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I.l. 

INTRODUCTION 

The tracing of fiber systems in the brain has 
always been one of the chief aims in neuro
anatomy. Although anatomists described and 
named several fiber bundles in the brain 
during the past centuries, major advances in 
neuro-anatomy only occurred around the turn 
of the century because of two important 
developments. In the frrst place new staining 
techniques were developed (for a review see 
Voogd and Feirabend, 1981), most notably 
the Weigert and the Nissl stains and the Golgi 
method. The Nissl stain (Nissl, 1894) mainly 
stains the cell body of neurons and glial cells, 
but not their processes. Nissl staining makes it 
possible to identify cytoarchitectonic subdi
visions in light microscopic sections of brain 
tissue. The Golgi method (Golgi, 1873), on 
the other hand, stains the whole cell, including 
its processes. The cells, which become im
pregnated by a silver deposit, clearly stand out 
against a clear background of unstained cells, 
because -for some unknown reason(s)- only a 
fraction of all cells in a section react. Therefore 
the Golgi technique is especially suited for 
studying the details of individual neurons and 
glial cells. The Weigert stain (Weigert, 1884) 
was developed from an already existing 
staining technique (the carmine technique) and 
is specific for myelin. The Weigert stain made 
it easier to identify myelinated fiber tracts 
within the brain. Silver impregnation tech
niques were introduced by Bielschowsky 
(1902) and Cajal (1903). These techniques are 
based on the staining of neurofibrils within 
neurons and their processes. 

With the development of the various new 
staining techniques around the turn of the cen
tury, the discussion on two opposing theories 
on the organisation of the brain came to a 
climax. One theory stated that all neurons are 
part of a continuous network. This "reticular 
theory" was strongly defended by Golgi. The 
other theory, known as the "neuron theory", 
held that all nerve cells were individual 
entities, which were not in protoplasmic con
tinuity. According to Cajal, in his Nobel Prize 
Lecture in 1906 (Cajal, 1906), the individual 
nerve cells were connected through "a granular 

cement or special conducting substance, which 
serves to keep the neuronal surfaces in very 
intimite contact". The word "synapse" for 
such functional contact between nerve cells 
had already been introduced by Sherrington 
(Sherrington, 1897) almost ten years earlier. 
Cajal strongly defended the neuron theory. He 
put forward many arguments in favour of it, 
mainly based on his own detailed descriptions 
of Golgi impregnated single cells from all 
areas of the brain. By the time Golgi and Cajal 
shared the Nobel prize for Medicine in 1906 
the discussion on the reticular and neuron 
theory had been decided in favour of the 
neuron theory. The proof for the validity of 
the neuron theory was finally completed by the 
early electron microscopical studies, in which 
the synaptic structure could actually be 
visualized (see e.g. Palade and Palay, 1954; 
Palay, 1956). The neuron theory was of cru
cial importance for the further development of 
neuroantomy, because it formed the basis for 
the interpretation of findings obtained with the 
different tracing techniques. 

At the end of the nineteenth century only 
few methods were available for the identifi
cation of connections between specific nuclei 
in the brain. Myelinization and demyelinization 
of long pathways could be studied with the 
Weigert stain, but these types of studies did 
not give information on the location of the cell 
bodies from which these pathways originated. 
On the other hand, cells which had degene
rated after their axon had been cut could some
times be identified in Nissl stained sections by 
the displacement of the nucleus and the Nissl 
bodies towards the periphery of the cell. This 
retrograde degeneration technique for identi
fying connections in the brain was given a 
further impetus by techniques which specifi
cally stained degenerating fibers, like the 
Marchi technique (Marchi and Algeri, 1885), 
which stains the myelin of degenerating fibers. 
The Marchi technique is less well suited for 
tracing the terminal arborizations of nerve 
fibers, since these are generally not myeli
nated. For the purpose of identifying degene
rating fibers and terminals distal to a lesion 
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(anterograde degeneration) the silver impreg
nation techniques of Bielschowsky or Cajal 
can be used. However, these techniques also 
stain normal fibers which made it often com
plicated to obtain reliable data. Only much later 
the silver impregnation techniques were modi
fied to make them specific for degenerating 
fibers and terminals (Glees, 1946; Nauta and 
Gygax, 1954; Fink and Heimer, 1967). 

The application of the Nauta technique for 
visualizing degenerating axons and the intro
duction of electron microscopy for studying 
the nervous system (for a review see Peters et 
al., 1976) resulted in a rapid expansion of our 

knowledge of the brain with its many different 
fiber systems. Up to 1970 the axonal degene
ration technique remained the most important 
tool for tracing connections in light and 
electron microscopical studies of the brain. 
Around 1970 two new techniques for tracing 
nervous connections became available. They 
did not rely on the pathological changes in 
damaged nerve cells as the degeneration 
technique, but were based on normal physio
logical uptake and transport mechanisms of the 
neuron. In the next paragraphs these tech
niques will be described in more detail. 
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I.2. 

A DESCRIPTON OF SOME RECENT NEURO
AN ATOM ICAL TECHNIQUES 

In the past decades many new techniques have 
been developed for studying the anatomy of 
the brain. The basic principles of some of 
these techniques will be described below. 
They include the axonal transport techniques, 
the histochemical and immuno-histochemical 
techniques. 

I.2.A. AxONAL TRANSPORT 

In 1948 Weiss and Hiscoe were the first to 
clearly demonstrate the existence of an active 
anterograde transport system within the axon 
of a neuron. They described the accumulation 
of material proximal to a ligature of a nerve 
and, after the constriction had been removed, 
the anterograde movement of the material with 
a velocity of 1-2 mm/day. Application of 
tritium labelled amino acids around neurons 
and the subsequent movement of radioactive 
proteins within the axon confirmed this trans
port rate (Droz and Leblond, 1962). Other 
quantitative studies on transport velocities in 
axons (see e.g. Grafstein, 1967) showed that 
much faster transport rates (upto 400 mm/day) 
also existed. Apart from the slow and fast 
transport rates there may also exist one or 
more intermediate transport rates (Grafstein 
and Forman, 1980). 

The material that is transported by the fast 
anterograde flow consists mainly of mem
branous structures like smooth endoplasmatic 
reticulum, plasma membranes, synaptic and 
other types of vesicles and some mitochon
dria. These membrane structures generally 
consist of proteins, glycoproteins and lipids. 
However, small molecules like amino-acids, 
which may be contained as neurotransmitters 
within synaptic vesicles, are also part of the 
fast flow as well as sugars and nucleosides. 
The slow anterograde transport generally 
consists of cytoplasmic materials, mainly pro-

teins which are part of the structural elements 
of the axon (neurofilaments, microtubules and 
some mitochondria). Other proteins like actin, 
cadmodulin and various metabolic enzymes 
are also part of this slow flow (for details and 
references see Grafstein and Forman, 1980). 

Apart from the anterograde transport 
system of the axon there also exists a retro
grade transport system. This is best shown by 
the application of certain substances around 
axon terminals, while monitoring the uptake of 
these substances and subsequent retrograde 
transport (Kristensson, 1971; Lavail and 
Lavail, 1972). The velocity of retrograde 
transport is estimated at rates between 2 and 
300 mm/day. Fast and slow transport rates 
have been distinguished, although only one 
protein has been identified to be associated 
with the slow retrograde flow (Fink and 
Gainer, 1980). Furthermore it was found that 
on the average the retrograde transport 
velocities are slower than the anterograde 
ones. Several substances were found to be 
transported retrogradely within neurons, 
including proteins, glycoproteins, phospho
lipids and small molecules like GABA, glycine 
and serotonin. Since the fast retrograde and 
the anterograde transport have many substan
ces in common, a large part of the material in 
the retrograde transport flow may be derived 
from a reversal of the anterograde flow. 
Several proteins and small molecules can be 
taken up from the extracellular space and 
subsequently enter the retrograde flow (for 
details and references see Grafstein and 
Forman, 1980). In this respect it is of interest 
to note that some extra-cellularly applied 
substances (e.g. nerve growth factor, tetanus 
toxin, cholera toxin and wheat germ agglu
tinin) are easily taken up by an axon terminal 
or a cell soma even at low extracellular 
concentrations (Dumas et al., 1979). Other 
substances, like horseradish peroxidase 
(HRP) are taken up in detectable amounts only 
if a high extra cellular concentration is 
achieved. This difference in uptake efficiency 



Neuro-Anatomical Techniques 5 

is probably due to the presence of receptors in 
the neuronal membrane, which facilitate the 
uptake of only a few specific substances like 
the ones mentioned above. Specific receptors 
for horseradish peroxidase probably do not 
exist (Stoeckel and Thoenen, 1975), which 
would explain the relatively high extra-cellular 
concentration which is needed to obtain 
sufficient uptake of HRP by the cell soma or 
the axon terminals (see also Ch. I.2.B.). 

Both anterograde and retrograde axonal 
transport are essential for maintaining the 
integrity of the neuron: newly synthesized 
enzymes, proteins and membrane constituents 
are transported to the part of the axon or 
terminal where they are needed. Vica versa 
redundant materials from the axon or terminal 
or substances which have been taken up from 
the extracellular space are transported back to 
the soma, where they are recycled or degra
dated in lysosomes. Apart from the antero
grade and retrograde transport in axons there 
is also evidence for such transport in dendrites 
(Lux et al., 1970). 

The basic mechanisms which underlie the 
axonal transport systems are still unclear, 
although several hypotheses have been pro
posed (for details see Grafstein and Forman, 
1980). At any rate the transport mechanism 
critically depends on energy which is provided 
locally within the axon. Even after the axon 
has been disconnected from the cell soma, 
transport will continue for a few hours (Ochs 
and Ranish, 1969). Furthermore it has been 
shown (Ochs and Ranish, 1969; see also 
Grafstein and Forman, 1980) that transport in 
an axon is independent of its electrical activity. 
Thus the transport velocity in non-active nerve 
fibers (e.g. in an anaesthetized animal) is the 
same as in an electrically active nerve. Anoxia 
and blockers of oxidative metabolism put a 
stop to the transport and agents which disrupt 
the microtubules (like colchicine, vincristine 
and others) have a similar effect (for a review 
see Samson, 1976). The microtubules them
selves do not seem actively involved in the 
transport of substances. They may serve as a 
structural support for certain proteins, which 
are capable of producing force along the 
surface of microtubules, provided that ATP is 
present. One of these proteins (kinesin) is 
involved in anterogade transport (Schnapp and 
Reese, 1986), while another protein (dynein) 
is especially associated with retrograde trans
port (Vallee et al., 1989). The exact relation 
between these proteins and the transported 
organelle is at present unclear. 

1.2.B. AxONAL TRANSPORT 
TECHNIQUES 

The techniques which use axonal transport for 
tracing connections in the brain are based on 
the neuronal uptake of certain substances from 
the extracellular space and their active trans
port in an anterograde or retrograde direction. 
Most of these substances are taken up by the 
soma and/or the terminals. In addition there is 
evidence for the uptake and subsequent trans
port of substances (in particular HRP) by 
axons. Probably this uptake will only occur 
when the axons are damaged (Wakefield and 
Shonnard, 1979; Brodal et al., 1983). Al
though the active transport of extra-cellularly 
applied substances has been clearly esta
blished, it cannot be excluded that a fraction of 
these substances actually diffuse within the 
axon. The recent fmding that in post-mortem 
or even in fixed material substances like HRP 
(Beach and McGeer, 1987) and certain 
carbocyanide dyes (Godement et al., 1987) 
"passively" move through axons at a very 
slow rate, may point in this direction. 

The substances which are used for tracing 
connections in the brain are generally referred 
to as tracers. There are several tracers which 
can be used and their characteristics will be 
shortly described below. 

Tritiated amino acids and other 
radioactive substances 

The use of radioactive tracers is based on the 
fact that their presence can be detected in the 
tissue by virtue of their radiation. Generally 
radioactive tracers are produced by using a 
non-radioactive tracer, which is then radio
actively labelled by substituting one or more 
hydrogen atoms for tritium. Other isotopes 
like carbon-14, phosphorus-32, sulphur-35 or 
iodine-125 can also be used but are less often 
applied, because in comparison to tritium, 
their halflife, mean particle energy or commer
cial availability is often less suitable for tracing 
purposes (for details see Williams, 1977). 
Tritium emits B radiation (with a mean particle 
energy of 0.018 MeV), which penetrates in 
tissue for a maximum distance of 3 11m. It has 
a half life of approximately 12.2 years. In 
tissue the radiation of e.g. tritium can be de
tected and localized by the applying to a tissue 
section an emulsion layer containing silver
bromide crystals, or by liquid scintillation 
counting of small samples. When a silver-
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bromide crystal in the emulsion layer is "hit" 
by a B-particle, it is sensitized and will be 
converted into a grain of metallic silver during 
photographic development. Non sensitized 
crystals will be dissolved during fixation, 
leaving behind the silvergrains (for details and 
references: see Rogers, 1979). 

Lasek et al. (1968) were one of the first to 
use a tritiated amino acid as a tracer at the light 
microscopical level. They injected 3H-leucine 
in a dorsal ganglion of cats and toads. Mter a 
survival time (ranging from 1 to 7 days) the 
animals were perfused and their spinal cord 
and brainstem were cut in transverse sections. 
Slides carrying the sections were covered with 
a photographic emulsion, exposed for several 
weeks and then developed and fixed. After 
counterstaining, the sections were cover
slipped and viewed in the light microscope. 
They found silvergrains overlying the dorsal 
and ventral horns and the dorsal column nuclei 
in the lower brainstem, indicating the presence 
of a radioactive source in those areas. They 
concluded that the injected 3H-leucine had been 
taken up by the ganglion cells and was 
subsequently transported to their terminals in 
the spinal cord and brainstem. The distribution 
of the silvergrains was identical to the distri
bution of degenerated elements observed in 
earlier degeneration experiments (Sprague, 
1958). 

In 1972 Cowan et al. performed a similar 
experiment in various central neuronal sys
tems. They made detailed observations on the 
autoradiographic technique and summarized its 
advantages over the degeneration technique. 
They pointed out that 1) 3H-leucine was taken 
up by cell somata and not by terminals and 
passing axons 2) only anterograde transport 
was involved 3) a fast flow, which mainly 
labelled the terminals and a slow flow, which 
labelled the entire axon including its terminals 
could be distinguished 4) in some cases addi
tional projections could be visualized which 
had not been observed with the degeneration 
technique and 5) the autoradiographic tracing 
technique made use of the physiological trans
port system of the cell and did not depend on 
pathological changes. 

Apart from the advantages, the autoradio
graphic technique also has certain drawbacks. 
In the first place it is often difficult to 
determine the size of the injection site. It has 
been shown (Swanson, 1981) that after sur
vival times longer than one week, the size of 
the injection site tends to become increasingly 
smaller. Furthermore the exposure time also 
influences the size of the injection site. In the 

second place, the autoradiographic technique 
is an indirect technique: the silvergrains give 
an indication that the underlying structures are 
radioactively labelled. Sometimes it is difficult 
to determine from the pattern of the silver
grains whether these structures are axons or 
terminals or both (e.g. terminals en passage). 
These problems can be overcome by using 
other anterograde tracers, which give more 
structural detail (like phaseolus vulgaris leuco
agglutinin or WGA-HRP, see later) or ty 
using retrograde tracers to determine the exact 
location of the cells of origin of a pathway. A 
third drawback associated with the autoradio
graphic technique is the background activity in 
autoradiograms, i.e. the silvergrains produced 
by factors other than the radioactive tracer. 
Background grains may be produced by other 
(naturally occurring) radioactive sources in the 
tissue, by cosmic radiation, by heat or 
mechanically (when applying the emulsion, 
handling the slides etc.). Therefore the tech
nique must be carried out in such a way that 
low background levels are obtained, otherwise 
"light projections" cannot be distinguished 
from the background activity. However, when 
these drawbacks have been taken into account, 
the autoradiographic tracing technique has 
proven to be a valuable tool for the iden
tification of pathways in the brain. 

In the past 15 years the autoradiographic 
tracing technique has become standard in 
many laboratories. In due course it was found 
that, in addition to 3H-leucine, several other 
tritiated substances could be used for tracing 
nervous connections. Anterograde transport 
was obtained with tritiated amino acids like 
proline, alanine, glycine, lysine, serine and 
valine and with fucose, a monosaccharide 
(Reperant et al., 1985). Two of these radio
active tracers (3H-proline and 3H-fucose) have 
been shown to be transported transneuronally 
(Grafstein and Laureno, 1973; Reperant et al., 
1985), i.e. from the nerve terminal into the 
postsynaptic neuron. Transneuronal transport 
may be recognized in a particular experiment 
since the postsynaptic neuron which has taken 
up the transneuronally transported radioactive 
tracer will become radioactive itself. In such a 
case it must be excluded that retrograde trans
port from the injection site to this neuron 
has occurred. In fact retrograde transport of 
tritiated amino acids has been reported (for a 
review see Cuenod et al., 1982). These 
include aspartate, glutamate, glycine, gamma
amino-butyric acid (GABA) and proline. Since 
all these amino acids are considered as putative 
neurotransmitters, it has been assumed that 
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their uptake depends on the presence of high 
affinity uptake systems, which are located 
within the terminal membrane of certain 
neurons and which are specific for a particular 
transmitter. Indeed other transmitters like 
dopamine, (nor-) adrenalin, serotonin, choline 
(a precursor of acetyl-choline) are also 
selectively taken up by those terminals which 
secrete them as a transmitter and are then 
transported back to the soma. The existence of 
high affinity uptake systems has been 
demonstrated for biogenic amines, amino 
acids and choline (see e.g. Hokfelt and 
Ljungdahl, 1975; Descarries and Beaudet, 
1983) and retrograde transport of labelled 
neurotransmitters has been used to identify 
transmitter-specific connections. 

The techniques for transmitter-specific 
retrograde transport are essentially based on 
the presence of a high affinity uptake systems 
for specific transmitters. Thus when an 
injection is made with e.g. 3H-glycine in area 
A and autoradiographically labelled cells are 
seen in area B, this rmding would imply not 
only that there exists a connection between A 
and B, but also that glycine is present as a 
transmitter in this connection. On the other 
hand, the absence of retrogradely labelled cells 
does not exclude the presence of a glycinergic 
connection, but merely signifies that there is 
no high afrmity uptake system for this parti
cular transmitter. After a 3H-GABA injection 
in the spinal cord no labelling of nearby 
interneurons (known to be GABA-ergic) was 
found (Rustioni and Cuenod, 1982), in
dicating that the terminals from these neurons 
do not have a high affinity uptake system for 
GABA. Similar fmdings were obtained in the 
GABA-ergic projection from the cerebellar 
cortex to the vestibular nuclei (Wiklund et al., 
1983). Apart from these "false negative" 
results there may also be false positive results 
since high affmity uptake systems for different 
biogenic arnines show some "cross reactivity". 
In addition it has been shown that some of the 
transmitter-like substances are taken up 
aselectively, especially when high extracellular 
concentrations are produced (for references 
and a discussion on these problems see 
Cuenod and Streit, 1983). Taken together the 
various data indicate that the results obtained 
with the neurotransmitter-specific transport 
techniques (including the negative results) 
should be interpreted with care. Nevertheless 
it represents a promising and simple tool for 
tracing chemically identified axonal pathways. 
At this point it should also be mentioned that a 
high affinity uptake system for 3H-leucine 

does not seem to exist, since retrograde 
transport of3H-leucine has never been demon
strated. Thus for general purposes 3H-leucine 
is a good and reliable anterograde tracer, 
without retrograde or transneuronal transport 
and without uptake by passing axons. 

Horseradish peroxidase 

The horseradish peroxidase (HRP) tracing 
technique was introduced in the early seventies 
(Kristensson and Olsson, 1971; Lavail and 
Lavail, 1972; for a review see Mesulam, 
1982). Usually the HRP is applied to an 
appropriate region, where it is taken up by 
neuronal somata and terminals in the injected 
area and transported by way of the anterograde 
and/or retrograde axonal flow. HRP may also 
be applied to intact, cut or crushed nerves or to 
muscle tissue. In the central nervous system 
the HRP is passively taken up by the soma or 
terminal through micro-pinocytosis. Therefore 
the amount of HRP which will have entered 
the neuron may be largely dependant on 
the extracellular concentration of the HRP 
(Sawchenko and Gerfen, 1985). Axons (of 
passage) may also take up HRP, but only 
when they are injured either by the injection or 
intentionally by a knife cut (Wakefield and 
Shonnard, 1979; Brodal et al., 1983). After its 
uptake HRP is transported both in anterograde 
and retrograde directions. After 2 to 5 days 
survival time, the animal is perfused and the 
tissue is cut in frozen sections or in slabs 
using a Vibratome slicer. The sections or slabs 
are incubated with a chromogen and hydrogen 
peroxide. At the site of the HRP, the chromo
gen is oxidized and precipitates, marking the 
location of the HRP. Originally diamino 
benzidine (DAB) was used as a chromogen 
(Graham and Karnovsky, 1966), but since 
that time several other substances have been 
introduced (De Olmos and Heimer, 1977; 
Hanker et al., 1977). The application of 
tetramethyl benzidine (TMB) as a chromogen 
(Mesulam, 1978) has substantially increased 
the sensitivity of the technique and made it 
possible to detect connections which could not 
be demonstrated with DAB (see e.g. Mesulam 
and Brushart, 1979; Chapter 2). However, the 
TMB reaction product is rather unstable, and 
may disappear when the incubated sections 
have to be further treated e.g. for immuno
histochemistry or electron microscopy. There
fore several methods have been proposed to 
stabilize the TMB reaction product (Adams, 
1980; Rye et al., 1984). A further increase in 
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sensitivity was obtained by coupling HRP to 
wheat germ agglutinin C:WGA) (Gonatas et al., 
1979). This increase in sensitivity is probably 
due to the fact that WGA will specifically bind 
to compounds like N-acetyl-glucosamide and 
sialic acid, which are generally found in 
neuronal membranes (see e.g. Sawchenko and 
Gerfen, 1985). These membrane constituents 
may act as a receptor, enhancing the uptake of 
WGA-HRP. Both retrograde (Trojanowski et 
al., 1982) and anterograde (Trojanowsky et 
al., 1981) transport were found to be 
enhanced when using WGA-HRP instead of 
free HRP. It was also found that, similar to 
free WGA (Ruda and Coulter, 1982), the 
WGA-HRP conjugate was transported 
transneuronally, both retrogradely (Harrison et 
al., 1984; Wiesendanger and Wiesendanger, 
1985) and anterogradely (Itaya and Van 
Hoesen, 1982). Transneuronal transport of 
free HRP has never been shown, but trans
ganglionic transport, which is a transport 
within one cell, does occur (Mesulam and 
Brushart, 1979). Transneuronal transfer of 
WGA-HRP seems to be enhanced towards 
those second order neurons which have been 
most active during the survival period 
(Jankowska, 1985; Alstermark et al., 1987). 
Thus WGA-HRP combined with TMB as a 
chromogen is a very sensitive technique for 
tracing axonal connections. However the 
possibility of transneuronal transfer always 
should be taken into account when using 
WGA-HRP, whereas with free HRP this 
phenomenon does not seem to occur. 

Fluorescent tracers 

One of the first retrograde tracers to be used in 
neuro-anatomy was the fluorescent tracer 
Evans Blue, combined with bovine albumin 
(Kristensson, 1970). In the late seventies 
Kuypers and collaborators demonstrated that 
Evans Blue by itself is also transported. They 
discovered also several other fluorescent 
compounds which were transported retro
gradely from the terminals to the cell soma 
(Kuypers et al., 1977) and some of them were 
transported anterogradely as well (Rosina, 
1982). These fluorescent tracers include 
diamidinophenyl-indole (DAPI), primulin, 
granular blue, true blue, fast blue, nuclear 
yellow and diamidino yellow (Bentivoglio et 
al., 1979, 1980; Kuypers et al. 1977; 1979; 
1980; Keizer et al., 1983; for a review see 
Kuypers and Huisman, 1984). More recently 
other fluorescent tracers were found, most 

notably fluorogold (Schmued and Fallon, 
1986) and rhodamine labelled latex beads 
(Katz et al., 1984). One of the great advan
tages of the fluorescent tracers is the possibi
lity to combine them in double labelling expe
riments. The combination of two fluorescent 
tracers e.g. DAPI/primulin with Evans Blue 
(Vander Kooy and Kuypers, 1979) or either 
fast or true blue with diamidino yellow (Keizer 
et al., 1983) and even three (de Olmos and 
Heimer, 1980; Bentivoglio and Molinari, 
1982) fluorescent tracers makes it possible to 
identify axon collaterals. Thus one tracer is 
applied to the terminals of the stem axon and 
the other tracer to the terminals of the collateral 
axon. Mter retrograde transport to the parent 
cell body the tracers can be identified and 
distinguished in the cell, using fluorescence 
microscopy. Double labelling of neurons for 
the purpose of identifying axon collaterals can 
also be achieved by combining the retrograde 
transport of (WGA-)HRP with tritiated 
enzymatically inactive (WGA-)HRP (Hayes 
and Rustioni, 1981). Fluorescent tracers have 
also been used in combination with histo
fluorescent (Bjorklund and Skagerberg, 1979) 
and immuno-fluorescent (Skirboll et al., 1984) 
techniques for tracing chemically identified 
pathways. Some fluorescent tracers, which 
accumulate in the cell body can be used as cell 
markers during development (O'Leary et al., 
1981; Innocenti, 1984). Many of the fluo
rescent tracers have one or more disadvantages 
in comparison with C:WGA-)HRP. There may 
be transport over short distances only, leakage 
out of the labelled cells and fading of the 
fluorescence in the sections may occur. In 
addition fluorescent tracers cannot be 
visualized in the electron microscope, although 
recently a method for photoconversion of 
some fluorescent markers to a diamino ben
zidine product (which can be visualized in the 
electron microscope) has been described 
(Sandell and Masland, 1988). Fluorescent 
tracers are mainly used for double labelling 
experiments or other purposes (see above) for 
which they are especially suitable. For single 
tracing experiments the use of C:WGA)-HRP is 
still to be preferred. 

Lectins, bacterial toxins and viruses 

Lectins are proteins which can be obtained 
from plant extracts (for review see Sawchenko 
and Gerfen, 1985). Best known for tracing 
purposes are tritium vulgaris agglutinin (from 
wheat germ) C:WGA) and phaseolus vulgaris 
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leucoagglutinin (from the red kidney bean) 
(PHA-L). Lectins are known to bind to 
receptors (glycoproteins and glycolipids) in 
the neural membrane, which enhance their 
uptake of lectins. Both WGA and PHA-L can 
be used for tracing fiber connections, but their 
characteristics are rather different. 

WGA is transported anterogradely and 
retrogradely (Lechan et al., 1981) and may 
also be transported transneuronally (Ruda and 
Coulter, 1982). There is evidence that the up
take and transport of WGA is system- and 
species-dependant, because some neurons lack 
the specific receptors for WGA (Schnyder and 
Kiinzle, 1983; see also Sawchenko and 
Gerfen, 1985). WGA can be detected by 
autoradiography of 3H-WGA (Schwab et al., 
1978) or by immuno-cytochemical methods 
(Ruda and Coulter, 1982) and it can be 
labelled with gold particles (Menetrey, 1985). 
The most common method is to use WGA 
coupled to HRP, which can be detected histo
chemically (see earlier). 

