed. 

I wanted to know whether there was a negative correlation between the latency of the 

first secondary saccade and the magnitude of the position error at the end of each 

primary saccade, because such a correlation would contribute to the observed decrease 

of mean latencies at larger target amplitudes. A scatterplot of all saccades which 
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undershot their target is presented in Fig. 4.7. The dense cluster in this scatterplot 

indeed suggests a very slight, negative correlation between the latency of the first 

secondary saccade and the position error at the end of the primary saccade. It is, 

however, evident from the widespread scatter in the rest of Fig. 4.7 that this correlation 

is, on the whole, very weak. In conclusion, the latency of the first secondary saccade is 

indeed negatively correlated with the target amplitude, and virtually not with the 

magnitude of the error after the primary saccade. 
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Fig. 4.7 Scatterplot of latencies of first secondary saccades as a function of position error (deg 
undershoot). Latencies are truncated at 700 ms. 

I also determined how much time elapsed between the end of the primary saccade and 

the moment at which position error fell below 0.25 deg immediately after a secondary 

saccade. With jumping targets this post-saccadic foveation time was considerably longer 

than with stationary targets. This applied to all three target amplitudes. Mean values are 

presented in Fig. 4.8. At the smallest target amplitude in this study (10 deg), mean 

post-saccadic foveation time was 228 ms with stationary targets and 315 ms with a 
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jumping target. At the 40 deg target amplitude mean post-saccadic foveation times were 

258 and 299 ms, respectively. The reduction in post-saccadic foveation time of saccades 

made between stationary targets, when compared to saccades elicited by a jumping 

target, were statistically significant: F1,10 = 16.4; P<0.005. Although the latencies of the 

first secondary saccades proved to be dependent on the target amplitude, as already 

mentioned, this was not the case with the post-saccadic foveation times (Fz,w = 2.15; 

P>0.10). 
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Fig. 4.8 Mean values of post-saccadic foveation times ( + SD) for all subjects and all three target 
amplitudes, in either target condition. 

Finally, I determined whether the post-saccadic foveation time was correlated with the 

magnitude of the position error at the end of each primary saccade. This correlation 

turned out to be absent. 
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A dark versus a dimly lit background 

There was only one robust effect related to background conditions. When the 

background was dark, post-saccadic foveation time was on average 50 ms longer than 

when the screen was illuminated, irrespective of the target amplitude (F1,1o = 44.6; 

P<0.0005). The mean value with a dark background was 279 ms and 229 ms with a lit 

screen. The latencies of the first secondary saccades were not affected by either state of 

background illumination. 

Differences in the magnitude of the position error in the two conditions of background 

illumination were idiosyncratic. Statistical analysis of the position errors, pooled for all 

subjects, proved that there was no significant overall effect of background illumination 

on position error at the end of primary saccades (F1,1o = 4.58; P>0.05). Similarly, I 

observed very slight and statistically non-significant (P>0.05) differences in saccadic 

durations, and also in the number of secondary saccades, between the dark-background 

condition and the condition when the background was illuminated. 

Monocular versus binocular viewing 

The overall effect of the viewing condition (either binocular or only the right eye 

viewing) on post-saccadic position error of the right eye was statistically not significant: 

F1,1o = 3.28; P>0.05. Saccadic peak velocities and saccadic durations of the right eye 

were also similar for either binocular viewing or right eye viewing (peak velocity: F1,1o = 
1.81; P>0.2, saccadic duration: F1•10 = 0.13; P>0.7). All parameters related to the 

movements of the right eye following a primary saccade (number of secondary saccades, 

latency of the first secondary saccade and the post-saccadic foveation time) were also 

unaffected by the covering of the left eye. 

DISCUSSION 

Effects of target condition on position error 

The present experiment demonstrates clearly that jumping targets elicit saccades that 

undershoot their target considerably more than saccades made between stationary 

48 



targets. To my knowledge, this difference has not been systematically studied and 

described before. Laurutis and Robinson (1986) did mention in passing, however, that 

saccades made between stationary targets had a comparatively good accuracy and display 

a relatively small variability of position errors, in comparison with the values in the 

literature, which are considered to be typical of saccades elicited by sudden visual 

changes, such as jumping targets. Weber and Daroff (1971, 1972), however, who 

employed stationary targets in a range comparable to mine, did not find such a good 

saccadic accuracy as I did. This discrepancy may be largely attributed to the fact that 

all their computations were based only on position errors that were larger than 1 deg, 

which contrasts with the resolution of 0.1 deg that I applied. 

Why are saccades that are made between stationary targets far more accurate than 

saccades elicited by a jumping target? A possible explanation for this difference is that, 

while fixating one target in the stationary target condition, a subject can already see the 

other target with the peripheral part of his retina. This allows the oculomotor system to 

compute the oncoming saccade well in advance, to the benefit of its accuracy. The 

accuracy of a saccade therefore appears to be dependent upon the amount of time that 

the target is presented. This agrees well with the finding by Prablanc and Jeannerod 

(1975), that saccadic accuracy improved as the time that a peripheral target was 

presented (within a range of 20 to 200 ms) became longer. These findings might be 

related to the observations made by Sparks et al. (1987), who found, in monkeys, that 

the motor commands which generate saccades evolve gradually, which suggests that 

shortening of the time in which the computation of a saccade is made, could possibly 

affect its execution. However, it is unclear whether shortening of the time in which visual 

information is acquired results in a shortening of the time in which the motor commands 

are calculated. 

Since most saccades we make in every-day life are aimed at objects that we have already 

seen with our peripheral retina well before saccadic onset, my results suggest that 

real-life saccades are much more accurate than has been suggested by previous studies. 

This is also supported by Collewijn et al. (1988a ), who ran their experiments in 

conditions that were even more natural than mine (i.e., with a normally lit laboratory as 

visual background) and found a saccadic accuracy that was on the whole better than in 

the present study. 
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The importance of the background is also stressed by my finding that the post-saccadic 

foveation time was significantly longer when the background was dark, than when it was 

lit and contained some structure (blurred shadows). This suggests that a lit and vaguely 

structured background, which has more resemblance with every-day life conditions than 

a completely dark background, improves the overall efficacy of the saccadic system, by 

reducing the time that is required to foveate a target. I did not observe, however, that 

the magnitudes of the post-saccadic position errors were smaller with a lit background, 

when compared to the dark-background condition. It remains to be seen whether a 

real-life background, such as employed by Collewijn et al. (1988a), significantly improves 

saccadic accuracy, both in terms of post-saccadic position error and post-saccadic 

foveation time, when compared to a background which is less rich in visual structure, 

such as in my lit-background condition. The present study did not serve to distinguish 

between the effects of the structure of the background, acting as a frame of reference 

for localizing stimuli, versus the possible effects of the level of illumination per se. 

The increased undershoot in the jumping target condition cannot be described as a 

single shift of the distributions of the position errors in the direction of undershoot. It 

results from the combination of a modal increase in saccadic undershoot, as well as an 

increased skewing of the distributions (see Fig. 4.3). I have no solid explanation for the 

modal increase in saccadic undershoot, although it appears to be an increase in the 

normal, yet not convincingly explained, tendency of the saccadic subsystem to generate 

saccades that undershoot their target. 

To explain the increased variability of the position errors with jumping targets in 

comparison to the stationary targets condition, the following tentative hypothesis may be 

put forward. As the time to acquire visual information of the exact position of the newly 

selected target is relatively short with a jumping target, when compared to the stationary 

target condition, this time may have reached a critically low value. The visual information 

acquired during that short period of time may therefore be just enough to generate a 

saccade, but on the Qther hand be so scarce, that the programming of that saccade 

becomes more sensitive to noise, which results in a larger scatter of the position errors. 

The scatter of position errors of saccades has recently gained interest. Van Opstal and 
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Van Gisbergen (1989) proposed a model which attributes the scatter of saccadic 

endpoints to noise occurring at the level of the motor map of the superior colliculus, 

whereas Deubel (1987) assumes that noise affects saccadic endpoint-variability at a more 

downstream leveL My results suggest that the time in which visual information is 

acquired should be included in their models since saccades elicited by a jumping target 

show considerably more variability in their position errors than saccades made between 

stationary targets. I do not know whether the time to acquire visual information also has 

any effect on the scatter in the direction of saccades, which is an important part of 

their models. Note, however, that their models are based on experiments in which 

jumping targets were employed. It remains to be seen whether those models also hold 

in more natural conditions. My present results indeed support the possibility that the 

model of Van Opstal and Van Gisbergen (1989) will hold in more natural conditions, 

because, even with stationary targets, the variability of position errors increases at larger 

target amplitudes, as predicted by their modeL 

Expectation drift and the determination of position error 

Kowler and Steinman (1979a,b , 1981) and Kowler et aL (1984) demonstrated that 

subjects make smooth eye movements in the direction of an expected target 

displacement, which they called expectation drift. In their first paper on this topic 

(Kowler and Steinman, 1979a ), they used a target that stepped periodically back and 

forth, a condition which closely resembles the jumping target condition in my experiment. 

One difference is that their target steps were much smaller (10 to 426 min arc) than the 

steps in my experiment (10 to 40 deg). They quantified their results in the form of mean 

velocities of the expectation drift. They did not explicitly discuss the magnitudes of the 

expectation drift but, judging from their figures, this was on the order of 15 to 25 min 

arc. In the present experiments, expectation drift was of comparable magnitude, although 

occasionally it was as large as 1.5 deg. Such large magnitudes of the expectation drift in 

my experiments confirm the observation by Kowler and Steinman (1979a) that the 

velocity of this drift increased at larger target steps, at least in the range they studied. 

This study confirms that expectation drift occurs only as a result of an expected target 

motion, and not prior to an expected saccade, because I observed no expectation drift 

in my stationary target condition. 

51 



The importance of expectation drift with respect to saccadic accuracy, expressed as 

post-saccadic position error, is that the magnitude of a saccade becomes a poor measure 

of its accuracy if the saccade is preceded by expectation drift. It is often unclear, 

however, whether in previous investigations any attention was paid to this phenomenon. 

The determination of position error at the end of a primary saccade in those studies 

therefore remains somewhat ambiguous, because it is unclear how it was estimated. An 

indirect way to estimate the error is to measure the size of the primary saccade and to 

subtract it from the target amplitude, which is usually well known in an experimental 

setting. An obvious advantage of this way of measuring saccadic accuracy is, that it is 

unaffected by any fluctuations in offset, such as occur frequently in electro-oculography 

(BOG), due to drift. The more direct way of determining position error at the end of 

a primary saccade is to record the true eye position at saccadic offset and to assess its 

angular distance to the true position of the target. Obviously, this can be done only 

when a recording method with a stable baseline, such as the magnetic sensor coil, is 

used. These two ways of determining position error at the end of a primary saccade are 

identical only if the primary saccade begins exactly on the initial target. Since this does 

not appear to be the case in quite a number of saccades, the second method of 

determining position error at the end of a primary saccade is the only correct one. I 

demonstrated that this distinction becomes especially significant when differences in 

saccadic accuracy are studied between sacades made to a jumping target and saccades 

made between stationary targets, because expectation drift occurs only in the jumping 

target condition. 

Secondary saccades 

It was found that the number of secondary saccades went up both at larger target 

amplitudes and with jumping targets. These findings agree very well with my additional 

observation that the mean number of secondary saccades which follow a primary saccade 

increases with larger position errors. This relationship between the number of secondary 

saccades and the position error at the end of a primary saccade, either relating to 

saccadic overshoot or saccadic undershoot, has to my knowledge not been described 

before. However, somewhat comparable findings were reported by Weber and Daroff 

(1971, 1972) and by Henson (1979), who studied the incidence of corrective saccades, 

which is, by definition, not equal to the number of corrective saccades: the incidence of 
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corrective saccades indicates how many primary saccades are followed by one or more 

corrective saccades, whereas the number of secondary saccades indicates how many 

secondary saccades follow, on average, each primary saccade. 

Latencies of secondary saccades 

The present results indicate that the latencies of the first secondary saccades go down 

at larger target amplitudes. There is not a very close relationship between the latency 

of the first secondary saccade and the position error at saccadic offset. This contrasts 

with a rule that Becker (1976) proposed, based on his own previous work (Becker, 1972) 

and also based on work of Prablanc and Jeannerod (1975). According to Becker's rule 

the latency of the first corrective saccade following a post-saccadic position error smaller 

than 2 to 3 deg equals the normal reaction time for a single target-step, i.e., 

approximately 200 ms. For position errors larger than 2 to 3 deg, but smaller than about 

10 deg, a correction saccade would result with a latency of 120 to 140 ms. Saccades with 

larger position errors than 10 deg, would be followed by secondary saccades with even 

shorter latencies than 120 ms. In contrast, my findings demonstrate that the latencies of 

the first secondary saccades, associated with both small and large position errors, range 

from a minimum of about 100 ms to a maximum well over one reaction time (200 ms). 

Therefore, my results indicate that the distinction between latencies of secondary 

saccades and latencies of primary saccades is by no means clear. Although this 

distinction is not clear, this does not necessarily imply that the latencies of secondary 

saccades reflect similar neural processes as the latencies of primary saccades to a single 

target-step do, because the latency of a secondary saccade probably reflects a normal 

physiological process, as opposed to the latency of a primary saccade to a single 

target-step, which reflects a response to a very artificial experimental condition. 

Post-saccadic foveation time 

Since the most important objective of a saccade and any successive secondary saccades 

is to foveate a target, or at least bring the target very close to the fovea, where acuity 

is high, I considered it of interest to measure the post-saccadic foveation time. This has, 

to my knowledge, not been measured before. I demonstrated that this post-saccadic 

foveation time was independent of the target amplitude. It was, however, significantly 
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longer with jumping targets than with stationary targets. This difference is certainly not 

due to a possible relationship between position error, which is larger with jumping 

targets than with stationary targets, and post-saccadic foveation time. 

The present results suggest that the visual information on the exact position of the 

selected target, which is acquired in the stationary target condition while fixating the 

initial target, is not only used in the programming of the primary saccades, but also in 

the programming of subsequent, secondary saccades. These results may also suggest that 

the entire process of foveation, consisting of a primary saccade and possibly one or more 

secondary saccades, is planned as a whole. Zingale and Kowler (1986) showed that a 

sequence of saccades is planned as a whole, rather than as multiple, independent 

saccades. Their observation applied to primary saccades. My results suggest that the 

planning of a sequence, rather than independent saccadic eye movements, also applies 

to the sequence of a primary saccade, followed by secondary saccades. The latter is of 

course not very surprising because primary saccades, which according to Zingale and 

. Kowler are planned in a sequence, are interleaved by secondary saccades, which makes 

it highly probable that they are also planned in the entire programme. 

The latencies of the first secondary saccades were not affected by the target condition, 

which contrasts with the post-saccadic foveation time. Also, the post-saccadic foveation 

time was strongly affected by the background illumination, suggesting that the 

background plays an important part in the programming of saccades, whereas the 

latencies of the first secondary saccades were not affected by background illumination. 

These observations suggest that post-saccadic foveation time may prove more useful in 

the study of the programming of saccades than the latency of the first secondary 

saccades, which has traditionally received more interest. 

In conclusion, the present study demonstrates that the accuracy of human saccades is 

significantly affected both by the temporo-spatial arrangements of the targets and by 

their background. 
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CHAPTER 5 

CONJUGACY OF SACCADES 

IN1RODUCTION 

The main objective of this thesis is to study asymmetrical adaptations of human saccades 

to anisometropic spectacles. Because asymmetrical adaptations are, by definition, 

different for either eye, these adaptations are best studied by comparing the saccades 

of each of the two eyes with each other. Asymmetrical adaptations are then represented 

by changes in the degree of yoking (conjugacy) of the two eyes. Moreover, 

hard-programmed asymmetrical adaptations are best demonstrated when one eye is 

covered, because, in that case, any possible change in the degree of yoking of saccades 

can only be explained by a more permanent asymmetrical adaptation, and not by the 

direct effects of asymmetrical visual input associated with binocular viewing through 

anisometropic spectacles. 

However, the degree of yoking per se can only be used as a clear and reliable measure 

of asymmetrical adaptation, if the conjugacy of saccades before adaptation is perfect. 

Although a perfect conjugacy of saccades is traditionally assumed (Hering's law of equal 

innervation), very few accurate data actually exist on the yoking of saccades. 

Collewijn et al. (1988a,b ), using highly accurate recording techniques, reported that both 

horizontal and vertical saccades are not perfectly conjugate in binocular viewing. During 

the execution of horizontal saccades the eyes diverged transiently. Abducting saccades 

were consistently larger by about 0.3 deg than the concomitant adducting saccades of the 

fellow eye. In addition, abducting saccades reached higher peak-velocities and had 

shorter durations than the contralateral, adducting eye. The conjugacy of vertical 

saccades was, however, better than the conjugacy of horizontal saccades. Furthermore, 

shortly after patching one eye, horizontal saccades of the covered eye were generally 
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slightly smaller than the horizontal saccades of the viewing eye (Collewijn et al., 1988a), 

although no quantitative data on these size-reductions were given. In addition, it is 

unclear if the yoking of vertical saccades is also affected by the covering of one eye. The 

present chapter will focus on the conjugacy of horizontal and vertical saccades in 

humans, both during binocular and monocular viewing, before adaptation. I shall confine 

this study to saccadic start- and endpoints, rather than go into the dynamical aspects of 

the yoking of saccades. In addition, I shall examine the conjugacy of both eyes shortly 

after completion of a saccade, for reasons explained below. 

Adaptive changes of saccades to the weakening of one or more external eye muscles are 

partly characterized by conspicuous changes in post-saccadic drift, which are thought to 

be due to adaptations of both the pulse and the step of the motor commands to the 

external eye muscles (Kommerell et al., 1976; Abel et al., 1978; Optican et al., 1985; 

Snow et al., 1985; for a review, see Chapter 2). Therefore, asymmetrical adaptations to 

anisometropic spectacles may possibly affect post-saccadic drift differently for each of 

the two eyes, which will be reflected by changes in the degree of yoking. Very small 

changes in post-saccadic drift secondary to the wearing of anisometropic spectacles were 

reported by Erkelens et al. (1989b ). Again, for a clear assessment of such changes, it is 

important to study the degree of yoking during post-saccadic drift prior to adaptation. 

To date, accurate data on normal post-saccadic drift in humans, and, more specifically, 

on its degree of yoking, are scarce and incomplete. The few available data were obtained 

from rather limited numbers of subjects. Kapoula et al. (1986) studied post-saccadic 

drift in both eyes associated with horizontal saccades during binocular_ viewing. 

Post-saccadic drift of the adducting eye was almost always in the onward direction (i.e., 

in the same direction as the saccade), whereas the drift of the abducting, fellow eye 

could be either backward or onward. The drift of the adducting eye had a higher 

velocity than the drift of the contralateral, abducting eye. Drift-velocities increased with 

target amplitude and could become as high as about 6 deg!s. These results were later 

confirmed by Collewijn et al. (1988a ), who, in addition, studied post-saccadic drift with 

horizontal saccades during monocular viewing. Post-saccadic drift during monocular 

viewing was the same as during binocular viewing. In a second paper, Collewijn et al. 

(1988b) reported on post-saccadic drift associated with vertical saccades. The second 

study was confined to binocular viewing. Vertical saccades, both upward and downward, 
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were followed by conjugate, upward drift, with velocities up to about 3 deg/s. After 

upward saccades, drift-velocities increased with saccade-size. In contrast, velocities of 

post-saccadic drift after downward saccades decreased with saccade-size. There is, to my 

knowledge, no literature on post-saccadic drift associated with vertical saccades during 

monocular viewing. 

In conclusion, because accurate data on the conjugacy of saccades, and also on the 

conjugacy of post-saccadic drift are scarce and incomplete, I shall, in the present 

chapter, systematically study saccade-size, as well as post-saccadic drift in both eyes, for 

horizontal and vertical saccades, both during binocular and monocular viewing. 

ME1HODS 

This section describes the experimental procedures that were also adopted in the 

following chapters. Any departures from these standard procedures will be duly 

mentioned. 

Subjects 

Nine healthy subjects participated in this experiment. None of them had any history of 

ocular or oculomotor pathology. They were between 25 and 44 years old. Refractive 

anomalies existed in four subjects, all of whom were myopic. All of these myopes 

normally wore corrective contact lenses, which they also wore during the experiment. 

Visual acuity was at least 5/5 in all emJ;IIetropic subjects, and also in the myopes wearing 

their normal contact lenses. Because the presence of binocular vision was considered 

important for the outcome of the experiment, stereopsis was assessed with a standard 

test (type: TNO test for stereoscopic vision). All subjects performed normally on this test 

(thresholds: 120 sec arc or better). 

Stimuli 

Subjects were seated facing the toroid, iso-vergence screen that was described in detail 

in Chapter 3. They were positioned in such a way that the centres of rotation of the two 
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eyes, assumed to be located 13.5 mm posterior to the corneal vertices, were located on 

the iso-vergence circle which, by rotation around the interocular baseline, descnbed the 

surface of the torus. Movements of the head were limited by means of a forehead- and 

chin-support, with additional straps. Two bright red He-Ne laser spots (diameter 

approximately 5 min arc), that were position-controlled by mirror-galvanometers, were 

simultaneously projected onto the screen. These two spots served as stationary targets. 

I used stationary targets because they yield more accurate saccades than those which 

are elicited by a, more conventional, jumping target (Lemij and Collewijn, 1989c; Chapter 

4). The laboratory lights were left on, thus dimly illuminating the rest of the toroid 

screen, as was also descnbed in Chapter 4. 

Experimental procedures 

Subjects were requested to make accurate gaze shifts between the two stationary targets 

at a comfortable pace of 45/minute, marked by a ticking sound from a loudspeaker. I 

did not exert any time-pressure, in order to avoid a possible compromise between 

accuracy and speed. Subjects were also asked to refrain from blinking during actual 

recording, because blinking produces eye-movements (Collewijn et al., 1985). Each 

experiment consisted of twenty-four trials for every subject. One half of these trials 

involved horizontal saccades, whereas the other half of the trials involved saccades in the 

vertical meridian. For each meridian, saccades were made between targets that were 5, 

10, 20 or 30 deg apart, positioned symmetrically around the straight-ahead position. 

Viewing was either binocular, or monocular with either eye, in equal numbers of trials. 

The order of the trials was randomized for every subject. To obtain monocular viewing, 

subjects covered one eye with a patch that was attached to a handle. This device did 

not limit the visual field of the viewing, fellow eye. Trials lasted 12 s each. Therefore, 

eight to ten saccades were recorded in each trial. Before each trial began, the targets 

were presented in their new positions and subjects were allowed to practice for a few 

seconds. When the subjects felt ready for the trial, they started the actual recording 

themselves by pushing a start button. This experimental procedure was chosen, because 

I was only interested in steady-state performance, and not in any possible effects of a 

suddenly changing visual scene. 
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When all twenty-four saccade-trials had been completed, one target was extinguished, 

and the other target made a smooth, circular movement, with a diameter of 30 deg and 

a .velocity of 11 degls. Subjects were instructed to follow the target as accurately as 

possible for 12 s, beginning at the push of the start button. Viewing was either 

binocular, or monocular with either eye. These recordings served as control data for 

asymmetrical adaptations of smooth-pursuit eye movements to the wearing of 

anisometropic spectacles, as will be described in detail in the following chapters, along 

with the asymmetrical adaptations of saccades. 

Data collection and analysis 

Eye movements of both eyes were recorded simultaneously by means of magnetic sensor 

coils (Collewijn et al., 1975). I adopted the magnetic-field configuration originally 

described by Robinson (1963). The recordings were digitized and stored on disk or tape 

for off-line analysis. The overall bandwidth was about 125 Hz (for further details on the 

recording equipment, see Chapter 2). The equipment was pre-calibrated. Recordings of 

steady monocular fixations of targets with known positions allowed for off-line, digital 

fine-tuning of the calibrations as well as linearization of the recordings, and also 

transformation of the linearized recordings into Helmholtz's coordinates. The principles 

of all these transformations were described in detail in Chapter 2. 

The recordings were thereafter analyzed by computer-programmes. Saccades were 

identified by standard criteria. A saccade was considered to have occurred if: 1) the 

velocity of the eye movements exceeded 15 deg/s, and 2) the movement was also larger 

than an amplitude criterion, which was set at 2 deg for the smallest target separation (5 

deg) and 4 deg for all other target separations (10 through 30 deg). When eye velocity 

fell below 15 deg/s, the saccade was considered to have ended (saccadic offset). Each 

saccade was characterized by its magnitude and direction. In addition, the mean velocity 

of the post-saccadic drift was calculated as the mean velocity of the eye movement over 

a period of 68 ms, beginning 25 ms after saccadic offset. These criteria were adopted, 

first of all to disregard eye movements associated with dynamic overshoot (Bahill et al., 

1975b; Kapoula et al., 1986), and secondly to avoid contamination of the computations 

by secondary saccades. As was demonstrated in Chapter 4, virtually all secondary 
I 

saccades occur well over 90 ms after saccadic offset. 
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Statistical analysis 

All data were submitted to a computer programme (SPSS-X) for statistical analysis. To 

balance the data, those saccades that had been made in excess of a total of eight (i.e., 

four in each direction) in every trial were disregarded. The remaining data were used 

to calculate mean values. The same data were also submitted to a multivariate analysis 

of variance (MANOVA). To meet the requirements of normal distributions and 

homogeneous variances, the amplitudes of the saccades, as well as the post-saccadic 

drift-velocities were transformed logarithmically. 
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left eye, at all four target amplitudes. 
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RESULTS 

Horizontal saccades - binocular viewing 

Horizontal saccades were normally not perfectly conjugate, which confirms similar 

findings by Collewijn et al. (1988a). The abducting eye made saccades that were about 

0.3 deg larger than the adducting, fellow eye (F1,8 = 26.6; P<O.OOl), irrespective of the 

target amplitude. Mean size-differences between horizontal saccades of the 2 eyes in 

binocular viewing are presented in Fig. 5.1. As a consequence of the size-difference 

between abducting and adducting saccades, the angle of convergence was about 0.3 deg 

smaller at saccadic offset than at the beginning of the saccade. In some subjects, this 

size-difference between concomitant saccades of the two eyes was consistently larger for 

saccades towards one side, most frequently towards the right, than for saccades towards 

the opposite side. 

Binocular 
viewing 

Adducting - eye 

Adducting eye 
viewing 

Abducting eye 
viewing 

100 ms 

Fig. 5.2 Typical recordings of the two eyes, showing post-saccadic drift of horizontal saccades in each 
viewing condition. The target amplitude in all three conditions was 10 deg. For clarity, the recordings 
of the adducting and the abducting eye have been plotted slightly apart. 

After saccadic offset, the eyes normally drifted slightly (Fig. 5.2). The direction of the 

drift that followed an adducting saccade was typically onward (i.e., in the same direction 

as the saccade), whereas the fellow, abducting eye drifted either backward or onward. 

At larger target amplitudes, however, post-saccadic drift of the eye that made an 
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abducting saccade was also most frequently in the onward direction. Figure 5.3 presents 

mean drift-velocities associated with adducting, as well as abducting saccades for all four 

target amplitudes. The eye that made an adducting saccade drifted at higher velocity 

than its fellow, abducting eye (F1,s = 15,2; P<0.005. Figs 5.2, 5.3). The velocity of the 

post-saccadic drift of both adducting and abducting saccades increased with the target 

amplitude (F3,24 = 18.0; P<0.0005). At the smallest target amplitude (5 deg) post-saccadic 

drift associated with an adducting saccade had a mean velocity of about 0.3 deg/s and 

at the largest target amplitude (30 deg) the mean velocity equalled about 1.3 deg/s. The 

mean velocity of the drift following abducting saccades ranged between less than about 

0.1 deg!s at a target amplitude of 5 deg up to about 0.5 deg/s at a target amplitude of 

30 deg. Because the post-saccadic drift-velocity of adducting saccades went up more 

steeply with the target amplitude than the drift-velocity following abducting saccades, the 
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Fig. 5.3 Mean velocities of post-saccadic drift ( + SD) of horizontal saccades of both the adducting eye 
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eyes converged with higher drift velocities at larger target amplitudes. Mean velocities 

of this converging drift were about 0.3 deg/s at a target amplitude of 5 deg and up to 

about 1 deg/s at my largest target amplitude (30 deg). These results are in close 

agreement with findings reported by Kapoula et al. (1986) and Collewijn et al. (1988a). 

Within approximately 300 ms after saccadic offset, the angle of vergence reached its 

pre-saccadic value. Note that these results relate to experiments in which the stimuli did 

not require any vergence-changes. 

Horizontal saccades - monocular viewing 

When one eye was covered, it made saccades that were, on average, about 0.3 deg 

smaller than those made by the fellow, viewing eye (F2,16 = 22.9; P<0.0005). This effect 

was additional to the nasa-temporal asymmetry that was described above. Therefore, 

when the viewing eye made an abducting saccade, it was up to about 0.6 deg larger than 

the adducting saccade of the covered eye (Fig. 5.4). However, adducting saccades of the 

viewing eye were accompanied by about equally large saccades of the covered, abducting 

eye. Because some of the subjects showed larger size-differences for rightward saccades 

than for leftward saccades, the mean effects of covering one eye are less clear in the 

lower panel of Fig. 5.4 (left eye viewing) than in the upper panel of this figure (right 

eye viewing). In addition to the effects of monocular viewing on saccadic size of the 

covered eye, the saccades of the viewing eye were also smaller when compared with 

binocular viewing (F1,8 = 24.4; P<0.001). This size reduction was about 0.2 deg, and it 

became less at larger target amplitudes. 

The onward post-saccadic drift associated with adducting saccades was also affected by 

the viewing condition. During monocular viewing, the onward post-saccadic drift of 

adducting saccades of the covered eye had a mean velocity that was about 0.5 deg/s 

higher than the post-saccadic drift of adducting saccades of the viewing eye 

(FLs = 9.20; P<0.05. Figs 5.2, 5.5). This contrasts with findings by Collewijn et al. 

(1988a), who reported no difference in post-saccadic drift between monocular and 

binocular viewing. The post-saccadic drift of the viewing eye, following adducting 

saccades, however, was the same as with binocular viewing. The post-saccadic drift that 

occurred in the covered eye frequently persisted until the next primary saccade, which 

contrasts with binocular viewing in which the onward drift virtually came to a halt within 
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about 300 ms. Occasionally, post-saccadic drift of the covered eye was directed towards 

one side, throughout an entire trial, irrespective of the saccade direction. The 

post-saccadic drift associated with abducting saccades in binocular viewing was not 

consistently affected by covering of one eye, either in the covered eye, or in the viewing 

eye ( cf. Fig. 5.5 with Fig. 5.3). 

Vertical saccades - binocular viewing 

During binocular viewing, vertical saccades had virtually the same magnitudes in each 

of the two eyes (Fig. 5.6). Therefore, the conjugacy of vertical saccades was better than 

the conjugacy of horizontal saccades (cf. Fig. 5.6 with Fig. 5.1). The degree of yoking 

was the same for upward saccades as for downward saccades. However, downward 

saccades were systematically larger than upward saccades between the same targets 
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Fig. 5.6 Mean size-differences ( + SD) between vertical saccades of the left and the right eye during 
binocular viewing, calculated as the size of a saccade of the left eye subtracted from the size of a fellow 
saccade of the right eye, at all four target amplitudes. 
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(F ~8 = 26.3; P < 0.001 ). The mean size-difference between upward and downward saccades 

increased with the target amplitude. This difference was on average about 0.3 deg at -the 

smallest target amplitude (5 deg) and about 2 deg at the largest target amplitude 

(30 deg). Furthermore, downward saccades frequently overshot their target, whereas 

upward saccades virtually never showed saccadic overshoot. Post-saccadic drift was 

predominantly upward after upward saccades (Fig. 5.7). Its mean velocity varied on 

average between about 1.0 and 2.5 deg/s, which was about 2 times higher than the 

post-saccadic drift-velocities of horizontal, adducting saccades during binocular viewing 

(cf. Fig. 5.7 with Fig. 5.3). After downward saccades post-saccadic drift was also 

predominantly upward, although less consistently. The mean drift-velocity was lower by 

about 0.8 to 2.4 deg/s when compared to the post-saccadic drift-velocities of upward 

saccades (F~8 = 6.83; P<0.05)(Fig. 5.7). In contrast with horizontal saccades, the 

post-saccadic drift-velocity was independent of the target amplitude. There was no 

significant difference between the drift of the two eyes. 
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Vertical saccades - monocular viewing 

When one eye was covered (Fig. 5.8), it made saccades that were about 0.2 deg smaller 

than those of the viewing eye, in both upward and downward direction 

(F2,16 = 29.7; P<0.0005). Because the saccadic size-difference between the two eyes was 

calculated as the magnitude of the saccade of the left eye subtracted from the magnitude 

of the fellow saccade of the right eye, the effects of covering one eye on the magnitude 

of its saccades are reflected by positive size differences during right eye viewing (Fig. 5.8, 

upper panel) and negative size differences during left eye viewing (Fig. 5.8, lower panel). 

These differences were statistically independent of the target amplitude. The saccades 

of the viewing eye were equally large as during binocular viewing. In some subjects, the 

difference in saccade size between the viewing eye and the covered eye was larger when 

one eye was covered than when the other eye was covered. Post-saccadic drift during 

monocular viewing was, for upward saccades (Fig. 5.9, upper panel) the same as during 

binocular viewing (Fig. 5.7). In contrast, post-saccadic drift of downward saccades had 

higher mean velocities (Fig. 5.9, lower panel) than when viewing was binocular 

(F2,16 = 17.5; P<0.0005). This difference became larger with the target amplitude and 

ranged between about 0.1 deg/s at a target amplitude of 5 deg up to about 1 deg/s at 

a target amplitude of 30 deg (cf. Fig. 5.9 with Fig. 5.7). As with binocular viewing, 

post-saccadic drift of vertical saccades was conjugate. 

DISCUSSION 

This discussion will be confined to those aspects of the present results that are of direct 

pertinence to studying asymmetrical adaptations to anisometropic spectacles. My results 

show that normal saccades, both horizontal and vertical, are not perfectly conjugate, 

even when the positions of the targets per se do not call for disjunctive eye movements. 

This contrasts with the generally held view that saccades are always of equal size, a 

notion that is frequently referred to as Hering's law of equal innervation (for a 

discussion on Hering's law, see Chapter 2). The present results confirm and extend 

similar findings by Collewijn et al. (1988a,b ). In horizontal saccades, the yoking of the 

two eyes depends on the direction of the saccades and also on whether viewing is 

binocular or monocular. In vertical saccades, the coordination of the two eyes depends 

only on the viewing condition. Departures from perfect yoking are, however, small: they 
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are virtually always less than about 0.6 deg. 

Nonetheless, the degree of yoking of saccades can only be used as a reliable measure 

of asymmetrical adaptation in relation to the present results. In other words, imperfect 

yoking does not necessarily have to result from asymmetrical adaptation. In order to 

accurately assess the degree of such asymmetrical adaptation, it is therefore best to study 

comparable saccades before and after adaptation. For a clear assessment, the number 

of data should also be balanced, i.e., the numbers of saccades that are compared should 

be equally large. 

However, if no pre-adaptation data are available, such as in subjects who have been 

wearing anisometropic spectacles for many years (Chapter 6), this problem can also be 

solved by carefully balancing the data. Mean values of the degree of yoking will be least 

affected by nasa-temporal asymmetries when the numbers of saccades to one side are 

matched by equal numbers to the opposite side. Likewise, the effects of systematic 

asymmetries on mean values will be least when saccades made with one eye covered are 

matched by equal numbers made with the contralateral eye covered. The experimental 

design should meet these requirements. Obviously, these considerations apply also to the 

study of the effects of asymmetrical adaptations on post-saccadic drift. 
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CHAPTER 6 

LONG-TERM ASYMMETRICAL ADAPTATION 

INTRODUCTION 

In a recent paper, Erkel ens et al. (1989b) reported on a subject who had been wearing 

anisometropic spectacles for about 40 years. They found that he made saccades that 

were of unequal size in the two eyes, thus violating Hering's law of equal innervation. 

This asymmetrical adaptation was attributed to the unequal size of the images on each 

of the two retinas, as a result of the unequal refractive powers of each of the two lenses 

of his anisometropic spectacles. For vertical saccades, this long-term asymmetrical 

adaptation was almost perfect, i.e., the difference in saccadic amplitude was very close 

to that called for by the spectacles. Horizontal saccades, however, were less perfectly 

adapted. The adaptation of horizontal saccades increased with the target amplitude from 

about 40% for amplitudes of 5 deg to about 75% for amplitudes of 60 deg. Erkelens et 

al. (1989b) also mentioned a very small change in post-saccadic drift. This contrasts with 

the marked post-saccadic drift associated with palsies of one or more external eye 

muscles, either caused by disease or brought about experimentally (Kommerell et al., 

1976; Abel et al., 1978; Optican and Robinson, 1980; Optican et al., 1985; Snow et al., 

1985) (for a review, see Chapter 2). 

In this chapter, I shall report on extensions of experiments as started by Erkelens et al. 

(1989b ). Saccades of eight habitual anisometropic spectacle-wearers will be examined. I 

shall focus on size-differences between the saccades of the two eyes, and also on 

post-saccadic drift. In addition, I shall examine whether asymmetrical adaptations were 

also expressed in smooth-pursuit eye movements. First, however, I shall deal with some 

relevant basic principles of spectacle-lenses, and the way they affect the size of retinal 

images. 
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FUNDAMENTAL CONSIDERATIONS ON SPECTACLE-LENSES 

Spectacle-lenses, like other lenses, refract light, which is why they are widely used to 

correct various refractive anomalies of the eyes. Refractive powers of lenses are 

commonly expressed in diopters. A diopter is defined as the reciprocal of the focal 

length of a lens, expressed in meters. A positive dioptric value indicates that the lens 

converges light-rays, whereas a negative value indicates that the lens diverges light-rays. 

As a consequence of their refractive power, positive spectacle-lenses also magnify the 

visual image on the retina. Negative spectacle-lenses reduce the size of the retinal image. 

The degree of magnification or reduction depends on many factors in a rather complex 

way, which will not be discussed in detail (for a comprehensive treatise, see Bennett and 

Francis, 1962; Southall, 1937). In essence, the amount of magnification or reduction 

increases proportionately with the refractive power of the lens and also with the distance 

between the lens and the nodal point of the eye. In practice, it is the distance between 

the lens and the anterior surface of the cornea, rather than between the lens and the 

nodal point of the eye, which determines the amount of magnification. In addition, the 

degree of magnification or reduction increases proportionately with the thickness of the 

lens, although this effect is relatively small in normal glasses. Because the distance 

between the lens and the nodal point of the eye is larger with spectacles than with 

contact-lenses, and, to a lesser extent, because spectacle-lenses are thicker than 

contact-lenses, spectacle-lenses affect retinal image-size very much more than 

contact-lenses with the same refractive powers (Bennett and Francis, 1962). 

In subjects wearing anisometropic spectacles, i.e., spectacles with lenses of unequal 

refractive powers, the images on the two retinas are unequal in size. This size-difference 

is also referred to as aniseikonia. The aniseikonia increases with the anisometropia, which 

is, by definition, the difference in refractive power between the two spectacle-lenses. 

Furthermore, aniseikonia increases with the distance between the anisometropic 

spectacle-lenses and the nodal points of the two eyes. As a consequence of this 

aniseikonia, angular target separations are larger in the larger retinal image than in the 

smaller retinal image.. Therefore, gaze shifts between two binocularly foveated visual 

targets require larger movements of the eye with the larger retinal image than of the 

fellow eye. This is also illustrated in Fig. 6.1. 
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Fig. 6.1 Schema of the effects of anisometropic spectacles on the size of the visual image for each of 
the two eyes. The left side of the spectacle-frame is not provided with a lens. The right side is supplied 
with a negative, spherical lens. The house, as seen through these spectacles, is normally sized in the left 
eye, and scaled down in the right eye. Suppose a saccade were made from the left wall of the house to 
its right wall. The left eye would then have to make a normally sized saccade, whereas the right eye 
would, ideally, have to make a smaller saccade because the angular distance between the two walls is, 
for the right eye, smaller than for the left eye. 

As already mentioned, the distance between the spectacle-lens and the nodal point of 

the eye affects the size of the retinal image. The ideal change in the size of an eye 

movement imposed by a spectacle-lens, is, however, more directly related to the slightly 

larger distance between the spectacle-lens and the centre of rotation of the eye, than to 

the distance between the spectacle-lens and the nodal point of the eye. 

With anisometropic contact-lenses, however, the situation is very different. One 

difference is that the aniseikonia associated with anisometropic contact-lenses is much 

smaller than with equally anisometropic spectacles, largely because the distance between 

the contact-lens and the nodal point of the eye is smaller than with spectacles. More 

important, however, is the fact that all contact-lenses, both anisometropic and 

isometropic (i.e., equally powerful) move along with the eyes, in contrast to 

spectacle-lenses, which remain fixed to the head. As a consequence, contact-lenses, either 

anisometropic or isometropic, do not require that the eyes move differently from 

uncorrected eyes. 
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In the present context it is also important to distinguish between various kinds of 

spectacle-lenses. Spherical lenses have equally strong refractive powers in all meridians. 

In lens-prescriptions their refractive powers (expressed in diopters) are preceded by the 

letter S. Planocylir.drical lenses, however, refract maximally in one meridian and virtually 

not in the orthogonal meridian. The latter meridian is also referred to as the 

cylinder-axis, or axis, for short. The refractive power of a planocylindrical lens is 

proportional to the sine of the angle subtended by the cylinder-axis and the meridian 

under consideration. The orientation of a cylinder-axis in the fronto-parallel plane is 

prescnbed, for both eyes, in tenns of its angle in relation to a horizontal line in the 

same plane, as illustrated in Fig. 6.2. 

1Bif~---------------
Right 

_________ __, 00 

Left 

Fig. 6.2 Schema for the convention for the orientation of the cylinder-axis of a spectacle-lens as used 
in prescriptions. 

The maximal refractive power of planocylindrical lenses (expressed in diopters) is 

preceded by the letter C in lens-prescriptions. Spherocylindricallenses can be thought of 

as a spherical lens combined with a planocylindrical lens. The refractive power of a 

spherocylindrical lens in every meridian equals the sum of the refractive power of the 

spherical lens and the refractive power of the same meridian in the planocylindricallens. 

Lens-prescriptions indicate refractive powers of both the spherical and the cylindrical 

components, as well as the orientation of the axis. 
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METHODS 

Subjects 

Nine subjects participated in these experiments. None of them had any history of ocular 

or oculomotor pathology. All of them had asymmetrical refractive anomalies, which had 

been corrected by anisometropic spectacles for many years. Visual acuities were, in all 

subjects, when wearing their own corrections, 5/5 or better. The anisometropias were, on 

average, 2 diopters or more. In one subject (P A) the anisometropia was less than 1 

diopter in the horizontal meridian, but more than 2 diopters in the orthogonal meridian. 

Two subjects (CR and CB) normally wore their spectacles all day through, whereas all 

other subjects used to wear them for several hours a day. The individual 

lens-prescriptions at the time of the experiments are presented, for all subjects, in Table 

6.1. Age and sex of each subject, as well as the time of wearing of the spectacles, both 

in terms of the number of years and the amount of time every day during the last three 

months prior to the experiments are also presented in the table. 

Table 6.1 Lens-prescriptions and additional data of subjects 

Sub Age Sex Wearing time Prescription left lens Prescription right lens 

years /day 

KH 55 F ±40 SH" S-1.25 S-3.75, C-1.0, axis 90 deg 

CR 73 F 51 AD" S-2.75, C-0.75, axis 170 deg S+0.75, C-1.0, axis 10 deg 

PJ 46 M ±35 SH S+l.O S-2.25, C-0.5, axis 155 deg 

PA 39 F 25 SH S-1.25, C-2.0, axis 85 deg S+l.5, C-5.0, axis 80 deg 

CB 46 F 42 AD S-2.0 S-9.0, C+5.0, axis 65 deg 

MB 41 F 32 SH S-1.25, C-1.5, axis 10 deg S-5.0, C-1.25, axis 10 deg 

GP 48 F 2 SH S+3.5, C-1.5, axis 10 deg S+0.25 

MJ 33 F 19 SH S-3.0, C-0.5, axis 100 deg S-1.0, C-0.5, axis 70 deg 

HH 61 M ±40 SH S-3.5, C-1.0, axis 100 deg S+0.25 

• SH = Several hours a day; AD = All day through 

Experimental procedures and data analysis 

During the experiments, all subjects wore their own anisometropic spectacles. The 

experiments were run as described in detail in Chapter 5. In short, horizontal and 

vertical saccades were made at a comfortable pace, marked by an auditory signal, 

between stationary targets that were positioned 5, 10, 20 or 30 deg apart, symmetrically 
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about the straight-ahead position. The positions of the targets contained no stimulus for 

disjunctive eye movements. Viewing was binocular or monocular with either eye. The 

order of the trials was randomised for every subject. In addition, subjects were asked to 

follow a target that made a circular, uniform movement, either binocularly or with either 

eye covered. Again, disjunctive eye movements were not called for by the 

target-positions. The movements of both eyes were recorded simultaneously by means 

of sensor coils. All recordings were analyzed by computer programmes. The number of 

data was balanced for the two meridians, the four target amplitudes, the three viewing 

conditions and the two directions of the saccades for either meridian. For statistical 

analysis, these data were submitted to a statistical computer programme (SPSS-X), which 

was used to compute mean values and also to test any observed differences by means 

of a multivariate analysis of variance (MANOV A). As it turned out that one subject 

(GP) had cooperated poorly, by frequently not looking at the appropiate visual targets, 

her data were disregarded. 

I used size-differences of concomitant saccades, instead of saccade-sizes per se, as a 

measure of the degree of adaptation. This approach was chosen for two reasons: 1) the 

occurrence of saccadic undershoot would make it difficult to determine the degree of 

asymmetrical adaptation from comparing the actual saccadic size with the required 

gaze-shift of each eye, and 2) the variability of saccadic size of each eye, expressed in 

standard deviations, would be a meaningless measure of asymmetrical adaptation, as 

opposed to the variability of differences in saccadic size. 

As a final comment on my methods, some displacement of the spectacles on the head 

was likely to occur during the running of the present experiments, which would 

consequently affect the position of the targets as viewed through the spectacles. 

Therefore, it was not possible to assess where the targets were seen at all times by each 

of the two eyes. For that reason, I refrained from measuring position-errors at sacccadic 

offset. I shall, for the same reason, also refrain from plotting target-positions in any of 

the figures. 
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RESULTS 

Saccadic size 

In all subjects, the saccades of the two eyes were unequal in size, thus reflecting 

asymmetrical adaptation to the anisometropic spectacles (F1,7 = 83.3; P<0.0005). These 

asymmetrical adaptations were present in horizontal, as well as in vertical saccades, both 

during binocular and monocular viewing, which confirms similar findings by Erkelens et 

al. (1989b ). Moreover, these results violate Hering's law of equal innervation in the sense 

that the eyes make saccadic movements that are different in size. I did not observe any 

differences in asymmetrical adaptation between those subjects who wore their spectacles 

all day through and those who wore them intermittently. Figure 6.3 presents typical 

recordings of concomitant saccades of both eyes in either meridian during monocular 

viewing (right eye covered), at a target amplitude of 30 deg. For comparison, typical 

recordings of normal, unadapted saccades of both eyes (left eye viewing) of a control 

subject, made under similar conditions, have been added to the figure (left panels). 