The lectin phaseolus vulgaris leuco
agglutinin (PHA-L) was found to possess 
some unique properties as a tracer (Gerfen and 
Sawchenko, 1984). When PHA-L is delivered 
iontophoretically (pressure injection does not 
yield satisfactory results) it will be taken up by 
a limited number of cells. These cells become 
completely stained, including the axon and its 
terminals, giving a Golgi-like appearance. 
Thus detailed observations can be made, not 
only on the terminal arborizations of the 
labelled axons in the target areas, but also on 
the presence of axon collaterals may also be 
identified (Van der Want et al., 1989). 
Phaseolus vulgaris, which appears to work 
especially well in rats, remains in the neuron 
for a long time. Therefore long survival times 
can be used, which may be needed to trace 
connections over relatively long distances. 
Initially it was found that PHA-L is trans
ported only in an anterograde direction, but 
more recent findings have shown that retro
grade transport may also occur (Lee et al., 
1988). Uptake by passing fibers and trans
neuronal transfer did not seem to be present, 
although in a recent report (Vander Want et 
al., 1989) it was found that these phenomena 
did occur to a limited extent. Since PHA-L is 
detected irnmuno-histochemically with the 
PAP method (Ch. I.2.C.), it can also be 
identified at the ultrastructural level, either by 
directly visualizing the PAP reaction product 
(Wouterlood and Groenewegen, 1985) or by 

substituting the PAP reaction products by a 
silver deposit (Vander Want, personal com
munication; Van den Pol et al., 1985). 

Bacterial toxins may also be used for an
terograde and retrograde tracing. Two toxins 
(or non-toxic fragments of them) have been 
succesfully applied: cholera toxin and tetanus 
toxin. In analogy to lectins, the two toxins 
bind to specific substances (gangliosides) in 
the neuronal membrane, enhancing their 
uptake (see e.g. Stoeckel et al., 1977). 
Tetanus toxin and cholera toxin are powerful 
retrograde tracers, which can be identified 
irnmuno-histochemically (see e.g. Horikawa 
and Powell, 1986; Luppi et al., 1987; 
Fishman and Carrigan, 1987) or autoradio
graphically,when labelled with 125-I (Schwab 
et al., 1977, Stoeckel et al., 1977). The retro
grade transport of cholera toxin has also been 
used in combination with transmitter immuno
cytochemistry of the retrogradely labelled cells 
(Luppi et al., 1987; 1988). The conjugate of 
cholera toxin with HRP is also a valuable 
tracer, both for retrograde and anterograde 
tracing (Trojanowski et al., 1981; 1982; for 
review see Trojanowski, 1983). Tetanus toxin 
injected in a muscle, is transported trans
neuronally to the terminals contacting the 
motoneurons (Schwab and Thoenen, 1976), 
but does not seem to be further transported to 
the cell bodies of the second order neurons 
(Fishman and Carrigan, 1987). Until recently 
cholera and tetanus toxin or their conjugates 
with HRP were not extensively used for 
tracing connections in the brain. Therefore 
further reports have to be awaited in order to 
precisely determine the characteristics of these 
tracers. 

Finally the use of viruses should be men
tioned. So far only a few studies have used 
viruses for tracing purposes (Kristensson et 
al., 1982; Ugolini et al., 1987; Ugolini et al., 
1989). The main advantage of using a virus 
(like herpes simplex or rabies) is the fact that it 
is transported transneuronally and is replicated 
in the recipient neurons. The amount of virus 
in the second order neuron will therefore 
increase during the survival time. This will en
hance the possibility of detection by immuno
cytochemistry, leading to a larger number and 
a more complete labelling of the second order 
neurons. This efficacy of the transneuronal 
labelling is an advantage of viral transport over 
transneuronallabelling with WGA-HRP, since 
in the latter case the labelling in the second 
order neurons is always much weaker. 
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I. 2. C. HISTOCHEMICAL AND 
IMMUNO-HISTOCHEMICAL 
TECHNIQUES 

The introduction of the histofluorescence 
Falck-Hillarp technique for demonstrating bio
genic monoamines in neuronal cell bodies and 
terminals (Falck et al., 1962), represented an 
essential step in the development of "chemical 
neuroanatomy". This technique, which was 
based on aldehyde induced fluorescence of 
different monoamines, enabled the localisation 
of several catecholamines such as adrenaline, 
noradrenaline and dopamine as well as indol
amines such as serotonin (for review see 
Bjorklund, 1983). In their classical studies 
Dahlstrom and Fuxe (1964) used this tech
nique for mapping the different monoamine 
cell bodies and terminals in the brain and some 
of their projections (Dahlstrom and Fuxe, 
1965). The histofluorescence technique gra
dually became replaced by the more sensitive 
and more specific immuno-histochemical tech
nique (Coons, 1958). This technique, was 
introduced in neuroanatomy in 1969 (Geffen 
et al., 1969). It is based on the identification 
of specific compounds (antigens) by means of 
labelled antibodies. Any compound in the 
tissue may act as an antigens be it neurotrans
mitter or its synthesizing enzyme, a specific 
proteins or a lipid. Foreign substances such as 
tracers may also act as antigens and can also 
be identified by appropriate antibodies (Ch. 
I.2.B.). Antibodies can be obtained in two 
ways (a) by using "polyclonal antisera" from 
animals injected with the purified antigen and 
(b) by using a "clone" derived from one 
individual lymphoid cell which produces only 
one type of antibody, i.e. a monoclonal anti
body (Kohler and Milstein, 1975). In contrast 
to the monoclonal antibodies, polyclonal 
antisera usually contain several different anti
bodies, directed against different parts of the 
antigen. In order to locate an antigen, indirect 
immuno-histochemical labelling techniques are 
now commonly used, involving the appli
cation of a second antibody directed against 
the primary one (for review see Cuello, 1983; 
Larsson, 1983 and Polak and Van Noorden, 
1986). The second antibody can be labelled 

with various markers: fluorescent compounds, 
enzymes (e.g. HRP, visualized with DAB as a 
chromogen) and ferritin or gold particles of 
different sizes. The labelling with HRP ferritin 
or gold particles carries the advantage that the 
labels can also be visualized in the electron 
microscope (for review see Polak and 
Varndell, 1984). A further modification of 
the above techniques was provided by the 
peroxidase-anti-peroxidase (PAP) method 
(Sternberger et al., 1970). When the PAP 
complex, which contains three HRP molecules 
is applied to the section it is firmly bound by 
the second antibody which thereby becomes 
strongly labelled (for review see Sternberger, 
1979). In light microscopy the identification of 
transmitters in neurons by means of the PAP 
method has been succesfully combined with 
retrograde HRP labelling of the same neurons 
(Bowker et al., 1983). A more recently 
developed indirect immuno-histochemical 
method is the avidin-biotin technique, which is 
based on the high affinity of biotin (a vitamin) 
for avidin (an egg-white protein) or 
streptavidin (a bacterial avidin). The technique 
usually involves the application of a second 
antibody coupled to biotin. In the next step 
avidin coupled to a specific marker (HRP, a 
fluorescent substance or gold particles) is 
applied. This specifically binds to the biotin, 
thereby labelling the second antibody. Instead 
of avidin coupled to a marker, a (strept)avidin
biotin complex, which includes several HRP 
molecules, may also be used (the ABC 
method) (Hsu et al., 1981). The avidin-biotin 
and PAP methods are so far, the most 
sensitive ones and yield very little background 
staining. They can also be used for electron 
microscopic immuno-cytochemistry (Bonnard 
et al., 1982; Priestley and Cuello, 1983). A 
completely different technique for demon
strating monoamines and other putative trans
mitters is based on high affinity uptake of 
tritiated transmitters or their precursors, which 
can subsequently be visualized by light and 
electron microscopical autoradiography (for 
review see Descarries and Beaudet, 1983). 
However, this method can only be used with 
transmitters for which there exists a high 
affinity uptake system; peptides therefore can 
not be identified with this method. 
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I.3. 

ANTEROGRADE TRACING AT THE 
ULTRASTRUCTURAL LEVEL 

l.3.A. INTRODUCTION 

It is the aim of anterograde tracing studies to 
unravel the intricate afferent connections 
(input) of the various neuronal cell groups in 
the brain. However, for understanding the 
functional importance of the different fiber 
system it is not sufficient to determine from 
which area(s) of the brain afferent input is 
conveyed to a particular neuronal cell group. It 
is of equal importance to determine which 
transmitters are used in a particular system and 
whether their postsynaptic action is excitatory 
or inhibitory. For this purpose electro-physio
logical techniques are indespensable. However 
they generally measure the overall effect of a 
specific input to a neuron or neuronal cell 
group, but cannot always decide whether the 
effects are monosynaptic or relayed through 
interneurons. Anterograde tracing techiques at 
the ultrastructural level are meant to fill this 
gap by studying the local characteristics of the 
afferent systems i.e. the strategic location of 
their terminals on the neuronal membrane. It 
can be determined whether synaptic contacts 
are established with a cell soma (axo-somatic), 
With" a dendrite (axo-dendritic) or with another 
terminal (axo-axonic). The size and shape of 
the terminals and their synaptic vesicles as 
well as the proximity to other synapses may be 
important parameters all of which determine 
the functional properties of a particular afferent 
connection. This chapter only deals with three 
anterograde tracing techniques which are 
presently most widely used in electron micros
copy: the degeneration technique, the auto
radiographic technique and the horseradish 
peroxidase (HRP) tracing technique. 

l.3.B. THE ANTEROGRADE 
DEGENERATION TECHNIQUE 

The anterograde degeneration technique is 
based on the fact that a lesion of the soma or 
the axon of a particular neuron will result in 
pathological changes (degeneration) in that 
part of the axon (including its terminals), 
located distally to a lesion. A degenerating 
axon or terminal should be identified in the 
electron microscope before it has been 
engulfed by glia or has disappeared by phago
cytosis. Thus the phenomenon of anterograde 
degeneration can be used for anterograde 
tracing of fibers and terminals. Three types 
of early degenerative changes in terminals 
have been described: the electron-dense type, 
showing darkening of mitochondria and axo
plasm (Colonnier, 1964), the hypertrophic 
type, showing hypertrophy of the terminal 
filaments (Gray and Hamlyn, 1962) and the 
electron-lucent type, characterized by swollen 
terminals containing only aggregations of 
vesicles close to the synaptic junction (Gen
tchev and Sotelo, 1973). In all three types of 
early degeneration the type and shape of the 
synaptic vesicles and that of the synaptic 
junction may still be identified, allowing for 
morphological characterization of the terminal. 

The anterograde degeneration technique 
has some major drawbacks. In the first place it 
is often difficult to lesion a particular cell 
group or fiber bundle without interrupting 
fibers passing through the area. These passing 
fibers may also terminate in the area to be 
studied, which may lead to confusion or 
misinterpretation of the origin of the 
degenerated terminals. Secondly, the process 
of degeneration is asynchronous. This makes 
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it impossible to identify, at one particular 
moment, all the degenerating terminals of a 
lesioned system as degenerating. Thus after a 
certain survival time some terminals show no 
signs of degeneration while others are already 
in an advanced stage of degeneration and 
cannot be characterized anymore or have 
already disappeared. Therefore only a limited 
number of degenerating terminals can be 
identified as such. Thus the survival time must 
be carefully chosen in order to obtain the 
maximum number of degenerating terminals. 
As a result it is often difficult to obtain a 
sufficient number of degenerating terminals in 
which certain features of their "normal" 
morphology can still be recognized (see e.g. 
Conradi, 1969d). The finding that some 
terminals may show spontaneous degeneration 
(Sotelo and Palay, 1971; Rustioni and Sotelo, 
1974) is an additional complicating factor in 
this technique. 

I. 3. C. THE AUTORADIOGRAPHIC 
TRACING TECHNIQUE 

For tracing axonal connections in the central 
nervous system the electron microscopic 
autoradiography technique was introduced by 
Hendrickson (Hendrickson, 1969). In most 
studies 3H-leucine is used as a tracer (see e.g. 
Dekker and Kuypers, 1975; 1976) sometimes 
in combination with 3H-proline. The tracer is 
injected into the appropriate brain area using a 
syringe or a glass micropipette. Usually a 
survival time of 1 to 7 days is used. Longer 
survival times have also been used especially 
for tracing over long distances (Holstege, G., 
1982). Mter fixation, the tissue is routinely 
processed for electron microscopy. Ultrathin 
sections are cut from the plastic blocks and 
placed on formvar or collodion coated slides 
and contrasted with uranyl acetate and lead 
citate. A carbon layer is evaporated on the 
slides, which are then dipped in a liquid 
photographic emulsion (Vrensen, 1970). 
Other mehods for emulsion application have 
been used (e.g. the loop method). Detailed 
descriptions of the various techniques can be 
found elsewhere (Rogers, 1979). The sections 
are exposed in the dark at 4 °C for 2 months 
up to more than a year, depending on the 
intensity of the labelling. After photographic 
developing and fixation, the autoradiograms 
can be examined in the electron microscope. 

I.3.D. THE ANALYSIS OFEM 
AUTORADIOGRAMS OF 
BRAIN TISSUE 

The purpose of anterograde tracing at the EM 
level is the characterization of specific synaptic 
terminals. Morphological characterization of 
terminals is generally based on one or more of 
the following criteria (see also Ch. I.4.C.): the 
size and shape of the terminals, the number 
and type of their synaptic vesicles, the size and 
shape of their synaptic junctions, the kind of 
postsynaptic structure: a soma, a dendrite (dis
tal or proximal, spinous or non-spinous) or a 
terminal. The relation to other terminals or 
glial elements may be an additional criterion. 
At the electron microscopic level the neuropil 
is composed of various profiles of neuronal 
cell bodies, myelinated and unmyelinated 
axons, terminals, dendrites, glial elements and 
blood vessels. Several of these profiles can be 
easily recognized: e.g. terminals on account of 
their vesicle content or axons on account of 
their myelin etc. However many other pro
files, especially if they are small, contain 
only few structural markers. Therefore even 
experienced neurocytologists can denominate 
only a small percentage of these profiles 
(cf. Peters et al., 1976). This denomination 
problem and the phenomenon of cross fire 
(see below) seriously complicate a proper 
analysis of EM-autoradiograms of brain 
tissue. Additional complicating factors may 
arise from the presence of background grains 
(silvergrains which are produced by factors 
other than the radioactive tracer), from the 
simultaneous labelling of axons and terminals 
of the afferent systems and (depending on the 
tracer) from occassional transsynaptic label
ling. The problems associated with autoradio
graphic cross fire and the denomination 
problem will be described next. 

Autoradiographic cross fire 

The interpretation of EM autoradiograms 
poses several problems, which may be ex
plained as follows. It is a fundamental aspect 
of radioactivity that radiation is emitted in 
every direction with equal probability. Even 
for the low energetic radioisotopes used in EM 
autoradiography, the range of the emitted 
radiation appreciably exceeds the dimensions 
of cellular or subcellular structures. This 
means that there is a fair chance that silver 
grains in the EM autoradiograms are located 



Anterograde Tracing 13 

Fig. 1. Electron microscopical autoradiograph of rat lumbar motoneuronal cell groups after a 3H
leucine injection in the raphe pallidus obscurus. Four silver grains are present over the neuropil. 
Terminal (T) and dendritic (D) profiles can be easily recognized. The circle drawn around each of 
the silver grains represents a 50% probability circle. All profiles located within the circle are 
potential radioactive sources. The proflles which cannot be reliably denominated are indicated by 
an asteriks. For details see text. 5 months exposure time; bar = 0.2 J.liD. 
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over structures which do not contain the 
source of the radioactive decay. This phe
nomenon, which is inherent to the autora
diography technique, is called cross fire. 
Williams (1969) was the first to offer a 
solution for this fundamental problem and in 
later years other approaches have been descri
bed by Blackett and Parry (1973) and Downs 
and Williams (1978). More recently Friedman 
et al., (1986), Miller et al., (1985) and Mar
kov (1986) have extended these methods of 
analysis. Basic in all these approaches is their 
use of a probabilistic estimate of cross frre. 
This estimate indicates the distance away from 
the source, within which e.g. 50% of the 
silvergrains are formed in the emulsion. This 
50% probability distance (half distance: HD) 
has been empirically estimated by Salpeter et 
al., (1969) using hot lines. HD values 
between 80-145 nm have been determined for 
tritium, a commonly used isotope. With these 
experimental data it could be calculated that 
in an actual EM autoradiograph there is a 
probability of 50% that the radioactive source 
giving rise to a silvergrain is located within a 
distance of 135-245 nm around the center of 
the grain: the 50% probability circle. This 
implies that all the (sub )cellular structures 
located within the 50% probability circle must 
be viewed as potential radioactive sources. It 
follows from the probabilistic character of this 
approach that an individual silvergrain has 
only a limited meaning, since it can not always 
be attributed to one individual structure. In 
order to obtain reliable information from the 
autoradiograms we have to carry out a statis
tical analysis using a large number of silver 
grains (the real grain distribution). In addition 
it has to be demonstrated whether or not this 
real grain distribution is random. Therefore the 
real grain distribution over the various items 
i.e. individual, compound or complex struc
tures has to be compared with a random dis
tribution of hypothetical grains over the same 
items (for details see Williams, 1977). In fact 
this random distribution is to some extent 
comparable to the volume density of the 
various items within the tissue or cell. The 
currently used methods of analysis differ 
mainly in the way they compare the real grain 
distribution with the random (or hypothetical) 
grain distribution. Thus the physical process 
of radioactive decay makes it necessary to use 
a statistical approach in order to obtain reliable 
information from the EM autoradiograms. As 
a consequence the outcome of an EM auto
radiographic study can only be presented in 
terms of probability. It is therefore impossible 

to determine with certainty whether one spe
cific cellular or subcellular structure actually 
contains radioactivity. For neuro-anatomical 
tracing studies this is a serious handicap. 

The problem of derwmination 

Whatever the differences between the various 
methods of analysis, they have one obvious 
element in common: the potential sources of 
radioactivity must be denominated i.e. they 
must be cellular or subcellular components that 
can be distinguished on account of their fine 
structural characteristics. For autoradiography 
studies investigating the subcellular distri
bution of radioactivity that is seldom a serious 
problem: endoplasmic reticulum, ribosomes, 
Golgi-fields, etc. are distinct and clearly iden
tifiable structures. However, the denomination 
of fine structural objects raises a serious 
problem in the study of the neuropil. When 
considering e.g. the silver grains overlying the 
neuropil in Fig. 1, the problem becomes 
evident Some of the grains can be attributed 
unequivocally to a synaptic terminal which 
subsequently can be characterized. In many 
other cases, however, the probable origin of 
the silver grains can be denominated only as a 
profile without additional characteristics 
regarding its axonal, dendritic or terminal 
origin. This means that many silver grains 
cannot be ascribed to a meaningful cellular 
structure. Thus in addition to the intrinsic un
certainty of autoradiography localization, the 
analysis of EM -autoradiograms of the neuropil 
is handicapped by the lack or paucity of 
meaningful characteristics in several struc
tures. In other words autoradiograms of the 
neuropil have two superimposing sources of 
uncertainty: autoradiographic cross fire and 
denomination problems. 

The cluster analysis 

One way out of this problem of superimposed 
uncertainties is to reduce one of them to a 
neglectable level. As illustrated in Fig. 2, the 
problems due to autoradiographic cross frre 
can be drastically reduced by taking into 
account only those structures which carry a 
large number of silvergrains (e.g. a cluster of 
at least four silvergrains). The probability that 
the structure under consideration (in this case a 
terminal) is the source of radioactivity may be 
estimated as at least 90% (the larger the num
ber of silvergrains in the cluster, the higher the 
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Fig. 2. Electron microscopical autoradiograph of rat lumbar motoneuronal cell groups (after a 
3H-leucine injection in the medial reticular formation of the lower brainstem), showing a cluster 
consisting of at least eleven silver grains which is centered on a terminal (T). There is a very high 
probability that this cluster-labelled terminal actually contains radioactivity. In such cases an 
analysis using a 50% probability circle may be omitted. For details see text, 6 months exposure 
time; bar = 0,2 Jlffi. 

probability). In such a case the cluster-labelled 
structure may be considered as the actual 
source Of radioactivity. The morphoogical 
details of the cluster-labelled terminals can be 
carerully analysed according to the criteria 
outlined in the introduction (I.3.A). In this 
way the problem of autoradiographic cross fire 
and the associated statistical analysis can be 
largely circumvented. Thus we can meet with 
the purpose of anterograde labelling of 
terminals, as described before. The "cluster 
approach" relies on the presence of heavily 
labelled structures. In order to achieve this aim 
longer exposure times are generally needed. In 
addition a large amount of the radioactive 
tracer may be injected and a somewhat longer 
survival time can be used. The cluster method 

has some disadvantages: structures which do 
not contain a relatively large amount of radio
activity may not carry a cluster of silver grains 
and will not be detected. In addition the 
numerous silvergrains in a cluster may mask 
important fine structural details. Another point 
of concern when using the cluster analysis 
may arise from the occurrence of a-tracks 
originating from uranyl acetate staining. 
However, as outlined by Williams (1977), 
a-tracks are infrequent in electron microscopic 
autoradiographs. In addition they charac
teristically appear as straight tracks of silver 
grains, outrising the diameter of most profiles 
in the neuropil. Therefore a-tracks are easily 
distinguished from grain clusters. 
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I.3.E. THE HORSERADISH 
PEROXIDASE TRACING 
TECHNIQUE 

Since the beginning of the seventies, HRP has 
been used as an anterograde tracer, both at the 
light (Lynch et al., 1972; 1973) and the 
electron (Winfield et al., 1975) microscopical 
level (for a review see Mesulam, 1982). The 
introduction of WGA-HRP and the use of 
tetramethyl benzidine (TMB) as a chromogen 
significantly increased the use of (WGA-)HRP 
for anterograde tracing. For electron micro
scopical studies DAB was routinely used as a 
chromogen, because the DAB reaction product 
is very stable under various conditions. How
ever, the efficacy of DAB is low in compa
rison with that of 3H-leucine in combination 
with the EM autoradiographic tracing tech
nique and about equal to the efficacy of the 
anterograde degeneration technique (Holstege, 
J.C. and Dekker, 1979). The introduction of 
the sensitive TMB as a chromogen (Mesulam, 
1978) greatly increased the efficacy of the 
anterograde HRP technique. Basically the 
technique used in light microscopy for detec
ting HRP with the TMB chromogen can also 
be applied for electron microscopy (Carson 
and Mesulam, 1982; see also Ch II.2). How
ever, the amount of TMB reaction product that 
could still be identified in the electron 
microscope was found to be very low or even 
absent. It appeared that most of the TMB 
reaction product (the oxidized TMB) dissolved 
when the tissue was routinely processed for 
electron microscopy, especially during the 
dehydration and osmification steps. Several 
solutions to this problem have been proposed: 
speeding up the dehydration step (Sturmer et 

al., 1981), using chemical dehydration with 
dimethoxypropane (see also Ch. II.2.), 
changing the osmification procedure by using 
a lower pH, a higher temperature and a shorter 
time (Sakumoto et al., 1980; Carson and 
Mesulam, 1982) or stabilizing the TMB 
reaction product with DAB-cobalt (Lemann et 
al., 1985). These precautions result in a better 
preservation of the TMB reaction product 
during processing for electron microscopy, 
but some loss has to be accepted. In the 
electron microscope the TMB reaction product 
has an electron-dense crystalline appearance, 
which can be easily recognized. The crystals 
are usually confined within one cellular struc
ure, but occasionally part of the crystal may 
pierce through the membrane. TMB crystals 
are generally large and may even completely 
obscure the labelled structure. Therefore this 
technique cannot be used for labelling sub
cellular structures. On the other hand the TMB 
crystals are almost certainly located in the 
cellular elements containing the (WGA-)HRP 
and not in neighbouring structures. Thus the 
problem of cross fire encountered in the 
autoradiography technique does not apply to 
the HRP technique. Moreover "background" 
crystals are virtually absent. This implies that 
the analysis of the labelling is relatively easy 
and complicated statistical procedures are not 
needed (for details see Ch. II.2.). For tracing 
connections in the brain, the use of WGA
HRP instead of free HRP has the advantage of 
a greater sensitivity, while processing for EM 
is identical for both tracers. However WGA
HRP may be transported transneuronally, 
whereas free HRP is not (for details see Ch. 
I.2.B). This should be taken into account 
when analysing the results. 
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I.4. 

THE ULTRASTRUCTURE OF THE SPINAL 
MOTONEURON POOL 

I .4.A. INTRODUCTION 

The vertebrate spinal cord is generally sub
divided in segments, i.e the parts of the spinal 
cord where the fibers from one dorsal root 
enter the cord. Each segment receives sensory 
information mainly by way of the dorsal roots, 
while axons from motoneurons and autonomic 
preganglionic neurons leave the spinal cord by 
way of the ventral roots. The motoneuronal 
axons innervate the skeletal muscles of the 
body, with the exception of the muscles of the 
face and part of the neck. The neurons of the 
spinal cord are located in the grey matter, 
which occupies a central position and is sur
rounded by white matter, containing ascending 
and descending axons. The spinal white matter 
can be subdivided in different funiculi, named 
after their location in the spinal cord, i.e. the 
dorsal, lateral and ventral funiculi. The spinal 
grey matter has the shape of an 'H' with the 
central canal in the center. It can be subdivided 
in the dorsal and the ventral horns. Groups of 
motoneurons occupy the ventro-medial and the 
lateral parts of the ventral hom; they are 
referred to as the medial and lateral moto
neuronal cell groups respectively. The area 
between the central nucleus of the dorsal hom 
(the nucleus proprius) and the area of the 
motoneuronal cell groups is known as the 
intermediate zone. Based on the cytoarchi
tecture of the spinal grey of the cat a more 
detailed subdivision of the spinal grey in 
different laminae was proposed by Rexed 
(1952; 1954). In terms ofRexed's laminae the 
different parts of the dorsal hom correspond to 
laminae I to VI. Laminae V and VI can be sub
divided in medial and lateral parts, especially 
in the cervical and lumbar segments (Rexed, 
1954). In these areas the medial parts of 
these laminae are often considered as part of 
the dorsal hom, while the lateral parts are 
considered part of the intermediate zone 
(c.f. Kuypers, 1981), together with laminae 

VII and VIII. Lamina IX comprises the 
motoneuronal cell groups and lamina X 
corresponds to the area surrounding the central 
canal. The same laminar division can be 
applied to the spinal cord of other mammals 
like the rat (McClung and Castro, 1978; 
Molander et al. 1984), the monkey (Noback 
and Harting, 1971) and the human (Truex and 
Taylor, 1968; Schoenen, 1973). The dorsal 
hom mainly acts as a processing center and 
relay station for sensory information, which 
enters the cord by way of the dorsal root 
fibers. The intermediate zone contains a 
heterogeneous mixture of cells with various 
sizes and shapes which makes it difficult to 
distinguish the various laminae and nuclei. 
The large majority of the neurons located in 
the intermediate zone are intemeurons which 
distribute their fibers within the spinal cord. 
Their axons ascend or descend within the 
white matter of the funiculi close to the spinal 
grey which they re-enter in order to terminate 
on the target neurons in the intermediate zone 
and in the motoneuronal cell groups (Molenaar 
and Kuypers, 1978). Some intemeurons also 
project to supraspinal levels, especially the 
lower brainstem, the thalamus and the cere
bellum (see e.g. Verburgh and Kuypers., 
1987). The input of intemeurons is derived 
from dorsal root fibers, descending supra
spinal fibers and from other intemeurons. 