These controls were obtained from the experiments described in Chapter 5. It is evident 

from Fig. 6.3 that the size-difference between saccades of the two eyes can become very 

large after asymmetrical adaptation. In this case they were on the order of 1. 7 deg for 

horizontal saccades and 2.6 deg for vertical saccades, at a nominal target amplitude of 

30 deg. 

I have tabulated the mean size-differences between saccades of the two eyes for every 

subject in Table 6.2. Distinctions were made between horizontal and vertical saccades, 

monocular and binocular viewing and also between the four target amplitudes. 

Size-difference was calculated as the size of the saccade of the eye that was required to 

make the larger saccade (larger movement eye), minus the size of the saccade of the 

contralateral eye (smaller movement eye). It can be seen from Table 6.2 that saccadic 

size-differences between the two eyes generally increased with the target amplitude (F3,21 

= 61.3; P<0.0005), which agrees well with the requirements of the glasses. In addition, 

the saccadic size-differences were generally larger during binocular viewing than during 

monocular viewing (Fz,14 = 7.48; P<O.Ol). This was true for both horizontal and vertical 

saccades. Although hard-programmed asymmetrical adaptations are better reflected by 

saccadic size-differences between the two eyes during monocular viewing than during 

binocular viewing, I shall nonetheless also present the asymmetries that occurred during 
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Table 6.2 Mean differences in saccadic size ( + SD) between the two eyes (de g) 

Sub Target Horizontal saccades Vertical saccades 

amp. Monoc. view. Binoc. view. Monoc. view. Binoc. view. 

KH 5 0.31 (0.13) 0.35 (0.11) 0.34 (0.23) 0.33 (0.17) 

10 0.56 (0.16) 0.93 (0.24) 0.47 (0.26) 0.68 (0.31) 

20 0.94 (0.36) 1.08 (0.38) 0.96 (0.34) 0.95 (0.26) 

30 0.68 (0.55) 1.91 (0.20) 1.21 (0.42) 1.36 (0.31) 

CR 5 0.16 (0.31) 0.24 (0.18) 0.17 (0.15) 0.31 (0.16) 

10 0.26 (0.48) 0.49 (0.24) 0.63 (0.20) 0.56 (0.31) 

20 0.87 (0.30) 0.99 (0.29) 1.83 (1.33) 1.45 (0.37) 

30 1.33 (0.37) 1.75 (0.47) 2.14 (0.41) 2.11 (0.14) 

PJ 5 0.31 (0.46) 0.49 (0.27) 0.14 (0.12) 0.25 (0.08) 

10 0.56 (0.71) 0.79 (0.34) 0.22 (0.14) 0.51 (0.14) 

20 1.17 (0.89) 2.00 (0.56) 0.54 (0.21) 1.40 (0.26) 

30 1.66 (1.13) 286 (0.37) 0.97 (0.23) 245 (0.49) 

PA 5 0.04 (0.15) 0.00 (0.13) 0.22 (0.09) 0.11 (0.11) 

10 -0.04 (0.20) 0.05 (0.05) 0.38 (0.13) 0.43 (0.07) 

20 0.13 (0.22) 0.14 (0.26) 1.02 (0.19) 0.93 (0.13) 

30 0.34 (0.38) 0.53 (0.21) 1.57 (0.44) 1.61 (0.25) 

CB 5 -0.04 (0.28) 0.16 (0.24) 0.33 (0.13) 0.34 (0.07) 

10 0.08 (0.28) 0.31 (0.20) 0.78 (0.14) 0.80 (0.22) 

20 0.21 (0.43) 0.93 (0.18) 1.81 (0.30) 2.01 (0.12) 

30 0.71 (0.63) 1.53 (0.36) 2.48 (0.95) 293 (0.21) 

MB 5 0.31 (0.28) 0.39 (0.24) 0.21 (0.14) 0.18 (0.09) 

10 0.55 (0.45) 0.71 (0.22) 0.40 (0.19) 0.34 (0.22) 

20 1.09 (0.53) 1.40 (0.20) 0.43 (0.26) 0.84 (0.07) 

30 1.41 (0.52) 1.98 (0.10) 0.71 (0.35) 1.23 (0.34) 

MJ 5 0.10 (0.07) 0.10 (0.11) 0.00 (0.14) 0.05 (0.11) 

10 0.19 (0.18) 0.15 (0.18) 0.13 (0.13) 0.36 (1.12) 

20 0.34 (0.25) 0.36 (0.18) 0.22 (0.70) 0.24 (0.11) 

30 0.91 (0.48) 0.64 (0.37) 0.65 (0.33) 0.61 (1.18) 

HH 5 0.11 (0.38) 0.30 (0.43) 0.09 (0.32) 0.19 (0.15) 

10 0.31 (0.62) 0.61 (0.66) 0.18 (1.44) 0.51 (0.27) 

20 0.88 (0.69) 1.68 (0.48) 0.88 (0.26) 1.06 (0.28) 

30 1.61 (0.86) 3.16 (0.40) 1.20 (0.30) 1.64 (0.53) 
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Fig. 6.3 Typical recordings of control saccades (left panels) and asymmetrical saccades (right panels) 
of both eyes, made with only the left eye viewing in either meridian. Nominal target amplitude: 30 deg. 

binocular viewing, because they reflect how well the eye movements were adapted to 

normal, i.e., binocular, viewing conditions. The size-difference between horizontal 

saccades of the two eyes could become as large as about 3.2 deg (subject HH) during 

binocular viewing. During monocular viewing, however, this size-difference was 

considerably smaller and equalled maximally about 1.6 deg (subjects HH and PJ). For 

vertical saccades, maximal saccadic size-differences between the two eyes were about 2.9 

deg (subject CB) during binocular viewing and 2.5 deg (same subject) during monocular 

viewing. In subject P A the size-differences between horizontal saccades of the two eyes 

were very small, which agrees well with the small horizontal anisometropia of her 

spectacles (cf. Table 6.2 with Table 6.1). 
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Table 6.3 Vergence-deficits at saccadic offset 

Sub Target Horiz. sacc. Vert. sacc. 

amp. Monoc. Binoc. Monoc. Binoc. 

KH 5 0.05 0.01 -0.06 -0.05 

10 0.16 -0.20 0.11 -0.10 

20 0.49 0.36 0.20 0.21 

30 1.48 0.25 0.53 0.38 

CR 5 0.15 0.07 0.26 0.12 

10 0.34 0.12 0.26 0.33 

20 0.34 0.22 -0.03 0.35 

30 0.49 0.06 0.54 0.57 

PJ 5 0.21 0.04 0.48 0.37 

10 0.49 0.26 1.06 0.77 

20 0.93 0.09 2.04 1.18 

30 1.49 0.28 2.89 1.41 

PA 5 0.05 0.09 0.06 0.16 

10 0.22 0.13 0.19 0.14 

20 0.23 0.22 0.12 0.22 

30 0.19 0.01 0.14 0.09 

CB 5 0.41 0.21 0.22 0.22 

10 0.67 0.43 0.37 0.35 

20 1.28 0.56 0.51 0.30 

30 1.52 0.71 0.98 0.53 

MB 5 0.22 0.14 0.10 0.13 

10 0.51 0.35 0.24 0.30 

20 1.03 0.72 0.86 0.44 

30 1.77 1.20 1.21 0.69 

MJ 5 0.01 0.01 0.15 0.10 

10 0.03 0.07 0.19 -0.05 

20 0.10 0.08 0.41 0.40 

30 -0.24 0.03 0.30 0.34 

HH 5 0.47 0.28 0.45 0.35 

10 0.85 0.54 0.94 0.60 

20 1.43 0.63 1.37 1.19 

30 1.86 0.30 2.16 1.73 
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As a next step I calculated the saccadic size-differences between the two eyes that were 

actually required for making a saccade from one binocularly foveated target to another 

binocularly foveated target. To that end I first measured the movement-angle covered 

by the monocularly viewing left or right eye during gaze-changes between two targets 

made with the spectacles on. The angular difference between the two eyes, calculated 

as the larger movement of one eye minus the smaller movement of the fellow eye, made 

between the same targets, was considered to equal the required saccadic size-difference 

between the two eyes for that specific target amplitude. Thereafter, I subtracted the 

actual size-difference between concomitant saccades of the two eyes from the required 

size-difference. This difference between required and actual saccadic size-difference 

between the two eyes was defined as the vergence-deficit. Mean vergence-deficits are 

tabulated in Table 6.3. The standard deviations have been left out of Table 6.3, because 

they equal the standard deviations in Table ·6.2. Table 6.3 demonstrates that the 

vergence-deficit of horizontal saccades was almost always less than 1.0 deg during 

binocular viewing (mean value: 0.26 deg). During monocular viewing, however, the 

vergence-deficit at the end of horizontal saccades was, on average, more than twice as 

large (0.60 deg). Vertical saccades also showed smaller vergence-deficits during binocular 

viewing than during monocular viewing (Fz,14 = 7,5; P<O.Ol); mean values were 0.60 deg 

for monocular viewing and 0.43 deg for binocular viewing. Vergence-deficits generally 

increased with the target amplitude (F3,21 = 12.6; P<0.0005). This increase was more 

prominent during monocular viewing than during binocular viewing (F"42 = 4.81; 

P<0.0005). The vergence-deficits of vertical saccades were, for all subjects taken 

together, not consistently different from the vergence-deficits of horizontal saccades (F~,7 

= 0.18; P>0.5), neither during binocular, nor during monocular viewing. However, within 

some subjects, the vergence-deficits associated with saccades in one meridian (either 

horizontal or vertical) were consistently larger than the vergence-deficits of saccades in 

the orthogonal meridian (Table 6.2). These differences between horizontal and vertical 

vergence-deficits were not clearly correlated with differences between the anisometropias 

along these two meridians. 

Some subjects (HH and PJ) experienced double-images of the upper targets, notably at 

larger target amplitudes, which indicates that asymmetrical adaptation was inadequate 

in the upper oculomotor field. This corresponds well with their large vergence-deficits 

(more than 1 deg) associated with vertical saccades during binocular viewing. Targets in 
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the lower oculomotor fields, as well as all targets positioned along the horizontal 

meridian, were never seen as double-images. 

The size-differences between saccades of the two eyes that were required by the 

spectacles amounted, on average, to about 2.4% for every diopter of anisometropia, 

when the orientations of the cylinder-axes had been taken into account. However, this 

percentage was very variable and ranged between a minimum of about 1.2% and a 

maximum of about 3.4%. I attribute this variability largely to the various distances 

between the spectacle-lenses and the centres of rotation of the eyes among the different 

subjects. Therefore, the anisometropia per se was considered to be a poor parameter of 

the -required size-differences between saccades of the two eyes. Thus, I compared the 

actual saccadic size-differences between the two eyes to the required size-differences, as 

measured from the viewing eye during monocularly viewing gaze-shifts with either eye. 

Individual means of saccadic size-differences (also presented in Table 6.2) have been 

plotted as a function of the required differences in saccadic size in Figs 6.4 (binocular 
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Fig. 6.4 Actual difference in saccadic size between the two eyes, plotted as a function of the required 
difference in saccadic size for all subjects and both meridians. Data relate to binocular viewing. 
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viewing) and 6.5 (monocular viewing). Because there were no significant differences 

between horizontal and vertical saccades with respect to the actual saccadic 

size-differences between the two eyes, saccades of both meridians have been pooled. 

During binocular viewing (Fig. 6.4), the overall average degree of adaptation was about 

74%. During monocular viewing, however, the overall average of asymmetrical adaptation 

dropped to about 46% of what was required. 

As a next step, I computed the individual degree of asymmetrical adaptation for every 

subject, expressed in the actual saccadic size-difference between the two eyes as a 

percentage of the required size-difference between the two eyes. Mean values of these 

percentages are presented in Table 6.4. This table demonstrates that the degree of 

asymmetrical adaptation varied considerably between and within subjects at the various 

target amplitudes. During monocular viewing, this percentage was only very rarely about 

the same for all four target amplitudes (e.g., subject PJ in both meridians, subject MB 

for horizontal saccades and subjects PA and CB for vertical saccades). More frequently, 
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Fig. 6.5 As Fig. 6.4, for monocular viewing. 
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Table 6.4 Percentages of asymmetrical adaptation 

Sub Target Horiz. sacc. Vert. sacc. 

amp. Monoc. Binoc. Monoc. Binoc. 

KH 5 87 97 121 118 
10 78 127 81 117 
20 66 75 83 82 
30 32 89 70 78 

CR 5 52 78 39 72 

10 43 80 71 63 
20 72 82 102 81 
30 73 96 80 79 

PJ 5 60 93 23 40 
10 53 75 17 40 
20 56 96 21 54 
30 53 91 25 64 

PA 5 49 0 80 41 
10 -18 28 66 75 
20 35 39 89 81 
30 65 99 92 95 

CB 5 -10 44 60 61 
10 10 42 68 70 
20 14 62 78 87 
30 32 68 72 85 

MB 5 58 73 67 57 
10 52 67 63 53 
20 51 66 33 65 
30 44 62 37 64 

MJ 5 90 90 0 33 
10 84 68 40 116 
20 78 82 35 37 
30 118 96 68 65 

HH 5 19 52 17 35 
10 26 53 16 46 
20 38 73 39 47 
30 46 91 36 49 
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this percentage either increased or decreased with the target amplitude. In many other 

cases, there was no systematic trend whatsoever within subjects. During binocular 

viewing, the degree of asymmetrical adaptation expressed as a percentage was also highly 

variable. In conclusion, the size-difference between saccades of the two eyes increased 

with the target amplitude, but this asymmetrical adaptation could not be expressed in 

a systematic percentage of the required asymmetrical adaptation. 

Post-saccadic drift 

Post-saccadic drift of horizontal saccades was also asymmetrically adapted. Post-saccadic 

drift of vertical saccades, however, was not significantly different in the two eyes 

(F~7 = 0.26; P>0.5), and was also not different from the controls (Chapter 5). Following 

horizontal saccades, post-saccadic drift-velocities of the eye that made the larger saccades 

were higher than the post-saccadic drift-velocities of the eye that made the smaller 

saccades (F~7 = 7.00; P<0.05). This difference in post-saccadic drift-velocity between 

the two eyes was larger during binocular viewing than during monocular viewing (F2,14 = 
12.0; P<O.OOl). It averaged about 0.8 degls with both eyes viewing and about 0.3 degls 

with only one eye viewing (Fig. 6.6). The direction of the post-saccadic drift of the eye 

that made the larger saccade was such that it reduced the vergence-deficit that was 

present at saccadic offset. As already mentioned, this effect was most prominent during 

binocular viewing. The nasa-temporal asymmetries of drift that normally occur (Chapter 

5) were not present after asymmetrical adaptation (F~7 = 2.59; P>O.l). In other words, 

post-saccadic drift of asymmetrically adapted saccades was the same for adducting as for 

abducting saccades of each eye. Uke with normal, unadapted saccades, mean 

post-saccadic drift-velocities increased with the target amplitude (F3,21 = 14.2; P<0.0005). 

The asymmetry in post-saccadic drift of the two eyes, however, was independent of the 

target amplitude. 

Smooth pursuit 

When subjects tracked a target that made a uniform, circular movement (diameter: 

30 deg; velocity: about 11 deg!s) the magnitudes of the eye movements were different 

in the two eyes. Some typical recordings, which demonstrate this asymmetrical adaptation 

of smooth pursuit eye movements, are presented in Fig. 6.7 (Subject HH). For 
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comparison with controls, recordings made under similar experimental conditions, derived 

from the experiments described in Chapter 5, are also included in the same figure. As 

I was not interested in systematic shifts in gaze due to any prismatic effects of the 

glasses or to phorias, I have, for clarity, plotted the recordings concentrically. Note that 

the subjects occasionally made saccades during the execution of the pursuit-task, which 

is a normal phenomenon. 

Control 
Binocular viewing 

Left eye viewing 

Adapted 

Left 
eye". : 

_.-\ 
. Right 

eye 

: 

Fig. 6.7 Binocular recordings of smooth-pursuit eye movements, during binocular viewing (upper panels) 
and during monocular viewing (left eye viewing, lower panels). Control recordings are presented in the 
left panels; recordings after adaptation are shown in the right panels. 

Fig. 6.6 Mean post-saccadic drift-velocities ( + SD) at four target amplitudes, plotted for the eye that 
made the smaller saccades and for the fellow eye. Left panel: binocular viewing; right panel: monocular 
viewing. 

89 



Those subjects who wore spectacles with cylindrical lenses made elliptical eye movements, 

corresponding with the refractive powers and cylinder-axes of their glasses. One such 

example (subject CB) is presented in Fig. 6.8. 

Fig. 6.8 Binocular recordings made during the smooth-pursuit task in a subject with powerful cylindrical 
lenses. Binocular viewing. 

I calculated the size-differences between the diameters of the movements of either eye 

along the horizontal, as well as the vertical meridian. As with saccadic size-differences, 

these differences in diameter were computed as the diameter of the movement of the 

eye that was expected to make the larger movement, minus the diameter of the 

movement of the fellow eye. These differences in diameter are presented in Table 6.5. 

Differences in diameter between movements of the two eyes were larger by about 

0.9 deg during binocular viewing than during monocular viewing, along either meridian 

(paired Student t-test: P<0.05). As a next step, I computed the vergence-deficits, by 

subtracting the actual differences in diameter -size between the movements of the two 

eyes from the differences that were required by the spectacles. Vergence-deficits along 

one meridian were not significantly different from those along the orthogonal meridian 

(paired Student t-test: P>0.05), neither during binocular, nor during monocular viewing. 
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Table 6.5 Differences in diameter between circular 

movements of the two eyes (deg) 

Sub Horizontal diameter Vertical diameter 

Binoc. Monoc. Binoc. Monoc. 

view. view. view. view. 

KH 1.88 1.43 1.70 1.40 

CR 1.96 2.20 2.69 2.55 

PJ 3.68 1.60 4.31 1.93 

PA 0.50 0.57 2.49 1.98 

CB 2.13 0.96 3.21 2.54 

MB 2.53 1.19 2.28 1.34 

MJ 1.23 1.40 0.85 0.61 

HH 3.56 1.14 3.19 0.87 

I then compared the vergence-deficits of the asymmetrical smooth-pursuit eye movements 

to those of the asymmetrical saccades. With both eyes viewing, the vergence-deficits of 

smooth-pursuit eye movements were smaller by about 0.6 deg than those associated 

with saccades (horizontal as well as vertical) that were made between targets positioned 

equally far apart (30 deg) as the diameter of the circular target-movement (paired 

Student t-test: P<0.05). As with vertical saccades, subjects HH and PJ experienced 

double-images of the target in the upper oculomotor range. During monocular viewing, 

however, there was no significant difference in vergence-deficit between saccades and 

smooth-pursuit eye movements. 

In conclusion, during binocular viewing, asymmetrical adaptation was more complete for 

smooth-pursuit eye movements than for saccades. During monocular viewing, however, 

there was no significant difference in the degree of asymmetrical adaptation between 

saccades and smooth-pursuit. 

Versatility of asymmetrical adaptation 

Subject PJ repeated the experiments on another day. This time, however, he did not 

wear his anisometropic spectacles, which he had left off for about 1 hour prior to the 

experiment. It will be recalled that he normally wears them for only several hours a day, 
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Fig. 6.9 Recordings of saccades made by subject PJ. Viewing was monocular with the left eye. Left 
panels present recordings made without spectacles. Right panels present recordings made with the 
subject wearing his own, anisometropic spectacles. 

and that his intermittent wearing of his spectacles therefore requires that he either make 

asymmetrical eye movements or normal eye movements, depending on whether he has 

his glasses on or not. Figure 6.9 presents recordings of saccades of his two eyes during 

monocular viewing, both with and without his own spectacles. It is clear from this figure 

that the size-differences between saccades of the two eyes that were present while he 

wore his spectacles were markedly reduced when he did not wear them. In both 

conditions, however, viewing was monocular and therefore contained no direct stimulus 

for saccades of unequal size. During binocular viewing, there were no significant 

size-differences between saccades of the two eyes, except for the temporo-nasal 

asymmetries that normally occur (see Chapter 5). Vertical saccades made with both eyes 

viewing did not result in double-images of the upper targets, such as occurred with his 

spectacles on. 
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Mean post-saccadic drift-velocities in the uncorrected condition were somewhat different 

from when he had his spectacles on. However, these changes were entirely inconsistent. 

Smooth eye movements, made with one eye covered, in pursuit of the circularly moving 

target, were smaller in his right eye than in his left eye, which would meet the 

requirements of his spectacles, although he did not wear them at that time. With both 

eyes viewing, however, the two eyes made circular movements of equal size. In 

conclusion: the intermittent wearing of anisometropic spectacles by this subject was, 

under normal conditions (binocular viewing), adequately matched by a very versatile 

degree of asymmetrical adaptation. 

DISCUSSION 

The present experiments demonstrate that saccadic eye movements can adapt 

asymmetrically to the long-term wearing of anisometropic spectacles, which confirms 

and extends work done by Erkelens et al. (1989b). In addition, I found that long-term 

asymmetrical adaptation was also present in smooth-pursuit eye movements. As a result 

of asymmetrical adaptation, Hering's law of equal innervation is violated in the sense 

that these two kinds of (versional) eye movements become unequally large in the two 

eyes (for a discussion on Hering's law, see Chapter 2). Although Hering's law is also 

slightly violated in normal subjects, as was demonstrated ill Chapter 5, the violations that 

occur in asymmetrically adapted eye movements can be very striking. I shall now discuss 

the present results in further detail. 

Erkelens et al. (1989b) found in the subject they reported on that the asymmetrical 

adaptation to his long-term wearing of anisometropic spectacles was more complete for 

vertical saccades than for horizontal saccades. The same authors suggested that this 

meridional difference might possibly be explained by the fact that the fusional limits for 

vertical disparities are smaller than for horizontal disparities (Fender and Julesz, 1967; 

Piantanida, 1986; Erkelens, 1988). Asymmetrical adaptation would then occur up to the 

level that fixation disparities were reduced to within the fusional limits. In other words, 

loss of fusion might be the adequate stimulus for asymmetrical adaptation. Therefore, 

asymmetrical adaptations of saccades would be more complete for the vertical than for 

the horizontal meridian. However, in my experiments, vertical asymmetrical adaptations 
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were, for the group as a whole, equally complete as horizontal asymmetrical adaptations, 

although some idiosyncratic variations existed. The deficits of these asymmetrical 

adaptations were, for saccades in either meridian, almost always smaller than 0.75 deg 

during binocular viewing. These vergence-deficits equalled the fixation disparities at the 

end of the primary saccades during binocular viewing. Fixation disparities virtually always 

became smaller shortly afterwards due to asymmetrical secondary saccades, and also, for 

horizontal saccades, due to asymmetrical post-saccadic drift. As a consequence, fixation 

disparities at the time of saccadic offset, and also very shortly afterwards, were, for 

horizontal saccades, well within the fusional limits, which can be as large as about 2 deg 

(Erkelens, 1988). For this reason, and also because I found no better asymmetrical 

adaptation for vertical saccades than for horizontal saccades, despite narrower fusional 

limits along the vertical meridian than along the horizontal meridian, loss of fusion 

appears to be a less likely stimulus for asymmetrical adaptation than fixation disparity 

per se. In addition, if loss of fusion at saccadic offset were indeed the adequate stimulus 

for asymmetrical adaptation, the general increase that I observed in the vergence-deficits 

with the target amplitude, would presumably not have occurred. Instead, a more uniform 

vergence deficit across the range of target amplitudes would have been more likely. 

Furthermore, if diplopia at saccadic offset were the adequate stimulus, we would 

presumably experience double-images very frequently throughout the course of a lifetime, 

before asymmetrical adaptations to local changes within the oculomotor system, caused 

by ageing, disease or fatigue, would come about. Therefore, the limits of the stimulus 

for asymmetrical adaptation should a priori be narrower than the limits of fusion. 

Another point of interest is that I found no uniform percentage of asymmetrical 

adaptation at the various target amplitudes. This shows that asymmetrical adaptation~ 

does not result from the resetting of a few simple gain parameters that control the 

coordination of the two eyes. Such a simple resetting has, however, been put forward 

as a possible general control strategy for adaptation of the saccadic subsystem (e.g., 

Deubel, 1986). Erkelens et al. (1989b) have already pointed out, however, that the results 

of the experiments carried out by Deubel et al., which support such a hypothesis, could 

have been affected by a flaw in the experimental design. The present results suggest that 

asymmetrical adaptation occurs on a point-to-point basis in the topology of 

sensory-motor maps, in such a way that the vergence deficits, or fixation disparities 

during binocular viewing, remain within narrow limits. 
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Why is asymmetrical adaptation more complete during binocular viewing than during 

monocular viewing? An obvious explanation is that, during binocular viewing, both eyes 

receive direct visual information on the position of the newly selected target and, 

therefore, accurate motor commands can be computed for each individual eye. With one 

eye covered, this is obviously not the case. However, if unequally large saccades in the 

two eyes were programmed solely on direct asymmetrical visual information, saccades in 

the two eyes would probably not be unequal in size during monocular viewing. My 

results therefore suggest that the control of asymmetrical coordination of saccades of the 

two eyes consists of, at least, two components: 1) a fairly steady, hard-programmed 

interocular coordination, demonstrable during monocular viewing, which is not complete, 

but forms a basic level of interocular coordination, and which can only be modified 

slowly and through experience, and 2) a component that is complementary in action to 

the first one, and that requires direct, binocular visual information for the fine-tuning 

of accurate coordination of the two eyes. The hard-programmed component would 

presumably be too robust to meet the requirements of interocular coordination in 

normal life. One possible reason for this would be that most objects we look at vary 

both in direction and in distance, thus requiring slight departures from the basic 

interocular coordination of saccades. The second, fine tuning component would probably 

have a relatively small range. Therefore, without the complementary action of the first, 

hard-programmed component, the saccadic size-differences required by the spectacles 

would be beyond the range of this second, high-precision component. Support for such 

a limited range of the second component comes from the common experience that when 

a subject puts on anisometropic spectacles for the first time, he will perceive 

double-images. Only through continued experience will he be able to maintain fusion at 

all times. Adaptation will only be adequate if the contribution of one component is 

sufficiently complemented by the other. 

Possibly, the interocular coordination of normal, i.e., not asymmetrically adapted, 

saccades could be under similar, dual component control. As I demonstrated in Chapter 

5, even normal saccades become, during monocular viewing, slightly smaller in the 

covered eye than in the viewing eye. The hard-programmed component would then be 

responsible for the fairly good interocular coordination during monocular viewing, but 

it would take· the complementary action of the second, accurate component to make 
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saccades of the right size in each eye during binocular viewing. That the action of the 

supposed hard-programmed interocular coordination component is based on experience, 

most h"kely visual information, is supported by experiments run by Vilis et al. (1985) and 

Viirre et al. (1987). These authors patched one eye in monkeys for one week and saw 

that the saccades of the patched eye gradually changed in size (they became either 

smaller or larger), when compared with saccades of the viewing eye. 

Another striking feature of the asymmetrical adaptation of saccades to the wearing of 

anisometropic spectacles is that the degree of adaptation can be very versatile. This was 

demonstrated by the difference in asynunetrical adaptation in subject PJ either with and 

without his spectacles on. This difference was not only present during binocular viewing, 

but also during monocular viewing, which shows that he may change his 

hard-programmed asynunetrical adaptation very quickly. I do not know whether his 

hard-programmed asymmetrical adaptation can vary so rapidly between only two, more 

or less remembered, modalities, or whether it can vary equally rapidly over a wider range 

to meet any requirement. 

Two subjects experienced double-images in the upper oculomotor range when they made 

saccades, but also when they smoothly pursued the circularly moving target. One possible 

explanation for this poor asymmetrical adaptation might be that eye movements are 

normally made more frequently in the lower oculomotor range than in the upper 

oculomotor range. Therefore, the pressure for adaptation would be smaller in the higher 

oculomotor range than in the lower oculomotor range. This explanation was also given 

by Henson and Dharamshi (1982), who found that adaptation of vertical phorias to 

anisometropic spectacles was larger, and also more rapid, in the lower oculomotor range 

than in the upper oculomotor range. This phenomenon had also been described by 

Ellerbrock (1948). My two subjects did not experience double-images when they took off 

their glasses. 

The asymmetrical changes in post-saccadic drift were very small and restricted to 

horizontal saccades. These changes presumably reflect asynunetrical, adaptive resettings 

of the pulse-step ratios, that characterize the motor commands to the external 

eye-muscles for the generation of saccades. These very slight asynunetrical changes in 

post-saccadic drift-velocities contrast with the dramatic changes in post-saccadic drift 
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associated with palsies of one or more external eye-muscles (Kommerell et al., 1976; 

Abel et al., 1978; Snow et al., 1985; Optican and Robinson, 1980; Optican et al., 1985). 

One explanation for this difference might be that my subjects had adapted maximally, 

so that the pulse and the step of either eye apart were closely matched to each other. 

In the monkey, large asymmetries in post-saccadic drift, secondary to unilateral 

tenectomies of external eye-muscles gradually became less when viewing was binocular 

for several weeks (Snow et al., 1985). It remains to be seen, whether short-term 

asymmetrical adaptation, to be discussed in the following Chapters, is associated with 

different asymmetries in post-saccadic drift from long-term asymmetrical adaptations. 

Another explanation for the differences in post-saccadic drift-asymmetries between my 

subjects and subjects with unilateral external eye-muscle palsies might be that the sizes 

of the retinal images in the two eyes were different in my subjects, whereas this was not 

the case in the subjects having paretic eye-muscles. In addition, the eye-muscles of my 

subjects were not affected. Therefore, the asymmetrical adaptations required in either 

condition might result from different adaptive processes, and consequently yield different 

asymmetries in post-saccadic drift. 

Little is known about adaptive processes of smooth-pursuit eye movements (for a review, 

see Berthoz and Melvill Jones, 1985). Except for one short communication by Horner 

et al. (1988), asymmetrical adaptations of smooth-pursuit eye movements have, to my 

knowledge, not been described before. An important feature of smooth-pursuit eye 

movements is that the movements are relatively slow, which allows continuous visual 

feedback. In contrast, saccades are not controlled by continuous visual feedback (see 

Chapter 1). The continuous visual feedback that takes place during smooth-pursuit eye 

movements may possibly explain why the vergence-deficits that I observed during 

binocular viewing were smaller when my subjects tracked the slowly moving target than 

when they made saccades. However, this difference in vergence-deficits can also be partly 

explained by the fact that saccades usually undershoot their target and are then followed 

by one or more secondary saccades which in turn may reduce the vergence deficits, 

present at the offset of the primary saccades. In addition, post-saccadic drift of 

horizontal saccades also reduced the vergence-deficits. 

More importantly, asymmetrical adaptations of smooth-pursuit eye movements were also 

present when one eye was covered. The vergence-deficits, used as a measure of 
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asymmetrical adaptation, were similar to those associated with monocularly viewing 

saccades, and they were also larger than during binocular viewing. I may therefore 

speculate that asymmetrical adaptation of smooth-pursuit eye movements occurs in a way 

similar to that for the saccadic subsystem, viz., with a hard-programmed, fairly robust and 

incomplete component, as well as with a complementary, precise component, that 

requires direct, binocular visual information. In the present experiments, the hard-wired 

component was equally powerful with smooth-pursuit eye movements as with saccades, 

in terms of vergence-deficits. I feel, however, that the number of data are too limited 

to speculate on the possibility of structures, shared by both eye movement subsystems, 

that control interocular coordination. 

An interesting question is whether the target-positions, as viewed through anisometropic 

spectacles can be mimicked by positions of natural targets, i.e., viewed without such 

glasses. Along the horizontal meridian this is indeed possible. Objects in a frontoparallel 

plane, seen through anisometropic spectacles, are positioned as if that plane is rotated 

around a vertical axis. Along the vertical meridian, however, there are no positions of 

natural targets that could simulate targets as seen through anisometropic spectacles, 

which will now be explained. The position of a natural target \Vill always have the same 

elevation for either eye. Seen through anisometropic spectacles, however, most positions 

(all tertiary positions and those along the vertical meridian, except for the primary 

position) of any visual target will have different elevations for either eye. In conclusion, 

anisometropic spectacles present visual targets in positions that cannot be simulated by 

natural targets. 

A drawback of the present experiment was that the lens-prescriptions were very 

heterogeneous. In the following chapters, which focus on short-term asymmetrical 

adaptations to anisometropic spectacles, I shall therefore study these adaptations more 

systematically, i.e., with the same spectacles for every subject. 
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CHAPTER 7 

SHORT-TERM ASYMMETRICAL ADAPTATION 

IN1RODUCTION 

In the previous chapter, I discussed asymmetrical adaptations of saccades, and also of 

smooth-pursuit eye movements in habitual, or long-term, spectacle-wearers. I shall now 

examine the adaptations that take place when anisometropic spectacles are worn for only 

several hours by normal subjects. Erkelens et al. (1989b) showed that asymmetrical 

adaptations of saccadic eye movements to 2 D of anisometropia already take place 

within about 8 hours. In the present chapter, I shall extend their study by exploring 

the rate as well as the limits of such short-term adaptations. To that end, I systematically 

varied both the time of wearing of the spectacles (range: 1 to 6 hours) and their degree 

of anisometropia. Because an asimetropia of about 5 D is, as a clinical rule of thumb, 

considered to be the upper limit of what may be tolerated, I adopted some 

anisometropias that were smaller, but also some that were larger than 5 D. To allow 

comparison between horizontal and vertical adaptations, I only used spherical lenses. In 

addition, I shall examine short-term asymmetrical adaptations of smooth-pursuit eye 

movements. 

METHODS 

Subjects 

Three subjects took part in these experiments. They were between 25 and 28 years old. 

None of them had any history of ocular or oculomotor pathology. These three subjects 

had refractive anomalies in both eyes that were corrected by hard contact-lenses. With 

their own corrections, my subjects had visual acuities of 5/5 or better in either eye. Since 

binocular vision was regarded as essential for asymmetrical adaptation, all three subjects 
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were tested on stereoscopic vision (test charts: 1NO tests for stereoscopic vision), which 

proved to be good in either one (thresholds: 60 sec arc or better). 

Adaptation stimuli 

Subjects were supplied with spectacle-frames that contained only one lens, fitted in front 

of the right eye. This lens was spherical and its refractive power was -2, -4, -6 or -8 D. 

In order to maintain the same, good visual acuity with every pair of spectacles, subjects 

replaced their own right-sided contact-lens by one that countered the refractive power 

of the spectacle-lens, and, in addition, corrected the subject's own refractive anomaly. 

The overall effect of this spectacle-lens/contact-lens combination was as follows: the 

spectacle-lens reduced the size of the retinal image in the right eye, whereas the contact

lens compensated for the blurring the spectacle-lens induced. As I explained earlier 

(Chapter 6), a contact-lens only minimally affects the size of the retinal image, and, 

more importantly, it does not call for any changes in the size of eye movements, because 

it moves along with the eye. The use of this combination required that my subjects were 

already well habituated to the wearing of hard contact-lenses. Therefore, the number 

of subjects was rather small. Soft contact-lenses could not be used, because they cannot 

be worn together with the sensor coils with which I recorded eye movements (see 

Chapter 3). Before the subjects actually started wearing the spectacles, baseline 

recordings were made. On another day, they began to wear the anisometropic spectacles, 

beginning with the spectacles having the smallest anisometropia (2 D), for 1 hour 

continuously. On separate days, the wearing-time of the same spectacles was gradually 

increased to 2, 4 or 6 hours at a stretch. To reduce any possible carrying over of long

lasting asymmetrical adaptations between successive sessions, the days the spectacles 

were worn were interleaved by two or more days that no adaptation was required. The 

same procedure was thereafter followed with spectacles having gradually larger 

anisometropias ( 4, 6 or 8 D). This entire conditioning-programme, which consisted of 

sixteen sessions on which spectacles were worn for a variable amount of time, were 

spread, for every subject, over more than two months. While wearing the spectacles, 

the subjects went on with their normal daily activities. To allow a direct comparison with 

the results of Erkelens et al. (1989b ), the three subjects were finally also fitted with one 

positive lens ( +2 D) in front of the right eye for 6 continuous hours. 
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Experimental procedures 

After the completion of each adaptation-period, i.e., the time that the anisometropic 

spectacles were worn, magnetic sensor coils were put onto each of the eyes. To that end, 

the spectacles had to be taken off temporarily, and care was taken that one eye 

remained covered at all times, to prevent any symmetrical visual input, that could 

possibly undo the effects of the spectacle-wearing. Thereafter, the actual experiments 

were run. The procedures of these were very similar to those described in the previous 

two chapters and they will now be described in brief. During the trials, the subjects 

continued to wear the spectacles. The subjects were seated facing the white, toroid 

screen that provided no stimulus for disjunctive eye movements. Subjects made repetitive 

gaze-shifts between two, continuously present, bright-red He-Ne laser spots at a 

comfortable pace, indicated by a sound that beat steadily at a rate of 45/minute. The 

subjects were asked to carry out the gaze-shifts as accurately as possible. The targets 

were positioned symmetrically about the straight-ahead position, 10 or 30 deg apart, 

either horizontally or vertically. At the beginning of each trial, the targets were displayed 

in their new position, which allowed the subjects to practise if they wanted to. Actual 

data-collection lasted 12 s for each trial and was started by the subjects themselves 

when they felt ready for the task. Subjects were asked not to blink during data 

collection, to avoid the occurrence of associated eye movements (Collewijn et al., 1985). 

Viewing was binocular, or monocular with either eye. The order of the trials was 

randomized for every subject. After completing the saccade trials, the subjects tracked 

a single target that made a uniform, circular movement (diameter of the circle: 30 deg), 

both during binocular viewing and during monocular viewing with either eye. The 

recordings were stored on disk. Recordings made of steady fixations of targets with 

known positions during monocular viewing with either eye, made without the spectacles, 

enabled us to finely recalibrate and to linearize the recordings and also to express all 

eye-positions in Helmholtz's coordinates (for details see Chapter 3). 

Data analysis 

All recordings were analysed by a special computer programme, which computed 

saccade-size and mean post-saccadic drift-velocity of every saccade, according to standard 

criteria (as described in Chapter 5). These results were thereafter submitted to another 

computer programme (SPSS-X) for statistical analysis. The numbers of data were 
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balanced for the four conditioning-periods, the four degrees of anisometropia, the two 

meridians, the two target amplitudes and the direction of the saccades. I then calculated 

the size-differences between concomitant saccades of the two eyes, as well as the 

vergence-deficits at saccadic offset. Vergence-deficit (see Chapter 6) was defined as the 

difference between the required difference in saccade-size between the two eyes, as 

measured from monocular fixations made through the spectacles of targets with known 

positions, and the actual difference in size of concomitant saccades. Mean values were 

calculated and the same data were also submitted to a multivariate analysis of variance 

(MANOV A). To meet the requirements of normal distributions and homogeneous 

variances, all parameters were logarithmically transformed. 

RESULTS 

Saccade-size 

Asymmetrical adaptations of saccades occurred in all three subjects. These adaptations 

were already present after only 1 hour of continuous wearing of any of the four different 

anisometropic spectacles, which varied in anisometropia from 2 to 8 D. Differences in 

asymmetrical adaptations between subjects were very small. Therefore, only main trends 

will be discussed. The short-term adaptational asymmetries were manifest during 

binocular viewing, and also during monocular viewing. Figure 7.1 presents some typical 

recordings of horizontal saccades, before and after adaptation to only 2 D of 

anisometropia during 1 hour, made with the right eye covered (i.e., the eye that was 

required to make the smaller eye movements). In this figure, the right, covered eye 

made, after conditioning, saccades that were about 1.5 deg smaller than those of the left, 

viewing eye. 

Both the duration of the wearing of the anisometropic spectacles and the degree of 

anisometropia affected the magnitude of the short-term asymmetrical adaptation of 

saccades. The magnitude of these effects varied, however, also with the target amplitude 

(10 or 30 deg), the viewing condition (binocular or monocular viewing) and the meridian 

(horizontal or vertical). I shall now discuss these rather complex adaptational effects in 

greater detail. In Fig. 7.2 I present mean values of the differences in saccadic size 

between the two eyes as a function of the wearing-time of the spectacles for every 
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Fig. 7.1 Typical recordings of horizontal saccades of each eye made with the left eye viewing. The left 
panel shows baseline recordings, and the right panel shows recordings made after 1 hour of adaptation 
to 2 D of anisometropia. Target amplitude: 30 deg. 
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Fig. 7.2 Mean differences in saccadic size between the two eyes, plotted as a function of the 
conditioning-time, for the four degrees of anisometropia. These data relate to horizontal saccades made 
during binocular viewing at a target amplitude of 30 deg. 
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Fig. 7.3 Mean vergence-deficits plotted as a function of the conditioning time. These data relate to the 
same saccades as in Fig. 7.2. 

anisometropia tested. As mean values, averaged for the two target amplitudes, the three 

viewing conditions and the two meridians would not be very meaningful, the data of this 

figure relate only to horizontal saccades, made between targets that were positioned 30 

deg apart, while viewing was binocular. During monocular viewing and also at the 

smaller target amplitude (10 deg) the asymmetrical size-changes of horizontal saccades 

differed only quantitatively, but not qualitatively from these results. The figure shows that 

the saccadic size-differences between the two eyes increased with the anisometropia of 

the spectacles (F3,6 = 8.90; P<0.05). Above 6 D of anisometropia, however, there was 

no significant rise (P>0.9), which suggests that a critical limit of the sensitivity to 

asymmetrical adaptation had been reached. After only 1 hour of adaptation, saccades 

of the two eyes differed in size by about 1.6 deg for the smallest anisometropia (2 D) 

up to about 2.8 deg for the two largest anisometropias (6 D and 8 D). With prolonged 

wearing of the spectacles, the differences in saccadic size between the two eyes generally 

increased. This increase occurred, compared with the first hour of adaptation, rather 

104 



slowly. It averaged about 0.7 deg over 5 hours (F3,6 = 7.56; P<0.05). However, with the 

smallest anisometropia (2 D), the difference in magnitude between saccades of the two 

eyes, did not increase with prolonged wearing. Instead, this difference gradually went 

down by about 0. 7 deg, becoming approximately 0.9 deg after 6 hours of adaptation 

(F9,ts = 4.37; P<0.005). 

To examine the efficacy of these short-term adaptations, I have plotted the mean 

vergence-deficits at saccadic offset as a function of the conditioning-time for the various 

anisometropias in Fig. 7.3. These data relate to the same, horizontal saccades as in 

Fig. 7.2 (30 deg saccades, binocular viewing). Vergence-deficits went up with larger 

anisometropias (F3,6 = 97.2; P<0.0005). At the smallest anisometropia (2 D), they were, 

on average, only about 0.1 deg. With the largest anisometropia (8 D) vergence-deficits 

were much larger: about 2.5 deg after 1 hour of adaptation (for horizontal, 30 deg 

saccades during binocular viewing). By comparing Fig. 7.2 with 

Fig. 7.3, one can conclude that, in spite of the fact that the difference in saccadic size 

between the two eyes generally increased with the anisometropia, these asymmetrical 

adaptations also fell increasingly short at larger anisometropias. As a consequence, the 

average degree of asymmetrical adaptation of horizontal saccades made during binocular 

viewing went down from about 90% for the 2 D anisometropia to about 60% for the 8 

D anisometropia. 

With 4 D of anisometropia, adaptation of horizontal saccades (binocular viewing). was 

almost complete after only 6 hours of adaptation (Fig. 7.3). With 6 D of anisometropia, 

the asymmetrical adaptation occurred at about the same rate as with 4 D of 

anisometropia, but it was still not complete after 6 hours. As this duration of adaptation 

is fairly short, the asymmetrical adaptation to 6 D of anisometropia would presumably 

have improved with prolonged wearing of the glasses. It is less clear what the 

time-course of adaptation beyond 6 hours of conditioning to 8 D of anisometropia would 

be like, because all three subjects were better adapted after 4 hours than after 6 hours 

of adaptation. As was already pointed out in relation to Fig. 7.2, the magnitude of 

asymmetrical adaptation surprisingly went down with prolonged wearing of 2 D 

anisometropic spectacles. This decline in adaptational asymmetry of horizontal saccades 

occurred in all three subjects. 
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Fig. 7.4 Mean differences in size between vertical saccades of the two eyes, plotted as in Fig. 7.2. 
Viewing was binocular and the target amplitude equalled 30 deg. 

For vertical saccades, differential changes in size were two- to four-fold smaller than for 

horizontal saccades (F1,2 = 46.7; P<0.05). To quantify the vertical adaptations, I have 

plotted in Fig. 7.4 the mean differences in saccadic size between the two eyes for vertical 

saccades, as a function of the spectacle wearing-time for the four various anisometropias. 

Like Fig. 7.2, Fig. 7.4 relates to binocular viewing and a 30 deg target amplitude. 

Changes in the yoking of vertical saccades averaged about 0.5 deg after 1 hour of 

adaptation. Unlike with horizontal saccades, these changes did not increase with the 

anisometropia. With continued conditioning, however, the differences in size between 

saccades of the two eyes became slightly larger and amounted to about 1.0 deg in 5 

additional hours. This increase by about 0.5 deg was about as large as with horizontal 

adaptations. This adaptational increase in asymmetry occurred also with the 2 D 

anisometropia, which contrasts with the decline in asymmetry that was observed in 

horizontal saccades. As a result of the poorer adaptation of vertical saccades, compared 

to those of horizontal saccades, the vergence-deficits at saccadic offset of vertical 
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saccades were relatively large. On average, they were about 2.5 deg larger than with 

horizontal saccades, and sometimes as large as 5 deg. 

Although I did not systematically examine fusion, all three subjects frequently 

experienced vertical double-images, which were farther apart with larger anisometropias, 

notably in the upper oculomotor field. With anisometropias of 4 D and smaller, fusion 

was usually complete after 6 hours of conditioning in all eye-positions. 

Virtually the same trends as were described above existed, for each meridian and for 

each subject, during monocular viewing, and also for the smaller target amplitude of 

10 deg. However, the magnitudes of these adaptational changes were significantly 

different, as will now be discussed in more detail. Figure 7.5 presents mean differences 

in saccadic size between the two eyes for the two various target amplitudes after 6 hours 

of conditioning. I have also distinguished between the four degrees of anisometropia, the 

two meridians and the viewing conditions (i.e., binocular viewing or monocular viewing 

with either eye). This figure shows that, during binocular viewing, the differences in 

saccadic size between the two eyes were generally larger than during monocular viewing 

(Fz.4 = 14.8; P<0.05). Furthermore, this effect of the viewing condition was larger for 

horizontal saccades than for vertical saccades (Fz.4 = 7.18; P<0.05). For horizontal 

saccades, made at a target amplitude of 30 deg, the viewing condition affected the yoking 

of saccades by as much as about 0.8 deg, as opposed to about 0.2 deg for vertical 

saccades. However, with 2 D of anisometropia the difference in size between horizontal 

saccades of the two eyes was, after 6 hours of adaptation, equally large in either viewing 

condition. In fact, the gradual decrease in saccadic asymmetry with prolonged adaptation 

to 2 D of anisometropia, following an initially large asymmetry after 1 hour of 

conditioning (Figs 7.2 and 7.3), was also present in monocular viewing. It is also clear 

from Fig. 7.5 that the difference in saccadic size between the two eyes was, not 

surprisingly, larger at the larger target amplitude than at the smaller target amplitude 

(F~,2 = 126.1; P<0.01). This increase was four- to five-fold for horizontal saccades and 

about two-fold for vertical saccades. Compared with the exactly three-fold increase that 

was required by the spectacles, it is clear that the degree of adaptation was not a fixed 

percentage of these requirements. 
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All these results show that short-term asymmetrical adaptation of vertical saccades was 

less complete than for horizontal saccades, which contrasts with results by Erkelens et 

al. (1989b ), who found that such adaptation was either equally complete in the two 

meridians or more complete for vertical saccades than for horizontal saccades. The main 

difference between their study and ours was that they used a positive spectacle-lens, 

instead of the negative lenses I used. I therefore repeated the experiment by Erkelens 

et al. by having my subjects also wear, for 6 continuous hours, a positive, spherical lens 

with the same refractive power ( +2 D) in front of the right eye. With the exception that 

eye movements of the right eye now were larger than those of the left eye, there was 

no significant difference in asymmetrical adaptation, compared to when the subjects had 

worn -2 D for 6 continuous hours. 