Lamina IX contains the motoneurons, 
which can be easily recognized by their large 
size. They constitute the final common path
way of the motor system, since they innervate 
the skeletal muscles of body and limbs. In the 
following paragraphs a detailed description 
will be given of the ultrastructural morphology 
of motoneurons, including the relevant data 
from light microscopical studies. Subse
quently the different types of terminals, which 
are present in the spinal motoneuron pool will 
be described, including data on the location of 
their parent cell bodies and their putative 
transmitters. 
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I .4.B. THE MOTONEURONS 
IN THE SPINAL CORD 

Since the appearance of the electron micro
scope in the field of neuro-anatomy (Hess and 
Young, 1952; Palade and Palay, 1954; Palay, 
1956; Wyckoff and Young, 1955; Luse, 
1956) the ultrastructural morphology ofmoto
neurons and the surrounding neuropil in brain 
stem and spinal cord have been a focus of 
attention for electron microscopists (Palay, 
1956; Rosenbluth, 1962; Charlton and Gray, 
1966; Uchizono, 1966; Bodian, 1966; Ral
ston, 1967; Wuerker and Palay, 1969; Conra
di, 1969a,b,c,d; Poritsky, 1969; McLaughlin, 
1972a; Bernstein and Bernstein, 1976; Gosh
garian and Rafols, 1984; Atsumi and Ohsato, 
1984; Pullen, 1988b). From these studies a 
detailed picture of the ultrastructural morpho
logy of the motoneuronal cell groups has 
emerged. A description of these data becomes 
meaningful if combined with data from light 
microscopical studies. In this respect studies 
using intracellular injections of motoneurons 
are most relevant since they yield very detailed 
morphological data. Until the introduction of 
the intracellular staining technique (Stretton, 
1968), the various modifications of the Golgi 
impregnation technique (see Ch 1.1) had been 
the main tool for studying the morphology of 
motoneurons (see e.g. Aitken and Bridger, 
1961; Gelfan et al., 1970). The intracellular 
staining technique has the advantage that it 
reveals many morphological details of indi
vidual motoneurons and at the same time it 
offers the possibility to study the electro
physiology of the cell before it is injected. 
This makes it possible to correlate the function 
of a neuron with its anatomy. For the intra
cellular injection of motoneurons several sub
stances were used such as Procion Yellow 
(Barrett and Crill, 1974), 3H-glycine (Lux et 
al., 1970) and HRP (Cullheim and Kellerth, 
1976; Jankowska et al., 1976; Snow et al., 
1976). Of these intracellular markers, HRP 
proved most successful mainly because it 
allowed for a more detailed study of the 
dendritic tree. Therefore, in all of the more 
recent studies of the morphology of individual 
motoneurons, HRP has been used for 
intracellular injection. HRP has the additional 
advantage that it can be visualized in the 
electron microscope. This makes it possible to 
correlate the morphology of a labelled struc
ture at the light microscopical level with its 
morphology at the electron microscopical 
level. This is especially relevant since detailed 

information on the general morphology of a 
specific motoneuron including its dendritic tree 
is difficult to obtain with the electron micro
scope, unless elaborate serial section analysis 
is performed. 

Motoneurons can be subdivided in two 
basic types: a-motoneurons, innervating ex
trafusal muscle fibers and y-motoneurons 
innervating intrafusal fibers (i.e striated fibers 
located within the muscle spindles). The 
y--motoneurons are relatively small and play 
an essential role in the regulation of muscle 
tone and musle length (for a review see 
Henneman and Mendell, 1981). They lie inter
mingled with the a-motoneurons in the moto
neuronal cell groups of the ventral horn (Strick 
et al., 1976). In addition there are a limited 
number of B-motoneurons which innervate 
both intra- and extrafusal fibers of some 
muscles (Emonet-Denard et al., 1975). The 
motoneurons are organized in two large 
aggregates located ventro-medially and lateral
ly in the ventral horn (Sprague, 1948); they 
are commonly referred to as the medial and 
lateral motoneuronal cellgroups respectively. 
Motoneurons in the medial motoneuronal cell 
groups innervate axial muscles through the 
dorsal ramus of the spinal nerves (Sprague, 
1948; Brink et al., 1979; Richmond et al., 
1978), whereas motoneurons in the lateral 
motoneuronal cell groups innervate the skeletal 
muscles of the body wall and of the extre
mities through the ventral ramus of the spinal 
nerves as shown in the rat (Goering, 1928), 
cat (Romanes, 1951; Sterling and Kuypers, 
1967) and monkey (Sprague, 1948). In the 
thoracic cord the medial and lateral moto
neuronal cellgroups fuse into a single group in 
the ventral horn. The motoneurons are 
somatotopically organized in longitudinal 
columns which innervate particular muscles. 
This columnar arrangement is especially clear 
in the lateral motoneuronal cell groups of the 
cervical and lumbar enlargements. The length 
of these columns ranges from one to three 
segments (Romanes, 1951; Nicolopoulos
Stournaras and Ties, 1983) and their organi
zation appeared to be such that motoneurons 
which supply distal muscles are located dorso
laterally to motoneurons supplying more 
proximally located muscles. 

The motoneuron soma 

The fmdings obtained in earlier Golgi studies 
in respect to the soma size of a-motoneu
rons were basicly similar to the more recent 
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findings obtained in intra-cellular studies. 
a-Motoneurons range in size from about 40 to 
75 IJ.m, with an average of approximately 55 
Jlill (Strick et al., 1976; Burke et al., 1977; 
Ulfake and Cullheim, 1981). The soma size of 
a motoneuron is closely related to the type of 
muscle it innervates, such that motoneurons 
innervating slow twitch muscle fibers tend to 
be smaller than those innervating fast twitch 
muscle fibers (Kernen and Zwaagstra, 1981; 
Burke et al., 1982; Ulfake and Kellerth, 1982). 
Smaller motoneurons are generally more easily 
recruited than the larger ones, a phenomenon 
known as the size principle (Henneman et al., 
1965; for details see Henneman and Mendell, 
1981). These differences cannot be attributed 
to size alone, since the electrical membrane 
properties may also differ for motoneurons of 
different size (Kernell, 1986). a-Motoneurons 
are much smaller with a size range of 20 to 45 
IJ.m and an average of approximately 30 IJ.m 
(Burke et al., 1977; Strick et al., 1976; Ulfake 
and Cullheim, 1981). Therefore the size of 
motoneurons is often used to discriminate be
tween a- and y-motoneurons. 

The somata of motoneurons are charac
terized by the presence in the cytoplasm of 
several large stacks of flattened cysternae 
made up of granular endoplasmatic reticulum. 
These structures were already observed in 
Nissl stained material, hence their name: Nissl 
bodies. For the rest the motoneuron cytoplasm 
contains much the same organelles as other 
neurons in the central nervous system such as 
a large nucleus often with a nucleolus, a Golgi 
apparatus, smooth endoplasmatic reticulum, 
lysosomes, clusters of ribosomes, mitochon
dria, microtubules and neurofilaments. The 
last four organelles can also be found in 
dendrites and, with the exception of ribo
somes, in axons (Wuerker and Palay, 1969; 
Peters et al., 1976). 

The axon 

The axons of a-motoneurons were extensive
ly studied by Cullheim and Kellerth (1978) 
after intracellular injections of HRP. They 
found that axons usually originate from the 
cell soma, although in a few cases they arise 
from a stem dendrite. The axons radiate away 
from the soma and travel through the gray 
matter before they enter the white matter to 
reach the ventral root. The area of the axon 
between its origin at the soma (or stem 
dendrite) and the beginning of the myelin 
sheath is subdivided in two parts. The, 

proximal part is called the axon hillock and the 
relatively smaller distal part is called the initial 
segment. The axon hillock has a broad base 
and becomes smaller distally. It contains many 
neurofilaments and tubuli, while lacking 
granular endoplasmatic reticulum. It is covered 
with terminals and glial elements. The initial 
segment, on the other hand, is relatively 
straight and· narrow (3-4J.LID) with a mean 
length of 26 IJ.m (Cullheim and Kellerth, 
1978). It contains many tubuli and is not 
contacted by terminals at all. The cell mem
brane of the initial segment characteristically 
shows an undercoating of electron-dense 
material. The initial segment is the area with 
the lowest threshold for initiating an axon 
potential: the trigger zone of the motoneuron 
(Coombs et al., 1957). Just distally to the 
beginning of the myelin sheath the diameter 
slowly widens to its normal size (± 61J.m). 
Most (but not all) axons give off one or more 
collaterals within the gray matter and occa
sionally in the white matter as welL The 
collaterals emerge from the axon at a node of 
Ranvier, the area between the termination of 
one segment of the myelin sheath and the 
beginning of the next one. Motor-axon colla
terals are usually myelinated and ramify into 
several branches. Most of these branches 
terminate on Renshaw cells in the intermediate 
zone, but approximately 20% of them (Burke, 
1981) terminate in the same motoneuronal cell 
groups or even the on same motoneuron from 
which they originate (Cullheim et al., 1977). 

The dendritic tree 

It was already observed in Golgi studies 
(Aitken and Bridger, 1961; Romanes, 1964; 
Sprague, 1964; Scheibel and Scheibel, 1966) 
and comrrmed in intracellular studies (Cull
heim and Kellerth, 1976; Brown, 1981; Rose, 
1981; Ulfake and Kellerth, 1981; Kernen and 
Zwaagstra, 1981; Zwaagstra and Kernen, 
1981; Burke et al., 1982; Egger and Egger, 
1982; Ulfake, 1984; Vanner and Rose, 1984; 
Rose et al., 1985; Cullheim et al., 1987) that 
the dendritic trees of motoneurons were not 
commed to the area of the motoneuronal cell 
groups in lamina IX and extended widely over 
the ventral horn; in cat up to 1,5 mm from the 
soma. Some motoneurons distributed den
drites even to lamina VI and V, while other 
motoneurons distributed their dendrites into 
the white matter surrounding the ventral horn 
(see also Romanes, 1964). Some of these 
white matter dendrites even reached the outer 
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edge of the spinal cord. This situation is more 
common in lower vertebrates like reptiles 
(Ruigrok et al., 1985) and amphibia (van Mier 
et al., 1985). Motoneurons located ventro
medially in the ventral horn may distribute 
their dendrites into the contralateral white and 
grey matter, through the anterior commissure 
(Light and Metz, 1978; Abrahams and Keane, 
1984; c.f. Cajal, 1909). In a study of moto
neurons innervating neck muscles it was 
established that the (ipsilateral) white matter 
dendrites were contacted by terminals in areas 
which also contained myelinated and unmyeli
nated axons, thus resembling grey matter neu
ropil (Rose and Richmond, 1981; personal 
observations). It is still unclear whether these 
white matter dendrites receive a specific 
synaptic input. 

The dendrites of a motoneuron radiate in 
all directions from the soma (Cullheim et al., 
1987). There may be a predominant distribu
tion of the dendritic tree of a motoneuron in a 
particular part of the spinal cord. It was noted 
from Golgi studies (Scheibel and Scheibel, 
1966; Sterling and Kuypers, 1967) that in the 
brachial cord the orientation of the dendritic 
trees of motoneurons was predominantly 
longitudinal, although in more recent intra
cellular studies (Light and Metz, 1978; Rose, 
1981) motoneurons were observed with den
dritic trees that had a predominant orientation 
in other planes. As a whole it seems likely that 
the orientation of the dendritic tree of a moto
neuron is closely related to the location of its 
soma in the ventral horn and similar to the 
orientation of the dendrites of neighbouring 
motoneurons, innervating the same or func
tionally similar muscles (Rose, 1981). With 
respect to the number of dendrites which take 
their origin from the motoneuron soma (stem 
dendrites), their number varies from 8 to 22 
stem dendrites (Barrett and Crill, 1974). On 

TABLE 1 

SOME CHARACTERISTICS OF 
a-MOTONEURONAL DENDRITES 

Number of dendrites 
Spines 
Radius of dendritic tree 
Last order branches (total) -
Total dendritic length 
Total dendritic surface area -
Total surface area of soma -

11 (average) 
occasionally 
1400 Jllll 
120 
80.000-120.000 Jllll 
400.000-600.000 Jllll2 
2 - 4% of total den
dritictic surface area. 

the average most intracellular studies (for 
references: see above) report an average of 
10-12 stem dendrites per motoneuron. These 
studies also showed that the dendrites of 
motoneurons are smooth, with only an occa
sional spine. These observations are in line 
with electron microscopical observations that 
the occurrence of spines, both on the soma 
and on dendrites, is rare (personal obser
vations). Additional quantitative data on the 
dendritic tree of motoneurons are given in 
table 1. 

I.4.C. THE TERMINALS ON SPINAL 
MOTONEURONS 

In the early studies (see above) on spinal 
motoneurons with the aid of the electron 
microscope it was noted that various terminal 
swellings contacted somata and dendrites in 
the motoneuronal cell groups. In the classical 
studies of Conradi (1969a,b,c,d) an extensive 
description was given of the motoneuronal cell 
groups in the cat. spinal cord. In one of these 
studies (Conradi, 1969a) a subdivision of the 
terminals in the neuropil was proposed, which 
was largely based on an earlier study of 
Bodian in the monkey (Bodian, 1966). The 
different types of terminals were distinguished 
on the following criteria: the size of the ter
minal, the morphology of the synaptic vesicles 
within the terminal (see later), the morphology 
of the synaptic complex (see later) and the 
postsynaptic element. The morphology of the 
vesicles has become a most important criterion 
for distinguishing different types of terminals. 
In aldehyde- and osmium-fixed material, 
which is routinely processed for electron 
microscopy there are two main types of vesi
cles which can be distinguished: granular 
vesicles, containing an electron-dense core, 
and agranular vesicles, the content of which 
appears clear in the electron microscope. Ter
minals containing many granular vesicles are 
relatively rare in the motoneuronal cell groups. 
The large majority is formed by terminals con
taining agranular vesicles, although in these 
terminals an occasional granular vesicle may 
be present. Furthermore it was observed that 
the shape of the agranular vesicles could be 
spherical or flattened. Bodian (1966) has 
shown that this difference in shape of the 
agranular vesicles is largely due to the osmo-
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larity of the fixation and rinsing fluid prior to 
postflxation with osmium tetroxide. Since it 
seems likely that in vivo all vesicles are sphe
rical, the difference of vesicle shape should be 
regarded as an artefact. However this artefact 
is very reproducable in all parts of the brain 
and may very well be due to a structural 
difference between the two types of synaptic 
vesicles. In any case it has become a widely 
used criterion for the distinction of different 
types of terminals. In addition the occurence 
of terminals with either many flattened or 
merely spherical vesicles may also be impor
tant from a functional point of view. Uchizono 
(1965) has shown that in the cerebellum termi
nals presumed to be excitatory contain mainly 
spherical vesicles, while terminals presumed 
to be inhibitory contained many flattened vesi
cles. In other parts of the brain (including the 
motoneuronal cell groups, see later) a similar 
relation was found between the morphology of 
the vesicles within a terminal and its presumed 
function. Reliable evidence as to whether a 
terminal is excitatory, inhibitory, modulatory 
or otherwise in function can only be obtained 
by identification of the transmitter(s) present 
within the terminal and the receptors on the 
postsynaptic neurons, combined with physio
logical and pharmacological studies on the 
system to which the terminals belong. 

Another important criterion for distinguish
ing different types of terminals is the morpho
logy of the synaptic complex i.e. the pre- and 
postsynaptic membranes and the synaptic 
cleft. Gray (1959) noticed that in the cerebral 
cortex, fixed with osmium tetroxide (Os04) 
and stained with phospho-tungstic acid the 
synaptic complexes of terminals contacting 
dendrites was different from the synaptic 
complexes of terminals contacting cell somata. 
On this basis he distinguished two types of 
synaptic complexes: a type: I complex, charac
terized by a thick postsynaptic density and a 
broad (30 nm) synaptic cleft with an inter
mediate dense line, and a type II complex, 
characterized by a thinner postsynaptic density 
and a relatively narrow (20 nm) synaptic cleft 
without an intermediate dense line. Collonier 
(1968) reexamined the synaptic structure of 
the cat visual cortex, which was aldehyde
fixed, postfixed with Os04 and counterstained 
with uranyl acetate and lead citrate. He found 
that in his aldehyde-fixed material a synaptic 
complex could not always be easily classified 
following the criteria of Gray, especially with 
respect to the width of the synaptic cleft and 
the dense line associated with it. Therefore 
Colonnier suggested to distinguish synaptic 

complexes merely on the basis of the thickness 
of the postsynaptic membrane. He referred to 
the synaptic complexes with a thick post
synaptic density as asymmetric and to those 
with a thin postsynaptic density (almost equal 
to the presynaptic membrane) as symmetric. 
This classification is basically similar to that of 
Gray (type I is asymmetric, type II is sym
metric), but is much less rigorous, and there
fore more easy to apply. In the present study 
the terminology of Colonnier will be used. At 
this point it seems of importance to note that 
asymmetric synaptic complexes have been 
associated with an excitatory function in the 
cerebellar cortex (Landis and Reese, 1974) 
and the olfactory bulb (Landis et aL, 1974). 
Furthermore, neurochemical evidence (Carlin 
et al., 1980) has shown that postsynaptic den
sities of asymmetric synaptosomes (isolated 
synaptic complexes) contain different proteins 
than the postsynaptic densities of symmetric 
synaptosomes. Proteins present in the post
synaptic densities of asymmetric synapto
somes could be associated with mediating 
excitatory effects and visa versa (see also 
Cohen et al., 1982). These rmdings and the 
fact that terminals with spherical vesicles often 
show an asymmetric synaptic complex further 
strengthens the hypothesis that terminals with 
merely spherical vesicles and asymmetric 
synaptic complexes are excitatory, while ter
minals with many flattened vesicles, which 
often show a symmetric synaptic complex, are 
inhibitory in function. This hypothesis does 
not hold true in every case, e.g. terminals 
from Golgi cells in the cerebellum are known 
to be glycinergic and/or GABA-ergic, but the 
vesicles in these terminals were not clearly 
flattened and their synapses were not clearly 
symmetric (Otterson et al., 1987). It may be 
concluded that there is a high probability that 
terminals with spherical vesicles and asym
metric synapses are excitatory, while termi
nals with flattened vesicles and symmetric 
synapses are inhibitory in function. The ultra
structural morphology of a specific terminal 
may therefore give an indication of its 
functional properties. This may be helpful, 
especially when no other data are available. 

In the motoneuronal cell groups 6 different 
types of terminals were distinguished, using 
the various criteria of Conradi and Bodian 
mentioned earlier. These terminals include 
S-type terminals (containing mainly spherical 
vesicles), F-type terminals (containing many 
flattened vesicles), G-type terminals (con
taining granular vesicles), C-type terminals 
(with a subsynaptic cistern), M-type terminals 



22 Chapter I 

(containing multiple synapses), P-type ter
minals (presynaptic to other terminals) and 
T-type terminals (with subsynaptic dense 
bodies, also known as Taxi bodies). 

S(pherical)-type terminals contain merely 
spherical agranular vesicles, although an 
occasional granular vesicle may be present. 
S-type terminals usually established asym
metrical synaptic contacts. F(lattened)-type 
terminals, on the other hand, contain a large 
number of flattened vesicles, besides a few, 
mostly small, spherical vesicles and an 
occasional dense core vesicle. They usually 
establish symmetrical synaptic contacts. Both 
S- and F-type terminals contact cell somata, 
proximal and distal dendrites. However in 
comparison with the S-type terminals, a larger 
number of F-type terminals is present on the 
cell soma and the primary dendrites, while on 
the medium-sized and distal dendrites the 
situation is the reverse. For the purpose of 
identifying the origin of the type(s) of 
terminal(s) belonging to propriospinal or 
descending supraspinal fibers, degeneration 
studies were performed after spinal cord 
transection in cat (McLaughlin, 1972b) and 
monkey (Bodian, 1975). It was found that 
some terminals of the S- and F-types 
degenerated in segments below a spinal cord 
transection. After unilateral motor cortex 
ablation in monkey (Bodian, 1975) only 
S-type terminals were found to degenerate. 
Injections of3H-leucine in the somato-sensory 
cortex (Ralston and Ralston, 1985) also 
resulted in radioactive labelling of S-type 
terminals in the motoneuronal cell groups, but 
in this case a few F-type terminals were also 
labelled. S- and F-type terminals are also 
derived from the caudal raphe nuclei, the 
adjoining ventro-lateral part of the medial 
reticular formation and the area of the locus 
coeruleus and subcoeruleus. These projections 
are extensively described in Ch. TI. In 
monkey, injections of WGA-HRP in the red 
nucleus resulted in labelling of S-type 
terminals in the lateral motoneuronal cell 
groups (Ralston et al., 1988). Terminals from 
recurrent axon collaterals of HRP-injected 
motoneurons, which contacted other a.-moto
neurons, all contained a large number of 
spherical vesicles (Lagerback et aL, 1981). 
Therefore it seems likely that some of the 
S-type terminals on motoneuronal dendrites 
belong to motor-axon collaterals from other 
motoneurons in the same area and that they 
mediate direct synaptic interaction between 
spinal a.-motoneurons. 

Taken together, the various data indicate 
that the S- and F-type terminals in the 
motoneuronal cell groups constitute a mixed 
population originating from the spinal cord 
and from supraspinal levels. This population 
would include terminals from the motor cortex 
(in the monkey), several brainstem nuclei, 
propriospinal neurons, dorsal root afferents 
(see later) and recurrent axon collaterals from 
a.-motoneurons. 

With respect to the transmitters in the 
terminals derived from the various systems 
mentioned above, no direct ultrastructural 
evidence is available at present. From physio
logical and pharmacological studies (for 
review see Krnjevic, 1981) it seems likely that 
the following transmitters are present in the S
and F-type terminals of the various systems. 
The S-type terminals derived from the motor 
cortex probably use glutamate or perhaps 
aspartate as a transmitter. The transmitters in 
the F- and S-type terminals derived from the 
brainstem are still unknown (but see Ch. ill). 
S- and F-type terminals derived from inter
neurons may contain either glutamate and/or 
aspartate or glycine and/or GABA respec
tively. S- (or M-) type terminals derived from 
dorsal root afferents probably contain 
glutamate, while S-type terminals belonging to 
motor axon collaterals almost certainly contain 
acetyl-choline. Furthermore, immuno-cyto
chemical (McLaughlin et al., 1975; Van den 
Pol and Gores, 1988) and transmitter up
take studies (Matus and Dennison, 1971; 
Ljungdahl and Hokfelt, 1973) at the ultra
structural level have shown the presence of 
GABA and glycine mainly in F-type terminals. 
In view of these data the hypothesis that 
terminals with mainly spherical vesicles and 
asymmetric synaptic complexes (i.e. S-type 
terminals) are excitatory and that terminals 
with many flattened vesicles and symmetric 
synaptic complexes (i.e. F-type terminals) are 
inhibitory also seems to hold for the terminals 
in the motoneuronal cell groups. 

G(ranular)-type terminals are characterized 
by their content of a large number of dense 
cored (granular) vesicles. In addition they 
contain clear vesicles of various forms and 
sizes. They represent only a minority of the 
total number of terminals in the motoneuronal 
cell groups (approximately 1% according to 
Bernstein and Bernstein, 1976 and Conradi, 
1969a) and establish asymmetrical synaptic 
contacts mostly with proximal and distal 
dendrites and occasionally with a cell soma. 
These terminals are in all likelihood derived 
from the lower brainstem (for details see Ch. 
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II). Several transmitters have been shown to 
be presentinG-type terminals. These include 
serotonin, substance P, thyrotropin releasing 
hormone and GABA (for details see Ch.III). 

C(istern)-type terminals contain flattened 
and/or spherical vesicles and are characterized 
by the presence of a subsynaptic cistern in 
the postsynaptic structure which is either a 
proximal dendrite or a cell soma. In the 
monkey, C-type terminals were designated as 
L bulbs (Bodian, 1966). A pre- or post
synaptic density is not clearly visible in 
osmium-fixed material, which makes it hard to 
define the location of the synapse. However, 
studies using staining with ethanolic phospho
tungstic acid (a substance which specifically 
stains synaptic membrane specializations) 
revealed the existence of presynaptic dense 
projections and a thin postsynaptic density 
along the entire length of the apposition 
(Schroder, 1979; Pullen, 1988a). This indi
cates that C-type terminals establish conven
tional synapses which, however, exhibit a 
unique ultrastuctural morphology. With re
spect to the origin of the C-type terminals, it 
was found that C-type terminals never showed 
any signs of degeneration after spinal cord 
transection in cat (McLaughlin, 1972b) and 
monkey (Bodian, 1975). It was therefore 
concluded that the C-type terminal belonged to 
short inter- or intrasegmental propriospinal 
fibers. In a degeneration study in the cat 
cervical spinal cord (Matsushita and Ikeda, 
1973) a few degenerating C-type terminals 
were observed in segments immediately below 
and above a transection. These findings may 
indicate that C-type terminals originate from 
(short) propriospinal neurons and from the 
lower brainstem (see Ch.II). Furthermore it 
has been shown in the cat (Pullen and Sears, 
1978; 1983) that in the area between two 
hemisections of the cord there is an absolute 
increase in the number of C-type terminals. 
Under these circumstances the size of the 
C-type terminals also increased. This increase 
involved the postsynaptic cistern and the post
synaptic Nissl body, which showed a marked 
hypertrophy. These phenomena may indicate a 
specific trophic function of the C-type termi
nal. From a functional point of view, it may be 
interesting to note that C-type terminals are 
absent on y-motoneurons (Lagerback, 1985), 
for which, so far there has been no explana
tion. Finally it should be mentioned that up to 
now there is no clue which transmitter(s) may 
be present in C-type terminals. 

M(ultiple synapse)-type terminals are large 
terminals with a large number of spherical 

vesicles and multiple asymmetric synaptic 
junctions, characteristically asssociated with 
subsynaptic dense bodies (Taxi bodies) in the 
postsynaptic structure. M-type terminals are 
often postsynaptic to a P(resynaptic)-type 
terminal: a small terminal containing several 
slightly flattened vesicles. In the monkey the 
M-type terminal was designated as R bulb 
(Bodian, 1966), whereas in rat motoneuronal 
cell groups the M- and P-type terminals were 
not observed (Bernstein and Bernstein, 1976), 
although the P-type does exist in the rat 
(McLaughlin et al., 1975; personal observa
tions). TheM-type terminal is considered to be 
of dorsal root origin since transection of the 
dorsal root resulted in a reduction in the 
number of M-type terminals, mainly on prima
ry dendrites (Conradi, 1969d; McLaughlin, 
1972c). However, in these degeneration stu
dies degenerated terminals could not be ob
served. In a similar study in monkey (Bodian, 
1975) a few large degenerated terminals of the 
S-type were noticed. They were postsynaptic 
to a P-type terminal. Similarly, after injection 
of 3H-leucine in the lumbar and sacral dorsal 
ganglia of the monkey (Ralston and Ralston, 
1979) the radioactivity was also located in 
large S-type terminals some of which were 
also postsynaptic to small unlabelled terminals 
(P bulbs). However in this latter case the 
labelled S-type terminals contacted small to 
medium sized dendrites, which is in contrast 
with the degeneration results of Conradi 
(1969d) and McLaughlin (1972c). The 
terminals of I-a afferent fibers on dendrites in 
the motoneuronal cell groups were also iden
tified after intra-axonal injection of HRP in 
physiologically identified I-a afferent fibers 
(Conradi, 1983). With this technique it was 
also found that large S-type terminals were 
labelled and that several of them were 
postsynaptic to small P-type terminals. Thus 
in the autoradiographic and the intra-axonal 
HRP studies of dorsal root afferents, the 
M-type of terminal was never found to be 
labelled. Therefore it seems likely that the 
terminals on motoneurons, which are of dorsal 
root origin are represented by large S-type 
terminals (which themselves are postsynaptic 
to small P-type terminals) and not by the 
M-type terminal. Whether theM-type terminal 
should be regarded as a seperate type or as a 
large S-type terminal with subsynaptic densi
ties and whether it represents a specific type of 
dorsal root afferent (e.g. type II) is at present 
unclear. If the M- and large S-type terminals 
are indeed of dorsal root origin, it seems most 
likely that they contain glutamate as a trans-
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mitter, also because glutamate has recently 
been shown to be present in dorsal root fibers 
in the dorsal hom (De Biasi and Rustioni, 
1988). The P-type terminal is the only axo
axonic terminal in the motoneuronal cell 
groups. It almost certainly contains GABA as 
a transmitter as indicated by physiological, 
pharmacological and immuno-cytochemical 
studies (Eccles, 1954; McLaughlin et al., 
1975; Holstege, J.C.et al., 1987). 