Fig. 7.5 Mean differences in saccadic size between the two eyes ( + SD) for horizontal and vertical 
saccades after 6 hours of conditioning. Distinctions are made for the two target amplitudes, the two 
viewing conditions (left eye viewing and right eye viewing pooled) and the four degrees of anisometropia. 
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Post-saccadic drift 

Post-saccadic drift was also differentially adapted for either eye (P < 0.05). When the 

right eye, i.e., the eye provided with the negative spectacle lenses, made abducting, 

rightward saccades, backward post-saccadic drift ensued which increased in velocity with 

the anisometropia (Fig. 7.6). As an example, baseline mean velocities of this backward 

drift were about 0.1 deg/s, whereas they became as high as about 2 deg/s with 8 D of 

anisometropia. The concomitant, adducting saccades of the fellow eye also showed 

increasingly higher post-saccadic drift-velocities at larger anisometropias. These velocities 

could become as high as about 2.1 deg/s (baseline: 0.6 deg/s). However, this drift was 

directed onward, as opposed to the backward post-saccadic drift of the right eye. 

Therefore, the asymmetrically adapted post-saccadic drift for these, rightward, saccades, 

reduced the vergence-deficits existing at saccadic offset. likewise, post-saccadic drift of 

leftward saccades was also asymmetrically adapted, to have the same effect of reducing 

the vergence-deficits (Fig. 7.6). These results confirm similar findings by Erkelens et al. 

(1989b ). Post-saccadic drift of vertical saccades proved to be not significantly affected 

by the short-term wearing of anisometropic spectacles. 

Fig. 7.6 Mean post-saccadic drift-velocities ( + SD) of abducting saccades (left panel) and adducting 
saccades (right panel) for the various degrees of anisometropia. Positive drift-values indicate onward 
drift; negative drift-values indicate backward drift. 
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Fig. 7.7 Typical recordings of both eyes made during the smooth-pursuit task after 6 hours of 
adaptation to the four various degrees of anisometropia. The recordings displayed in the left panels were 
made during binocular viewing; the right panels relate to monocular viewing with the left eye. 
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Smooth-pursuit 

As with the saccades, smooth-pursuit eye movements became unequally large on either 

side after adaptation to the anisometropic spectacles. Again, the asymmetries were larger 

during binocular viewing than during monocular viewing. As with saccades, the 

adaptations were more complete along the horizontal meridian than along the vertical 

one. All these effects are illustrated in Fig. 7.7, which displays typical recordings under 

various conditions. Asymmetries generally became larger with increasing anisometropias, 

although this increase appeared to have reached its maximum at an anisometropia of 

6 D. Prolonged wearing of the spectacles only slightly affected the difference in size 

between the movements of the two eyes. Along the horizontal meridian, the largest 

increase in adaptive asymmetry was, just as with saccades, achieved within only 1 hour 

of adaptation. 

Perception 

A remarkable subjective phenomenon occurred in every subject. After wearing the 

anisometropic glasses for several hours, the visual world became distorted in such a way 

that all objects on the right side of the visual field appeared smaller, and at the same 

time, closer by. This illusion, associated with anisometropic spectacles, was also described 

by Ogle (1962). When the subjects took off their spectacles, after completion of the 

measurements, they occasionally observed double-images, notably during downward or 

upward gaze. These effects were transient and usually disappeared within about 3 

minutes of normal binocular viewing. All subjects were under the impression that it took 

more time to adapt to the spectacles, than to readapt back to normal. No recordings of 

eye movements were made during readaptation to sustain this subjective impression with 

objective recordings. 
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DISCUSSION 

The present experiments demonstrate that saccades, and also smooth-pursuit eye 

movements, may adapt asymmetrically to anisometropic spectacles in a very short period 

of time. Large asymmetries occurred in as little as 1 hour. Such very short-term 

adaptations have, to my knowledge, not been reported before. The remarkable speed 

and magnitude of these very short-term adaptations suggest that the oculomotor system 

may normally also adapt rapidly and to an adequate extent to changes that take place 

as a result of growth, ageing, disease or fatigue. This flexibility of the oculomotor system, 

which presumably also applies somewhat similarly to other sensori-motor control systems, 

suggests that many such changes remain concealed. 

A remarkable feature of horizontal short-term adaptations was, that the largest change 

in adaptive asymmetries had developed within only 1 hour of conditioning. Thereafter, 

adaptations continued relatively slowly. Time-courses of adaptational changes of the 

saccadic subsystem have been reported earlier. On a larger time-scale than in the present 

experiments, Abel et al. (1978) closely followed the adaptational changes in saccade-size 

in a patient who had suddenly developed a unilateral medial rectus paresis. By covering 

the normal eye for about 1 week, they observed that the saccades of the paretic eye 

gradually became larger in the appropriate direction. The largest change occurred during 

the first day. On the days that followed, adaptive changes were considerably smaller. 

They fitted an exponential curve to the time-course of these adaptive changes. The time 

constant they reported was 0.85 days. Deubel et al. (1986) and Deubel (1987) had 

subjects, and also monkeys, track a target that jumped. During the execution of the 

saccade, the target made a smaller, second jump, either consistently in the same 

direction, or, on different occasions, consistently in the opposite direction as the first 

step. They observed that the size of the primary saccades adapted adequately (i.e., 

became larger or smaller, depending on whether intra-saccadic target-displacements had 

been onward or backward, respectively) in as little as a few hundred trials. Again, the 

rate of these adaptations roughly followed an exponential time-course, being fastest at 

the beginning of the ~xperiments. Although the experiments of Abel et al. (1978), 

Deubel et al. (1986) and Deubel (1987) related only to symmetrical adaptations of 

saccades, my present results suggest that somewhat similar time-courses also apply to 

asymmetrical adaptations. The rate of asymmetrical adaptation during the first hour of 
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conditioning remains unclear. To elucidate this point, saccades would have to be 

recorded from the moment that asymmetrical adaptive changes were called for. Erkelens 

et al. (1989b) recorded saccades of both eyes, while trying to bring about asymmetrical 

adaptations of saccades, by having subjects repetitively make saccades for 30 minutes 

between the same, stationary targets. The positions of these targets required that the 

saccades were not equally large in the two eyes (the gaze-changes entailed both changes 

in version and in vergence). In this condition, in which no anisometropic spectacles were 

worn, no adaptive changes occurred. Presumably, the stimulus was either not 

appropriate, or not powerful enough to induce asymmetrical adaptations. In addition, 

failure to induce asymmetrical adaptation possibly occurred, because in their 

experimental design, the two targets did not fully resemble two similar targets in the 

frontoparallel plane, as viewed through anisometropic spectacles. I shall mention only 

a few differences, which may possibly have affected their results. First of all, in their 

experiment, one target was closer than the other, thereby containing a stimulus for 

accomodation. Secondly, the closer target presumably appeared brighter than the more 

distant one. Thirdly, if the positions of the targets had an elevation (either upward or 

downward) with respect to the positions of the eyes, those target-positions would not 

resemble those of elevated targets viewed through anisometropic spectacles, because a 

natural target has the same elevation for both eyes, whereas a target viewed through 

anisometropic spectacles has different elevations for each eye (see Chapter 6). Finally, 

if anything else but the targets were visible in the experiment by Erkelens et al. (1989b ), 

it might have provided conflicting stimuli, thereby preventing asymmetrical adaptation 

to develop. 

In contrast with the horizontal asymmetrical adaptations, which reached a substantial 

magnitude in only 1 hour of conditioning, thereby displaying the somewhat exponential 

time-course mentioned above, vertical asymmetrical adaptations were comparatively 

small, despite equally large pressures for such adaptation along either meridian. Due to 

the variability of my data it remains inconclusive whether the vertical adaptations also 

followed pseudo-exponential time-courses. Insight into the various time-courses could 

possibly provide helpful information in solving the question whether adaptations along 

either meridian were fundamentally different or not. 
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Another important meridional difference in asymmetrical adaptation deserves attention. 

The present experiments show that the rate and the degree of these short-term 

adaptations are not uniform for every meridian. In my subjects, the most predominant 

adaptive changes occurred along the horizontal meridian. However, the investigations of 

short-term asymmetrical adaptations by Erkelens et al. (1989b ), showed larger changes 

along the vertical meridian than along the horizontal one. I ruled out the possibility that 

this discrepancy could be due to the different kind of spectacle-lens they used. 

Therefore, it is most likely that idiosyncrasies underly the conflicting outcomes of these 

two studies. Consequently, one has to be cautious in drawing far-reaching conclusions 

from the differences in adaptation between the two meridians. Erkelens et al. proposed 

that the adequate stimulus for asymmetrical adaptations could be related to loss of 

fusion. They reasoned that, as the fusional limits for vertical disparities are smaller than 

for horizontal disparities, the pressure for asymmetrical adaptation would be larger for 

vertical saccades than for horizontal saccades. This matched their observation that 

vertical adaptations were indeed more complete than horizontal adaptations. However, 

my present results, and also those of Chapter 6 do not support the general validity of 

this conclusion. Therefore, loss of fusion does not appear to be the adequate stimulus 

for asymmetrical adaptation. No matter what the adequate stimulus may be, it is clear 

that the completeness of asymmetrical adaptation (see Chapter 6), as well as the speed 

of its development (this chapter), may vary for either meridian. These variations appear 

to be idiosyncratic. Whether the variations in asymmetrical adaptations are due to 

variations at an input level (i.e., variability in sensitivity) or at an output level (motor

variability) remains unclear. In any case, the asymmetrical adaptations are not uniform 

'for either meridian. Therefore, it appears likely that each meridian can be adapted 

selectively. This matter will be dealt with in the following two chapters. 

During conditioning, adaptive changes also appear to take place at an input-level. I 

observed that, with 2 D of anisometropia, differences in saccadic size between the two 

eyes, after an initial rise following 1 hour of spectacle-wearing, went down with 

prolonged wearing in all subjects (for horizontal saccades). This suggests that the 

sensitivity for the stimulus that drives asymmetrical adaptation decreased gradually with 

time. With larger anisometropias, I did not observe any reduction of the asymmetry that 

had first developed. Because asymmetrical adaptations were, however, far from complete 

with these larger anisometropias, as opposed to the almost perfect adaptation that had 
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been achieved in 1 hour with the 2 D anisometropia, it appears that such reduction in 

sensitivity may only occur when a critical, high degree of asymmetrical motor -adaptation 

has been reached. Possibly, this fall in the sensitivity to the stimulus that drives 

asymmetrical adaptation, is parallelled by adaptive changes at a sensory level, i.e., at a 

level where the two foveal images are fused. Although such adaptive changes at a 

sensory level are somewhat speculative, they would explain why many habitual spectacle

wearers (Chapter 6) were also only partly adapted. 

I also observed short-term asymmetrical adaptations of post-saccadic drift, which confirm 

somewhat similar findings by Erkelens et al. (1989b ). Asymmetrical adaptations of post

saccadic drift, secondary to unilateral tenectomies of external eye-muscles have also been 

reported in monkey (Snow et al., 1985). Post-saccadic drift of smaller saccades usually 

has a slightly lower mean-velocity than the drift that follows larger saccades (Chapter 5). 

Therefore, nonconjugate post-saccadic drift could, in principle, merely be an 

epiphenomenon of the smaller saccades, that are made after asymmetrical adaptation to 

anisometropic spectacles. In that case, the change in yoking would only be characterized 

by a small reduction in mean drift-velocities of the eye that made the smaller saccades. 

Because I observed that post-saccadic drift had not simply become slower in the eye that 

made the smaller saccades, but, instead had changed in the direction appropriate for 

adaptation, I conclude that the change in yoking of the two eyes during post-saccadic 

drift was truly adaptive, and not just an epiphenomenon. It is known that, in monkey, 

post-saccadic drift may adapt independently of saccades (Optican and Miles, 1985). 

These results suggest that adaptive motor-changes occur at various levels. 

Smooth-pursuit eye movements also adapted asymmetrically in a short period of time. 

In fact, they closely followed the asymmetrical adaptations of saccades. This brings up 

the question whether these two very different kinds of eye movements, and possibly also 

other eye movements, are controlled, as far as the yoking of the eyes is concerned, by 

the same pre-motor circuits. The present results cannot answer this question conclusively, 

because my subjects carried out their normal daily activities during the conditioning 

periods, and therefore received plenty of adaptational stimuli for either type of eye 

movement. Only by not making one of the two kinds of eye-movements during the 

adaptation-period, could one possibly find out whether these two oculomotor subsystems 

share a set of pre-motor circuits that control the yoking of the two eyes. An appropriate 
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experimental design would, however, be highly artificial, and might therefore yield 

meaningless results. 

At present, there is little known about adaptations of smooth-pursuit eye movements (for 

a review, see Berthoz and Melvill Jones, 1985). The present results confirm those of 

Horner et al. (1988), who found asymmetrical vertical smooth-pursuit eye movements 

after 2 hours of adaptation to aniseikonia. Optican et al. (1985) studied smooth-pursuit 

eye movements in patients with unilateral eye-muscle palsies. However, they confined 

their observations to the adaptive processes that occurred after patching one eye. As far 

as other eye movements are concerned, asymmetrical adaptations of the vestibula-ocular 

reflex have been reported in monkey after external eye-muscles had been unilaterally 

severed (Snow et al., 1985). There is some evidence that, in man, asymmetrical 

adaptation of the vestibula-ocular reflex may develop to aniseikonia within 24 hours 

(Collewijn et al., 1983; Schor et al., 1988). 
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CHAPTER 8 

MERIDIAN-SPECIFIC ASYMMETRICAL ADAPTATION OF 

HORIZONTAL AND VERTICAL SACCADES 

INTRODUCTION 

In the previous two chapters, I demonstrated asymmetrical adaptations of saccades, and 

also of smooth-pursuit eye movements, to the wearing of anisometropic spectacles. I 

observed that these adaptations differed in magnitude and rate for the horizontal and 

the vertical meridian. Those differences suggest that the adaptational processes which 

take place in one meridian may be independent of those in the other, orthogonal 

meridian. Such an independence could possibly enhance the specificity of the adaptive 

properties of the oculomotor system. In general, a capacity to adapt very specifically to 

certain changes within the oculomotor system would presumably be very important to 

protect against any loss in the overall quality of oculomotor control, that could result 

from such changes. In the present chapter, I shall examine whether asymmetrical 

adaptation of saccades, and also of smooth-pursuit eye movements may take place in one 

meridian only (either horizontal or vertical), without affecting such eye movements in the 

orthogonal meridian. 

METHODS 

Subjects 

The same nine subjects that took part in the baseline-experiments described in 

Chapter 5 participated in the current experiments. They had no history of ocular or 

oculomotor pathology, and their visual acuities were good in either eye. Normal 

binocular function (in particular stereopsis), assumed to be essential to successful 

asymmetrical adaptation, was also present in each subject. 
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Conditioning 

All subjects were supplied with anisometropic spectacles that contained a plano

cylindrical spectacle-lens (-3 D) in front of the right eye. The effect on the size of the 

retinal image of such a cylindrical lens is illustrated in Fig. 8.1. This figure shows that, 

with the lens-axis positioned vertically, the visual image is reduced along the horizontal 

meridian only, virtually not affecting the size along its vertical meridian. When the lens 

is rotated by 90 deg (i.e., with its axis positioned horizontally), only the vertical meridian 

is affected in size. The left eye was not supplied with a lens. 

Vertical cylinder Horizontal cylinder 

<0> <0> 

Horizontal reduction Vertical reduction 

Fig. 8.1 Schema of the effects of the cylindrical lenses and their axis-positions on the size of the visual 
image (cf. with Fig. 6.1). 

The subjects wore these anisometropic spectacles, with the axis of the right lens 

positioned horizontally on one day and vertically on another day, for 7 continuous 

hours. During this adaptation-period, the subjects carried out their normal daily 

activities. At the end of the adaptation-period, I ran the actual measurements. 
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Experimental procedures 

During the actual measurements, the subjects wore the anisometropic spectacles. The 

experimental design was similar to the one descnbed in Chapter 5. In short, subjects 

made repetitive saccades between stationary targets that were projected symmetrically 

around the straight-ahead position, onto a white, iso-vergence surface (discussed in 

Chapter 3). The target amplitudes were 5, 10, 20 or 30 deg, both along the horizontal 

and along the vertical meridian. The saccades were made to a sound beating at a 

comfortable pace of 45/minute. Data collection lasted 12 s for every trial, initiated by the 

subjects themselves by pressing a button. The order of the trials was randomized for 

every subject. Viewing was either binocular or monocular with either eye. Subjects were 

requested to refrain from blinking, in order to prevent the occurrence of associated eye 

movements (Collewijn et al., 1985). Following the saccade-experiments, the subjects 

tracked a single target that moved along the iso-vergence screen in a circle at a slow, 

regular velocity (about 11 deg/s ). Again, viewing was binocular or monocular with either 

eye. During all these measurements, the head was stabilized by means of a forehead- and 

chin-support. At the end of all trials, I had the subjects monocularly fixate targets with 

known positions by the right eye, viewing through the spectacles, to measure the target 

amplitudes for that eye. By subtracting these target amplitudes from the actual target 

amplitudes, I calculated, for each subject and for each meridian the differences in 

saccade-size between the two eyes that were actually required by the spectacles. The 

required size-differences varied slightly between subjects (range: 5 - 8 % of the nominal 

target amplitude). I attribute this variation largely to variations in the distance between 

the spectacle-lens and the eye (for a discussion on the effect of this distance on the size 

of the visual image, please refer to Chapter 6). Monocular fixations made by each of the 

two eyes apart without lenses were also carried out as part of the standard 

calibration-procedures descnbed in Chapter 3. 

Data-acquisition and data-analysis 

Eye movements were recorded binocularly by means of search coils. When the spectacles 

were taken off to place the coils onto the eyes, care was taken that one eye remained 

covered at all times, to prevent any symmetrical visual input, that might undo the effects 

of adaptation. The recordings were stored on disk. Saccades were thereafter analysed 

according to standard criteria by a computer-programme, which calculated the size and 
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the direction of each primary saccade, as well as the mean post-saccadic drift-velocity. 

As discussed in Chapter 6, slight displacements of the spectacles on the head were 

likely to occur during the running of the experiments. Such displacements would affect 

the positions of the targets as seen by the right eye. I therefore refrained from 

determining absolute target positions for that eye. Another computer-programme (SPSS

X) was used to carry out statistics on these data. Baseline-data were obtained from the 

measurements described in Chapter 5. Statistical testing consisted of a multivariate 

analysis of variance (MANOVA) (for further details, see Chapter 7). 

RESULTS 

Saccade-size 

The saccades of all subjects had adapted asymmetrically during the 7 hours of 

conditioning to the anisometropic spectacles descnbed above. These asymmetries were 

highly meridian-specific (F2,16 = 314.3 ; P<O.OOOl), in accordance with the requirements 

of the spectacles. Typical recordings of one subject, which illustrate these specific 

adaptations for either meridian, are shown in Fig. 8.2. The left panel displays binocular 

recordings of horizontal and vertical saccades made before adaptation. In the middle 

pane~ asymmetrical adaptation had occurred along the horizontal meridian. Horizontal 

saccades of the right, adapted eye, were in this case about 1.9 deg smaller than those 

of the left eye (target amplitude: 30 deg). The conjugacy of the vertical saccades, 

however, was virtually unchanged. When this subject wore, on another day, spectacles 

with the same lens in front of the right eye, with the lens-axis rotated by 90 deg, only 

vertical saccades became asymmetrically adapted to about the same degree as the 

horizontal adaptation had been. The recordings of Fig. 8.2 were made during binocular 

viewing. With one eye covered, the same, highly meridian-specific asymmetrical 

adaptations were present, although the differences in saccade-size between the two eyes 

were somewhat smaller. 

Fig. 8.2 Typical recordings of horizontal and vertical saccades of the same subject, made during 
binocular viewing. Left panel: baseline recordings; middle panel: horizontal adaptation; right panel: 
vertical adaptation. 
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To quantify the magnitude of these asymmetrical adaptations, and also to indicate their 

meridian-specificity, I present mean differences in saccade-size between the two eyes for 

horizontal and for vertical saccades in Figs 8.3 and 8.4 (Fig. 8.3 relates to binocular 

viewing and Fig. 8.4 represents data from the monocular viewing conditions). For 

comparison, baseline values have also been added. Both figures show clearly that 

adaptational asymmetries occurred over the full range of target amplitudes (5 to 30 deg) 

in the appropriate meridian only; the degree of yoking in the orthogonal meridian was, 

after adaptation, essentially the same as before adaptation. The magnitude of the 

adaptive changes in vergence were, for the saccades made during binocular viewing, on 

the order of 4% to 7% of the target amplitude, amounting to up to about 2 deg for the 

largest target amplitude (30 deg). Note that these changes in vergence resulted only from 

the effects of the anisometropic spectacles, and not from the target vergence. For the 

smallest target amplitude, changes in the degree of yoking were as little as about 

15 min arc. All these adaptational size-asymmetries were, on average, about as large for 

horizontal saccades as for vertical saccades. However, some subjects were better adapted 

along one meridian (either horizontal or vertical) than along the orthogonal one. These 

idiosyncrasies varied also with the target amplitudes. When one eye was covered, the 

asymmetries were, on average, 30% smaller, but, more importantly to the present 

context, they were equally meridian-specific as during binocular viewing ( cf. Fig. 8.3 with 

Fig. 8.4). This indicates that the meridian-specificity was really hard-programmed, and 

did not result from direct visual information obtained from both eyes shortly before 

saccadic onset. The degree of yoking was, on average, the same for monocular viewing 

with the left eye as for monocular viewing with the right eye. I have, for that reason, 

pooled the data of the two monocular viewing conditions. In some subjects, however, the 

asymmetries were slightly larger when the normal, left eye was covered, whereas some 

other subjects were marginally better adapted when their right, adapted eye was covered. 

These differences in the degree of asymmetrical adaptation between the two monocular 

viewing conditions were on the order of as little as about 0.1 deg. 

Fig. 8.5 Mean vergence-deficits ( +SD) for horizontal saccades (horizontally adapted) and for vertical 
saccades (vertically adapted) during binocular and monocular viewing. 
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To assess the degree of asymmetrical adaptation for either meridian, and for either 

viewing condition, I measured the vergence-deficits, calculated as the required change 

in vergence of concomitant saccades (see Methods) minus their actual change in 

vergence. These results are summarized in Fig. 8.5. The asymmetrical adaptations were 

almost complete during binocular viewing: vergence-deficits (Fig. 8.5) averaged only 

about 0.3 deg for all four target amplitudes along the two meridians, with maximal values 

of about 0.6 deg for 30 deg vertical saccades. None of my subjects perceived any double

images after 7 hours of conditioning, which indicates that all vergence-deficits remained 

within the fusional limits. With both eyes viewing, the overall degree of asymmetrical 

adaptation was about 73% of what was called for by the spectacles. When one eye was 

covered, the overall degree of asymmetrical adaptation dropped to about 52%, with 

vergence-deficits reaching maximal values of about 1 deg. Figure 8.5 might give the 

impression that, during monocular viewing, the degree of asymmetrical adaptation 

equalled a fixed percentage of what was called for by the spectacles, because the 

vergence-deficits increased somewhat linearly with larger target amplitudes. This apparent 

trend resulted, however, from pooling of the data. Close inspection of vergence-deficits 

of individual subjects revealed that there was, during monocular viewing, not such a very 

tight, linear relationship between the target amplitude and the amount of size-asymmetry. 

This supports my earlier findings (Chapters 6 and 7) that the asymmetrical adaptations 

are unlikely to result from a simple resetting of a few gain parameters which monitor 

the coordination of the two eyes. 

Post-saccadic drift 

Asymmetrical adaptation of post-saccadic drift occurred in all subjects, but this 

adaptation was confined to horizontal saccades (Fz,16 = 25.5; P<0.0005). The following 

discussion will be limited to the changes that occurred, and not to the general 

characteristics of normal post-saccadic drift, as these were dealt with in Chapter 5. The 

plastic changes that occurred in the post-saccadic drift were such that they reduced the 

residual vergence-deficits at saccadic offset. This was true for binocular viewing, and, to 

the same extent, also . for monocular viewing with either eye. I shall therefore not 

distinguish between these viewing conditions. For adducting saccades (Fig. 8.6, upper 

panel), the predominantly onward drift of the left, normal eye increased in mean velocity 

by about 0.6 deg!s. At the largest target amplitude (30 deg), however, the drift-velocity 
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had increased two-fold, up to about 3 deg/s. The right eye also drifted predominantly 

in the onward direction after adducting saccades, but its drift-velocity. had dropped by 

about 0.3 deg!s, as compared to baseline values. For abducting saccades, the 

asymmetrical adaptation of post-saccadic drift was characterized by a change in direction 

of the right eye: instead of the normal, onward drift, the right eye now drifted backward. 

Its mean drift-velocities were on the order of 0.5 deg over the full range of target 

amplitudes. When the fellow eye made an abducting saccade, this eye drifted with a 

velocity about twice as high as before asymmetrical adaptation. All these results suggest 

that the pulse-step ratio, which characterizes the motor commands to the external eye 

muscles (see Chapter 2), was adaptively changed for horizontal saccades, when the 

spectacles called for asymmetrical, horizontal adaptation. When vertical adaptation was 

required, no changes in the yoking of post-saccadic drift occurred. 
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Fig. 8.7 Typical recordings made during the smooth-pursuit task, after horizontal adaptation (upper 
panels) and after vertical adaptation (lower panels) of the same subject. Viewing was either binocular 
(left panels) or with the left, normal eye (right panels). 
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Smooth-pursuit 

Smooth-pursuit eye movements, made to the circularly moving target, were also 

asymmetrically adapted in all subjects. As with saccades, these adaptations occurred 

only along the appropriate meridian. The asymmetries were almost complete during 

binocular viewing, and somewhat less complete when one eye was covered. Figure 8.7 

presents some typical recordings, which illustrate these plastic changes along either 

meridian (horizontal and vertical). 

Perception 

After the first few hours that the subjects had worn the anisometropic spectacles, they 

perceived the visual world as distorted. With the cylinder-axis positioned vertically, thus 

reducing the visual world along the horizontal meridian, objects on the left side of the 

visual field appeared larger and farther away than those on the right. Many subjects 

reported that they misjudged distances, and, as a consequence, occasionally bumped 

accidentally into objects on their left side. Also, horizontal surfaces appeared to be 

tilted: ceilings seemed to go down towards the right side, whereas floors gradually 

became higher on that side. With the lens-axis positioned horizontally, the distortions 

were exactly opposite: objects on the right side of the visual field now appeared larger 

and farther away than on the left, and horizontal surfaces were tilted in the opposite 

direction. These illusions confirm similar results by Ogle (1962). They did not become 

less within 7 hours of conditioning, but disappeared completely in about 2 minutes after 

the spectacles were taken off. 

DISCUSSION 

The principal fmding of these experiments is that asymmetrical adaptations of saccades 

and smooth-pursuit eye movements can be highly specific for either the horizontal or the 

vertical meridian. Such meridian-specificity has, as far as I know, not been reported 

before. Since the asymmetries were also present during monocular viewing, these 

meridian-specific plastic changes proved to be hard-programmed. These results nicely 

demonstrate how remarkably adequate the oculomotor system may be in adjusting to 

specific changes in the visual input. The speed of these adaptations (they were almost 
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complete in as little as 7 hours of conditioning), and the apparent ease with which they 

came about, suggest that other changes, either specific or more general, may be dealt 

with accordingly. As I mentioned at the outset of this thesis, the most probable changes 

which the oculomotor system, like other sensory-motor systems, has to cope with, stem 

from growth, ageing, disease, injury or fatigue. Only by adapting adequately, and 

therefore specifically, to such changes, can eye movements be controlled accurately 

throughout a lifetime. The adaptations did not seem to consist of a simple resetting of 

a few gain parameters, as has been suggested before as a general way the oculomotor 

system may adapt (see Chapters 6 and 7), but, instead, of a point-to-point modification 

in the topology of sensory-motor maps. Such point-to-point adjustments conceivably add 

to the specificity of (asymmetrical) adaptations. 

Obviously, these adaptations occurred only because there was a pressure for such 

specific changes. It is well-known, for horizontal saccades, that if there is a pressure for 

(symmetrical) adaptation in only one direction (either to the left or to the right), 

appropriate, direction-specific adaptive changes may take place. This was shown in 

patients with unilateral palsies of a medial or lateral rectus muscle (Kommerell et al., 

1976; Abel et al., 1978; Optican et al., 1985), but also for saccades made in one direction 

towards a target that jumped consistently during the execution of that saccade, to 

another position, in order to induce direction-specific changes in saccade-size (Miller et 

al., 1981 ). In all these experiments, the direction-specific adaptations did not transfer to 

the opposite direction. It is unclear, however, whether they might have transferred to 

other meridians, thus reflecting a poor degree of meridian-specificity. This brings up the 

question how meridian-specific the adaptive properties of the saccadic subsystem, and 

of other oculomotor systems alike, can be. In case of the muscle-pareses, direction

specific adaptations presumably also developed in adjacent meridians. It is questionable, 

however, whether these developments of direction-specific adaptive changes in adjacent 

meridians resulted from poor meridian-specificity, or from a specific pressure for such 

direction-specific changes along those meridians. The latter appears to be more probable, 

because saccades made along those adjacent meridians would also involve the action of 

the weakened eye muscle. Therefore, adaptive changes would be called for that were 

proportional to that action. 
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In the present experimental design, the whole visual world of one eye was reduced in 

magnitude along one meridian. Therefore, in case of a size-reduction along the 

horizontal meridian, there was not only a pressure for purely horizontal saccades to 

adapt asymmetrically, but also for the horizontal components of all oblique saccades. 

Thus, even if I had recorded oblique saccades, my present experimental design would 

not have been appropriate to assess how truly meridian-specific, i.e., without any transfer 

to adjacent meridians, might be. 

Deubel (1987) had subjects make saccades, in various directions along various meridians, 

towards a target that jumped. This design was quite similar to the one adopted by Miller 

et al. (1981 ), with the exception that Deubel examined various meridians. For saccades 

made along one meridian, he let the target jump, during the execution of the saccade, 

consistently in one direction. He found that saccades made in that direction, along that 

specific meridian, gradually changed in size, as a result of this conditioning (adaptation). 

He also found that this direction-specific adaptation transferred, to a lesser extent, to 

adjacent meridians, with a meridian-specificity on the order of 30 deg to either side. 

However, this does not necessarily imply that meridian-specificity cannot be even better. 

In his experimental design, there was no pressure for any higher meridian-specificity, 

because he did not try to induce a different degree of adaptation along adjacent 

meridians. Therefore, meridian-specificity might well be better than about 30 deg, 

provided there was a specific pressure for it. An interesting question that has yet to be 

answered is how narrow the limits of such meridian-specific adaptations might actually 

be. The narrower these limits were, the better equipped the oculomotor system would 

be to adapt to any possible changes. Another interesting question, which will be dealt 

with in the following chapter, is whether asymmetrical adaptations can occur along any 

meridian, i.e., also along oblique meridians, and if so, whether they are really meridian

specific or whether they merely consist of asymmetrical adaptations of their horizontal 

and vertical components. 
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CHAPTER 9 

MERIDIAN-SPECIFIC ASYMMETRICAL ADAPTATION OF 

OBLIQUE SACCADES 

INTRODUCTION 

In the previous chapter, I demonstrated asymmetrical adaptations of horizontal and 

vertical saccades, that were specific for either the horizontal or the vertical meridian. I 

shall now assess whether such asymmetrical adaptations can also be specific for oblique 

meridians, and, consequently, apply largely to oblique saccades. The relevance of 

establishing whether or not (asymmetrical) adaptations of saccades can be specific for 

oblique meridians will now be explained. 

Oblique saccades are made through the joint action of multiple external eye-muscles 

which have different lines of action. At an immediate pre-motor level, separate regions 

have been identified in the brainstem, which are involved in the generation of horizontal 

and vertical saccades. Oblique saccades require the concerted action of these regions 

(Luschei and Fuchs, 1972; Keller, 1974; Henn and Cohen, 1976; Buttner et al., 1977; 

Hepp and Henn, 1983; King et al., 1986). Therefore, oblique saccades result from the 

combined generation of their horizontal and vertical components. The way in which a 

central command to generate an oblique saccade is translated into its horizontal and 

vertical components, is still subject to debate. Various, somewhat conflicting, models for 

this decomposition have been proposed (Van Gisbergen et al., 1985; Tweed and Vilis, 

1985; Fuchs et al., 1985). None of these, however, can exhaustively account for the 

various characteristics of oblique saccades (Grossman and Robinson, 1988). 

The important point in the present context is, however, in what stage of saccade

generation the asymmetrically adaptive changes take place. For the adaptations described 

in Chapter 8, which were specific for either the horizontal or the vertical meridian, these 
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adaptations could have occurred either before or after decomposition of the central 

motor commands into their horizontal and vertical components. This would also apply 

to oblique saccades, that had to adapt along either the horizontal or the vertical 

meridian. If the asymmetrical adaptation occurred after decomposition, the central 

commands could, in principle, remain unchanged, requiring only a modification of either 

the horizontal or the vertical components. However, if the adaptive changes indeed 

took place after decomposition, they could only be specific for the horizontal or the 

vertical meridian, and not for oblique meridians, as will now be explained with the help 

of Fig. 9.1. Figure 9.la schematically illustrates how an oblique saccade can be 

composed, through vector-summation, of its horizontal and vertical components. A 

similar schema is presented for an oblique saccade along the orthogonal meridian 

(Fig. 9.lb). If an adaptive size-reduction were required for the oblique saccade of 

Fig. 9.la, this could, in principle be achieved by a simple, adaptive shrinking of its 

horizontal and vertical components (dotted arrows in Fig. 9.lc). However, if this were 

the way in which asymmetrical adaptations of all saccades are established, i.e., by 

uniformly changing the gain of the horizontal and vertical components of oblique 

saccades, then the oblique saccades along the orthogonal meridian would be equally 

affected ( cf. Fig. 9.lc with Fig. 9.ld). In that case, asymmetrical adaptation would not 

be specific for oblique meridians. This would, in turn, impair the flexibility of the 

oculomotor system to adapt adequately. If, however, asymmetrical adaptation of oblique 

saccades occurred before decomposition, such adaptation could, in principle, indeed be 

specific for oblique meridians. To find out in what stage of the generation of oblique 

saccades the asymmetrically adaptive changes take place (i.e., before or after 

decomposition into horizontal and vertical components), I shall address the question 

whether asymmetrical adaptations of saccades can be specific for oblique meridians. 

Furthermore, I shall examine if any such adaptation may also occur in smooth-pursuit 

eye movements. 

METHODS 

Subjects 

Ten normal subjects took part in these experiments. They were between 20 and 44 years 

old. None of them had any history of ocular or oculomotor pathology. Four subjects 
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Fig. 9.1 Schema illustrating the effects on the size of orthogonal, oblique saccades if adaptive size
changes were caused by a uniform resetting of the horizontal and vertical components of all oblique 
saccades. In a) a normal, oblique saccade, made along the 45 deg meridian, is schematically drawn with 
its horizontal and vertical components. A similar schema for an orthogonal saccade is presented in b). 
Suppose an adaptive size-reduction of the oblique saccade presented in a) occurred after decomposition 
of its central motor commands into its horizontal and vertical components, then the adaptive processes 
would essentially only take place in these individual components. The size-reduction of the oblique 
saccade would then be secondary to the component-adaptations. This is indicated in c) by means of 
dotted arrows. As a consequence of this uniform resetting, other oblique saccades, such as the one 
orthogonal to the saccade in c) would also be affected by this uniform, component-plasticity (d)). 
Meridian-specifity of saccadic adaptations would then be impossible for oblique meridians. 

were myopic. Three of these myopes wore contact-lenses. The fourth myopic subject had 

spectacles (-1 D on either side), but he virtually never wore them. Visual acuities were, 

in all subjects (the myopes wearing their own corrective lenses) 5/5 or better. Binocular 

vision, which was considered essential for asymmetrical adaptation, was ascertained by 

means of stereopsis test charts (1NO test for stereoscopic vision). Stereoscopic vision 

was normal (thresholds 120 sec arc or better) in all subjects. 
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Conditioning 

The experimental procedures were almost identical to those descnbed in Chapter 8. I 

shall therefore present only a brief description of the current experimental design (for 

further details, refer to the previous chapter). As in Chapter 8, I supplied the subjects 

with a cylindrical lens (-3 D) in front of the right eye. This time it was positioned 

obliquely ( 45 deg, according to conventional descriptions, as discussed in Chapter 6). 

Again, the left eye was not provided with a lens. The effects on the proportions of the 

visual images of these anisometropic spectacles are illustrated in Fig. 9.2. 

<0> 

Fig. 9.2 Schema of the effects on the visual image of anisometropic spectacles containing a negative, 
cylindrical lens positioned at 45 deg in front of the right eye. Along the 45 deg meridian, as seen 
through the spectacles, the image is reduced in size, whereas along the orthogonal, 135 deg meridian 
no size-change is inflicted. The left side of the spectacle-frame is not provided with any lens (cf. with 
Fig. 6.1). 

For the right eye, the size of the image, as seen through the spectacle-lens, was reduced 

along the meridian that ran from the bottom left to the top right. I defined this meridian 

as the 45 deg meridian. Along its orthogonal meridian (135 deg meridian), the visual 

image was not affected in size. Obviously, the visual images for the left, naked eye, 

remained unchanged. The subjects wore these anisometropic spectacles for 7 continuous 

hours, meanwhile carrying on with their normal daily routine. Following this 
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conditioning-period, I performed the actual measurements, during which the subjects 

continued to wear the anisometropic spectacles. Baseline recordings were obtained on 

another day, either before or well after the day of adaptation. 

Recording sessions 

Again, the experimental conditions during the recording of eye movements were very 

similar to those in the previous chapter. This time, however, the targets, which consisted 

of He-Ne laser beams projected onto the white iso-vergence surface, were not only 

positioned along the horizontal or the vertical meridian, but also along either the 45 deg 

meridian or along the 135 deg meridian. The positioning of the targets along any of the 

four various meridians was always symmetrical about the straight-ahead position. Target 

amplitudes were, for the oblique meridians, 10, 14, 30 or 42 deg. For the horizontal as 

well as for the vertical meridian, target amplitudes equalled 10 or 30 deg. Oblique target 

amplitudes of 14 and 42 deg were chosen to allow comparison of the horizontal and 

vertical components of oblique saccades (with component target amplitudes of 10 and 

30 deg, respectively) to horizontal and vertical saccades made between targets positioned 

10, respectively 30 deg apart. However, as this comparison will go beyond the scope of 

this chapter, I shall currently confine myself to asymmetrical adaptations of oblique 

saccades. 

Just as in the previous chapters, subjects made repetitive saccades between stationary 

targets at a comfortable, standardized pace, which was indicated by a sound. Data

collection, which lasted 12 s for every trial, was initiated by the subjects themselves, 

whenever they felt ready, by pressing a button. Viewing was binocular or monocular with 

either eye. Movements of the head were restricted through a forehead- and chin-support, 

and additional straps. The order of the trials was randomized for every subject. The 

subjects were instructed to fixate either of the targets altematingly as accurately as 

possible, and also to refrain from blinking during the collection of data, in order to 

prevent the occurrence of eye movements related to blinks (Collewijn et al., 1985). The 

horizontal and vertical components of the eye movements of both eyes were recorded 

simultaneously by means of magnetic sensor coils. These recordings were digitized and 

stored on disk for off-line analysis. When the search coils were placed onto each eye, 

following the 7 hours of conditioning, care was taken that one eye remained covered at 
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all times. This was done to prevent any symmetrical visual input, that might revert any 

asymmetrical adaptation that had developed. 

After all saccade-trials were completed, I conducted the smooth-pursuit experiments, in 

a way identical to the one in previous chapters. Subjects had to track a circularly moving 

target as accurately as possible (target-velocity: 11 degls; diameter of circle: 30 deg). 

This task was performed with both eyes viewing, and also during monocular viewing with 

either eye. 

Finally, I recorded steady, monocular fixations of targets with known positions, made 

both with and without spectacles, to serve a careful fine-tuning of the calibrations (see 

Chapter 3). These recordings also allowed for assessing, for each individual subject, how 

much the movements of the right eye should ideally become smaller along the 

appropriate meridian after adaptation to the spectacles. It will be recalled that the 

magnitude of this size-reduction may vary between subjects due to individual differences 

in the distance between the spectacle-lens and the point of rotation of the eye (Chapter 

6). 

Data analysis 

As I explained in Chapter 3, the recording-technique I employed only recorded 

horizontal and vertical components of eye movements. Therefore, the trajectories of the 

oblique saccades made in the present experiments were later digitally reconstructed 

from corresponding sample-points of the individual horizontal and vertical recordings. 

These reconstructed, oblique saccades were then, again, broken down into two 

orthogonal components: this time, however, not along the horizontal and vertical 

meridians, but along their oblique, 45 deg and 135 deg meridians. This transformation 

allowed that the main components of the oblique saccades could be studied, just as 

horizontal and vertical saccades were studied in previous chapters, with respect to their 

main, horizontal or vertical components, respectively. For clarity, when horizontal 

saccades were examined in previous chapters, their vertical components were neglected. 

In case of vertical saccades, their horizontal components were not considered. In the 

present experiments on oblique saccades, those made along either the 45 deg or the 

135 deg meridian, were also studied with respect to their main, oblique component; 
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their components along the orthogonal meridian were disregarded. The main 

components of the oblique saccades were analysed by a computer programme, which 

adopted the standard criteria, that were also used for horizontal and for vertical saccades 

(Chapter 5). In short, saccades were scored if they met specific velocity- and amplitude

criteria. Whenever a saccade was scored, this computer programme calculated saccadic 

size and direction. In addition, the mean post-saccadic drift-velocity and drift-direction 

was determined. These data were thereafter submitted to another computer-programme 

(SPSS-X), which was used to perform any statistical calculations. Statistical testing 

consisted of a multivariate analysis of variance (MANOV A), in which the requirements 

of balanced data, normal distnbutions and homogeneous variances were observed (for 

further details on the statistics, see the previous chapters). 

An analysis of measurement-errors is appropriate. It turned out that, due to a systematic 

error in the recording equipment, eye positions of the right eye along the 45 deg 

meridian were recorded too small by about 1.5%, whereas eye positions of the same eye 

along the 135 deg meridian were recorded too large by about 1%. Similar deviations for 

the left eye were less than 0.5% along either of these two meridians. As a consequence, 

the differences in saccadic size between the two eyes per se, which reflected the degree 

of asymmetrical adaptation, were not entirely correct as such, and they should always be 

compared with the baseline-values. However, the vergence-deficits, which were calculated 

as the required difference in saccade-size between the two eyes minus the actual 

difference in sacade-size, were hardly subject to these systematic errors, because both 

the required and the actual differences in saccade size between the two eyes were 

detennined from recordings from both eyes. 

As was also mentioned in previous chapters, slight displacements of the spectacles were 

likely to occur during the running of the experiments. Such displacements would result 

in a shifting of the target-positions as seen by the right eye, which was supplied with the 

spectacle-lens. For that reason I did not determine position-errors at saccadic offset for 

each eye as a measure of the degree of asymmetrical adaptation. Instead, I related the 

actual difference in saccadic size between the two eyes to the difference that was 

required by the spectacles, as ascertained from monocular, steady fixations of targets 

with known positions. 
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RESULTS 

Saccades 

Asymmetrical adaptations of oblique saccades occurred in all subjects. These 

asymmetrical adaptations were specific for the appropriate, 45 deg meridian 

(F~,9 = 66.9; P<0.0005). Along the orthogonal, 135 deg meridian, no asymmetrical 

changes had developed during 7 hours of conditioning. This result corresponded with 

the requirements of the spectacles. Figure 9.3 displays some typical recordings of oblique 

saccades made along either meridian, both before and after adaptation. This figure shows 

that, before adaptation (left panels), oblique saccades were conjugate along either 

meridian ( 45 or 135 deg), thereby complying with Hering's law of equal innervation. 
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Fig. 9.3 Typical binocular recordings of oblique saccades made along the 45 deg meridian (upper 
panels) and along the 135 deg meridian (lower panels). Left panels: baseline recordings. Right panels: 
after adaptation. Only the main, oblique saccadic components are displayed. Viewing was with the left 
eye. 
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After adaptation to the anisometropic spectacles, however, the oblique saccades, made 

along the 45 deg meridian, were smaller by about 2.1 deg in the right eye than in the 

fellow eye (target amplitude: 30 deg), whereas saccades made along the orthogonal, 135 

deg meridian had not changed asymmetrically in size. Note that the recordings of Fig. 9.3 

were made during monocular viewing with the left eye. They therefore illustrate that 

these asymmetrical adaptations were hard-programmed. These results also show that the 

asymmetrical adaptations were truly meridian-specific, and that the observed differences 

in saccadic size between the two eyes did not merely result from an adaptive 

modification of the horizontal and vertical components of oblique saccades. If the latter 

had indeed been the case, oblique saccades towards the right, for instance, would have 

been equally adapted for the 45 deg meridian (i.e., saccades towards the upper right) 

as for the 135 deg meridian (i.e., saccades towards the lower right). 