T(axi)-type terminals are characterized by 
the presence of subsynaptic dense bodies, also 
known as Taxi bodies (Taxi, 1961), located 
directly underneath the postsynaptic mem
brane. T-type terminals contain spherical 

vesicles and establish asymmetric synaptic 
contacts. They were labelled after intracellular 
injections of a-motoneurons, indicating that 
they originate from motor-axon collaterals 
(Lagerbiick et al., 1981). Since the same colla
teral fiber also gave rise to S-type terminals, 
which in fact are morphologically similar to 
the T-type terminal (except for the Taxi 
bodies), it seems likely T-type terminals are a 
"modification" of the S-type terminal and do 
not necessarily originate from other sources 
than the S-type terminals. 

A summary of the origin of the different 
types of terminals and their (presumed) trans
mitter(s) is given in table 2. 

TABLE2. 

ORIGIN AND TRANSMITTERS OF THE VARIOUS TYPES OF TERMINALS 
IN THE LATERAL SPINAL MOTONEURONAL CELL GROUPS 

ORIGIN TYPE OF TERMINAL TRANSMITTER(S) 

- (motor)cortex S-type glutamate and/or aspartate 
F-type GABA?? 

- red nucleus S-type ? 

- vestibular nuclei 
MVST F-type?? GABA ?? glycine ?? 

LVST S-type?? aspartate ?? acetyl-choline?? 

- (sub)coeruleus E-type nor-adrenalin?? 
S-type ? 

- raphe pallidus, obscurus and G-type serotonin, substance P, TRH 
adjoining ventro-medial F-type GABA; glycine?? 
reticular formation S-type acetyl-choline ?? 

C-type ? 

- propriospinal S-type? aspartate?? acetyl-choline?? 
F-type? GABA ? glycine ? 
P-type? GABA 
C-type? ? 

- dorsal root large S-type glutamate ? aspartate ?? 

- motor axon collateral S-type acetyl-choline 
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1.5. 

A SHORT SURVEY OF THE DESCENDING PROJECTIONS 
FROM THE BRAINSTEM TO THE SPINAL CORD 

I.5.A. INTRODUCTION 

According to Kuypers (1982; 1985) the path
ways descending to the spinal cord may be 
divided into three groups. The first group 
comprises the cortico-spinal fibers which 
terminate in the dorsal horn (Cheema et al., 
1984), the intermediate zone and -especially in 
higher primates- also in the somatic mota
neuronal cell groups (Armand et al., 1985; for 
review see Kuypers, 1987). The second group 
comprises the descending pathways to the 
spinal cord which originate in the brainstem. 
These fibers, which largely parallel the 
corticospinal fibers in their projections to the 
intermediate zone, may be subdivided into a 
medial and a lateral system (Kuypers, 1981); a 
division, which is based on their terminal 
distribution in the intermediate zone and which 
also corresponds to their localization in the 
spinal white matter. The third group comprises 
the descending brainstem pathways which 
originate from neurons in the area of the 
nucleus coeruleus and subcoeruleus and from 
those in the medullary raphe nuclei and 
adjoining ventro-medial reticular formation. 
These pathways project in a diffuse non
focussed manner to all laminae of the spinal 
cord, including the motoneuronal cell groups. 
In the short survey below the various 
descending brain stem pathways will be 
briefly described, except for those belonging 
to the third group (i.e. the descending 
projections from the raphe nuclei and the 
adjoining ventro-lateral part of the medial 
reticular formation and those from the locus 
coeruleus and subcoeruleus), since they will 
be extensively dealt with in the following 
chapters. 

I. 5. B. THE MEDIAL SYSTEM OF THE 
DESCENDING BRAINSTEM 
PATHWAYS 

The medial system of descending brainstem 
pathways is derived from several areas in the 
brainstem: the medial reticular formation of the 
mesencephalon, pons and medulla, the supe
rior colliculus, the nucleus interstitialis of 
Cajal, the vestibular complex and the cere
bellar nuclei (for details see below). A few of 
the fibers from the above areas terminate 
directly in medial motoneuronal cell groups. 
However, the bulk of the fibers terminate in 
the medial part of the spinal intermediate zone, 
where many long propriospinal neurons are 
located. These neurons in turn distribute their 
fibers throughout the length of the spinal cord 
to terminate in the medial part of the inter
mediate zone and in the medial motoneuronal 
cell groups (Molenaar, 1978; Molenaar and 
Kuypers, 1978; Matsushita et al., 1979). 

The mesencephalic reticular formation 

The medial part of the mesencephalic reticular 
formation, including the lateral part of the 
central gray, sends fibers to the spinal cord as 
shown in degeneration and axonal transport 
studies (Waldron and Gwyn, 1969; Kuypers 
and Maisky, 1975; Castiglioni et al., 1978; 
Crutcher et al., 1978; Martin et al., 1979). 
Along their trajectory some of these fibers are 
distributed to several nuclei in the lower brain 
stem (Kuypers, 1981). In the spinal cord the 
fibers are located in the ventral funiculus and 
terminate bilaterally in lamina VII and VIII 
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of the spinal cord, mainly at cervical levels; a 
few fibers however may reach lumbar levels 
as well (Kuypers, 1981). In the area of the 
nucleus tegmenti pedunculo-pontinus in the 
mesencephalic tegmentum the mesencephalic 
locomotor center is situated (Shik et al., 1966; 
Garcia-Rill, 1986). This center is defined not 
so much anatomically but rather functionally 
by its capacity to induce locomotion upon 
electrical stimulation. Recent studies (Rye et 
al., 1988; Goldsmith and Van der Kooy, 
1988; Spann and Grofova, 1989) have shown 
projections from the area of the nucleus 
tegmenti pedunculo pontinus to the ventro
medial medulla in the lower brainstem and to 
the spinal cord, in addition to its ascending 
projections (Saper and Loewy, 1982; Woolf 
and Butcher, 1986; Rye et al., 1987). It 
appeared that the two descending projections 
originated from separate neuronal populations, 
since the projections to the medulla carry 
acetyl-choline as a transmitter (Garcia-Rill and 
Skinner, 1987), while those to the spinal cord 
do not (Goldsmith and Vander Kooy, 1988). 
The termination site in the ventro-lateral 
medulla appeared especially important, since 
application of acetyl-choline to neurons in the 
ventro-lateral medulla resulted in locomotor 
effects which were similar to those obtained 
from the mesencephalic locomotor center, 
whereas application of acetyl-choline anta
gonists blocked the locomotor effects, ob
tained after electrical stimulation in the mesen
cephalic locomotor center (Garcia-Rill and 
Skinner, 1987). No such data are available 
regarding the function of the fibers descending 
from the nucleus tegmenti pedunculo pontinus 
to the spinal cord. 

The superior colliculus 

Neurons in the intermediate and deep layers of 
the superior colliculus give rise to the crossed 
tectospinal tract, which does not descend 
beyond the cervical spinal segments (Huerta 
and Harting, 1982). The tectospinal tract 
terminates contralaterally mainly in lamina VI 
and VII with some endings in lamina VIII 
(Petras, 1967; Martin, 1969). There is also 
evidence for a few direct projections to mote
neurons innervating neck muscles (Peterson et 
al, 1979; Huerta and Harting, 1982). These 
fibers are involved mainly in movements of 
the head and neck especially in relation to eye 
movements. 

The nucleus interstitia/is of Cajal. 

This nucleus was given its name because of its 
location in between the fibers of the medial 
longitudinal fasciculus (MLF) in the rostral 
part of the mesencephalon. The fibers from 
this nucleus descend through the brainstem by 
way of the ipsilateral MLF. In the spinal cord 
the fibers are located in the ventral funiculus 
and are distributed to lamina VII and VIII 
throughout the spinal cord (Nyberg-Hansen, 
1966b; Carpenter et al., 1970; Kuypers and 
Maisky, 1975). Electrophysiological data (Fu
kushima et al., 1979) showed that at upper 
cervical levels the interstitio-spinal fibers also 
terminate on the medially located motoneurons 
innervating neck muscles. 

The vestibular nuclei. 

The vestibular complex is located dorso
laterally in the brainstem. It consists of four 
subnuclei: the superior, the medial, the lateral 
and the descending vestibular nucleus (Brodal 
and Pompeiano, 1957). In addition, several 
small nuclei have been identified. Except for 
the superior vestibular nucleus, all vestibular 
subnuclei give rise to descending projections 
to the spinal cord (Kuypers and Maisky 1975, 
Crutcher et al., 1978, Zemlan et al., 1979). 
The lateral vestibular nucleus of Deiters gives 
rise to the lateral vestibulo-spinal tract 
(L VST). It descends entirely ipsilaterally in the 
periphery of the ventral funiculus. From lower 
cervical levels downward, the L VST gradually 
shifts to the medial part of the ventral funi
culus. During their course in the funiculus 
most axons give off collaterals, which leave 
the stem-axon in the funiculus at right angles 
(Shinoda et al., 1986). It has also been 
demonstrated electro-physiologically (Abzug 
et al., 1974) and anatomically (Huisman et al., 
1984) that in the lateral vestibular nucleus at 
least 50% of the neurons distribute axon 
collaterals to both the cervical and lumbo
sacral segments. The L VST terminates ipsi
laterally in lamina VIII, in the ventro-medial 
part of lamina VII and possibly in the lateral 
motoneuronal cell groups (Shinoda et al., 
1986). The actions of the L VST in the spinal 
cord appeared to be excitatory (Lund and 
Pompeiano, 1968). 

The fibers, which form i:he medial 
vestibulo-spinal tract (MVST) originate from 
neurons in the medial vestibular nucleus and, 
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to a lesser extent, in the descending and lateral 
vestibular nuclei (for review see Wilson and 
Peterson, 1981). The MVST fibers run in the 
contralateral as well as the ipsilateral MLF. 
The fibers terminate medially in lamina Vill 
and part of lamina VII, mostly at cervical 
levels. There are also monosynaptic connec
tions with medially located motoneurons, 
innervating neck and back muscles. These 
connections are mostly inhibitory in action 
(Wilson et al., 1970). 

The pontine and medullary medial reticular 
formation 

Neurons in the medial part of the pontine 
tegmentum send their fibers ipsilaterally and to 
a limited extent also contralaterally to the 
spinal cord. These fibers run in the ventral 
funiculi and terminate mainly in the medial and 
central parts of the intermediate zone (lamina 
VII and especially lamina Vill) throughout the 
spinal cord (Nyberg-Hansen, 1965; Petras, 
1967; Holstege, G. and Kuypers, 1982; Jones 
and Yang, 1985). A similar projection is 
obtained from the dorsal part of the medial 
tegmental field in the medulla (Basbaum et al., 
1978; Holstege, G. and Kuypers, 1982). 
However, the bulk of the spinal projections 
from the medial reticular formation in the 
medulla is derived from its ventral part and 
from the midline raphe nuclei. Neurons in 
these areas send a massive projection to all 
laminae of the spinal cord. These projections 
are described in more detail in Ch. II and Ill. 

The cerebellar nuclei 

The fastigial nucleus and the adjoining inter
positus nucleus send a projection to the spinal 
cord (Ma~sushita and Hosoya, 1978; for a 
review see Bentivoglio, 1982). Many of these 
·spitJ.al projecting fibers send collaterals to the 
brainstem and the thalamus (Bharos et al., 
1981; Bentivoglio and Kuypers, 1982). The 
majority of the fibers from the cerebellar nuclei 
project to the cervical cord, but some fibers 
may reach lumbar levels (Achenbach and 
Goodman, 1968; Ware and Mufson, 1979; 
Kuypers, 1981). They terminate mainly in the 
intermediate zone (Ware and Mufson, 1979). 
In monkey some of the cerebello-spinal fibers 
terminate on spinal motoneurons (Batton et 
al., 1977). 

I.5.C. THE LATERAL SYSTEM OF 
THE DESCENDING 
BRAINSTEM PATHWAYS 

According to Kuypers (1981) the descending 
brain stem pathways which terminate mainly 
in the dorso-lateral part of the intermediate 
zone, are considered as part of the lateral 
system of descending brain stem pathways. 
The majority of the brainstem fibers which 
terminate in this area, are derived from the 
contralateral red nucleus (Kuypers, 1964; 
Nyberg-Hansen and Broda!, 1964; Petras, 
1967; Kuypers and Maisky, 1975; 1977). In 
addition, some of the fibers terminating in this 
area originate in the mesencephalic reticular 
formation, adjacent to the contralateral red 
nucleus, and in the ventro-lateral part of the 
pontine tegmentum on the contralateral side 
(Basbaum and Fields, 1979; Holstege, G. and 
Kuypers, 1982). The bulk of the fibers from 
the red nucleus are derived from its caudal 
magnocellular part (see e.g. Kneisly et al., 
1978). The rubrospinal tract is located contra
laterally in the dorso-lateral funiculus and 
distributes its fibers to the lateral part of lamina 
V and VI and also to the dorsal part of lamina 
VII (Kuypers, 1964; Nyberg-Hausen and 
Broda!, 1964; Petras, 1967; for a review see 
Kuypers, 1981). In this area many of the 
"interneurons" are located with short proprio
spinal connections to nearby interneurons and 
motoneurons. In cat and monkey, a few of the 
rubro-spinal fibers terminate in motoneuronal 
cell groups innervating distal extremity 
muscles (Holstege, G. and Tan, 1988; Holste
ge, G. et al., 1988; Shapovalov et al., 1971). 
The rubro-spinal projections display a soma
totopic organization, such that the medial and 
dorsal parts of the red nucleus project mainly 
to the cervical cord, while the ventral and 
ventro-lateral parts project mainly to the lum
bar cord. This relatively focussed organization 
is further examplified by the fmding that very 
few rubro-spinal neurons send collaterals to 
both the cervical and the thoracic and/or 
lumbar spinal cord (Huisman et al., 1982), 
although they do exhibit collaterals within a 
limited number of segments (Shinoda, et al., 
1977). The fibers from the ventro-lateral 
pontine tegmentum and the mesencephalon 
generally show a similar course and ter
mination pattern as those from the nucleus 
ruber, except for the fact that these fibers are 
also distributed to the superficial layer of 
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the dorsal hom (Holstege, G. and Kuypers, 
1982) and that they distribute collaterals to a 
relatively more extensive portion of the spinal 
cord than the rubrospinal fibers (Huisman et 
al., 1982). 

I.5.D. FUNCTIONAL ASPECTS 

Important clues regarding the function of a 
particular system may be obtained from its 
anatomical organization. Thus the fact that 
many fibers of the medial system send axon 
collaterals to the cervical, thoracic and/or lum
bar spinal cord (Wilson and Peterson, 1981; 
Huisman et al., 1984) indicates that the medial 
system (in contrast to the lateral system) is 
organized in a relatively diffuse non-focussed 
manner. This organization seems especially 
well suited for the coordination of whole body 
movements and synergistic limb movements 
(for details see Kuypers, 1981). Observations 
in freely moving monkeys with pyramidal 
lesions and a superimposed lesion of the 
medial system confirmed this idea (Lawrence 
and Kuypers, 1968). These animals showed, 
besides their pyramidal symptoms, great 
difficulties with steering axial and proximal 
limb movements, whereas their capacity to 
execute independant distal extremity move
ments was hardly impaired. On the other 
hand, lesions of the lateral system in monkeys 
with pyramidal lesions caused little impairment 
of whole body movements like walking and 
climbing, but greatly affected the execution of 
independant distal extremity movements such 
as taking morsels of food by means of in
dependant rmger movements (Lawrence and 
Kuypers, 1968). This is in line with anato
mical rmdings (see above) that the descending 
pathways of the lateral system display a soma
totopic organization and give off collaterals 
only to a restricted number of spinal segments. 

The various propriospinal neurons, which 
receive input from the medial and lateral 
descending brainstem pathways respectively, 
are also contacted by corticospinal fibers. 
These fibers were found to originate from 
different areas in the precentral and adjoining 
frontal areas and terminated in different parts 
of the spinal cord and in different parts of the 
intermediate zone (for a review see Kuypers, 
1987). Thus the area of the motor cortex 
representing the hand projects contralaterally 
to the dorsal and lateral parts of the inter
mediate zone at cervical and high thoracic 
segments, while the foot representation area 
projects to similar parts of the intermediate 
zone at low thoracic and lumbar segments and 
the first sacral segment (Armand et al., 1985). 
This projection largely coincides with the 
projections of the lateral system of descending 
brainstem pathways, notably the rubro-spinal 
tract. Other parts of the precentral gyrus 
project bilaterally to the medial part of the 
intermediate zone throughout the spinal cord 
(see Kuypers, 1987). This projection largely 
coincides with that of the medial system of the 
descending brainstem pathways. Thus the 
corticospinal system appears to be super
imposed on the brainstem spinal projections. 
This arrangement and the fact that cortical 
fibers also contact several of the brainstem 
neurons which give rise to descending projec
tions (Kuypers, 1981), provides the cortex 
with the possibility to control and adjust the 
influence exerted by the brainstem on the 
spinal cord. Furthermore, in monkey there 
also exist direct cortico-spinal projections to 
motoneurons innervating muscles of the hand 
and foot (Kuypers, 1964). In higher primates 
like chimpanzee and man, direct connections 
are also established with motoneurons inner
vating axial and proximal extremity muscles 
(Kuypers, 1964; Schoen, 1964). These direct 
connections with motoneurons provide the 
cortex with an extra means by which it can 
exert direct control over the execution of 
specific movements, including highly fractio
nated movements (for review see Kuypers, 
1981). 
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II.l 

AN ULTRASTRUCTURAL STUDY USING AUTORADIOGRAPHY 
AND THE COMBINATION OF AUTORADIOGRAPHY AND 

HORSERADISH PEROXIDASE HISTOCHEMISTRY. 

II.l.A. INTRODUCTION 

Anterograde degeneration studies, condufted 
since the flrst two decades of this century 
(Rasdolsky, 1923; Szentagothai-Shimert, 1941; 
Kuypers et al. 1962; Nyberg-Hansen, 1963; 
Petras, 1967; Martin et al. 1975), failed to 
demonstrate the existence of brainstem projec
tions to spinal motoneurons. Such projections 
were flrst demonstrated by means of histo
fluorescent techniques (Dahlstrom and Fuxe, 
1965; Nygren and Olson, 1977) and by means 
of electrophysiological techniques (Grillner 
and Lund, 1968; Lund and Pompeiano, 1968; 
Shapovalov, 1975; Peterson et al., 1979). 
More recent light microscopy studies (LM) 
showed these projections also in rat (Jones. 
and Yang, 1985; Holstege, J.C. and Kuypers, 
1980; Martinet al., 1985), opossum (Martinet 
al., 1979) and cat (Holstege G. et al., 1979; 
Holstege, G. and Kuypers, 1982) by means 
of the anterograde transport of radioactivity 
after injection of labelled amino acids (Lasek et 
al., 1968; Cowan et al., 1972). After injec
tions of 3H-leucine in several brainstem areas, 
the transported radioactivity was present in the 
motoneuronal cell groups of the ventral hom 
throughout the spinal cord. In an earlier 
electron microscopical (EM) autoradiographic 
study (Holstege, J.C. and Kuypers, 1982) it 
was shown that in rat a major part of the 
radioactivity in the motoneuronal cell groups 
of the ventral hom was located in terminals 
making synaptic contacts with neurons in this 
area. In the present electron microscopical 
autoradiographic study the distribution of the 
radioactivity in the lumbar motoneuronal cell 
groups after 3H-leucine injections in the 
various brainstem areas was studied in more 
detail. The types of labelled terminals and their 
postsynaptic structures were determined. In 
addition an attempt was made to ascertain at 
the ultrastructural level that the neurons in the 
ventral hom which were contacted by radio
actively labelled terminals after 3H-leucine 

injections in the brainstem actually represented 
motoneurons. For this purpose in one and the 
same animal terminals of the brainstem flbers 
were labelled anterogradely by means of 
3H-leucine and lumbar motoneurons were 
labelled retrogradely with horseradish per
oxidase (HRP). 

ll.l.B. EXPERIMENTAL PROCEDURES 

Autoradiography 

Thirteen adult rats were used. Eleven rats 
received brainstem injections of L-(4-5) 
3H-leucine (S.A. ±100 Ci/mmol) in distilled 
water. In two rats the brainstem injections 
were combined with HRP injections in the 
ipsilateral hindleg muscles. All brainstem 
injections were made with a glass micropipette 
and the muscle injections were made with a 10 
JlL Hamilton microsyringe and a 26 G needle. 
All rats were operated under pentobarbital 
anaesthesia. The 3H-leucine injections in the 
eleven rats were made in three different 
brainstem areas. Three rats each received two 
injections of ±20 !J.Ci 3H-leucine in 0.2 !J.L in 
the ventro-lateral medial reticular formation 
(vlMRF) 1.2 mm off the midline between the 
facial and hypoglossal nuclei. Four other rats 
received two injections of ±20 j.LCi 3H-leucine 
in 0,2 !J.L distilled water in the raphe nuclei 
and the adjoining MRF between the facial and 
hypoglossal nuclei. The remaining four rats 
each received four injections of ±15 !J.Ci 
3H-leucine in 0.15 JlL distilled water in the 
area of the nucleus coeruleus and sub
coeruleus. The animals were perfused 12 days 
after the injections. They were deeply an
aesthetized with pentobarbital and perfused 
transcardially with 0.9% NaCl in cacodylate 
buffer (pH 7.3) at 37°C, followed by a 
cacodylate buffered fixation solution (3% 
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glutaraldehyde and 2,5% paraformaldehyde, 
pH 7 ,3) at room temperature. 

The spinal cords of the animals were kept 
in the !txation fluid overnight. The L5 and L6 
segments were embedded in plastic as des
cribed earlier (Holstege, J.C. and Kuypers, 
1982). Semithin sections (2 J.Lm) which were 
cut from the plastic blocks and processed for 
light microscopical (LM) autoradiography 
(Holstege, J.C. and Kuypers, 1982) together 
with the brainstem injection sites using a 
1-month exposure time. Those blocks, the 
semi thin sections of which showed the largest 
number of silvergrains over the motoneuronal 
cell groups, were selected for EM autoradio
graphy. The blocks were trimmed to pyramids 
containing the entire L5 or L6 lateral motoneu
ronal cell groups. From these pyramids both 
semithin and pale gold ultrathin sections were 
cut. The semithin sections were processed for 
LM autoradiography (Holstege, J.C. and 
Kuypers, 1982). The ultrathin sections were 
placed on formvar or collodion-coated slides 
and stained with aqueous uranyl acetate 
followed by lead citrate. A thin layer of carbon 
was evaporated on these slides which were 
then coated with Ilford L4 emulsion by 
dipping using a mechanical device (Kopriwa, 
1967). For optimal results a slightly over
lapping monolayer of silver bromide crystals 
should be used, which is characterized by a 
purple-blue interference colour. Test slides 
were dipped, their interference colour was 
determined and the thickness of the emulsion 
layer was checked directly in the electron 
microscope. If necessary, the dilution of the 
emulsion was adjusted. The slides carrying the 
ultrathin sections were kept in the dark at 4 °C 
for 4 to 9,5 months (see results) and were then 
developed with freshly made D 19 and !txed 
with 28% sodium thiosulphate. The formvar 
or collodion ftlms carrying the sections were 
floated off the slides on distilled water and 
200-mesh grids were placed on the sections. 
The grids carrying the ultrathin EM autoradio
graphs were recovered and then viewed with a 
Philips 300 electron microscope. 

In the ultrathin autoradiographs the lateral 
motoneuronal cell groups were identified after 
!trst studying the semithin autoradiographs 
of the same pyramid by LM. A series of 
drawings of the grids carrying the ultrathin 
autoradiographs were made and the outlines of 
the ventral hom and the lateral motoneuronal 
cell groups were indicated on these drawings 
(see also Holstege, J.C. and Kuypers, 1982). 

In the various EM autoradiographic sec
tions the background activity was estimated in, 

the four grid holes which contained a comer of 
the section. This was done by counting the 
silver grains which were present on the resin 
free of tissue or the collodion or formvar Itlm 
next to the four comers of the section. An 
average background activity of 13 grains per 
10.000 J.UD2, with a maximum of 21 grains per 
10.000 J.llllz was found, which is comparable 
to fmdings in other studies (Schonbach et al. 
1971; Ruda and Gobel, 1980; Ralston and 
Ralston, 1985). 

Autoradiography in combination with 
HRP histochemistry 

Two rats each received 2 injections of ±20 J.LCi 
3H-leucine in 0,2 J.1.L distilled water in the 
vlMRF, 1.2 mm off the midline between the 
levels of the facial and hypoglossal nuclei. 
Nine days later 200 J.1.L of 20% HRP (Miles) 
in 2% dimethylsulphoxide (DMSO) (Keefer, 
1978) was injected ipsilaterally in the gastroc
nemius and soleus muscles. After three days 
the animals were deeply anaesthetized with 
pentobarbital and perfused transcardially with 
0.9% NaCl in cacodylate buffer (pH 7.3) at 
37°C, followed by a cacodylate buffered 
!txation fluid (3.5% glutaraldehyde and 1% 
paraformaldehyde, pH 7.3) at room tempera
ture. After perfusion, the brainstem injection 
sites were prepared for LM autoradiography 
(Holstege, J.C. and Kuypers, 1982). Imme
diately after dissection the L4-L6 spinal 
segments were cut transversely in slabs (70 
J.Lm) on a vibratome. The slabs were treated 
for HRP histochemistry using 3,3',5,5'
tetramethyl benzidine (TMB) as a chromogen 
(Mesulam, 1978) but plain acetate buffer (0.01 
M, pH 3,3) was used as a stabilizer. Those 
slabs, which showed the largest number of 
retrogradely labelled motoneurons were trim
med down to the ventral hom. They were kept 
in phosphate buffer (pH 7 .2, 20°C) and then 
transferred to phosphate buffer (pH 7.3, 20°C) 
containing 8% glucose (±650 mosmol). The 
slabs were postfixed with 2% osmium 
tetroxide in phosphate buffer (pH 6.0, 45°C) 
(Carson and Mesulam, 1982; Sakumoto et al., 
1980) for 45 minutes and then thoroughly 
rinsed in distilled water. They were dehy
drated by passing them through two changes 
(8 minutes each) of acidified di-methoxy
propane (Muller and Jacks, 1975) and 
embedded in Araldite. Semi thin sections (2-3 
J.Lm) were cut from the blocks and processed 
for LM autoradiography (Holstege, J.C. and 
Kuypers, 1982). Those blocks, which 
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showed both intense HRP labelling of mote
neurons and a large number of silver grains, 
were trimmed to pyramids. From these 
pyramids ultrathin sections were cut and 
processed for EM autoradiography. 