To quantify these asymmetrical adaptations, I measured the difference in size between 

concomitant saccades of the two eyes, calculated as the magnitude of saccades made by 

the left eye minus the magnitude of saccades of the right (adapted) eye. Because 

variations in the degree of asymmetrical adaptation between subjects were very small, I 

shall focus on the main trends. Figure 9.4 presents mean values for the differences in 

saccade-size between the two eyes, both before and after adaptation, for the four various 

target amplitudes. Distinctions have also been made between the various viewing 

conditions (binocular viewing versus monocular viewing with either eye). As the size

differences were not significantly dependent on whether the right eye or the left eye 

was viewing, the data of these two monocular viewing conditions were pooled. Along the 

adapted, 45 deg meridian the differences in saccadic size became, not surprisingly, larger 

at larger target amplitudes (F3,27 = 46.8; P<0.0005). During binocular viewing, the right, 

adapted eye made saccades along the 45 deg meridian, that were about 6% smaller than 

before adaptation (all four target amplitudes), whereas the saccades of the left eye had 

not changed in size. The magnitudes of these adaptive size-asymmetries could, for the 

binocular viewing condition, become as large as 2.6 deg, compared to baseline-values 

(target amplitude: 42 deg). Figure 9.4 clearly shows that, along the orthogonal, 135 deg 

meridian, however, differences in saccade-size between the two eyes were just as large 

as before adaptation. Figure 9.4 also demonstrates that, when viewing was monocular, 

this meridian-specificity was still present. The magnitudes of the adaptive asymmetries 

were then, however, about 30 % smaller than during binocular viewing. As with 
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Fig. 9.4 Mean differences in saccadic size between the two eyes ( + SD), computed as the magnitude 
of saccades of the left eye minus the magnitude of concomitant saccades of the right eye, for either 
meridian (left page: 45 deg meridian; right page: 135 deg meridian) at the four various target 
amplitudes. Baseline-data have been included. Top panels relate to the binocular viewing condition. 
Bottom panels represent data obtained during monocular viewing with either eye. 
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asymmetrical adaptations along the horizontal and vertical meridians (Chapters 6 through 

8), data of individual subjects showed that the magnitude of the asymmetries in saccadic 

size was not a fixed percentage of what was required by the spectacles. Instead, it 

frequently varied for the various target amplitudes, which suggests once more that the 

asymmetrical adaptations did not come about by a simple resetting of a possible common 

gain factor (for a discussion on this topic, see Chapter 6). 
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Fig. 9.5 Mean vergence-deficits ( + SD) for saccades made along the adapted, 45 deg meridian at the 
four various target amplitudes. Data relate to monocular viewing with either eye (black bars) and to 
binocular viewing (grated bars). 
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As a next step, I determined how complete the asymmetrical adaptations were. The 

degree of asymmetrical adaptation was described, just as in the previous chapters, in 

terms of the vergence-deficit present at the end of each primary saccade. Vergence

deficit was calculated as the required difference in saccadic size between the two eyes 

minus the actual difference in saccadic size. The required difference was determined, for 

every individual subject, from steady, monocular fixations with either eye of targets with 

known positions. Mean values of vergence-deficits are presented in Fig. 9.5. The data are 

confined to the 45 deg meridian, i.e., the meridian along which the asymmetrical 

adaptation was required. It is clear from this figure that the asymmetrical adaptations 

were almost complete during binocular viewing: vergence-deficits then were as little as 

about 0.3 deg over the full range of target amplitudes. This corresponded nicely with the 

fact that most subjects experienced fusion of the targets. Although all other subjects 

clearly saw two distinct images of each target, one being normal and the other being 

distorted through the action of the cylindrical lens, these images were always seen on top 

of each other, which was also in agreement with the small vergence-deficits. When one 

eye was covered, the asymmetrical adaptations were less complete 

(Fz.18 = 14.6; P<0.0005): the vergence-deficits then were about two- to four-fold larger 

than during binocular viewing, and could become as large as about 1.5 deg for the 

largest target amplitude of 42 deg. When compared with the meridian-specific, 

asymmetrical adaptations of saccades along the horizontal and vertical meridian (Chapter 

8), the adaptive changes along the 45 deg meridian were equally complete and equally 

meridian-specific. 

In contrast with the asymmetrical changes in saccadic size, no significant adaptive 

changes occurred to the post-saccadic drift (F1,9 = 0.63; P>0.40). It will be recalled that 

this was also the case with asymmetrical adaptations of vertical saccades (see Chapters 

6 through 8). Because asymmetrical changes in post-saccadic drift did develop in 

horizontal saccades, following adaptation along the horizontal meridian (Chapters 6 

through 8), these results suggest that such adaptations might be a property restricted to 

the horizontal meridian. 
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Smooth-pursuit 

When the subjects tracked the circularly moving target (velocity: 11 deg/s), asymmetrical 

adaptation was, just as with saccades, clearly present along the appropriate, 45 deg 

meridian. This is illustrated in Fig. 9.6, which shows typical, binocular recordings made 

before and after adaptation. When one of the eyes was covered, this meridian-specific 

adaptation was still present, although to a slightly lesser extent. These results, which were 

virtually the same for all subjects, showed that smooth-pursuit eye movements may also 

adapt asymmetrically along a specific, oblique meridian, and that these adaptations were 

hard-programmed. Compared with similar adaptations along the horizontal and vertical 

meridian (Chapter 8), there was neither a significant difference in the meridian-specificity 

nor in the magnitude of these plastic changes of smooth-pursuit eye movements. 
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Fig. 9.6 Typical binocular recordings made during the smooth-pursuit task, both before (left panels) 
and after adaptation (right panels). Viewing was binocular (upper recordings) or with the left eye (lower 
recordings). 
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Just as with saccades, these oblique adaptations did not merely result from asymmetrical 

adaptations of the horizontal and vertical components of such eye movements, but from 

a true specificity for one oblique meridian. During binocular viewing, the target was 

always seen either fused or as two distinct, though superimposed images, which suggests 

that the adaptations were, for functional purposes, complete. 

Perception 

As had also been the case in the preceding experiments on short-term asymmetrical 

adaptations (Chapters 7 and 8), all subjects reported that they experienced, after several 

hours of conditioning, a distortion of the visual world. This time, the distortions 

consisted of a shrinking of objects in the upper visual field, as well as an increase in 

distance between those objects and the subject. Similar findings were reported by Ogle 

(1962). The illusions did not diminish during the 7 hours in which the spectacles were 

worn. After the spectacles were taken off, however, the illusions disappeared very 

rapidly. 

DISCUSSION 

The most important finding of these experiments is that the asymmetrical adaptations 

were truly specific for a single, oblique meridian. Such a demonstration of oculomotor 

plasticity has, to my knowledge, not been reported before. Since asymmetrical 

adaptations can also be induced specifically along either the horizontal or the vertical 

meridian (Chapter 8), these results strongly suggest that asymmetrical adaptations of 

saccades, and also of smooth-pursuit eye movements, may take place along any meridian. 

Such a versatile plasticity of these two oculomotor subsystems would conceivably 

contribute to their tolerance to any specific changes that might occur to them 

throughout a lifetime. 

The present results also demonstrate that the asymmetrical adaptations along a specific, 

oblique meridian did not merely consist of adaptive changes of the horizontal and 

vertical components of the oblique eye-positions. Otherwise, eye movements made along 

the orthogonal meridian would also have been adapted, and to the same extent, although 
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this result would have been functionally maladaptive. Deubel (1987), who induced 

adaptations of oblique saccades (of both eyes) in monkeys, as well as in human subjects, 

by means of a target that jumped consistently in a specific direction during the execution 

of a saccade, also found that these adaptations could not be explained by plastic changes 

of the individual horizontal and vertical saccadic components. Deubel suggested that the 

adaptive changes of oblique saccades take place before decomposition of the central 

command to generate a saccade into its horizontal and vertical components. My results 

are in line with such a possibility, although I hasten to add, that the model Deubel 

(1987) has proposed does not address the asymmetries of adaptation between the two 

eyes that I studied. 

Deubel's experimental conditions (1987) enabled him also to study how narrowly the 

size-adaptation of saccades was tuned around the trained direction. It turned out that 

the adaptations induced for a specific (oblique) direction transferred partially to other, 

adjacent directions. This transfer became weaker as the adjacent direction was farther 

off the main, adapted direction. The "tuning curves" had a width of about 30 deg on 

either side of the main direction. The width of a tuning curve corresponds inversely with 

the specificity of the adaptation for a given direction or for a given meridian. As I 

already pointed out in the Chapter 8, Deubel did not impose any specific pressure for 

differential adaptation (or absence of adaptation) in the adjacent directions, because in 

the training phase only saccades in the direction that was to be adapted were elicited. 

Therefore, the tuning curves he found may relate only to situations in default of specific 

pressure for differential adaptation in adjacent directions. If there were indeed a more 

specific pressure for differential adaptation in adjacent directions, the tuning curves 

might perhaps be even narrower. In my experimental design, the spectacles required 

a very gradual change in the degree of (asymmetrical) adaptation along adjacent 

meridians. Therefore, my experiments were not suitable for assessing the minimum width 

of such tuning curves , i.e., the maximal meridian-specificity of such (asymmetrical) 

adaptations. 
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CHAPTER 10 

GENERAL DISCUSSION AND CONCLUSIONS 

In this thesis I have systematically studied some adaptive properties of saccadic eye 

movements in order to assess, both quantitatively and qualitatively, how the saccadic 

subsystem responds to a consistent pressure for a reprogramming of its commands. 

Although I focussed my study on saccadic adaptations, and, to a lesser extent, on 

adaptations of smooth-pursuit eye movements to the wearing of anisometropic spectacles, 

I was essentially interested in sensory-motor adaptations at large. Concentrating on these 

two oculomotor subsystems, I have tried to increase our understanding of how the 

central nervous system may generally cope with any sensory-motor changes that 

presumably take place throughout a lifetime. Such changes unavoidably result from 

growth, ageing, disease, injury or fatigue, and they are likely to occur haphazardly, at 

variable locations, along variable time-courses as well as with v<;rriable degrees of severity. 

Because they presumably affect the quality of sensory-motor control, the sensory-motor 

systems involved should be capable of adapting adequately to them in order to safeguard 

their proper functioning. 

One of the major findings of the research presented in this thesis was that saccades and 

smooth-pursuit eye movements may adapt in such a way to anisometropic spectacles that 

the two eyes make movements of unequal size. Normally, however, these eye movements 

are thought to be perfectly conjugated. This notion of perfect yoking is frequently 

referred to as Hering's law of equal innervation. Although even normal, unadapted 

saccades do not follow this law rigidly (Chapter 5), the magnitude of these violations is 

negligible compared to the dramatic changes in size between saccades of the two eyes 

that may occur after asymmetrical adaptation to anisometropic spectacles. Importantly, 

these asymmetries were also present when one eye was covered, which demonstrates that 

they had become part of the basic programming of saccades. An interesting question is 

why these adaptations take place. A tentative explanation may be the following. Even 
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before adaptation, there is a hard-programmed, close coupling between movements of 

the two eyes, also when one eye is covered. This was observed by Hering, which led him 

to formulate his law (1868). This hard-programmed, basic yoking might ease the strain 

on the saccadic subsystem to program, for two eyes simultaneously, saccades that have 

to be accurate, and at the same time, fast. As saccades have such high velocities that 

visual feedback is unlikely to play an important role, if any, during their execution, this 

demand is presumably very high. Possibly, such basic yoking might also be beneficial to 

other oculomotor subsystems. In case of viewing through anisometropic spectacles, the 

basic, unadapted level of the degree of yoking would be more of a nuisance than of any 

help for the generation of saccades of the appropriate size in the two eyes. Therefore, 

a hard-programmed resetting of the ratio of this basic coupling between the two eyes 

would be needed to relieve the saccadic subsystem from the consistent burden of 

asymmetrical visual input. Thus, the inherent yoking of saccades, and the capacity to 

readjust the basic setting of this yoking, may be purely economical. 

Hering (1868) originally observed that the two eyes are so well coordinated that they 

always look at the same object. He stated that this coordination is so perfect that the 

two eyes move as though they were one single organ, which he called the double-eye 

(Doppelauge ). Based on this observation, he formulated his law on the so-called equal 

irmervation of the two eyes. Importantly, his law is merely a description of the high 

degree of yoking of the eyes. It does not, however, relate directly to the actual motor 

commands (or "irmervation") of the two eyes, which may not at all be equal in case of 

asymmetrical differences in the physical properties of, for instance, the motoneurons, the 

external eye muscles or the tissues in which the eyeballs are suspended. As explained 

before, such asymmetries are very likely to exist. Normally, the high degree of yoking is 

desirable for a proper binocular control of eye movements. This conjugacy is obtained 

and maintained through adaptation, because normal, every-day life conditions exert a 

certain pressure for such conjugacy. It was shown in monkeys that this conjugacy may 

deteriorate when one eye is deprived of vision for one week (Vilis et al., 1985; Viirre et 

al., 1987). Therefore, the high degree of normal yoking of the eyes results from the 

capacity of the oculomotor system to adapt; it does not originate from a fixed and rigid 

coupling of motor commands which are equal for the two eyes. In case changes occur 

within the oculomotor system, for example due to pathology or growth, the adaptation 

will restore the degree of yoking within a certain adaptive range. If changes occur 
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outside the oculomotor system, such as caused by anisometropic spectacles, the 

coordination between the two eyes will be adjusted (also within a certain range) up to 

the point where yoking becomes functionally complete, which means that the eye that 

perceives a smaller visual image will make a smaller eye movement than its fellow eye. 

In that sense, asymmetrical adaptations actually confirm Hering's law instead of violating 

it, because, after adaptation, the two eyes will always look at the same object. Obviously, 

Hering did not have this in mind when he laid down his law. 

The functional significance of asymmetrical adaptations is that it prevents the occurrence 

of diplopia that would otherwise ensue. Erkelens et al. (1989b ), who initiated 

experiments of the kind described in this thesis, found in their subjects that asymmetrical 

adaptations of saccades were more complete along the vertical meridian than along the 

horizontal meridian. Because the fusional limits for vertical disparities are narrower than 

for horizontal disparities (Fender and Julesz, 1967; Piantanida, 1986; Erkelens, 1988), 

Erkelens et al. (1989b) suggested a connection between loss of fusion and the degree 

of asymmetrical adaptation, in the sense that asymmetrical adaptation would proceed to 

a level at which fusion was maintained. This does not imply, however, that loss of fusion 

is the appropriate stimulus for asymmetrical adaptations, as will now be argued. My 

experiments, which were conducted on a larger number of subjects than used in the 

study by Erkelens et al., showed that the asymmetrical adaptations could be, for 

individual subjects, better along either meridian (horizontal or vertical). Therefore, the 

correlation between the degree of asymmetrical adaptation and the fusional limits is by 

no means very strong. In addition, the adaptations along the horizontal meridian were 

frequently much better than would have been strictly necessary for the fixation-disparities 

present at saccadic offset to fall within the fusional limits, which are now assumed to be 

1-2 deg (Fender and Julesz, 1967; Erkelens, 1988). Furthermore, some of my habitual 

spectacle-wearers were not well enough adapted, along the vertical meridian, to prevent 

the perception of double images, despite many years of conditioning. When these 

observations are taken together, it seems very unlikely that loss of fusion be the 

adequate stimulus for asymmetrical adaptation. Consistent fixation-disparities, even within 

the fusional range, present at saccadic offset, are a more probable candidate for such 

a stimulus. I would argue that fixation-disparity is a more direct stimulus, because of 

its relative simplicity, compared to fusion, or the loss of it, which involves higher visual 

processing. 
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Apart from the asymmetrical, adaptive changes in saccadic size, I found that the drift 

following a saccade was also adequately adapted, in the sense that the changes in 

velocity and direction reduced the vergence-deficit present at saccadic offset. These 

changes suggest that there was asymmetrical adaptation of both the pulse and the step 

which characterize the motor commands of saccades. However, these adaptive changes 

in post-saccadic drift were restricted to horizontal saccades. They were not observed in 

vertical saccades, nor in oblique saccades. In contrast, Erkelens et al. (1989b) did find 

such asymmetrical adaptive changes in post-saccadic drift for vertical saccades. I have 

no explanation for this discrepancy, other than idiosyncrasies. The fact remains, however, 

that plastic, asymmetrical changes in post-saccadic drift are not uniform for every 

meridian, which presumably reflects the different adaptive processes that take place in 

either one. 

One might also argue that the asymmetrical, adaptive changes in post-saccadic drift 

resulted from adaptation of the vergence subsystem. If this were true, it would possibly 

explain why the plastic changes in post-saccadic drift were most prominent along the 

horizontal meridian, which is also the most effective meridian for vergence eye 

movements. Importantly, the asymmetrical changes in post-saccadic drift were also 

present during monocular viewing. This argues against the likelihood of the direct 

involvement of the vergence subsystem in the adaptive changes of post-saccadic drift, 

because the strongest stimulus for vergence movements, disparity (Erkelens and Regan, 

1986), is absent during monocular viewing. A possible role of the vergence subsystem in 

the plastic changes of post-saccadic drift would therefore only be conceivable, if there 

were an adaptive linking between saccades and vergence eye movements. However, 

Erkelens et al. (1989b) tried to induce asymmetrical, adaptive changes in saccades by 

having subjects make, for half an hour at a stretch, repetitive gaze-shifts between two 

continuously present targets that differed both in direction and in distance. Despite this 

persistent coupling between version and vergence eye movements, no asymmetrical 

changes whatsoever occurred. Therefore, an adaptive linking between saccades and 

vergence eye movements is very unlikely. Taken together, the asymmetrical changes in 

post-saccadic drift to the wearing of anisometropic spectacles do not seem to result from 

an adaptive modification of the vergence subsystem. 
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There is a marked contrast in the magnitude of the plastic changes in post-saccadic drift 

between adaptations to anisometropic spectacles and adaptations to a unilateral, 

extraocular muscle weakness. In case of anisometropic spectacles (Erkelens et al., 1989b; 

this thesis), the adaptive changes in post-saccadic drift are fairly inconspicuous as 

compared to the large changes associated with a paretic external eye muscle (Kommerell 

et al., 1976; Abel et al., 1978; Optican and Robinson, 1980; Snow et al., 1985; Optican 

et al., 1985; Viirre et al., 1988). This suggests that the plastic changes of saccades to 

these two different conditions may address very different stages of adaptive processing, 

although both conditions require an asymmetrical resetting of oculomotor commands to 

reduce the fixation-disparities at saccadic offset. Following a mechanical weakening of 

an external eye-muscle, conjugated saccades require different motor-commands for each 

of the two eyes. In case of a strictly visual pressure for asymmetrical adaptation, 

however, there is no physical damage to the oculomotor system. Therefore, conjugated 

saccades would not require a differential change in motor-commands between the two 

eyes. This conjugacy would then, however, be undesirable. Despite the possibility that 

a mechanical weakening of an external eye muscle elicits a fundamentally different 

adaptive response in the saccadic subsystem than a purely visual stimulus does, there is 

no conclusive evidence for this, except for the differences in post-saccadic drift between 

these two conditions. As post-saccadic drift may adapt independently of saccades 

(Optican and Miles, 1985), it might also be that the observed differences in post-saccadic 

drift result only from different adaptations of the post-saccadic drift per se, and not 

from different plastic changes of the entire progranuning of saccades. 

There is another possible explanation for the large changes in post-saccadic drift 

associated with a weakened external eye-muscle, as compared to the moderate adaptive 

changes in post-saccadic drift related to the wearing of anisometropic spectacles. In 

case of a pathological or experimental weakening of an external eye-muscle, the 

equilibrium between a pair of antagonistic muscles is disrupted. This will also be true 

for a weakening of both muscles, because the damage is unlikely to be equally severe 

for the agonist and the antagonist. It will be recalled that the pulse of the saccadic 

motor-commands brings the eye to a new position, whereas the step holds it in that 

position, thereby resisting the elastic forces which act on the globe, caused by the tissues 

which surround it. Therefore, if one or more external eye muscles are weakened, the 

same step-commands to each of the two eyes will lead to the occurrence of asymmetrical 
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post-saccadic drift. This would also occur when other asymmetrical changes within the 

orbit took place, such as changes in the elasticity of the tissues in which the eyeballs are 

suspended. If anisometropic spectacles imposed a pressure for asymmetrical adaptation, 

however, the equilibrium between antagonistic muscle pairs would not be affected. This 

may explain the difference in the adaptive changes of post-saccadic drift between the 

wearing of anisometropic spectacles and the weakening of one or more external eye

muscles. 

From my study, and also from the work of others, the general picture emerges that 

adaptations of saccades will not differentiate any further than is specified by the 

stimulus. This will be illuminated in the following. Deubel et al. (1986) induced saccadic 

adaptation, using a target that jumped consistently in one direction during the execution 

of a saccade. This training was restricted to only one target amplitude. They found that 

the adaptive gain in saccadic size was transferred uniformly to saccades of different 

amplitudes, made in the same direction. Miller et al. (1981 ), who had performed similar 

experiments, had also found such a transfer, although it had not been as strong as in 

the experiments by Deubel et al. (1986). More recently, Deubel (1987) carried out 

experiments that were comparable to those in 1986. This time, however, he studied 

adaptation of saccades in various directions, including oblique saccades. Again, the 

stimulus for adaptation consisted of an intra-saccadic target displacement. He found 

transfer of these adaptations to adjacent directions, although this transfer was not very 

large. The important point is that this transfer occurred in default of any specific 

pressure for differential adaptation in those other, adjacent directions. A much stronger 

example of somewhat poor adaptive differentiation associated with a fairly nonspecific 

stimulus is that, in case of a unilateral, external eye-muscle weakness, saccades of both 

eyes will adapt in parallel when one eye is deprived of vision (Kommerell et al., 1976; 

Abel et al., 1978; Optican and Robinson, 1980; Optican et al., 1985). When vision is 

binocular, however, the adaptations of saccades to such a unilateral muscle weakness will 

be asymmetrical, i.e., differential for the two eyes (Snow et al., 1985; Viirre et al., 1988). 

My own work, presented in this thesis, as well as the work by Erkelens et al. (1989b ), 

showed that similar, differential adaptations of saccades may also develop in response 

to specifically asymmetrical visual information. I even found that such asymmetrical 

adaptation could be induced selectively for various meridians, provided the stimulus was 

meridian-specific. Viirre et al. (1988) demonstrated an even higher level of differentiation 
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in asymmetrical adaptation: monkeys that had undergone surgical weakening of only one 

of the two horizontal recti muscles of one eye, and that were afterwards allowed 

binocular vision, showed asymmetrical adaptation that was direction-specific. Obviously, 

I was not able to induce similar asymmetrical adaptations in my experimental design, 

because spectacle-lenses do not differentiate between opposite directions, but only 

between meridians. In conclusion, saccadic adaptations will not differentiate further than 

the stimuli that induce them. This conclusion presumably applies to all sorts of sensory

motor plasticity. 

Limits inherent in the adaptive processes of saccades may impose restrictions on the 

specificity of saccadic adaptations. Such restrictions, if any, appear to be by no means 

very tight: adaptations of saccades may be symmetrical ( e~g. Kommerell et al., 1976; Abel 

et al., 1978; Deubel, 1987), but also differential for the two eyes (Snow et al., 1985; 

Erkelens et al., 1989b; this thesis). Such asymmetrical adaptations can also be specific 

for orthogonal meridians, even if these meridians are positioned obliquely ( Chapters 8 

and 9). Furthermore, asymmetrical adaptations can be direction-specific (Viirre et 

al.,1988). An interesting question with this respect is how selective these kinds of 

saccadic adaptations can be for different amplitudes. Deubel et al. (1986) found a 

uniform transfer of the adaptive gain of horizontal saccades, established for one specific 

amplitude, to other horizontal saccades with different amplitudes. From this observation 

they inferred that adaptive changes of saccades consist of a uniform resetting of the gain 

of the pulse and the step of saccadic motor -commands. If this general resetting applied 

to all forms of saccadic plasticity, adaptations could not be amplitude-specific. There is, 

however, sufficient proof that argues against the likelihood of such a simple adaptive 

control strategy. First of all, the uniform transfer of adaptive gain to other amplitudes 

in the experiments by Deubel et al. (1986) occurred in the absence of a stimulus that 

was differential for the various saccadic amplitudes (Erkelens et al., 1989b ). Moreover, 

the transfer that Miller et al. (1981) found in similar experiments was not uniform for 

all saccadic amplitudes. In my own experiments (Chapters 6 through 9), like those of 

Erkelens et al. (1989b) there was also no evidence for uniform adaptive changes over 

a range of saccadic magnitudes. Furthermore, the fact that saccadic adaptations can be 

asymmetrical, and moreover, meridian-specific or even direction-specific, make it highly 

improbable that the adaptive changes result from a simple resetting of a few global gain

parameters. ID.stead, the saccadic adaptations appear to take place on a point-to-point 
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basis in sensory-motor coordinates. Consequently, plastic changes of saccades could 

conceivably be highly selective for specific amplitudes, provided there were sufficient 

pressure for such adaptation. However, to my knowledge there is no literature that might 

substantiate this. By the same token, saccadic adaptations could presumably also 

differentiate accurately between closely spaced meridians or directions. The meridian

specificity that Deubel (1987) found for adapted saccades made in one direction was, 

without any pressure for different adaptations in adjacent directions, already quite good. 