I I. 1. C. COLLECTION AND 
ANALYSIS OF THE DATA 

EM autoradiography 

The three rats with an injection in the ventro
lateral part of the medial reticular formation 
were studied first. In each rat 2 blocks were 
taken from the L5 and L6 segments and two 
ultrathin sections were used from each block, 
i.e. 12 sections in total. In these sections an 
attempt was made to determine to which tissue 
compartment the radioactivity had been trans
ported. A standardized band of tissue (10 ).l.m 
in width) adjacent to the grid bar at the right 
side of each grid hole within the motoneuronal 
cell groups was completely photographed on a 
35 mm film which was reversal-developed. 
This film was projected and the analysis was 
performed on the projected image. In pale gold 
ultrathin sections covered with a slightly 
overlapping monolayer of llford L4 emulsion 
and developed with D19, the source of the 
radioactivity (i.e. the tritium isotope), which 
gives rise to a silver grain in the emulsion 
layer, can be located with 50% confidence 
within a 480 nm circle centered on the 
silvergrain (Salpeter et al., 1969; Salpeter and 
Szabo, 1972). Therefore a circle, drawn on a 
transparent sheet and corresponding to a 
diameter of 480 nm, was centered on each 
silver grain (including those located in a 
cluster, see later) in the projected electron 
micrographs. The tissue compartment present 
within the circle was registered. When two or 
three tissue compartments were present, they 
were all registered because they all had to be 
considered with equal probability to represent 
the source of the radioactivity. This method of 
analysing will be referred to as 'the circle 
method' (Williams, 1969; 1977). The single 
tissue compartment or the combination of 
tissue compartments found within the circle 
will be referred to as an item; some items were 
grouped together. In the motoneuronal cell 
groups the following tissue compartments 
were encountered: axon (Ax), dendrite (D), 
terminal (T) and cell soma (CS). The 

remaining tissue compartments (R) comprised 
glial element, blood-vessel and unidentified 
structure. In presenting the data the following 
items were distinguished (see also Fig. 1): 

(1) Terminal: I. 
(2) Terminal in combination with axon: 

T/Ax. 
(3) Terminal in combination with axon and 

cell soma Cf/Ax/CS), terminal in combi 
nation with axon and dendrite Cf/Ax/D), 
terminal in combination with axon and R 
Cf/Ax/R). 
These three items were grouped together 
as: T/Ax/CS-D-R 

(4) Terminal in combination with dendrite 
Cf/D), terminal in combination with den 
drite and R (T/D/R). 
These two items were grouped together 
as: T/D-R. 

(5) Terminal in combination with cell soma 
(T/CS), terminal in combination with cell 
soma and dendrite (T/CS/D), terminal in 
combination with cell soma and with R 
(T/CS/R). 
These three items were grouped together 
as: TICS/D-R. 

( 6) Terminal in combination with R: ILR. 

The remaining items are the same as above but 
withoutT: 
(7) Axon: Ax. 
(8) Axon in combination with cell soma or 

with dendrite or R. 
These three items were grouped together 
as: Ax/CS-D-R. 

(9) Dendrite, or dendrite in combination with 
R. 
These two items were grouped together 
as: D-R. 

(10) Cell soma or cell soma in combination 
with dendrite or with R. 
These three items were grouped together 
as: CS/D-R. 

(11) R(emaining): .R. 

For each section the frequency with which an 
item or group of items was found in the photo
graphed band was expressed as a percentage 
of the total number of items found in that band 
(Fig. 1). When a terminal profile was present 
within the circle, either alone or in combi
nation with other tissue compartments, the 
type of the terminal (Table 1) was registered. 
For each section the frequency of the silver 
grains overlying items with a given type of 
terminal was expressed as a percentage of the 
total number of silver grains overlying items 
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Table 1 The different types of terminals 
distinguished in the rat motoneuronal 
cell groups. 

S-type Terminals containing spherical vesicles 
(40-50 nm. in diameter) and an occa
sional large dense core vesicle (80-120 
nm.). They usually showed asym
metrical synaptic junctions. 

F-type Terminals containing flattened synaptic 
vesicles (25-35 x 50-60 nm. in dia
meter) or a combination of flattened and 
spherical vesicles (40-50 nm. in dia
meter). They usually showed sym
metrical synaptic junctions. 

E-type Terminals containing small spherical 
vesicles (microvesicles) (15-25 nm. in 
diameter). Small elongated vesicles 
(15-25 x 40-60 nm.) were usually 
present and canaliculi-like structures 
could occasionally be observed. Dense
cored vesicles (60-80 nm.) and rela
tively large agranular vesicles (50-60 
nm. in diameter) were rarely observed. 
The terminals usually showed asymme
trical synaptic junctions. 

G-type Terminals, characteristically containing 
large granular vesicles (70-120 nm.), 
which were sometimes elongated (up to 
180 nm.). In addition many clear 
vesicles were present, which were 
spherical or flattened and ranged in size 
from 15 to 50 nm. One or two large 
clear vesicles were often present. The 
terminals usually showed asymmetrical 
synaptic junctions. 

C-type Terminals containing spherical or flat
tened vesicles. The synaptic junctions 
lacked the pre- and postsynaptic mem
brane thickenings. The postsynaptic 
element was either a cell soma or a 
proximal dendrite. A postsynaptic sub
surface cistern was present along the 
entire length of the synaptic apposition, 
with a Nissl body located beneath the 
cistern. 

T -type Terminals containing spherical vesicles 
(40-50 nm. in diameter) and charac
teristically showing a postsynaptic 
dense body (Taxi-body). 

In the 12 sections studied the percentages 
showed some variations. In order to determine 
the contributions of the three different rats and 
the six different blocks to these variations, a 
variance analysis was performed (Snedecor 
and Cochran, 1980). In the vast majority of 
cases the differences between the percentages 
were statistically not significant. Only in a 
very few cases the differences were either sig
nificant or not significant but relatively large 
(F >2). However these differences did not 
show a consistent pattern. From this it was 
inferred that the variations in the percentages 
could not be attributed either to differences 
between the animals or to differences between 
the blocks. It was therefore concluded that 
they could only be attributed to differences 
between the sections, resulting from random 
variation and errors of observation. This made 
it possible to calculate the 95% confidence 
limits of the mean of the percentages, which 
were obtained in each of the 12 sections. The 
study of the EM autoradiographs by means of 
the circle method (see above) can only lead to 
conclusions if it can be shown that the silver 
grains are not distributed randomly. Therefore 
the distribution of the "real grains" was 
compared with that of randomly distributed 
"hypothetical grains", (effective area measure
ment, Williams, 1969; 1977). The electron 
micrographs of the standardized band of tissue 
were projected on a white cardboard carrying 
100 horizontal and 100 vertical lines, which 
produce 10.000 intersection points. For every 
electron micrograph two to four intersection 
points were chosen randomly with the aid of a 
table of random numbers and the center of a 
circle with a diameter corresponding to 480 
nm was placed on these points. The items 
located within the circle were then registered. 
The number of hypothetical grains produced in 
a section was matched with that of the real 
grains found in the same section. The content 
of a total of 6592 random circles was thus 
analysed. The results were expressed as per
centages per item or group of items as was 
done for the real grains. On these percentages 
the same type of variance analysis was 
performed as on the real grain percentages, 
which led to the same conclusions. The mean 
percentages per item or group of items in the 
hypothetical grain analysis (effective area 
measurement) were compared with those in 
the real grain analysis (Fig. 1). Obviously the 
effective area measurement is not related to the 
type and site of injection. In addition it was 
shown by the variance analysis that the results 
of the effective area measurements in the 
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individual rats were not statistically different. 
Therefore these measurements could also be 
used in the rats with injections in other 
brainstem areas (see below). 

The four rats with injections in the raphe 
nuclei and the adjoining MRF were studied as 
follows. Two blocks were taken from the LS 
and L6 segments and from each block two 
sections were used, i.e. 16 sections in toto. 
Since in these four rats no effective area 
measurements had to be made, only the silver 
grains in the standardized band of tissue were 
photographed. The tissue compartments carry
ing these silvergrains were analysed by means 
of the circle method (see above). The variance 
analysis performed on the different per
centages led to the same conclusions as in the 
rats injected in the vlMRF. 

In the remaining four rats with injections in 
the area of the nucleus coeruleus and sub
coeruleus, 16 sections were obtained which 
were analysed as described for the four rats 
injected in the raphe nuclei. The variance 
analysis led to the same conclusions as in the 
rats injected in the vlMRF. In the EM auto
radiographs many clusters of silvergrains were 
present over the motoneuronal cell groups in 
addition to more diffusely distributed silver 
grains. A group of silvergrains was con
sidered to form a cluster if six or more 
silvergrains were present within a circle with a 
diameter of 3.5 IJ.m. It was assumed that each 
of these clusters resulted from radioactivity in 
the tissue compartment located under the 
center of the cluster. The sections analysed 
with the circle method were also scrutinized 
for clusters. This search for clusters was not 
limited to the standardized band of tissue but 
covered the entire gridhole (i.e. approximately 
nine times the square surface of the stan
dardized band). The cluster-labelled structures 
were photographed on reversal film, projected 
and analysed. This analysis will be referred to 
as the cluster method. Every tissue compart
ment on which a cluster was centered was 
registered and the frequency was expressed 
for each section as a percentage of the total 
number of clusters found in that section. The 
cluster-labelled terminals were characterized as 
in the circle method. A variance analysis per
formed on the different percentages thus 
obtained gave the same results as described in 
the real grain analysis by means of the circle 
method (Fig 3, Table 4,5 and 6). 

EM autoradiography in combination 
with HRP histochemistry 

Two rats were studied. Three blocks from 
each of the two rats were used and from each 
block three sections were examined, i.e. 18 
sections in total. In these sections only clusters 
of six or more silvergrains were taken into 
account and only terminal profiles carrying 
such clusters were studied. Every section was 
scrutinized for clusters. When a terminal pro
file carrying a cluster was encountered, its 
type was registered. Occasionally a terminal 

, profile was disregarded because it could not be 
reliably classified either due to the fact that the 

· profile was obscured by the abundance of 
silvergrains overlying it, or due to fixation 
artefacts, or both. If a labelled terminal profile 
established a synaptic contact, the postsynaptic 
structure was identified and registered. In 
addition it was determined whether the post
synaptic structure contained HRP reaction 
product. A total of 684 cluster-labelled ter
minal profiles were examined (Table 7). 

II. LD. RESULTS 

Light microscopy autoradiography. 

The injection sites were studied in frozen 
sections treated for LM autoradiography with a 
1-month exposure time. In the three rats with 
vlMRF injections, a dense accumulation of 
silvergrains was present mainly over the 
ventral part of the MRF at the levels between 
the rostral part of the facial nucleus and the 
caudal part of the inferior olive. The 
accumulation also covered the lateral part of 
the inferior olive (Fig. 4A). In the four rats 
injected in the raphe nucleus and the adjoining 
MRF a dense accumulation of silvergrains was 
present bilaterally over the nuclei raphe 
magnus, raphe obscurus and raphe pallidus 
and over the ventral part of the adjoining MRF 
as well as over the inferior olive (Fig. SA). 
The injection site extended from the caudal 
part of the facial nucleus to the caudal end of 
the inferior olive. In the four rats with injec
tions in the nucleus coeruleus and subcoe
ruleus a dense accumulation of ·silvergrains 
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Fig. 2 Frequency of the silvergrains overlying 
items with s given type ofterminal. 
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was present over these nuclei. The injection 
site also involved the mesencephalic nucleus 
of the trigeminus, the brachium conjunctivum, 
the parabrachial nuclei, the lateral part of the 
central grey, part of the superior vestibular 
nucleus and the dorsal part of the rostral half 
of the trigeminal motor nucleus. The injection 
site extended into the caudal part of the 
mesencephalic reticular formation (Fig 6A). In 
the two rats with 3H-leucine injections in the 
vlMRF as well as HRP injections in the ipsi-

Table 2 Frequency of the silvergrains overlying 
items with synaptic terminals of the 
different types of terminals. 

MRF Raphe Coeruleus 
(%) (%) (%) 

Synaptic S-type 51 ±4 51 ±7 39 ± 10 
(n = 381) (n = 143) (n = 124) 

Synaptic F-type 52±3 50±5 51 ±8 
(n = 1304) (n = 379) (n = 67) 

Synaptic E-type 12± 10 7±5 
(n = 0) (n = 15) (n = 24) 

Synaptic G-type 9 ± 6 8 ± 4 
(n = 71) (n = 62) (n = 0) 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). See also 
Collection and Analysis of the Data. 

Table 3 Frequency of the silvergrains overlying 
items with synaptic terminals of the 
different types of terminals, contacting 
cell soma, proximal dendrite or distal 
dendrite. 

MRF Raphe Coeru1eus 
(%) (%) (%) 

s-.cs 5±7 2±3 4±5 
S->pD 79 ± 12 78 ± 10 72± 15 
S-.dD 16± 10 20±9 24± 12 

(n = 381) (n = 143) (n = 124) 

F-.CS 7±4 4±3 6±6 
F-.pD 84±6 77±8 65 ± 18 
F-.dD 9±4 19±8 29 ± 19 

(n = 1304) (n = 379) (n = 67) 

E-.CS 0 0 
E-.pD 60±- 0 
E-.dD 40±- 100 

(n = 0) (n = 15) (n = 24) 

a-.cs 0 0 
G-.pD 100 62±20 
G-.dD 0 38±20 

(n =71) (n =62) (n =0) 

c-.cs 52±29 
C-.pD 48 ±29 

(n = 95) (n = 2) (n =4) 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). CS, cell 
soma; pD, proximal dendrite; dD, distal den
drite.See also Collection and Analysis of the Data. 

lateral hindleg muscles a dense accumulation 
of silvergrains was present (Fig. 7 A) over the 
same brainstem area as described in the first 
three rats. In the sernithin autoradiographs of 
the L5 and L6 segments of the rats injected in 
the vlMRF and in the raphe nuclei respec
tively, a large number of silvergrains were 
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present bilaterally over the ventral horn, 
including the lateral and medial motoneuronal 
cell groups, where the silvergrains were 
evenly distributed. In the autoradiographs of 
L5 and L6 from the rats injected in the area of 
the nucleus coeruleus and subcoeruleus, the 
silvergrains were much less numerous but 
were also evenly distributed over the mota
neuronal cell groups. Concentrations of silver 
grains over cell bodies were never observed. 

Electron microscopy autoradiography 

In the EM autoradiographs many diffusely 
distributed silvergrains were present as well as 
clusters of silvergrains. In the 11 rats with 
various brainstem injections the source of the 
radioactivity producing the silvergrains was 
determined by means of the circle method and 
by means of the cluster method (see Collection 
and Analysis of the Data). 

The circle method 

In the 12 EM autoradiographs of the three rats 
injected in the vlMRF (5,5 months exposure 
time) a total of 6777 silvergrains was found in 
the standardized bands of tissue (calculated 
average ±300 silvergrains per gridsquare of 
7225 11m2). In the 16 sections of the four 
rats with injections in the raphe nuclei and the 
adjoining MRF (4 months exposure time) 
3282 silvergrains were found (calculated 
average of ±130 silvergrains per gridsquare). 
In the 16 sections of the 4 rats with injections 
in the area of the nucleus coeruleus and 
subcoeruleus (9,5 months exposure time) 
1879 silvergrains were found (calculated 
average of ±80 silvergrains per gridsquare). 
For the effective area measurement 6592 
hypothetical silvergrains were analysed. Fig. 1 
shows the real grain percentages and the 
effective area percentages in the three groups 
of experiments. Each item or group of items 
was considered to contain radioactivity only if 
its real grain percentage was larger than its 
effective area percentage and if the 95% limits 
of confidence of these percentages did not 
overlap, indicating a statistical significant 
difference. From these data (Fig.1) it was 
concluded that only the items and groups of 
items containing a terminal profile (T) could 
with confidence be regarded to contain radio
activity. These items and groups of items were 
regarded to derive their radioactivity from this 
terminal profile since the other tissue compart-

ments in these items could not with confidence 
be considered to contain radioactivity (Fig. 1). 
However, the group of items TICS/D-R, 
despite the presence of a terminal profile (T), 
could not with confidence be considered to 
contain radioactivity, because the 95% limits 
of confidence of its real grain percentages 
overlapped with that of its effective area 
percentage. Little weight has been attached to 
this exception since this group carried only 1% 
of all silvergrains. In the three groups of 
experiments a difference in the distribution of 
the silvergrains over various types of terminals 
was observed (Fig. 2). After injections in the 
ventro-lateral medial reticular formation 4334 
silvergrains were overlying items containing a 
terminal profile (Fig. 4). A large percentage of 
these silvergrains (58%) was located over 
items containing F-type terminal profiles, 
while 17% was located over items containing 
S-type and 17% over those containing 
G-types. Only 1 and 2% of the silvergrains 
were overlying items containing E- and C-type 
respectively. After the injections in the raphe 
and the adjoining medial reticular formation 
1985 silvergrains were overlying items con
taining a terminal profile (Fig. 5). These silver 
grains displayed a slightly different distri
bution than those after vlMRF injections. A 
relatively large percentage (37%) was found 
over items containing F-type terminals but also 
over those containing G-type (38%). A further 
16% was found over items containing S-type 
and 4% over those containing E-type terminal 
profiles. After injections involving the area of 
the nucleus coeruleus and subcoeruleus 928 
silvergrains were overlying items containing a 
terminal profile (Fig. 6), but these silvergrains 
showed an entirely different distribution than 
in the preceeding cases. The largest percenta
ges were located over items containing E-and 
S-type terminal profiles (38 and 37% 
respectively) while much fewer were found 
over items containing F-type (15%) and very 
few over those containing G-type (4%). 
T-type terminals were never seen to carry 
silvergrains. In regard to the synaptic ter
minals (Table 2), in the three groups of 
experiments between 39 and 52% of the grains 
overlying items containing an F-type terminal 
or an S-type terminal were located over 
synaptic terminals, while only a small per
centage (ranging from 7 to 12%) of the silver 
grains overlying items containing an E- or 
G-type terminal were found over synaptic ter
minals. Silvergrains overlying C-type terminal 
profiles were always found above synaptic ter
minals. 
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Fig. 3. Frequency of the silvergrains overlying 
items with a given type of terminal. 
Values indicated are mean percentages 
(±95% confidence limits) and total 
numbers (n). See also Collection and 
Analysis of the Data. 

Table 4 Distribution of the clusters over the 
various tissue compartments. 

MRF Raphe Coeruleus 
(%) (%) (%) 

Terminal 70±3 82±4 66±4 
Axon 18±3 10±4 23±6 
Unclear 12 ± I 8 ± 3 11 ± 4 

(n = 1293) (n = 501) (n = 239) 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). See also 
Collection and Analysis of the Data. 

TableS Frequency of synaptic terminals of the 
different cluster-labelled types of 
terminals. 

MRF 
(%) 

Raphe 
(%) 

Coeruleus 
(%) 

Synaptic S-type 41 ±5 
(n =56) 

34±
(n = 6) 

52± 18 
(n = 25) 

Synaptic F-type 51± 2 
(n = 284) 

Synaptic E-type 0 
(n =0) 

55± II 
(n = 84) 

8±
(n = 1) 

0 
(n =0) 

11 ±7 
(n = 13) 

Synaptic G-type 9 ± 4 14 ± 6 0 
(n = 19) (n = 34) (n = 0) 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). See also 
Collection and Analysis of the Data. 

In the various experiments (Table 3),the 
silvergrains overlying F- and S-types of 
synaptic terminals were overlying terminals 
which mostly contacted proximal dendrites, 
containing ribosomes (percentages ranging 
from 65 to 84% ). Only few silvergrains were 
overlying terminals contacting cell somata 
(2-7%) or distal dendrites (9-29%)_ Similar 
results were obtained in respect to the E- and 
G-type terminals (Table 3)- Silvergrains over
lying synaptic terminals making axo-axonic 
contacts were not observed. 
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The cluster method 

Table6 Frequency of the different types of 
cluster-labelled synaptic terminals con-
tacting cell soma, proximal dendrite or 
distal dendrite. 

MRF Raphe Coeruleus 
(%) (%) (%) 

S-+CS 5±6 0 0 
S-+pD 80±9 100 84± 14 
S-+dD 15 ±8 0 16± 14 

(n =56) (n = 6) (n = 25) 

F-+CS 8±4 4±4 
F-+pD 76±5 71 ± 14 
F-+dD 16±4 25± 14 

(n = 284) (n =84) (n =0) 

F;-+CS 0 
E-+pD 61±-
E-+dD 39±-

(n = 0) (n =I) (n = 13) 

G-+CS 0 4±5 
G-+pD 82± 14 66± 16 
G-+dD 18± 14 30± 16 

(n = 19) (n = 34) (n =0) 

c .... cs 62± 10 
C-+pD 38± 10 

(n = 26) (n =0) (n =0) 

A total of 2033 clusters containing six or more 
silvergrains were studied (Table 4). After 
injections in the vlMRF, in the raphe nuclei 
plus the adjoining MRF and in the area of the 
nucleus coeruleus and subcoeruleus respec
tively 18%, 10% and 23% of the clusters were 
centered over myelinated and unmyelinated 
axons. In all these experiments approximately 
10% of the clusters were centered either over 
structures which could not be identified or 
over terminal profiles which could not be 
classified because of the abundance of silver 
grains overlying them. The remaining clusters 
70, 82 and 66% respectively were centered 
over terminal profiles (cluster-labelled ter
minals) which could be classified (Figs. 4, 5 
and 6). After injections in the ventrolateral 
medial reticular formation the majority of the 
cluster-labelled terminals (60%) was of the 
F-type, 20% of the G-type and 16% of the 
S-type. On a few occasions cluster-labelled 
C-type terminals were also identified (3%, 
Fig. 3). After injections in the raphe nuclei and 
the adjoining MRF the large majority of the 
cluster-labelled terminal profiles were of the 
G-type (59%) while 33 % were F-type. Only a 
few S- (5%) and E- (3%) types were cluster
labelled (Fig. 3). C-type terminal profiles were 
not cluster-labelled. Mter injection in the area 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). CS, cell 
soma; pD, proximal dendrite; dD, distal dendrite. 
See also Collection and Analysis of the Data. 

Table? 
Results obtained after combining EM autoradiography with HRP histochemistry. 

1 2 3 4 5 
Type of Synaptic Postsynaptic HRP-labelled 
terminal terminal 

S-type 
n = 144(21%) 

F-type 
n =409(60%) 

E-type 
n =0(0%) 

G-type 
123 (18%) 

C-type 
n=8(1%) 

n = 80 (56%) 

n =246 (60%) 

n = 12 (10%) 

n =8 (100%) 

structures HRP-labelled structures (total) 

CS n =6 (7%) n = 6 (100%) 
pD n =55 (69%) n =3! (56%) n = 41 (51%) 
dD n = 19 (24%) n =4 (21%) 

CSn=22(9%) n = 21 (95%) 
pDn=165(67%) n =96(58%) n = 138 (56%) 
dD n =59 (24%) n = 21 (36%) 

CSn=O(O%) 
pDn=6(50%) n =3(50%) n=6 (50%) 
dD n =6(50%) n =3(50%) 

CS n = 3 (38%) n =2(67%) 
pD n =5(62%) n =4(80%) n =6 (75%) 

Values indicate: frequency (in actual numbers and in percentages) of the different cluster-labelled types of 
terminals (1), of their synaptic terminals (2), of the postsynaptic structures contacted (3) and frequency of 
HRP labelling of these variouspostsynaptic structures (4). The values in the last column (5) indicate 
frequency of HRP labelling of all postsynaptic structures contacted by the different-cluster labelled types 
of terminals (2). 
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of the nucleus coeruleus and subcoeruleus 
a completely different distribution was 
observed. The large majority of the cluster
labelled terminal profiles were of the E-type 
(68%), a smaller proportion were of the 
S-type (27%) and few of the G-type (4%). 
Only one cluster-labelled F-type profile was 
observed ( <1%) (Fig. 3). C-type terminals 
were not cluster-labelled. In all three groups of 
experiments (Table 5) the percentages of the 
cluster labelled F- and S-type terminals that 
exhibited a synaptic contact varied between 
34% and 55%. However, only a limited per
centage (varying between 0 and 14%) of the 
cluster-labelled E- and G-type terminal profiles 
exhibited a synaptic contact, while the C-type 
always exhibited a synaptic contact. The 
cluster-labelled F-, S-, G- and E-type 
terminals (Table 6) contacted mainly proximal 
dendrites (containing ribosomes), and to a 
much lesser extent distal dendrites. In only a 
few instances a synaptic contact with a cell 
soma was observed. C-type terminals behaved 
differently and contacted cell somata more 
frequently than proximal dendrites. The 
cluster-labelled terminals were never seen to 
establish axo-axonic synaptic contacts. 

EM autoradiography combined with HRP 
histochemistry 

The L4-L6 spinal segments from the two rats 
which received 3H-leucine injections in the 
vlMRF combined with HRP injections in the 
ipsilateral hindleg muscles, were f"rrst treated 
for HRP histochemistry and subsequently 
processed for EM autoradiography using 6 
months exposure time. In the EM autoradio
graphs attention was paid only to cluster
labelled terminal profiles that could be reliably 
classified plus their postsynaptic structures. 
Furthermore it was determined whether the 
different postsynaptic structures contained 
TMB crystals. Table 7 summarizes the dif
ferent findings and shows that nearly all post
synaptic cell somata were found to contain 
TMB crystals and that also many postsynaptic 
proximal dendrites contained such crystals 
(percentages ranging from 50 to 80% ). Distal 
dendrites which were contacted by cluster
labelled terminals, were less frequently ob
served to contain TMB crystals (percentages 
ranging from 21 to 50%, fig 7B-E). 

II.l.E. DISCUSSION 

Axonal transport studies (Kuypers and 
Maisky, 1975; Leichnitz et aL, 1978; Holstege 
G.et al., 1979; Martin et al., 1979; Holstege 
J.C. and Kuypers, 1980; Holstege G. and 
Kuypers, 1982; Martinet al., 1985; Jones and 
Yang, 1985) have shown that the brainstem 
neurons which project to spinal motoneurons 
are concentrated in the raphe nuclei, the ventral 
part of the MRF and in the area of the nucleus 
coeruleus and subcoeruleus, as demonstrated 
also by histofluorescent and histochemical 
techniques (Dahlstrom and Fuxe, 1965; 
Nygren and Olson, 1977; Satoh et al., 1977; 
Commissiong et al., 1978; Bowker et al., 
1982; Bjorklund and Skagerberg, 1982; 
Westlund et al., 1983; Skagerberg and Bjork
lund; 1985). The original studies of Dahlstrom 
and Fuxe (1965) in addition showed that many 
projections from the raphe nuclei and the 
adjoining MRF were serotonergic while many 
of those from the nucleus coeruleus and 
subcoeruleus were noradrenergic. 

The present EM findings demonstrated that 
after 3H-leucine injections in the above 
brainstem areas the radioactivity transported to 
the lumbar motoneuronal cell groups was 
mainly located in terminals. Moreover, the 
findings in the last group of experiments 
demonstrated that in the motoneuronal cell 
groups many of the terminals labelled from the 
vlMRF contacted motoneurons. It has been 
assumed that the labelled terminals in the 
motoneuronal cell groups received their radio
activity directly from their parent cell bodies in 
the brainstem. However these terminals might 
have received their radioactivity transneuro
nally i.e. through spinal neurons located e.g. 
in the intermediate zone. This is most unlikely 
because: a) 3H-leucine is transported trans
neuronally only to a minor extent (Grafstein 
and Laureno, 1973); b) in the semithin auto
radiographs of the three groups of experiments 
no indication of labelling of neurons in the 
intermediate zone was found, despite the large 
amount of radioactivity present in the mota
neuronal cell groups as indicated by the many 
clusters of silvergrains in the EM autoradio
graphs; and c) labelling of terminals in the 
motoneuronal cell groups was only observed 
after injections in the vlMRF and in the raphe 
nuclei and not following injections in the 
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Fig. 4 (A). Light microscopical autoradiograph of the 3H-leucine injection area in the vlMRF at the level 
of the most rostral part of the inferior olive (1-month exposure time). (B)-(J) Electron micrographs of 
autoradiographically labelled terminal profiles in the L5 and L6 lateral motoneuronal cell groups after 
3H-leucine injections in the vlMRF and using 5.5 months exposure time. Bar= 0,5 ).Ull. (B) A labelled S
type terminal synapsing with a proximal dendrite. (C) Two cluster-labelled F-type terminals; the lower 
one establishing a synapse (arrow) on a proximal dendrite. (D) Photomontage showing three cluster
labelled F-type terminals synapsing (arrows) with a proximal dendrite. (E)-( G) A serial sectioned, cluster
labelled F-type terminal synapsing (arrows) with a proximal dendrite. Depicted are three profiles out of a 
row of six. (H) A cluster-labelled C-type terminal synapsing with a cell soma. Note the subsynaptic 
cistern and the Nissl body associated with it. (1). An S-type terminal carrying one single silver grain. 
(J) A cluster-labelled G-type terminal exhibiting an asymmetrical synaptic contact (arrow) with a proximal 
dendrite. 

Fig. 5. (A) Light microscopical autoradiograph of the 3H-leucine injection area in the raphe nuclei and the 
adjoining MRF at the level of the inferior olive (1-month exposure time). (B)-(K) Electron micrographs of 
autoradiographically labelled terminal profiles in the L5 and L6 motoneuronal cell groups after 3H-leucine 
injections in the raphe and the adjoining MRF and using 4 months exposure time. Bars= 0.5 ).Ull. (B) 
Two labelled F-type terminals; the upper one is carrying 5 silver grains and establishes a synaptic contact 
(arrows) with a proximal dendrite while the lower terminal profile is labelled by a cluster of six silver 
grains and does not exhibit a synapse. (C)-(D) Cluster-labelled S-type terminals exhibiting an 
asymmetrical synaptic contact with a distal dendrite (C) or a proximal dendrite (D). (E)-(F) Labelled G
type terminals synapsing (arrows) with a proximal dendrite (E) or a distal dendrite (F). (G). A cluster
labelled G-type terminal. A synaptic specialization is not visible in this section. (H) A cluster-labelled G
type terminal establishing an asymmetrical synapse with a proximal dendrite (ribosomes not visible). (1)
(K) A serial sectioned, labelled profile of the G-type. Note that the two G-type terminal profiles [(I), 
(arrows)] become interconnected by a short axonal segment [(J), (arrow), and (K)]. Depicted are three 
profiles from a row of five. 

Fig. 6. (A) Light microscopical autoradiograph showing the extent of the 3H-leucine injection area. It 
includes the nucleus coeruleus and subcoeruleus as well as other structures (for details see text). (B)-(F) 
Electron micrographs of autoradiographically labelled terminal profiles in the L5 and L6 lateral 
motoneuronal cell groups after 3H-leucine injections in the area containing the nucleus coeruleus and 
subcoeruleus and using 9.5 months exposure time. Bars = 0,5 J.I.IIl. (B)-(C) Cluster-labelled S-type 
terminals synapsing with proximal dendrites containing ribosomes (not visible on (B)). (D). A cluster
labelled E-type terminal containing many very small vesicles and some elongated vesicles (arrow). A 
synaptic specialization is not visible. Note the difference in vesicle size ar:d shape as compared with the 
neighbouring unlabelled S-type terminal. (E) A labelled preterminal axon passing into a cluster-labelled E
type terminal. (F) A labelled E-type terminal without a visible synaptic specialization. Note the presence 
of many microvesicles and small elongated vesicles (arrows), whereas the size of the vesicles present in 
the neighbouring S- and F-types terminals is much larger. 

Fig. 7 (A) Light microscopical autoradiograph of the 3H-leucine injection area in the vlMRF at the level of 
the inferior olive (1-month exposure time). (B)-(F) Electron micrographs of autoradiographically labelled 
terminal profiles and HRP-labelled motoneurons located in the L4 and L5 motoneuronal cell groups from 
rats which received both a 3H-leucine injection in the MRF and an HRP injection in the hindleg muscles. 
The tissue was reacted with TMB and processed for electron microscopical autoradiography using 6 
months exposure time. Bars = 0,5 J.I.IIl. (B) An F-type terminal, autoradiographically labelled with a 
cluster of silver grains, establishing a synaptic contact (open arrows) with a motoneuronal dendrite 
containing TMB crystals (arrows). (C) A cluster-labelled F-type terminal synapsing (open arrows) with a 
motoneuronal proximal dendrite containing TMB crystals (arrows). (D) Two cluster-labelled terminals are 
present: on the right side an F-type terminal establishing a synaptic contact (open arrows) with a 
motoneuronal distal dendrite containing TMB crystals (arrows). In the middle an S-type terminal 
synapsing (open arrow) with the soma of a motoneuron containing TMB crystals (arrow on the left). (E)
(F) Cluster-labelled F-type terminals establishing a synaptic contact (open arrows) with motoneuronal 
proximal dendrites containing TMB crystals (arrows). 
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dorsal part of the MRF, in which case the 
labelling was restricted to the intermediate 
zone of the ventral hom without involving the 
motoneuronal cell groups ( c.f. also Martin et 
al., 1985). It was therefore concluded that the 
labelled terminals in the motoneuronal cell 
groups derived their radioactivity directly from 
neurons in the brainstem injection sites. In 
light of this the differences in densities of the 
labelling of the motoneuronal cell groups in 
the three groups of experiments were inter
preted to indicate that projections to lumbar 
motoneuronal cell groups from the vlMRF, 
and to a lesser extent those from the raphe 
nuclei, were much denser than those from the 
area of the nucleus coeruleus and subcoeruleus 
(compare also quantities of 3H-leucine and 
exposure times), which is in keeping with 
histofluorescent findings (Dahlstrom and 
Fuxe, 1965). 

The analysis 

The distribution of the radioactivity in the 
lumbar motoneuronal cell groups was studied 
using both the cluster method and the circle 
method. The cluster method marked individual 
structures which contained a large amount of 
radioactivity. The circle method gave an 
estimate of the probability that a specific tissue 
compartment contained radioactivity. On the 
basis of the findings obtained with the circle 
method (Fig 1) it was concluded that only 
terminals (T) and items comprising terminals 
contained radioactivity. However, according 
to the cluster method (Table 4) some axons 
also contained radioactivity. In order to under
stand this discrepancy it should be realized that 
the circle method only gave an estimate of the 
probability that a specific type of tissue com
partment contained radioactivity. This was 
arrived at by comparing the distribution of the 
real grains over the tissue with that of 
randomly distributed hypothetical grains over 
the same tissue. This comparison (Fig. 1) 
showed that the item terminal (T) and the items 
comprising T had a high probability of con
taining radioactivity. On the other hand, axons 
(i.e. the items Ax and the groups of items 
Ax/CS-D-R) had a low probability while the 
remaining items had an even lower one. 
Therefore, guided by a customary statistical 
criteria (95% limits of confidence) only the 
items with T were considered to contain 
radioactivity and axons were not. However 
since this statement was based on probability it 
did not exclude that some axons contained 

radioactivity, which in fact was demonstrated 
by their cluster-labelling. 

The findings obtained with the two 
methods were also used to determine whether 
in the various experiments different types of 
terminals were preferentially labelled. Since 
terminal profiles had a much higher probability 
of containing radioactiviy than the other tissue 
compartments (Fig. 1), it was assumed that in 
the items containing a terminal profile as well 
as other tissue compartments, the terminal 
profile represented the source of radioactivity. 
Therefore the type of terminal encountered in 
the various items was identified. On this basis 
the preferential distribution of the radioactivity 
over the different types of terminals in the 
different groups of experiments was assessed. 
The cluster method. on the other hand. marked 
individual terminals and in many cases their 
type could be identified. Thus also by means 
of this method a preferential labelling of 
different types of terminals in the different 
groups of experiments was determined. 

The cluster-labelled terminals in general 
carried many silvergrains and therefore must 
have contained a large amount of radioactivity. 
From this it was inferred that their parent cell 
bodies probably were located in areas densely 
filled with radioactivity i.e. the centers of 
the injection sites. However, other terminals 
which carried only little radioactivity probably 
did not carry a cluster but only a few silver 
grains. These terminals, which could be detec
ted only by the circle method, were possibly 
derived from parent cell bodies which con
tained relatively little radioactivity e.g. because 
they were located in the periphery of the 
injection site. 

The terminal labelling 

Earlier studies (Bodian, 1966; McLaughlin, 
1972a; Conradi, 1969a; Bernstein and Bern
stein, 1976) distinguished five major types of 
terminals (Table 1) in motoneuronal cell 
groups. However, in the present material a 
sixth type of terminal has been distinguished 
and designated as E-type (Fig. 6D-F). It 
contained many relatively small vesicles and 
sometimes also elongated or canaliculi-like 
structures (c.f. Table 1). This type of terminal 
was distinguished as a separate category 
because of its morphology and its pronounced 
labelling only after injections in the area of the 
nucleus coeruleus and subcoeruleus (Figs. 2 
and 3). It had not been described earlier in the 
motoneuronal cell groups probably because it 
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is relatively rare and may be taken for a 
distorted F-type terminal. 

After vlMRF injections the circle method 
as well as the cluster method showed that the 
F-type terminals were by far the most fre
quently labelled. Yet S- and G-types also 
showed some preferential labelling (Figs. 2 
and 3). Mter injections in the raphe nuclei and 
the adjoining MRF both methods showed that 
F- and G-types were preferentially labelled, 
while according to the circle methodS-type 
terminals also showed prominent labelling. 
The fmding that in both groups of experiments 
F- and G-type terminals showed preferential 
labelling may be due to the fact that the 
injection sites in the vlMRF and in the raphe 
nuclei partially overlapped. Assuming that all 
axonal branches of one neuron are fitted with 
the same type of terminal, the above findings 
may indicate that the descending projections 
from the raphe nuclei and the vlMRF to the 
lumbar motoneuronal cell groups may be 
derived from at least two sets of neurons, e.g. 
serotonergic and non-serotonergic neurons 
(Bowker et al., 1982; Skagerberg and Bjork
lund, 1985). 

After raphe injections only the circle 
method revealed a prominent labelling of 
S-type terminals probably because their parent 
cell bodies did not contain a massive amount 
of radioactivity. This may have resulted from 
their location at the periphery of the injection 
site, e.g. in the vlMRF rather than in the raphe 
nuclei. Conversally the relatively strong pre
ferential cluster-labelling of G-type terminals 
after raphe injections (Fig. 3) may have 
resulted from a concentration of their parent 
cell bodies in the raphe nuclei. According to 
both the circle and the cluster method vlMRF 
injections produced labelling of some C-type 
terminals, while no such labelling occurred 
after raphe injections. This labelling of C-type 
terminals was quite striking since they 
generally have been regarded to be derived 
from short propriospinal neurons (McLaugh
lin, 1972b; Matsushita and Ikeda, 1973; 
Bodian, 1975; Pullen and Sears, 1983). 

In the third group of experiments with 
injections in the area of the nucleus coeruleus 
and subcoeruleus an entirely different distri
bution of the radioactivity over the different 
types of terminals was observed than in the 
cases of the flrst two groups (Figs. 2 and 3). 
Thus in the cases of the third group, according 
to both the circle method and the cluster 
method E-type terminals were preferentially 
labelled. Further, according to the circle 
method S-types were to some extent pre-

ferentially labelled and F-types also showed 
some labelling. These findings may have been 
due to the fact that the E-type terminals were 
derived from neurons in the center of the 
injection area and perhaps the same might 
apply to the S-type terminals. The F-type 
terminals on the other hand may have been 
derived from neurons in the periphery of the 
injection site. 

Synaptic terminals and their postsynaptic 
structures 

Approximately 40-50% (Tables 2 and 5) of the 
labelled S- and F-type terminal profiles ex
hibited a synapse, while few labelled E- and 
G-types exhibited a synapse. This may have 
resulted from the fact that they established 
relatively small sized synaptic contacts or that 
only few of these terminals established a 
regular synaptic contact. In the latter case their 
influence on motoneurons might be exerted in 
a diffuse non-synaptic manner (Maxwell et al., 
1983; Chan-Palay, 1975; Beaudet and 
Descarries, 1978; Leger and Descarries, 1978; 
Beaudet and Sotelo, 1981; Wiklund et al., 
1981a; Schaffar et al., 1983). The S-, F-, G
and E-types of terminals contacted proximal 
dendrites much more frequently than distal 
dendrites and seldom a cell soma. In cat the 
bulk of the total population of S- and F-type 
terminals in the lumbar motoneuronal cell 
groups were found on distal dendrites (Koziol 
and Tuckwell, 1977). If this also applies to the 
rat many of the S- and F-type terminals on 
distal dendrites must originate from other 
sources than the injection areas. 

The transmitters 

The raphe nuclei and the ventral part of the 
MRF contain many serotonergic neurons 
(Dahlstrom and Fuxe, 1964; Wiklund et al., 
198lb; Steinbusch, 1981) while the locus coe
ruleus contains many noradrenergic neurons 
(Dahlstrom and Fuxe, 1964; Swanson, 1976; 
Wiklund et al., 1981b). In motoneuronal cell 
groups of monkey brainstem (Takeuchi et al., 
1983) and chicken spinal cord (Atsumi et al., 
1985) serotonin was found in varicosities 
containing several dense-cored vesicles. In rat 
ventral horn (Pelletier et al., 1981) serotonin 
was demonstrated inside dense-cored vesicles 
of such varicosities. Since these varicosities 
resembled the G-type terminals of the present 
study, they were expected to represent sero-
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tonergic terminals. This was supported by the 
fact that these G-type terminals were only 
labelled after injections in the raphe and in the 
vlMRF and not after injections in the area of 
the nucleus coeruleus and subcoeruleus. By 
the same token, the E-type terminals may 
represent noradrenergic terminals since they 
were mainly labelled from the area of the 
nucleus coeruleus and subcoeruleus. How
ever, this is at variance with other obser
vations (Kojima et al., 1985) that noradrenalin 
tends to be concentrated in small granular 
vesicles and in large granules, which both are 
lacking in theE-type terminal. Moreover in 
other areas terminals resembling theE-type 
contained serotonin (Chan-Palay, 1975; Leger 
and Descarries, 1978; Beaudet and Sotelo, 
1981; Beaudet andDescarries, 1981; Wiklund 
et al., 1981a). 

EM autoradiography in combination with 
HRP -histochemistry 

In the EM-autoradiographs of the L4-L6 spinal 
segments from the two rats with vlMRF 
injections combined with HRP injections in 

the ipsilateral hindleg muscles, only the 
cluster-labelled terminals were taken into 
account. The distributions (Table 7) were 
basically the same as in the three rats with only 
3H-leucine injections in the vlMRF (Fig. 3, 
Tables 5 and 6). In the rats with combined 
injections nearly all cell somata in the mota
neuronal cell groups of the hindleg muscles 
contained TMB crystals and also many 
proximal dendrites as well as several distal 
dendrites contained such crystals. Since only 
HRP and not HRP coupled to wheat germ 
agglutinin was injected, it was most unlikely 
that these neurons were transneuronally 
labelled (Gerfen et al., 1982; Itaya and Van 
Hoessen, 1982; Ruda and Coulter, 1982; 
Harrison et al., 1984; Peschansky and Ral
ston, 1985; Porter et al., 1985; Wiesendanger 
and Wiesendanger, 1985). The labelled 
neurons were therefore regarded to represent 
motoneurons. More than 50% of the cluster
labelled synaptic terminals contacted HRP
labelled motoneurons (Table 7). This per
centage should be regarded as a minimum 
since neither all motoneurons in the selected 
area were labelled nor all portions of a labelled 
motoneuron contained TMB crystals. 
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II.2. 

AN ULTRASTRUCTURAL STUDY BY MEANS OF THE 
ANTEROGRADE TRANSPORT OF WHEAT-GERM 

AGGLUTININ COUPLED TO HORSERADISH PEROXIDASE AND 
USING THE TETRAMETHYL BENZIDINE REACTION 

II.2.A. INTRODUCTION 

Horseradish peroxide (HRP) in combination 
with the chromogen 3',3'-diaminobenzidine 
tetrahydrochloride (DAB) has been widely 
used for anterograde tracing both at the LM 
and the EM level. For anterograde tracing at 
the EM level, HRP in combination with DAB 
is much less efficient than 3H-leucine in 
combination with the EM autoradiographic 
technique (Holstege, J.C. and Dekker, 1979). 
Recently it was demonstrated that the sensi
tivity of the HRP technique could be enhanced 
by coupling HRP to wheat-germ agglutinin 
(WGA) (Gonatas et al., 1979; Trojanowski et 
al., 1981) and even more so by using 3,3', 
5,5'-tetramethyl benzidine (TMB) as a 
chromogen (Hardy and Heimer, 1977; 
Mesulam, 1978; 1982). So far TMB has been 
used in a few HRP studies at the EM level 
(Sturmer et al, 1981; SchOnitzer and Hoi
Hinder, 1981; Sak:umoto et al., 1981; Carson 
and Mesulam, 1982; Aides and Boone, 1985; 
Henry et al., 1985; Lemann and Saper, 1985; 
Naus et al., 1985; Westman et al., 1986). 
However, the HRP-TMB reaction product is 
probably unstable during osmification (Sak:u
moto et al., 1980; Carson and Mesulam, 1982; 
Henry et al., 1985) and in aqueous solutions 
or lower grades of alcohol (Stiirmer et al., 
1981). As a consequence ofHRP-TMB reac
tion product may disappear when the tissue is 
processed for electron microscopy. Therefore 
several investigators still prefer the use of 
DAB as a chromogen at the EM level in spite 
of its lesser sensitivity in comparison with 
TMB. 

In the present study an attempt was made 
to overcome the problems associated with the 
instability of TMB reaction product by using 
the method of chemical dehydration (Muller 
and Jacks, 1975) and by adjusting the 
temperature and pH of the osmium tetroxide 

solution (Sak:umoto et al., 1980; Carson and 
Mesulam, 1982). In addition the efficacy of 
the terminal labelling obtained with the antero
grade transport ofWGA-HRP in combination 
with the chromogen TMB (WGA-HRP!IMB) 
was tested and compared with the efficacy of 
the terminal labelling obtained in a similar 
study using 3H-leucine in combination with 
EM autoradiography (Ch. ILl.). 

II.2.B. EXPERIMENTAL PROCEDURES 

Six rats were used, five rats received two in
jections of 0,15 IlL 2% WGA-HRP (Sigma R) 
in distilled water and one control rat re
ceived two injections of 0.15 IlL 0,9% NaCl 
in distilled water. The injections were placed 
in the ventral part of the medial reticular 
formation (vlMRF) between the facial and 
hypoglossal nuclei 1.2 mm off the midline. 
Three days later the animals were deeply 
anaesthetized with pentobarbital and trans
cardially perfused with 0.9% NaCl in 
cacodylate buffer (pH 7 .3, 37°C) followed by 
a fixation fluid containing 2.5% glutar
aldehyde and 1% paraformaldehyde (pH 7 .3, 
20°C). The lower brainstems containing the 
WGA-HRP injection areas were kept over
night in the fixation fluid containing 30% 
sucrose. They were then cut transversely in 
frozen sections (30 J.l.m) and treated according 
to the DAB method (Graham and Karnovsky, 
1966). The sections were mounted on slides, 
dehydrated and lightly counterstained with 
cresyl-violet. Immediately after perfusion the 
L5 and L6 spinal segments of all rats were cut 
transversely in slabs (70 Jlm) on a vibratome 
and the ventral horn, ipsilateral to the brain
stem injections, was dissected and treated 
according to the TMB method (Mesulam, 
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1978) except that plain acetate buffer (0.01 
M., pH 3.3) was used throughout as a 
stabilizer. Immediately after the incubation, the 
dissected slabs were placed in phosphate 
buffer (pH 6.0, 20°C) for 5-15 min and then 
placed in 1.5% osmium tetroxide in phosphate 
buffer (pH 6.0, 45°C) (Sakumoto et al., 1980; 
Carson and Mesulam, 1982) for 40 minutes. 
After thorough rinsing in distilled water, they 
were dehydrated with di-methoxy-propane 
(Muller and Jacks, 1975) and embedded in 
Araldite. From these blocks, semithin sections 
were cut in which the WGA-HRPtrMB 
labelling was studied, especially in the three 
rats which showed the most pronounced HRP 
reaction. The blocks of these three rats and 
those from the control rat were trimmed to 
pyramids containing part of the motoneuronal 
cell groups. From these pyramids ultrathin 
sections were cut, which were mounted on 
200 mesh grids, stained with uranyl acetate 
and lead citrate and then examined in a Philips 
300 electron microscope. 

II.2.C. COLLECTION AND ANALYSIS 
OF THE DATA 

Three blocks were studied from each of the 
three rats injected with WGA-HRP and from 
the control rat. From each block 3-5 non-serial 
sections were used. A total of 47 sections was 
studied including 12 sections from the control 
rat. Each section was completely examined for 
TMB crystals. When such a crystal was 
encountered, it was photographed on reversal 
film, projected and analysed. In each photo
micrograph, the tissue compartment containing 
one or more TMB crystals was registered. 
When a terminal profile was labelled its type 
was registered. Furthermore it was determined 
whether this profile established a synaptic 
contact in which case the postsynaptic 
structure was also registered. A total of 825 
tissue compartments containing HRP reaction 
product were analysed. The results of this 
analysis were expressed for each block as 
percentages as described in the autoradio
graphic experiments (Ch. ILL). In the 
majority of the cases a variance analysis 
(Snedecor and Cochran, 1980) performed on 
the different percentages obtained in each 
block did not show a statistically significant 
difference. Only in a few isolated cases an 
either significant or relatively large (F> 2) but 

not significant difference was found, which 
did not show a consistent pattern. It was 
therefore concluded that the variations in the 
percentages could not be attributed to differen
ces between the animals but could only be 
attributed to differences between the blocks, 
resulting from random variations and errors of 
observation. This made it possible to calculate 
the 95% confidence limits of the mean of the 
percentages obtained in the different blocks. 

I I. 2. D. RESULTS 

Light microscopy 

In the DAB-reacted frozen sections of the 
lower brainstem from the five rats injected 
with WGA-HRP, the injection sites were 
located ipsilaterally in the ventrolateral MRF 
(Fig. 2A) at the levels between the hypo
glossal nucleus and the caudal part of facial 
nucleus. The injection site included part of the 
ipsilateral inferior olive. The semithin sections 
of the L5 and L6 segments from these five rats 
were studied in the LM with bright field 
illumination. The HRP reaction products (the 
TMB precipitate) could be identified as dark 
brown particles in the neuropil of the mota
neuronal cell groups. In several instances the 
reaction product was observed around a den
drite (Figs 2B, C), on a cell soma (Fig. 2B) or 
inside a myelinated axon. Occasionally a 
TMB-labelled cell soma was observed in the 
intermediate zone just outside the mota
neuronal cell groups. In the semithin sections 
of the control rat no HRP reaction products 
were observed. 

Electron microscopy 

Three rats were studied in detail. Examination 
of the ultrathin sections from these rats 
showed many electron-dense crystal-like 
structures representing the TMB precipitate 
(Figs. 2D-N). In the 35 ultrathin sections 
studied, a total of 825 structures were labelled 
by these TMB crystals (Table 1), with an 
average of ±4.2 labelled structures per grid
square (7225 J.Lm2). The majority of these 
structures were terminal profiles ( 66%) while 
axons were much less frequently labelled 
(10%). Dendrites were also observed to 
contain TMB crystals (10% of the labelled 
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structures) and in one occasion a crystal was 
found inside a cell soma. Several labelled 
structures (14%) could not be identified most
ly because they were very small and destroyed 
by the TMB crystal(s) and occasionally be
cause of fixation artefacts. 

In the lumbar motoneuronal cell groups six 
major types of terminals were distinguished: 
F-type (flattened vesicles); S-type (spherical 
vesicles); E-type (micro-vesicles and some 
elongated ones); G-type (granular vesicles); 
C-type (with a subsynaptic cistern) and T-type 
(with subsynaptic densities, Taxi bodies) (for 
a detailed description see Ch. I.4 and Ch 
ILl). Fig. 1 shows that F-type terminals were 
most frequently labelled (53%) whileS- and 
G-type terminals were labelled much less 
frequently (24% and 21% respectively). E
and C-type terminals were only seldom 
labelled (1% for both), while T-type terminals 

Table 1 Frequency of the different TMB-labelled 
structures. 

(%) (n) 

Terminal 66±4 544 
Axon 10±4 84 
Dendrite 10±5 81 
Cell Soma <1 ±- 1 

Values given are mean percentages (±95% 
confidence limits) and total numbers (n). See also 
Collection and Analysis of the Data. 

were never found to be labelled. Approximate
ly 50% of the labelled F- and S-type terminals 
exhibited a synaptic contact mostly with 
proximal dendrites and to a much lesser extent 
dendrites. The few labelled E-type terminals 
which were observed did not show a synaptic 
contact and the C-type terminals always estab
lished a synapse and contacted exclusively 
proximal dendrites (Table 2). Labelled ter
minal profiles were never observed to be en
gaged in axo-axonic contacts. In the 12 ultra
thin sections from the one control rat TMB
crystals were not encountered. 

Fig. 1. Frequency of the different TMB-labelled 
types of terminals. 
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Values indicated are mean percentages (±95% 
confidence limits) and total number (n). See also 
Collection and Analysis of the Data. 

Table 2 Frequency of the different 3,3 ',5 ,5' -tetramethylbenzidine-labelled types of terminals (1), of the 
proportion showing synaptic contacts (2) and of the different types of terminals contacting the 
various postsynaptic structures (3). 