It amounted to a specificity of about 30 deg to either side of that meridian. Again, with 

sufficient pressure this meridian-specificity might increase, although this has, to my 

knowledge, not been investigated. It is, however, questionable whether a higher meridian

specificity is necessary for the usual adaptations to the effects of growth, ageing and 

disease. 

Another important observation by Deubel (1987) is that the adaptation he induced in 

oblique saccades could not result from individual adaptations of their horizontal and 

vertical components. My own data (Chapter 9), which relate specifically to asymmetrical 

adaptations of oblique saccades, confirm his finding. These results strongly suggest that 

the adaptive processes involved address an early stage in saccade generation, i.e., before 

decomposition of the central motor commands into their horizontal and vertical 

components. The model Deubel proposed of the direction-specific adaptations of 

saccades, would therefore have to be extended for asymmetrical saccadic adaptations. 

Limitations of the adaptive processes also exist with respect to the magnitude of the 

adaptations. In my study, short-term asymmetrical adaptations to 8 D of anisometropia 

were not significantly different from the adaptations to 6 D of anisometropia 

(Chapter 7). I do not know if prolonged wearing of the 8 D anisometropic spectacles 

would eventually have yielded larger asymmetries in saccadic size between the two eyes 

than with equally long adaptation to 6 D of anisometropia. My results comply, however, 

with the clinical rule of thumb that anisometropias larger than about 5 D are poorly 

tolerated. However, this poor tolerance does not necessarily have to be caused by 

limitations of the oculomotor system, but may also be due to limitations in perception, 

caused by the aniseikonia. Other examples of limited adaptations of the oculomotor 

systep:t, frequently secondary to disease, are well-known in clinical practice (Leigh and 

Zee, 1983). 
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I found that asymmetrical adaptations were not only present in saccades, but also in 

smooth-pursuit eye movements. This raises the question if the two oculomotor 

subsystems involved, and possibly also other oculomotor subsystems, may share the same 

adaptive circuits. An obvious advantage of such a general adaptation would be efficiency. 

It would obviate the need to carry out virtually identical adaptive processes in every 

individual subsystem. On the other hand, a uniform plasticity for all subsystems would 

be undesirable if a more specific adaptive change were required. Such a specific change 

could be useful in case of, for instance, a very local lesion in one of the subsystems. In 

case of anisometropic spectacles, however, there would be no need for differential 

adaptations for the various kinds of eye movements. Therefore, my experiments, in which 

presumably all kinds of eye movements were made during training, were not appropriate 

to distinguish between a general adaptation and multiple, individual adaptations. Such 

an assessment would, however, be very interesting. 

I showed that asymmetrical adaptations may develop very rapidly. After only 1 hour of 

conditioning to anisometropic spectacles, the adaptation was almost complete for a 

moderate pressure and well under way for fairly large pressures (Chapter 7). Symmetrical 

adaptations of saccades to intra-saccadic target displacements can also take place very 

rapidly (Miller et al., 1981; Deubel et al. 1986; Deubel, 1987). The speed of all these 

adaptive changes illustrates once more how remarkably flexible the saccadic subsystem, 

as well as the smooth-pursuit subsystem, is in dealing with pressure for change. This 

flexibility is probably essential to the sustained and proper functioning of the oculomotor 

system throughout a lifetime. Another conspicuous example of how quickly saccades and 

smooth-pursuit eye movements may adapt was my demonstration of a subject who was 

used to wearing his anisometropic spectacles for only several hours a day (Chapter 6). 

When he wore them, he was asymmetrically adapted, even when one eye was covered, 

and when he took them off, his eye movements were normally yoked. It seems very 

unlikely that he has to readapt from scratch every time he puts his spectacles on or 

takes them off again. Rather, these results suggest that the plastic changes may be stored 

in various modalities, each of which can be rapidly called upon when necessary. This 

confirms my belief that the specificity of adaptations, both spatial and temporal, is 

specified by the demands of the stimulus. 
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SUMMARY 

Saccades are the rapid eye movements which enable us to voluntarily shift our gaze 

from one visual target to another. They serve to bring newly selected visual targets to 

the fovea of each of the two eyes, which is a small part of the retina with high visual 

acuity. This accurate, binocular control of saccades requires a high quality of oculomotor 

coordination. During the course of a lifetime, the various structures involved in the 

generation and the control of saccades may be subject to change, due to, for example, 

growth, ageing, disease or injury. These changes will undoubtedly affect saccadic control, 

and, consequently, jeopardize its quality. To safeguard its proper functioning, the 

oculomotor system will therefore have to adapt adequately to such changes. As these 

changes probably take place haphazardly, at different places, with different time-courses 

and with different degrees of severity, the saccadic subsystem should be capable of 

adapting specifically to such non-uniform changes. Adaptation of saccades has been 

described in the literature subsequent to local, physical damage to external eye muscles, 

as well as to purely visual stimuli (for a review, see Chapter 2). The aim of this thesis 

was to assess both qualitatively and quantitatively how the sa~cadic subsystem responds 

to a consistent visual pressure for an asymmetrical adaptation, i.e., adaptation that is 

different for each of the two eyes. 

It is generally assumed that the two eyes make saccades of the same size. This 

assumption is frequently referred to as Hering's law of equal innervation (Hering's law 

is commented on in Chapter 2). Normally, such yoking of the eyes is desirable. However, 

this will not be the case when a subject wears so-called anisometropic spectacles. These 

are spectacles which have lenses with different refractive powers, and therefore different 

magnifications. As a result of these different magnifications, the visual images will be 

differently sized in each of the two eyes. Consequently, the saccades of the two eyes 

would, ideally, also have to be different in magnitude (Chapter 6). In the present thesis 

I have demonstrated that saccades may indeed adapt to anisometropic spectacles in such 

a way that they become different in size. This result will shortly be discussed in greater 

detail. 
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Measuring eye movements, and especially, comparing those of the two eyes with each 

other, requires a clear convention for describing eye-positions. The most convenient 

coordinate system for that purpose is the one named after Helmholtz. Therefore, special 

equations were derived to transform the recorded eye-positions into Helmholtz's 

coordinates. Eye movements were recorded binocularly by means of magnetic sensor 

coils, which allow a very accurate and precise recording over a wide range. Because two 

other coordinate systems are also commonly used to describe eye-positions (those of 

Pick and of Listing), additional equations were derived for the transformation of the 

coordinates of one system into the other. Furthermore, a special calibration procedure, 

as well as a linearization technique of the recordings were developed (Chapter 3). As 

the difference in size between saccades of the two eyes was used as a measure of 

asymmetrical adaptation, care was taken that the positions of the visual targets used 

provided no stimulus for disjunctive eye movements. To that end a special screen onto 

which the targets were later projected was constructed. This screen had a toroid, iso

vergence surface. The basic principles of this screen were explained in Chapter 3. Other 

details on the materials I used and the methods I employed were also discussed in 

Chapter 3. 

Before asymmetrical adaptations to the wearing of anisometropic spectacles were studied, 

I examined the accuracy of unadapted saccades (Chapter 4). It is usually assumed that 

saccades fall short of their target by about 10% of the angular distance between the 

previous and the new target. This position error at saccadic offset is then compensated 

by secondary saccades. These results relate to experimental conditions in which the 

saccades are elicited by a target that jumps, flashes, suddenly disappears or reappears. 

Such conditions very poorly resemble real-life circumstances, in which saccades are 

predominantly made to continuously present, stationary targets. I compared the accuracy 

of saccades made between two stationary targets that were continuously present, to the 

accuracy of saccades that were elicited by a single, regularly jumping target. The saccadic 

accuracy was two- to five-fold better with stationary targets than with a jumping target. 

Correspondingly, the number of secondary saccades was significantly reduced with 

stationary targets. 

As a next step, baseline data were obtained on the yoking of normal saccades in Chapter 

5, for comparison with the yoking of asymmetrically adapted saccades. It turned out that 
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even normal, unadapted horizontal saccades were not perfectly yoked. Abducting 

saccades were slightly larger than the saccades of the fellow, adducting eye. This 

difference was about 0.3 deg. In addition, when one eye was covered, it made saccades 

that were approximately 0.3 deg smaller than the contralateral, viewing eye. Vertical 

saccades were more conjugate than horizontal saccades. Post-saccadic drift of horizontal 

saccades was also not perfectly yoked. These asymmetries in concomitant saccades were, 

however, negligible to the asymmetries that might be observed in saccades, adapted to 

anisometropic spectacles (Chapters 6 through 9). 

In Chapter 6, long-term asymmetrical adaptations of saccades were studied in habitual 

anisometropic spectacle-wearers. Differences in saccadic size between the two eyes could 

be as large as about 10% of the target amplitude. The adaptations were almost complete 

during binocular viewing. The degree of asymmetrical adaptation varied, however, within 

each subject, for the various saccadic amplitudes and also for the two meridians 

(horizontal and vertical). From this it was concluded that the adaptations did not result 

from a simple resetting of a few global parameters in the generation of saccadic motor

commands, as has been proposed as a general strategy of the saccadic subsystem to 

adapt. Instead, the adaptive changes appear to be based upon a point-to-point 

readjustment of sensory-motor coordinates. Further support for such a point-to-point, 

adaptive modification of motor commands was provided by the results of the next 

chapters. Importantly, the adaptive asymmetries in saccadic size were also present during 

monocular viewing, although to a slightly lesser extent, which showed that the 

adaptations were hard-programmed, because they did not result from direct, 

asymmetrical visual input. Post-saccadic drift of horizontal saccades was also 

asymmetrically adapted, in the sense that it reduced the vergence-deficit present at 

saccadic offset. Post-saccadic drift associated with vertical saccades was not significantly 

changed. In addition, the asymmetrical adaptations were also present in smooth-pursuit 

eye movements. 

In Chapter 7, I examined the time-course and the limits of these asymmetrical 

adaptations of horizontal and vertical saccades to the short-term wearing of 

anisometropic spectacles. After only 1 hour of conditioning to a moderate pressure 

(2 D of anisometropia), the asymmetrical adaptations were almost complete along one 

meridian. For larger pressures, the adaptations were well under way. These results 
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demonstrated how rapidly such adaptive changes may develop. An anisometropia larger 

than 6 D did not further increase the rate of adaptation during the first 6 hours of 

conditioning, which suggests that about 6 D may be the upper limit of what can be 

handled by the adaptivity of the saccadic subsystem. Post-saccadic drift of horizontal 

saccades was also adequately changed. In addition, asymmetrical adaptations had also 

developed in smooth-pursuit eye movements. All these plastic changes persisted during 

monocular viewing, indicating that the basic programming of these eye movements was 

changed. Just as with long-term adaptations, the plastic changes could not be explained 

by a uniform resetting of a few, uniform parameters in the oculomotor commands. 

In Chapter 8, I determined whether such asymmetrical adaptations might be specific 

for the horizontal or the vertical meridian. Such a plastic capacity of the oculomotor 

system would greatly add to its flexibility to adequately adapt to various stimuli. To that 

end subjects adapted to anisometropic spectacles that contained a negative, cylindrical 

lens (-3 D) on one side, and no lens on the other side. Such a lens reduces the visual 

image along one meridian only. With the lens-axis positioned vertically, asymmetrical 

adaptations of saccades, and also of smooth-pursuit eye movements, developed along 

the appropriate, horizontal meridian only. The same applied to the post-saccadic drift. 

Vertical saccades remained unchanged. Again, the adaptations were hard-programmed. 

When the experiment was repeated on another day, this time with the lens-axis 

positioned horizontally, only vertical asymmetries were induced. Post-saccadic drift of 

vertical saccades was, however, unaffected. 

In Chapter 9, I addressed the question whether asymmetrical adaptations could be 

specific for any meridian, also oblique meridians, or whether asymmetrical adaptations 

of oblique saccades would merely consist of an adaptive change of their individual 

horizontal and vertical components. In that case, the adaptations would not be specific 

for oblique meridians. This was examined by means of a cylindrical spectacle-lens, just 

as in Chapter 8, supplied to one eye for 7 continuous hours. In the present experiments, 

however, the lens-axis was positioned obliquely. After the training-period, asymmetrical 

adaptations of saccades, and also of smooth-pursuit eye movements, had developed, that 

were truly specific for the appropriate, oblique meridian. This shows that the 

asymmetrical adaptations take place before the central command to generate an oblique 

saccade is decomposed into its horizontal and vertical components. 
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All these experiments demonstrate the remarkable capacity of the oculomotor system 

to adapt adequately to various kinds of specific, visual pressure. This capacity may help 

to maintain proper oculomotor control throughout a lifetime. 
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SAMENV ATTING 

Saccades zijn snelle oogbewegingen waarmee wij onze blik willekeurig van bet ene visuele 

doe! naar bet andere kunnen verplaatsen. Zij dienen om bet beeld van bet nieuwe 

visuele doel op een klein dee! van bet netvlies te Iaten vallen waar de gezichtsscherpte 

groat is. Dit deel beet de fovea. Dit proces vindt voor beide ogen bijzonder nauwkeurig 

plaats, hetgeen hoge eisen stelt aan de sturing van saccades. In alle structuren die 

betrokken zijn bij die sturing kunnen er gedurende ons !even veranderingen optreden 

als gevolg van bijvoorbeeld groei, veroudering en ziekte. Deze veranderingen hebben 

ongetwijfeld gevolgen voor de sturing van saccades en vormen daarom mogelijk een 

bedreiging voor de kwaliteit ervan. Om die kwaliteit te bewaken, dient bet saccade

systeem zich daarom adequaat aan te passen aan dergelijke veranderingen. Aangezien 

deze veranderingen waarschijnlijk lukraak op verschillende plaatsen optreden, 

verschillende tijdsverlopen hebben en in intensiteit wisselen, dienen de aanpassingen van 

bet saccade-systeem specifiek te zijn voor dergelijke niet-uniforme veranderingen. 

Adaptatie van saccades is beschreven voor verschillende soorten veranderingen; zowel 

voor beschadiging van uitwendige oogspieren, alsmede voor puur visuele prikkels (voor 

een overzicht, zie Hoofdstuk 2). De opzet van dit proefschrift was om na te gaan hoe 

bet saccade-systeem reageert op een consistente visuele prikkel die vereist dat de twee 

ogen zich verschillend, dat wil zeggen asymmetrisch, aanpassen. 

Algemeen wordt aangenomen dat de twee ogen normaliter saccades maken van gelijke 

grootte, hetgeen is vastgelegd in de wet van Hering, die stelt dat de twee ogen een 

gelijke innervatie ontvangen (de wet van Hering wordt in Hoofdstuk 2 besproken). 

Normaliter is een dergelijk conjugaat bewegen van de ogen wenselijk. Dat is echter niet 

bet geval wanneer men een zogenaamd anisometrope bril draagt; dat is een bril waarvan 

de twee glazen een verschillende brekingssterkte hebben. Hierdoor krijgen de visuele 

beelden in elk oog een verschillende grootte, waardoor de saccades voor elk oog oak 

van ongelijke grootte dienen te zijn. In dit proefschrift heb ik aangetoond dat een 

dergelijke aanpassing van saccades aan anisometrope brillen inderdaad mogelijk is. 

Om oogbewegingen te meten en die van de twee ogen met elkaar te vergelijken, dient 

men oogposities ondubbelzinnig te beschrijven. Het coordinaatsysteem volgens Helmholtz 
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leent zich hier het beste voor. Derhalve heb ik goniometrische vergelijkingen afgeleid 

die de gemeten oogposities omzetten in Helmholtz-coordinaten. Aangezien twee andere 

coordinaatsystemen (genoemd naar Fick en naar Listing) ook veelvuldig gebruikt worden, 

heb ik formules afgeleid, waarmee de coordinaten van elk systeem in die van de ander 

kunnen worden omgezet. Daarnaast heb ik een Speciale ijkingsprocedure en een 

linearisatie-techniek ontwikkeld (Hoofdstuk 3). Oogbewegingen werden nauwkeurig en 

binoculair gemeten door middel van magnetische inductie-spoeltjes. Omdat het verschil 

in grootte van saccades tussen de twee ogen gebruikt werd als maat voor asymmetrische 

adaptatie, heb ik ervoor gezorgd dat de posities van de visuele doelen op zich geen 

prikkel vormden voor met-conjugate oogbewegingen. Daartoe heb ik een speciaal scherm 

geconstrueerd, waarop de doelen later geprojecteerd werden. De principes van dit 

scherm worden toegelicht in Hoofdstuk 3. De overige methoden en technieken die ik 

heb toegepast, worden eveneens in Hoofdstuk 3 besproken. 

Alvorens asymmetrische adaptaties aan anisometrope brillen te bestuderen, heb ik de 

nauwkeurigheid van ongeadapteerde saccades onderzocht (Hoofdstuk 4). Algemeen 

wordt aangenomen dat saccades ongeveer 10% te klein zijn voor de te overbruggen 

afstand. De positie-fout die daardoor ontstaat aan het eind van elke saccade, wordt 

vervolgens gecompenseerd door secundaire saccades. Deze gegevens zijn ontleend aan 

experimenten, waarbij visuele doelen werden gebruikt, die versprongen of flitsten, of 

anderszins discontinu aanwezig waren. Dergelijke experimentele condities vertonen echter 

weinig gelijkenis met normale, dagelijkse omstandigheden, waarin wij voomamelijk 

saccades maken naar stilstaande, continu aanwezige doelen. Ik heb de nauwkeurigheid 

vergeleken van saccades die gemaakt werden tussen stationaire, continu aanwezige doelen 

met die van saccades die opgewekt werden door een verspringend doel. De 

nauwkeurigheid was twee tot vijf maal beter met stilstaande doelen dan met een 

verspringend doel. In overeenstemming hiermee, was het aantal secundaire saccades bij 

stilstaande doelen significant kleiner. 

Bij verdere analyse van ongeadapteerde saccades bleek dat zelfs normale saccades niet 

geheel conjugaat zijn. (Hoofdstuk 5). Abducerende saccades zijn ongeveer 0,3 graden 

grater dan die van het adducerende, contralaterale oog. Bovendien zijn de saccades van 

een afgedekt oog ongeveer 0,3 grad en kleiner dan die van het ziende oog. V erticale 

saccades waren meer geconjugeerd dan horizontale saccades. Aan het eind van een 
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saccade maken de ogen vaak een langzame, gladde beweging: post-saccadische drift. De 

post-saccadische drift van horizontale saccades bleek ook niet volkomen conjugaat. Al 

deze asymmetrieen waren echter verwaarloosbaar in vergelijking met de asymmetrieen 

die konden optreden na adaptatie aan anisometrope brillen (Hoofdstuk 6 tot en met 9). 

In Hoofdstuk 6 heb ik asymmetrische adaptaties bestudeerd bij mensen die reeds vele 

jaren anisometrope brillen droegen. Verschillen in saccade-afmeting tussen de twee ogen 

konden een grootte bereiken van ongeveer 10% van de doel-amplitude (de doel

amplitude is de afstand tussen twee visuele doelen, uitgedrukt in graden). Tijdens 

binoculair zien waren de adaptaties vrijwel volledig. De mate van adaptatie varieerde 

echter per proefpersoon voor de verschillende doel-amplitudes en ook voor de twee 

meridianen (horizontaal en verticaal). Hieruit valt af te leiden dat een dergelijke 

adaptatie niet bestaat uit een eenvoudige modificatie van enkele algemene parameters 

in de opwekking van de saccade motor-commando's, zoals wel is gesuggereerd voor 

adaptaties van saccades in het algemeen. Mijn resultaten wijzen erop dat adaptatie 

plaatsvindt op basis van een punt-tot-punt aanpassing van sensori-motore coordinaten. 

Resultaten uit volgende hoofdstukken bevestigen dit. Van groat belang is dat de 

asymmetrische adaptaties ook aanwezig waren wanneer een oog was afgedekt, hetgeen 

impliceert dat de adaptaties "hard" waren, omdat zij in deze conditie niet het gevolg 

konden zijn van directe, asymmetrische visuele informatie. Post-saccadische drift van 

horizontale saccades was eveneens asymmetrisch geadapteerd, in die zin dat de drift 

steeds bijdroeg aan het elimineren van positiefouten die resteerden na de saccade. 

Bovendien bleken de asymmetrische adaptaties ook opgetreden te zijn in gladde 

volgbewegingen. 

In Hoofdstuk 7 bekeek ik het tijdsverloop en de grenzen van dergelijke asymmetrische 

adaptaties gedurende de eerste uren dat anisometrope brillen gedragen werden. Na 

slechts 1 uur blootstelling aan een anisometropie van 2 D was de adaptatie vrijwel 

volledig voor een meridiaan. Bij grotere anisometropieen waren de adaptaties nog niet 

compleet, maar reeds aanzienlijk toegenomen. Deze resultaten tonen hoe snel dergelijke 

adaptaties kunnen optreden. Mijn resultaten suggereren bovendien dat 6 D 

anisometropie de bovengrens vormt van wat bet saccade-systeem aankan. Post

saccadische drift van horizontale saccades was eveneens adequaat geadapteerd. Dit gold 

ook voor gladde volgbewegingen. Al deze plastische veranderingen waren ook aanwezig 
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tijdens monoculair zien, hetgeen aangeeft dat zij geincorporeerd waren in de basale 

programmering van saccades en gladde volgbewegingen. 

V ervolgens heb ik onderzocht of asymmetrische ada pta ties specifiek kunnen zijn voor 

de horizontale of verticale meridiaan (Hoofdstuk 8). Ben dergelijke specificiteit zou de 

fleXIbiliteit van adaptatie-processen ten goede komen. Voor dit onderzoek gebruikte ik 

een negatieve, cylindrische lens (-3 D), die gedurende 7 uren continu voor het rechter 

oog gedragen werd. Ben dergelijke lens verkleint het visuele beeld slechts langs een 

meridiaan. Het bleek mogelijk asymmetrische adaptaties te bewerkstelligen, die specifiek 

waren voor hetzij de horizontale meridiaan, hetzij de verticale meridiaan, afhankelijk van 

de positie van de lens-as. Post-saccadische drift van horizontale saccades, alsmede gladde 

volgbewegingen bleken eveneens meridiaan-specifiek geadapteerd te kunnen worden. 

Tot slot heb ik in Hoofdstuk 9 onderzocht of asymmetrische adaptaties ook opgewekt 

kunnen worden voor iedere willekeurige meridiaan, schuine meridianen inbegrepen, of 

dat adaptaties van schuine saccades plaatsvinden op grond van individuele adaptaties van 

hun horizontale en verticale componenten. Dit werd bekeken met gebruikmaking van 

dezelfde lens als in Hoofdstuk 8. Ditmaal werd de lens-as echter schuin geplaatst. Na 

7 uur waren asymmetrische adaptaties geinduceerd die inderdaad specifiek waren voor 

de juiste, schuine meridiaan. Dit gold zowel voor saccades als voor gladde 

volgbewegingen. Deze resultaten tonen dat de asymmetrische adaptaties plaatsvinden 

voordat de motor-commando's voor schuine saccades worden ontbonden in hun 

individuele horizontale en verticale componenten. 

AI deze resultaten geven aan hoe fraai het oogbewegings-systeem uitgerust is om zich 

adequaat aan te passen aan verschillende vormen van specifieke, visuele druk. Deze 

eigenschap kan bijdragen tot het blijvend goed functioneren van onze oogbewegingen 

gedurende een heel Ieven. 
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