(I) (2) (3) 

Type of Percentage Postsynaptic structure 

terminal synaptic terminals Cell soma proximal dendrites distal dendrites 

S-type (24%) 50% ±7 5%±- 80% ± 13 15% ± 10 
(n = 128) (n = 63) (n = 3) (n =50) (n = 10) 

F-type (53%) 47% ±6 6%±- 84% ±9 10%±-
(n = 289) (n = 134) (n = 8) (n = 113) (n = 13) 

E-type (I%) 0% 
(n =4) (n = 0) 

G-type (21%) 9%±6 0% 89%±- II%±-
(n = 117) (n = 9) (n = 0) (n = 8) (n = 1) 

C-type (I%) 100% 0% 100% 0% 
(n = 5) (n = 5) (n =0) (n = 5) (n =0) 

Values given are mean percentages(± 95% confidence limits) and total numbers (n). See also Collection 
and Analysis of the Data. 
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Fig. 2. (A.) Lightmicrograph of the WGA-HRP injection area in the MRF at the level of the inferior 
olive. Tissue reacted with DAB. (B-C.) Lightmicrographs of semithin sections (3 !Jlll) from the L5 and 
L6 lateral motoneuronal cell groups after injections of WGA-HRP in the MRF. The tissue was reacted 
with TMB. Note the dark WGA-HRP reaction product around dendrites (short arrows) and alongside a 
cell soma and proximal dendrite (long arrows) Bar= 10 !Jlll. (D-N.) Electronmicrographs of the L5 and 
L6lateral motoneuronal cell groups after injection ofWGA-HRP in the MRF. Tissue reacted with TMB. 
Bar= 0,5 !Jlll. (D.) A labelled F-type terminal synapsing on a cell soma. Arrow indicates a TMB crystal 
which representS'the WGA-HRP reaction product (E-G.) A serial sectioned F-type terminal containing 
several TMB crystals and establishing a synaptic contact (arrows) with a proximal dendrite. Depicted are 
three profiles from a row of 6. H. An S-type terminal labelled with several TMB crystals and establishing 
a synapse (short arrow) on a distal dendrite. One TMB crystal (long arrow) has slightly protruded out of 
the terminal. (1.) An F-type terminal labelled with a large TMB crystal. (J.) A G-type terminal containing 
several TMB crystals (small arrows) and establishing a synaptic contact (large arrow) with a distal 
dendrite. (K.) A G-type terminal containing several TMB crystals. One crystal (arrow) is largely located 
within a dendrite but has a small portion inside the terminal. Possibly this dendritic labelling resulted from 
protrusion of the TMB crystal from the terminal into the dendrite. (L.) An S-type terminal containing two 
TMB crystals. A synaptic specialization is not visible. (M.) A TMB-labelled F-type terminal synapsing on 
a proximal dendrite. (N.) A small TMB crystal (arrow) located within a dendrite. 
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II.2.E. DISCUSSION 

The findings obtained in the present ultrastruc
tural study after WGA-HRP injections in the 
vlMRF using TMB as a chromogen clearly 
demonstrated the existence of descending 
projections to the lumbar motoneuronal cell 
groups, which is in keeping with the fmdings 
in the EM autoradiographic experiments 
(Ch. ILL). In a similar study (Holstege, J.C., 
unpublished observations), using DAB as a 
chromogen, these projections could not be 
demonstrated, re-emphasizing the superior 
sensitivity of the chromogen TMB as com
pared with DAB. 

Light microscopy 

The frozen sections containing the WGA-HRP 
injection sites were incubated with DAB 
(Graham and Karnovsky, 1966). Since this 
method is less sensitive than the TMB method, 
it will result in a relatively smaller injection 
site. However the area where the injected 
WGA-HRP was taken up and from which it 
was subsequently transported is probably 
shown more accurately when using the DAB 
method. The location and extent of the 
WGA-HRP injection sites in the vlMRF (Fig. 
2A) were almost identical to the 3H-leucine 
injection sites in the vlMRF in the autoradio
graphic experiments (Ch. II.L). This made it 
possible to compare the results obtained with 
the two different techniques. 

In the semithin sections a dark-brown 
reaction product was identified in the lumbar 
motoneuronal cell groups (Figs. 2B, C). The 
density of this TMB labelling was far less than 
the density of the silvergrains in the same area 
obtained in the autoradiographic experiments. 
WGA-HRP labelled neurons which were 
occasionally observed in the ipsilateral inter
mediate zone probably resulted from retro
grade labelling from passing fibers or from 
terminals in the injected area e.g. the inferior 
olive (Swenson and Castro, 1983) or the 
ventral MRF (including the lateral reticular 
nucleus) (Hrycyshyn and Flumerfelt, 1981; 
Shokunbi et al., 1985). It cannot be excluded 
that the labelling of neurons in the intermediate 
zone was the result of transneuronal transport 
of the WGA-HRP, a phenomenon which has 
recently been shown to occur (Gerfen et al., 
1982; Itaya and Van Hoessen, 1982; Ruda and 
Coulter, 1982; Harrison et al., 1984; 
Peschansky and Ralston, 1985). 

Electron microscopy 

The method employed in the present study for 
processing the TMB-reacted slabs resulted in 
an acceptable preservation of the TMB crystals 
within the tissue, while the ultrastructure was 
only occasionally affected. Post-staining of the 
thin sections with uranyl-acetate and lead
citrate greatly improved the contrast in the 
tissue whereas the reaction product could still 
be easily recognized (Figs. 2D-N). 

Examination of the ultrathin sections from 
the selected areas in the motoneuronal cell 
groups showed an average of ±4.2 TMB
labelled structures per gridsquare (7225 Jlffi2). 
This is somewhat less efficient in comparison 
with the number of structures which were 
labelled by a cluster of 6 or more silver grains 
in the EM autoradiographic experiments (Ch. 
ILL) (average of±7.2 clusters per gridsquare 
of 7225 Jlffi2), but far less efficient in compari
son with the total number of silvergrains per 
gridsquare (calculated average of ±300 silver 
grains per gridsquare). This implies that for 
the anterograde tracing of terminals the general 
efficacy of the EM autoradiographic technique 
is superior to the WGA-HRP{fMB technique. 

In respect to the distribution of the TMB 
crystals over the various tissue compartments 
it was found that the majority (66%) was 
located in terminal profiles, while 10% was 
located in axons and 14% in profiles which 
could not be identified (see Table I). This is in 
general agreement with the results obtained in 
the EM autoradiographic experiments. 
However, 10% of the TMB crystals was 
found to be located inside dendritic profiles 
(Fig. 2N). This finding could not be attributed 
to "background crystals" since the control ex
periment showed that no crystals were formed 
in the absence of HRP. It must therefore be 
assumed that these labelled dendrites belonged 
to neurons in the intermediate zone which 
were labelled retrogradely from the injection 
area (Hrycyshyn and Flumerfelt, 1981; 
Swenson and Castro, 1983; Shokunbi et al., 
1985) or, more likely, that the WGA-HRP had 
been transported transsynaptically to mota
neuronal dendrites. Finally the presence of 
TMB crystals inside dendrites may be ex
plained by protrusion of crystals from termi
nals into dendrites (Fig. 2K) above or below 
the plane of section. 

The distribution of the TMB crystals over 
the different types of terminals (Fig. 1) was 
basically similar to the distribution of the 
radioactivity over the different types of 
terminals obtained in the autoradiographic 
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experiments (Ch. Il.l). This also holds true 
for the fmdings obtained for the percentages of 
"synaptic terminals" and the postsynaptic 
structures contacted by these terminals (Table 
2). For a more detailed discussion of findings 
similar to those obtained in the present study 
see Ch. ILl. 

I I. 2. F. CONCLUSION 

The present study clearly shows that 
WGA-HRP in combination with TMB as a 
chromogen can be reliably used at the EM 
level for anterograde tracing of fiber systems 
and the identification of the different types of 
terminals and with a much better efficacy than 
can be obtained when using DAB as a chro
mogen. It is also shown that chemical dehy
dration of the tissue, which was used in order 
to preserve a maximum number of TMB 
crystals during processing, resulted in good 
preservation of the ultrastructure and also in a 
number of TMB crystals which was sufficient 
for quantitative analysis. 

The WGA-HRP{fMB technique is much 
less time consuming and less complicated than 
the EM autoradiographic technique. In addi
tion the analysis of the EM sections is less ela
borate since most crystals are confined within 
one structure, while "background crystals" are 
virtually absent. The EM autoradiographic 
technique on the other hand has some major 
advantages over the WGA-HRP!fMB tech
nique since a larger number of terminals can 
be labelled and a better preservation of the 
tissue can be obtained. Furthermore it is of 
importance to note that 3H-leucine is taken up 
by cell somata only, while on the contrary 
WGA-HRP is taken up and transported from 
terminals and fibers of passage and may also 
be transported trans-neuronally (Gerfen et al., 
1982; Itaya and VanHoesen, 1982; Ruda and 
Coulter, 1982; Harrisson et al., 1984; Pes
chanski and Ralston, 1985). 

It may thus be concluded that the 
autoradiographic technique as well as the 
WGA-HRP technique in combination with 
TMB as a chromogen can be reliably used 
for anterograde tracing at the EM level. A 
choice between the two methods should be 
determined for each individual experiment 
separately, guided by the advantages and the 
disadvantages of each method. 
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CHAPTER III 

GENERAL DISCUSSION AND CONCLUSIONS 



62 Chapter III 

III.l. 

ANTEROGRADE TRACING AT THE ULTRASTRUCTURAL 
LEVEL: AUTORADIOGRAPHY AND HRP 

HISTOCHEMISTRY COMPARED 

III.l.A. INTRODUCTION 

In the experiments described in Ch. II the 
projection from the brainstem medial reticular 
formation to spinal motoneurons in the rat 
were studied at the ultrastructural level. In 
these studies both 3H-leucine (in combination 
with electron-microscopic (EM) autoradio
graphy) and WGA-HRP (in combination with 
tetramethyl-benzidine (1MB) histochemistry) 
were used in the same neuronal system and the 
data were collected using a similar procedure. 
This makes it possible to compare the two 
anterograde tracing techniques with respect to 
three important aspects: reliability, analysis 
and efficiency. 

III. LB. RELIABILITY, ANALYSIS 
AND EFFICIENCY 

The experiments described in Ch. II showed 
that with either tracing technique the majority 
of the labelling was located in terminals and to 
a lesser extent in axons. Moreover the same 
types of terminals were labelled. In the 
WGA-HRP experiments it was also found that 
10% of the labelled structures were dendrites. 
This indicates that the WGA-HRP had been 
transported either transneuronally through the 
labelled terminals or retrogradely from the 
brainstem injection site to dendrites belonging 
to intemeurons provided with ascending 
axons. Labelling of dendrites could not be 
demonstrated in the autoradiographic experi
ments using 3H-leucine. As a whole the 
findings demonstrate that 3H-leucine and 
WGA-HRP can be reliably used for antero
grade tracing of terminals. They also show 
the different properties of the two tracers. 
3H-leucine is taken up by cell somata only (and 

not by passing fibers or terminals) and 
transported in an anterograde direction without 
transneuronal transport. WGA-HRP on the 
other hand is taken up by cell somata, injured 
fibers and by terminals and it is subsequently 
transported in anterograde and/or retrograde 
direction and may also be transported trans
neuronally. 

The type of analysis which may be used on 
the data obtained with each technique has been 
described in Ch. I.3. With respect to the EM 
autoradiographic tracing technique it has been 
shown that, when single grains are analysed, 
the results are expressed in terms of proba
bility and that it cannot be determined whether 
individual structures actually contain radio
activity. In addition there is a denomination 
problem which further complicates the single 
grain analysis. These problems can be partially 
overcome by using the cluster analysis. In the 
experiments described in Ch. II the results of 
the single grain analysis and the cluster ana
lysis were basically similar. A few differences 
occurred, which were probably due to the fact 
that the cluster analysis can only detect heavily 
labelled structures. The analysis of the WGA
HRP material is far less complicated. Every 
structure containing one or more crystals is 
considered to be labelled, especially because it 
has been shown that TMB crystals are not 
formed in the absence of WGA-HRP. It 
should be kept in mind, however, that some 
parts of the brain contain endogenous HRP. 
This is not the case with spinal-motoneurons 
or intemeurons. 

An indication of the efficiency of an an
terograde tracing technique may be obtained 
by determining the average number of terminal 
profiles which are labelled in (non-serial) 
ultrathin sections. However, in case of the EM 
autoradiographic tracing technique, when 
using single grain analysis, it is not possible to 
determine the number of labelled proflles, but 
only the number of silvergrains which are 
observed. In contrast, in the cluster analysis 
the efficiency can be expressed as the number 
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TABLE 1 

A COMPARISON OF THE DIFFERENT ASPECTS OF THE AUTORADIOGRAPHIC TECHNIQUE AND 
THE WGA-HRP TECHNIQUE AT THE ULTRASTRUCTURAL LEVEL. 

Characteristics of tracer: 

TRACER 

3H-leucine 

Anterograde transport only 

Uptake by cell bodies only 

Virtually no transneuronal 
transport 

Procedure: Autoradiography 

Characteristics of procedure: Relatively complicated 

Ultrastructure: 

Visualization: 

Resolution: 

Background: 

Analysis: 

Efficiency: 

Time consuming (2 months 
up to 1 year) 

Optimal 

Silver grains (size and shape 
depending on developer 

Depending on geometrical 
and photographic error 

Present (variable) 

Single grains: complicated 
Ousters: relatively easy 

Single grains: high 
Custers: relatively low 

WGA-HRP 

Anterograde and retrograde transport 

Uptake by cell bodies, teminals and 
(damaged) axons 

Significant transneuronal transport 

WGA-HRP histochemistry 
usingTMB 

Relatively easy 

Fast (1 week) 

Some artifacts 

TMB crystals 

Depending on histochemical 
error 

Virtually absent 

Relatively easy 

Relatively low 

of labelled profiles that are observed and the 
same holds true for the analysis of the WGA
HRP material. In our experiments (Ch.ll) an 
average of approximately 300 silvergrains and 
an average of 7 cluster-labelled structures per 
gridsquare (7225 J.Lm2) were found, whereas 
an average of 4 TMB-labelled structures per 
gridsquare was found in the WGA-HRP ma
terial. Since many of the parameters in these 
experiments were similar, the above findings 
may imply that the efficiency of the EM auto-

radiographic technique (with eit..her method of 
analysis) is higher than the efficiency of the 
WGA-HRP technique. However, it should be 
noted that the EM autoradiographic technique 
is rather complicated and time consuming (with 
exposure times ranging from two months to 
more than one year), while the WGA-HRP 
technique is much easier to perform and 
results are obtained much faster (within one 
week). This difference may be of crucial im
portance in deciding which technique to use. 
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I I I . 1. C. CONCLUSION 

The various properties of the EM autoradio
graphic tracing technique and the WGA-HRP 
tracing technique are summarized in Table 1. 
The method to be used for anterograde tracing 
of terminals at the ultrastructural level largely 
depends on the system to be studied. It may be 

concluded that the EM autoradiographic tech
nique with 3H-leucine is most suitable for 
studying connections with a relatively weak 
projection or when retrograde transport and 
the existence of many passing fibers may 
interfere with the interpretation of the results. 
In other cases the WGA-HRP technique using 
TMB as a chromogen is to be preferred. 
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III.2. 

DESCENDING BRAIN STEM PROJECTIONS 
TO SPINAL MOTONEURONS 

III.2.A. INTRODUCTION 

Anterograde degeneration findings showed 
that the descending projections to the spinal 
cord, which are involved in motor control, are 
derived from the motor cortex and from 
several nuclei in the brainstem (Kuypers, 
1981; c.f. Ch. I.5). The descending projec
tions from the motor cortex were found to ter
minate in a somatotopic manner mainly in the 
intermediate zone but, especially in higher pri
mates, also in the motoneuronal cell groups 
(Kuypers, 1960; Schoen, 1964; Petras, 1967; 
Martinet al., 1975). According to the degene
ration findings the descending brain stem pro
jections, which largely parallel the cortical 
projections, also terminate primarily in the 
intermediate zone (Nyberg-Hansen, 1966b; 
Kuypers et al., 1972; Martinet al., 1975). On 
the basis of their termination in the inter
mediate zone the brainstem projections have 
been divided into a medial and a lateral system 
(Kuypers, 1964). The introduction of axonally 
transported tracers (see Ch. I.2) prompted a 
reinvestigation of the descending brainstem 
projections. Thus, after heiDi-infiltration of cat 
spinal cord with HRP (Kuypers and Maisky, 
1975) many retrogradely labelled neurons 
could be demonstrated in various brainstem 
areas. The majority of these areas were already 
known from anterograde degeneration studies 
to project to the spinal cord. However, several 
other areas such as the nucleus retro
ambiguus, the dorsal column nuclei, the locus 
coeruleus and subcoeruleus, the lateral pontine 
tegmentum including the nucleus of Koelliker
Fuse and even some hypothalamic areas were 
also found to project directly to the spinal 
cord. Similar findings were obtained in 
monkey (Kneisley et al., 1978), rat (Leichnetz 
et al., 1978), opossum (Crutcher et al., 1978), 
bird (Cabot et al., 1982) and lower vertebrates 
(Ten Donkelaar, 1982). Since HRP is taken 
up not only by terminals but also by damaged 
fibers of passage (Brodal et al., 1983), the 

exact terminations of these fiber systems in the 
spinal grey matter was difficult to determine 
by means of this technique. For this purpose 
anterograde transport techniques were used, 
which demonstrated that, in contrast to the 
earlier degeneration fmdings, the brainstem 
fibers to the spinal cord also terminate 
extensively in the motoneuronal cell groups. 
These axonal transport findings fmally con
firmed the much earlier histofluorescent fin
dings of Dahlstrom and Fuxe (1965), which 
showed the existence of serotonergic and nor
adrenergic brainstem projections to the mota
neuronal cell groups. The following para
graphs will discuss the various aspects of the 
descending projections from the nucleus 
coeruleus and subcoeruleus, the caudal raphe 
nuclei and the ventral part of the medial 
reticular formation to spinal motoneurons. 

III.2.B. COERULEO-, RAPHE- AND 
MEDIAL RETICULO
SPINAL PROJECTIONS TO 
SPINAL MOTONEURONS 

Anterograde transport techniques using 
tritiated amino acids in combination with light 
IL ·roscopy autoradiography showed that 
fibers from the locus coeruleus and sub
coeruleus descended mainly ipsilaterally in the 
spinal white matter. These fibers are situated 
in the most peripheral parts of the lateral and 
ventral funiculi and terminated in all parts of 
the grey matter including the motoneuronal cell 
groups throughout the spinal cord (Holstege, 
G. et al., 1979; Martinet al., 1979; Westlund 
and Coulter, 1980; Holstege, G. and Kuy
pers, 1982; Jones and Yang, 1985). The cau
dal raphe nuclei and the adjoining medial 
reticular formation were also found to project 
to all parts of the spinal grey matter (Holstege, 
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G. et aL, 1979; Martin et aL, 1979; 1985; 
Holstege, J.C. and Kuypers, 1980; Holstege, 
G. and Kuypers, 1982; Jones and Yang, 
1985), but these projections are much more 
intense than those from the nucleus coeruleus 
and subcoeruleus (Fig. 2). Retrograde and 
anterograde labelling studies showed that the 
raphe magnus projects mainly to the dorsal 
hom via the dorso-lateral funiculus, whereas 
the more caudally located raphe pallidus and 
obscurus and the adjoining medial reticular 
formation project mainly to the intermediate 
zone and the motoneuronal cell groups via the 
lateral and ventral funiculi (Basbaum et al., 
1978; Martin et aL, 1978; Holstege, G. and 
Kuypers, 1982). The existence of direct 
projections from the caudal brainstem to spinal 
motoneurons was recently confirmed in cat by 
means of retrograde trans neuronal transport of 
WGA-HRP from spinal nerves through the 
corresponding spinal motoneurons to neurons 
in the caudal raphe and the adjoining medial 
reticular formation (Alstermark et aL 1987). 
Retrograde double labelling studies (Huisman 
et aL, 1980; Hayes and Rustioni, 1981; Martin 
et al., 1981; Huisman et al., 1984) showed 
that the coeruleo- and raphe-spinal pathways 
gave off several collaterals along their trajec
tory in the spinal cord, indicating a relatively 
diffuse manner of projection. A further insight 
into the coeruleo-, raphe- and medial reticule
spinal projections to the motoneuronal cell 
groups was provided by ultrastructural auto
radiographic studies (Ch. II; Holstege, J.C. 
and Kuypers, 1982), which showed that after 
injection of 3H-leucine in the respective brain
stem areas the bulk of the radioactivity in the 
lumbar motoneuronal cell groups was located 
in terminals which contacted mostly proximal 
dendrites. After coeruleus and subcoeruleus 
injections two types of terminals were radio
actively labelled (Fig 1), whereas after injec
tions in the raphe pallidus and obscurus or the 
ventro-lateral part of the medial reticular for
mation three types of terminals were labelled, 
one of which contained many granular vesicles 
(Fig. 2) (for a description of the different 
types of terminals in the spinal motoneuronal 
cell groups see Ch. L4). In some experiments 
the anterograde transport of 3H-leucine from 
the ventro-lateral part of the medial reticular 
formation was combined with the retrograde 
transport of HRP from the hindleg muscles 
(Ch II). In the material from these rats many 
autoradiographically labelled terminals were 
observed to establish synaptic contacts mainly 

with HRP-labelled proximal dendrites. This 
clearly demonstrated the existence of direct 
contacts between neurons in the medial reticu
lar formation and lumbar motoneurons. Many 
physiological studies have shown connections 
between brainstem neurons and spinal mote
neurons mostly via intemeurons in the inter
mediate zone (for reviews see Peterson et al., 
1979; Wilson and Peterson, 1981). However, 
some electrophysiological studies also indi
cated the existence of monosynaptic connec
tions with motoneurons. Some of these con
nections were inhibitory (Llinas and Terzuolo, 
1964) (cf. Magoun and Rhines, 1946) while 
others were excitatory (Grillner and Lund, 
1968; Wilson and Yoshida, 1969). These 
studies further suggested that the neurons 
exerting an inhibitory influence on mota
neurons were located caudally in the medullary 
medial reticular formation at the level of the 
inferior olive, whereas those exerting an exci
tatory influence were located more rostrally. 
These pathways are probably non-seroto
nergic, since the iontophoretic application of 
serotonin by itself or in combination with 
peptides does not seem to elicit postsynaptic 
potentials in motoneurons (see below). 

III.2.C. THE TRANSMITTERS 

The existence of direct brainstem projections 
to spinal motoneurons was already shown in a 
histofluorescent study of Dahlstrom and Fuxe 
(1965). This study and those of others (Ny
gren and Olson, 1977; Commissiong et aL, 
1978; Bowker et al., 1982; Westlund et al., 
1983) showed that spinal projections from the 
nucleus coeruleus and subcoeruleus were nor
adrenergic and those from the caudal raphe 
nuclei and adjoining ventral medial reticular 
formation were serotonergic. However recent 
studies demonstrated that there also exists a 
major non-serotonergic projection from the 
caudal raphe nuclei and ventral medial reticular 
formation to the spinal cord (Bowker et al., 
1982; Skagerberg and Bjorklund, 1985) and a 
non-noradrenergic spinal projection from the 
locus coeruleus and subcoeruleus (Lai and 
Barnes, 1985; Stevens et al., 1985). Immuno
histochemical studies combined with retro
grade tracing or lesion techniques showed that 
several peptides were present in spinal projec-
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ring neurons of the caudal raphe nuclei and the 
adjoining ventral medial reticular formation. 
These peptides include substance P (Bowker 
et aL, 1983), thyrotropin releasing hormone 
(TRH) (Bowker et aL, 1983; Helke et al., 
1986), enkephalin-like substances (Hokfelt et 
aL, 1979; Bowker et al., 1983) and chole
cystokinin (Mantyh and Hunt, 1984). Each of 
these peptides has been shown to coexist to a 
variable extent with serotonin (Chan-Palay et 
aL, 1978; Hokfelt et al., 1978; Johansson et 
aL, 1981; Hunt and Lovick, 1982; Mantyh 
and Hunt, 1984; Leger et aL, 1986). The 
coexistence of serotonin with both substance P 
and TRH in one and the same neuron has also 
been reported (Johansson et aL, 1981). 
Immunohistochemical and histofluorescent 
studies (Dahlstrom and Fuxe, 1964; Gibson et 
aL, 1981; Steinbusch, 1981; Mantyh and 
Hunt, 1984) (for reviews see Hunt, 1983; 
Gibson and Polak, 1986; Tohyama and Shio
tani, 1986) showed that these four peptides as 
well as serotonin and noradrenalin were also 
present in fibers and terminals in the spinal 
ventral horn; several of these fmdings were 
confirmed at the ultrastructural level (Johans
son et al., 1980; Vacca et al., 1982; Atsumi et 
al., 1985; Kojima et al., 1985; Ulfhake et al., 
1987). Immunohistochemical studies both at 
light (Wessendorf and Elde, 1985; Bowker, 
1986) and electron microscopical (Pelletier et 
al., 1981) levels also demonstrated the co
existence of serotonin and substance P in 
some of these terminals. These fmdings are in 
keeping with the fact that destruction of 
serotonergic neurons by means of neurotoxins 
such as 5,6- or 5,7-dihydroxytryptamine (Jo
hansson et aL, 1981; Gilbert et aL, 1982) 
resulted not only in serotonin depletion from 
the ventral hom but also produced depletion of 
substance P and TRH. It has therefore been 
assumed (Hokfelt et aL, 1984) that some of 
the serotonergic terminals in the ventral horn 
may contain both substance P and TRH, as do 
the neuronal cell bodies in the caudal raphe 
nuclei and the ventral part of the medial 
reticular formation (Johansson et aL, 1981), 
from which these terminals -in all likelihood
are derived. This is in agreement with the fin
ding described inCh. ll that after 3H-leucine 
injections in the raphe pallidus and obscurus 
or the ventro-lateral part of the medial reticular 
formation one type of radioactively labelled 
terminal in the ventral horn (Fig. 2a) displayed 
a morphology similar to that of the terminals in 
the ventral horn, which contain either sero-

tonin (Atsumi et aL, 1985; Ulfhake et 
al.,1987) or substance P (Vacca et al., 1982; 
Ulfhake et al., 1987) or both these substances 
(Pelletier et al., 1981) or TRH (Johansson et 
al., 1980; Ulfhake et aL, 1987). The morpho
logy of these terminals is characterized by the 
presence of a large number of dense core 
vesicles. Hokfelt and his collaborators have 
put forward the hypothesis (Hokfelt et aL, 
1984, 1986) that these dense core vesicles 
store serotonin together with substance P and 
TRH whereas the clear vesicles contain sero
tonin only. In addition, it has recently been 
shown in rat caudal trigeminal nucleus (Zhu et 
al., 1986) that the content of dense core 
vesicles may be released by exocytosis at non
synaptic sites of the terminal membrane. If this 
would also apply to the dense core vesicles in 
the terminals in the ventral horn, the different 
putative transmitters, contained in the dense 
core vesicles, might exert their effect on mota
neurons beyond those which are reached 
through regular synaptic release. This hypo
thesis is further strengthened by the finding, 
obtained after serial sectioning of G-type ter
minals (Ulfhake et al., 1987), that some of the 
G-type terminals lack synaptic specializa
tions. Fig. 2a shows an electron-micrograph 
of a radioactively labelled terminal profile, 
containing several dense core vesicles, after 
3H-leucine injections in the raphe pallidus and 
obscurus (Fig.2b). The events which may take 
place at such a terminal are shown in Fig. 2c. 

The experiments described in Ch. II 
showed that, apart from the G-type terminals, 
F- and S-type terminals were also labelled 
from the caudal raphe nuclei and, more promi
nantly, from the ventro-lateral part of the 
medial reticular formation. These terminals 
may represent the non-serotonergic brainstem 
projection to the spinal motoneurons. Indeed it 
was shown very recently, by combining 
WGA-HRP anterograde tracing with GABA 
immuno-cytochemistry at the ultrastructural 
level, that some of the F-types, derived from 
the ventro-medial part of the lower brainstem, 
contained GABA (Holstege, J.C., 1989). It 
was also shown in this study that some of the 
(presumed serotonergic) G-type terminals 
derived from the lower brainstem, contained 
GABA. This finding is in agreement with 
studies which showed coexistence of seroto
nin and GABA in neurons of the caudal raphe 
nuclei and the adjoining reticular formation, 
which project to the spinal cord (Milhorn et 
al., 1987). The transmitter contained within 
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the S-type terminals is still unknown. Based 
on the morphology of these terminals (i.e. 
their content of spherical vesicles and their 
asymmetric synaptic junctions), it may be 
speculated that they contain an excitatory 
transmitter. There is evidence for the existence 
of a cholinergic pathway from the lower 
brainstem to the spinal cord (Bowker et al., 
1983; Jones et al., 1986). Since acetyl-choline 
is generally considered an excitatory trans
mitter, the S-type terminals derived from the 
lower brainstem may contain acetyl-choline. 

III.2.D. FUNCTIONAL 
IMPLICATIONS 

The functional effects of the descending sero
tonergic projections to motoneurons have been 
investigated using various experimental de
signs (see e.g. Jacobs, 1976; Barbeau and 
Bedard, 1981; Hansen et al., 1983). These 
studies generally showed that serotonergic 
pathways had a facilitatory effect on mota
neurons and further indicated that substance P 
and TRH also had a facilitatory effect, possi
bly by modulating the effect of serotonin on 
the motoneuronal membrane (Tremblay et al., 
1986) and, in case of substance P, also by 
auto feedback on the terminal (Mitchell and 
Fleetwood-Walker, 1981) (fig. 2c). Studies 
using iontophoretic application of various 
putative transmitter substances on motoneu-

rons in vivo, also showed that serotonin, 
substance P and TRH enhanced the excitability 
of motoneurons, either for glutamate and 
aspartate (White and Neuman, 1980; White 
and Neuman, 1983; White, 1985) or for in
puts from red nucleus and cortex (McCall and 
Aghajanian, 1979). The same studies showed 
that similar facilitatory effects were obtained 
after iontophoretic application of noradrenalin. 
Thus the coeruleo- and raphe-spinal pathways 
appear to mediate an overall facilitation of 
motoneurons. This was conf"mned by physio
logical studies using electrical stimulation in 
the locus coeruleus and subcoeruleus (Fung 
and Barnes, 1981; Chan et al., 1986) or the 
raphe nuclei (Cardona and Rudomin, 1983; 
Roberts et al., 1988). In addition these facilita
tory effects could be blocked by antagonists of 
noradrenaline or serotonin respectively. The 
various data provide support for the hypothe
sis that the serotonin containing fibers from 
raphe pallidus and obscurus, which project in 
a diffuse manner to the spinal ventral horn, act 
as a gain-setting system (McCall and Aghaja
nian, 1979), enhancing the overall responsive
ness of motoneurons. Neurons in the raphe 
magnus which project to the spinal dorsal horn 
exert an inhibitory influence on pain transmis
sion (Willis, 1982; Basbaum and Fields, 
1984). If these two raphe systems, projecting 
to the ventral and the dorsal horn, would act 
simultaneously, it would lead to an enhanced 
responsiveness of the motor system accom
panied by a decreased experience of pain; a 
state well known from circumstances of fight 
and flight (Kuypers and Huisman, 1982). The 

Fig. 1 Electronmicrograph of an autoradiographically labelled tenninal in the rat LS motoneuronal cell 
groups after a 3H-leucine injection in the area of the nucleus coeruleus and subcoeruleus. Note 
the small, relatively elongated vesicles in the labelled tenninal (E). Unlabelled tenninals show 
spherical (S) or pleiomorphic (F) vesicles. Bar= 0,2 J.llll.; 9.5 months exposure time. 

Fig. 2a Electron micrograph of an autoradiographically labelled terminal in the LS motoneuronal cell 
groups after a 3H~leucine injection in the raphe pallidus and obscurus. Note the large number of 
dense core vesicles. Arrow points at a coated vesicle. Bar= 0,2 J.llll., 4 months exposure time. 

Fig. 2b Schematic representation of the tenninal depicted in fig. Sa 
Fig. 2c Schematic representation (modified after Hokfelt, 1986) of the events which may take place at 

tenninals in the ventral hom with a morphology similar to the tenninal shown in Sa and b. Open 
arrows indicate exocytotic release of S-HT (serotonin) or S-HT, substance P and TRH. Large 
black arrows indicate facilitatory effects of S-HT on motoneuron excitability. Small black arrows 
indicate a similar effect on the motoneural dendrite or auto feedback on the tenninal which is 
either negative (S-HT) or positive (substance P), in the latter case possibly by blocking the S-HT 
autoreceptor. Exocytotic release from dense core vesicles at non-synaptic sites of the tenninal 
membrane is indicated on the right. For details see text. SP= substance P, S-HT= S-hydroxy
tryptamine (serotonin), TRH= thyrotropin releasing honnone. 
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components of the 
limbic system 

ALL SPINAL LEVELS 

Fig. 3 Schematic representation of the projections 
from the locus coeruleus and subcoeruleus (on the 
left) and the caudal raphe nuclei plus the ventral 
part of the adjoining medial reticular formation (on 
the right) to all spinal levels by means of several 
collaterals. The position of the descending fibers in 
the white matter and the area of termination in the 
gray matter are shown by the different shadings. 
Projections from the limbic system to these brain
stem areas are also indicated. M.R.F.= ventral part 
of the medial reticular formation. 

same appears to apply to the spinal projections 
from the locus coeruleus and subcoeruleus, 
since electrical stimulation in this area pro
duced a facilitatory effect on spinal moto
neurons (Fung and Barnes, 1981; Chan et al., 
1986) and an inhibitory effect on pain 
transmission in the dorsal horn (Jones and 
Gebhart, 1986; Mokha et al., 1986). 

The role of the GABA-ergic fibers which 
project from the ventro-medial part of the 
reticular formation to spinal motoneurons is 
less clear. The GABA-ergic projections are 
derived from the same area in the lower 
brainstem as the serotonergic fibers. Since 
many of the spinal projecting neurons in this 
area give off several collaterals in the spinal 
cord, it seems likely that the GABA-ergic 
projections are also highly collateralized. 
Thus, in analogy with the serotonergic projec
tion, the descending GABA-ergic pathways 
probably exert a more general influence on 
motoneurons in the spinal cord and may not be 
involved in the execution of specific motor 
tasks. GABA is known as an inhibitory 
transmitter (Krnjevic and Schwarts, 1966). It 
is therefore to be expected the GABA-ergic 
projection will counteract the facilitatory role 
of serotonin. The balance between the activity 
in the GABA-ergic and the serotonergic fibers 
may set the level of excitability of the 
motoneurons. Physiological studies (Houns
gaard et al., 1988; Crone et al, 1988) have 
shown that spinal motoneurons display a 
bistable behaviour, i.e. the motoneurons can 
be "switched" to a more excitable level. This 
phenomenon disappeared after spinal transec
tion, but reappeared following intravenous in
jection of the serotonin precursor 5-hydroxy
tryptophan, suggesting the involvement of 
descending serotonergic projections. It was 
also found that short inhibitory impulses could 
reset the excitability of the motoneurons to its 
"normal" level. This effect may be achieved by 
the descending GABA-ergic projections. The 
fact that GABA is located in presumed sero
tonergic terminals in the motoneuronal cell 
groups may further indicate the intimate rela
tion between GABA and serotonin in this 
system. During sleep (see e.g. Morrison, 
1983) and "relaxed states" of waking it seems 
likely that the balance between the serotonergic 
and the GABA-ergic fibers is shifted to the 
GABA-ergic side with less activity of the sero
tonergic fibers. Indeed recordings from sero
tonergic neurons in the lower brainstem of 
unrestrained animals (for a review, see 
Jacobs, 1986) have shown that these neurons 
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are silent during active sleep (a sleep phase 
during which there exists a complete muscle 
atonia). When the animal passes through the 
various states of sleep towards quiet and active 
waking, the serotonergic neurons become 
more active. 

Taken together, it seems likely that the 
GABA-ergic and the serotonergic fibers from 
the lower brainstem, which bypass the 
interneurons, directly control the excitability of 
the spinal motoneurons. This system may 
provide an important mechanism by which the 
brain can adjust motor behaviour according to 
the state of arousal of the organism. In view of 
the above it is of interest to note that the 
brainstem areas in question receive an impor
tant projection from several limbic structures. 
Thus the locus coeruleus and subcoeruleus 
receive afferents from the medial and lateral 
hypothalamus (Hosoya and Matsushita, 1981; 
Holstege, G., 1987), the bed nucleus of the 
stria terminalis (Holstege, G. et al., 1985) and 
the amygdala (Hopkins and Holstege, G., 
1978). It should be noted that -in contrast to 
its surrounding structures like the nucleus sub
coeruleus and the parabrachial nuclei- the 
locus coeruleus proper seems to receive only a 
minor projection from limbic areas, while its 
main input is derived from the ventral part of 
the reticular formation in the lower brainstem 
and the nucleus prepositus hypoglossi (Aston
Jones et al., 1986). The caudal raphe nuclei 
and adjacent reticular formation receive a 
strong input from the medial hypothalamus 
and the peri-aquaductal grey (Basbaum and 
Fields, 1984; Hosoya, 1985; Holstege, G., 
1987). By way of the various connections 
mentioned above (fig. 6), the limbic system 
could have access to all regions of the spinal 
cord (Kuypers and Huisman, 1982). This 
would imply that the emotional brain exerts a 
powerful control over both sensory input and 
motor output. 

Ill.2.E. CONCLUSIONS 

1. The existence of direct projections to spinal 
motoneurons and interneurons from the raphe 
pallidus and obscurus, the adjoining ventral 
medial reticular formation and the locus coeru
leus and subcoeruleus is now well substan
tiated by various anatomical techniques. 
2. The spinal projections from the raphe 
nuclei and the adjoining medial reticular for
mation contain serotonergic and GABA-ergic 
fibers. They also contain various peptides 
several of which are contained within the sero
tonergic fibers. Whether still other transmitter 
substances (e.g. acetylcholine or glycine) are 
present in the various descending brainstem 
projections to motoneurons remains to be 
determined. 
3. The spinal projections from the locus 
coeruleus and subcoeruleus are mainly 
noradrenergic, but there also exists a non
noradrenergic spinal projection. 
4. Pharmacological, physiological and beha
vioural studies indicate an overall facilitatory 
action of noradrenaline and serotonin (inclu
ding several peptides) on motoneurons. This 
may lead to an enhanced susceptibility for 
excitatory inputs from other sources. 
5. The action of GABA is generally con
sidered as inhibitory. Therefore the balance 
between the facilitatory action of serotonin and 
the inhibitory action of GABA, may determine 
the responsiveness of the motoneurons in the 
spinal cord. 
6. The brainstem areas in question receive an 
important projection from several components 
of the limbic system. This suggests that the 
emotional brain can exert a powerful influence 
on all regions of the spinal cord and may thus 
control both its sensory input and motor 
output. 
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SUMMARY 

This thesis deals with an ultrastructural study 
in rat on the descending projections from the 
ventro-lateral medullary medial reticular for
mation, the medullary raphe nuclei and the 
area of the nucleus coeruleus and subcoe
ruleus to the motoneuronal cell groups in the 
lumbar spinal cord. Since these projections 
te~inate not only in the intermediate zone, 
bu~ also directly on motoneurons, they consti
tute a special subgroup of the descending 
pathways to the spinal cord (reviewed briefly 
inCh I.5). 

Three techniques were used in this study: 
1. The anterograde transport of 3H-leucine, 
visualized by means of electron microscopy 
(EM) autoradiography; 2. the anterograde 
transport of wheat germ agglutinin coupled to 
horseradish peroxidase (WGA-HRP), visu
alized by means of tetramethyl benzidine 
(TMB) histochemistry; and 3. the anterograde 
transport of 3H-leucine combined in the same 
animal with the retrograde transport of HRP. 
Details on axonal transport and the various 
techniques used for tracing connections in the 
brain are given inCh I.l, 1.2, and 1.3. 

The actual studies on the descending 
brainstem projections to spinal motoneurons 
are described in Ch. 2. The following results 
were obtained: 

1. After 3H-leucine injections in the ventro
lateral medullary medial reticular formation, 
the medullary raphe nuclei and the area of the 
nucleus coeruleus and subcoeruleus, nu
merous silvergrains were observed in the EM 
autoradiographs. On these silvergrains two 
types of analysis were performed: A. the circle 
method, a statistical approach in which the 
probability that a specific type of tissue com
partment (terminals, axons, dendrites, etc.) 
contains radioactivity is determined; and B. 
the cluster method, which is based on the 
assumption that those profiles, which carry a 
cluster of 6 or more silvergrains, are radioac
tively labelled by the transported 3H-leucine. 
In all cases both types of analysis revealed that 
the majority of the radioactivity was located in 
terminals. In the analysis of the labelled termi
nals, five different types of terminals were 
distinguished: S-type terminals (containing 

mainly spherical vesicles), F-type terminals 
(containing many flattened vesicles), G-type 
terminals (containing granular vesicles), C
type terminals (with a subsynaptic cistern), P
type terminals (presynaptic to other terminals). 
A detailed description of the different types of 
terminals is given in Ch. 1.4. A sixth type, the 
E-type (containing very small and some 
elongated vesicles), emerged from this study 
and had not been described before in the 
motoneuronal cell groups. 

After injections in the ventrolateral 
medullary medial reticular formation both 
types of analysis showed that F-type terminals 
were most frequently labelled (±60% ), 
whereas much fewer S-and G-type terminals 
were labelled (both ±20% ). Approximately 
2% of the labelling was found in C-type 
terminals. After 3H-leucine injections in the 
medullary raphe nuclei the same types of 
terminals (except for the C-type terminal) were 
labelled. However, with the cluster analysis, 
G-type terminals were more frequently la
belled (60%) than F-type terminals (33%), 
whereas with the circle analysis they were 
labelled equally frequent (both 37%). S-type 
terminals were especially labelled in the circle 
analysis (17%) and much less in the cluster 
analysis (5%). These differences between the 
circle and the cluster method may be attributed 
to the fact that the cluster method can only 
detect heavily labelled terminals, possibly 
originating from the center of the injection 
site, whereas the circle method may also detect 
terminals with less labelling, possibly origi
nating from the periphery of the injection site. 
Thus the G-type terminals may originate 
mainly from the medullary raphe nuclei, 
whereas the F- and S-type terminals may 
originate mainly from the ventral part of the 
medial reticular formation. 

After 3H-leucine injections in the area of 
the nucleus coeruleus and subcoeruleus the 
labelling was especially located in E-type 
terminals and (in the cluster analysis to a much 
lesser extent) in S-type terminals. F-type 
terminals were also labelled, but only in the 
circle analysis, possibly indicating that these 
terminals originate from the periphery of the 
injection site. 
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After all injections approximately 40% to 
50% of the labelled S- and F-type terminal 
profiles established synaptic contacts, but only 
approximately 10% of the labelled E- and G
types did so. In all cases these synaptic con
tacts were established mainly with proximal 
dendrites (±75%) and much less with distal 
dendrites (±20%) and cell somata (±5%). 

2. After injections of WGA-HRP in the 
ventro-lateral part of the medullary medial 
reticular formation, the labelling (the TMB 
reaction products) was located mainly inter
minals (66%) and to a lesser extent in axons 
(10%) and dendrites (10%). The same types 
of terminals (i.e. F-, G-, S-and C-type termi
nals) were labelled and with approximately the 
same frequency as found after 3H-leucine 
injections in the same area of the lower brain
stem. This was also true for the percentages of 
the various labelled types of terminals, which 
exhibited a synaptic contact and their post
synaptic structures. It is concluded that the 
horseradish peroxidase tracing technique em
ployed in the present study can be reliably 
used for anterograde tracing at the ultrastruc
tural leveL Its efficiency, advantages and dis
advantages in comparison with the electron 
microscopical autoradiographic technique are 
discussed in Ch. 11.2. and ill. I. 

3. In two rats 3H-leucine injections in the 
ventro-lateral medial reticular formation were 
combined with HRP injections in the ipsi
lateral hindleg muscles, resulting in retrograde 
labelling of the corresponding motoneurons as 
visualized by the TMB reaction products. On
ly the cluster-labelled terminals were studied. 
It was found that more than 50% of the 
postsynaptic structures which were contacted 
by cluster-labelled terminal profiles contained 
TMB reaction products. Since not all mota
neurons, nor all parts of a motoneuron can be 
expected to contain reaction products, it was 

concluded that the large majority of the termi
nals originating from neurons in the medial 
reticular formation actually contacted mota
neurons. 

In Ch 11.1 and especially in Ch. III.2 the 
findings are discussed with a focus on the 
transmitters which may be present in the dif
ferent types of terminals originating from the 
lower brainstem. It is argued that at least two, 
but probably three different sets of neurons, 
located in the medullary raphe nuclei and the 
adjoining ventro-medial part of the medial 
reticular formation, project to motoneurons in 
the lumbar spinal cord. The three different sets 
of neurons are provided with different types 
of terminals and may contain different trans
mitters: the G-type terminals probably are 
serotonergic, the F-type terminals (but pro
bably not all of them) may contain GABA, 
whereas the transmitter, present in the S-type 
terminal is still unclear. Similarly the de
scending projections from the area of the locus 
coeruleus and subcoeruleus may originate 
from two different sets of neurons, provided 
withE- and S-type terminals respectively. One· 
of these types, possibly the E-type, may con
tain noradrenalin as a transmitter. 

With respect to the functional meaning of 
the brainstem projections to spinal mota
neurons, it is proposed that serotonin and nor
adrenalin exert a facilatory influence on spinal 
motoneurons, by increasing their susceptibili
ty for other excitatory inputs. These effects 
may in tum be counteracted by the presumed 
GABA-ergic projection from the lower brain
stem. Parts of the limbic system directly in
fuence the neurons in the brainstem, which 
give rise to the descending projections to 
motoneurons. Therefore it seems likely that 
the control exerted by the limbic system on 
motor behaviour is, at least partly, mediated 
by these brainstem neurons. 
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Dit proefschrift beschrijft een electronen 
microscopisch (EM) onderzoek van de afda
lende banen vanuit de hersenstam naar de 
motoneuronale cel-groepen in het lumbale 
ruggemerg van de rat Deze verbindingen ont
springen aan neuronen in het ventro-laterale 
deel van de mediale reticulaire formatie, de 
raphe kemen en de nucleus coeruleus en sub
coeruleus. Aangezien deze projecties niet ai
leen in de intermediaire zone van het rugge
merg eindigen maar ook direct op motoneu
ronen, vormen zij een speciale subgroep van 
de afdalende banen naar het ruggemerg (voor 
een kort overzicht zie Hfdst. I.5). 

In deze studie werden 3 technieken gebruikt: 
1) het anterograde transport van 3R-leucine, 
dat werd aangetoond m.b.v. EM autoradio
grafie, 2) het anterograde transport van 
mierikswortel enzym (horseradish peroxidase) 
gekoppeld aan wheat-germ agglutinin (WGA
RRP), aangetoond d.m.v. incubatie met 
tetramethyl benzidine en 3) het anterograde 
transport van 3R-leucine gecombineerd met het 
retrograde transport van HRP. Details aan
gaande het axonaal transport en de verschil
lende technieken die worden gebruikt voor het 
aantonen van verbindingen in de hersenen 
werden beschreven in Hfdst.I.l., I.2. en I.3. 

Ret onderzoek van de afdalende banen naar 
motoneuronen in het ruggemerg wordt be
schreven in Rfdst. II. De volgende resultaten 
werden verkregen. 

1) Na 3R-leucine injecties in het ventro
laterale deel van de mediale reticulaire formatie 
in de lage hersenstam, in de raphe kemen al
daar en in het gebied van de locus coeruleus 
en subcoeruleus, werden vele zilverkorrels 
(grains) gezien in de EM autoradiografische 
coupes. Deze grains werden op 2 manieren ge
analyseerd: a) met de cirkel methode, waarbij 
via een statistische benadering wordt bepaald 
hoe groot de waarschijnlijkheid is dat een 
bepaalde weefselstructuur (eindigingen, den
drieten, axonen etc.) radioactiviteit bevatten; 
en b) met de "cluster" methode, waarbij ervan 
uit wordt gegaan dat de structuren, waarboven 
een groep van 6 of meer grains is gelegen, 
radioactief gelabeld zijn door het getranspor
teerde 3R-leucine. In aile gevallen en bij beide 
manieren van analyse, bleek dat het grootste 

deel van de radioactieve labelling zich in eindi
gingen bevond. Bij de verdere analyse van de 
gelabelde eindigingen werden vijf verschillen
de typen onderscheiden: S-type eindigingen 
(met voomamelijk ronde blaasjes), F-type ein
digingen (met voomamelijk platte blaasjes), 
G-type eindigingen (met granulaire blaasjes), 
C-type eindigingen (met een subsynaptische 
cisterne), en P-type eindigingen (presynap
tisch voor andere eindigingen). Een gedetail
leerde beschrijving van de verschillende typen 
eindigingen wordt gegeven in Hfdst. I.4. Een 
6e type eindiging, het E-type (met veelal erg 
kleine en verschillende langwerpige blaasjes, 
kwam naar voren in de loop van dit onder
zoek en was nog niet eerder beschreven in de 
motoneuronale celgroepen. 

Na injecties in het ventro-laterale deel 
van de mediale reticulaire formatie in de 
hersenstam bleek dat, bij beide manieren van 
analyse, de F-type eindigingen het meest ge
labeld waren (±60%), terwijl veel minder S
en G-type eindigingen waren gelabeld (beide 
±20% ). Ongeveer 2% van de labelling bevond 
zich in C-type eindigingen. Na 3R-leucine 
injecties in de raphe kemen werden dezelfde 
typen eindigingen gelabeld (met uitzondering 
van het C-type). Echter bij de cluster analyse 
was het G-type vaker gelabeld (60%) dan het 
F-type (33%), terwijl met de cirkel analyse 
beide typen even vaak gelabeld waren (beide 
37%). S-type eindigingen waren met name 
gelabeld bij de cirkel analyse (17%) en veel 
minder bij de cluster analyse. Deze verschillen 
tussen de cirkel en cluster methode zijn moge
lijkerwijs het gevolg van het feit dat met de 
cluster methode uitsluitend "hard" gelabelde 
structuren worden gevonden, die mogelijk uit 
het centrum van de injectieplaats afkomstig 
zijn. Daarentegen kunnen met de cirkel me
thode ook eindigingen worden gevonden die 
minder hard zijn gelabeld en mogelijk afkom
stig zijn van neuronen in de rand van de injec
tieplaats. Ret is daarom waarschijnlijk dat G
type eindigingen voomamelijk afkomstig zijn 
uit de raphe kemen terwijl de F- en S-type 
eindigingen voornamelijk afkomstig zijn van 
neuronen in het ventrale deel van de mediale 
reticulaire formatie. 

Na 3R-leucine injecties in het gebied van 
de nucleus coeruleus en subcoeruleus bevond 
de labelling zich met name in E-type eindi-
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gingen en (bij de cluster analyse in veel 
mindere mate) inS-type eindigingen. F-type 
eindigingen werden ook gelabeld, maar aileen 
bij de cirkel analyse, hetgeen er mogelijk op 
wijst dat die eindigingen afkomstig zijn van 
neuronen in de rand van de injectieplaats. 

Na aile injecties bleek dat in de geanaly
seerde coupes ongeveer 40-50% van de gela
belde S-en F-type eindigingen een synaptisch 
contact maak:ten, en slechts ongeveer 10% van 
de gelabelde E- en F-typen. In aile gevallen 
werd voomamelijk synaptisch contact gemaakt 
met proximale dendrieten (± 75%) en in veel 
mindere mate met cellichamen en distale den
drieten (± 20% ). 

2). Na injecties van WGA-HRP in het 
ventro-laterale deel van de mediale reticulaire 
formatie in de lage hersenstam werd de labe
ling (het TMB reactieproduct) voornamelijk 
gevonden in eindigingen en, in mindere mate, 
in axonen (10%) en dendrieten (10%). Zoals 
bij de EM autoradiografische experimenten na 
injectie van 3H-leucine in de mediale reticulaire 
formatie werd de labelling ook nu in F-, G-, 
C- enS-type eindigingen gevonden met gelijk
soortige percentages. Dit gold ook voor de 
percentages van synaptische contacten en hun 
postsynaptische structuren. Er wordt gecon
cludeerd dat voor het aantonen van verbin
dingen in de hersenen op electronen micro
scopisch niveau, zoals gebruikt in dit onder
zoek, de horseradish peroxidase techniek een 
betrouwbare methode is. De efficientie, voor-. 
en nadelen in vergelijking met de EM auto
radiografie techniek worden besproken in 
Hfdst. ll.2. en Ill.l. 

3.) In twee ratten werden 3H-leucine injec
ties in het ventro-mediale deel van de mediale 
reticulaire formatie gecombineerd met HRP 
injecties in de spieren van de achterpoot, 
waardoor de motoneuronen, die deze spieren 
innerveren, werden gelabeld. Alleen de cluster 
gelabelde eindigingen werden bestudeerd 
waarbij werd gevonden dat meer dan 50% van 
de structuren, waarmee de gelabelde eindi
gingen een contact maakten, gelabeld waren 
met HRP reactie producten. Ervan uitgaande 
dat niet alle delen van een gelabeld motoneu-

ron reactie product bevatten en dat niet alle 
motoneuronen werden gelabeld, werd gecon
cludeerd dat het overgrote deel van de eindi
gingen afkomstig van neuronen in de mediale 
reticulaire formatie, contact maakten met moto
neuronen in het lumbale ruggemerg. 

In Hfdst. II.1 en in Hfdst. IIL2 werden de 
resultaten besproken van het onderzoek, met 
name wat betreft de transmitters die mogelijk 
aanwezig zijn in de verschillende typen ein
digingen. Er wordt beargumenteerd dat, afge
zien van de neuronen met C-type eindigingen, 
tenminste 2 maar waarschijnlijk 3 verschil
lende groepen neuronen in de raphe kernen en 
de aangrenzende mediale reticulaire formatie 
naar de motoneuronen in het lumbale rugge
merg projecteren. Deze 3 groepen neuronen en 
hun verschillende typen eidigingen bevatten 
mogelijk verschillende transmitters: het G-type 
is waarschijnlijk serotonerg, het F-type (echter 
niet allemaal) bevat gamma-amino-boterzuur 
(GABA), terwijl het nog onduidelijk is welke 
transmitter in de S-type eindigingen aanwezig 
is. Het is eveneens waarschijnlijk dat de pro
jecties naar lumbale motoneuronen vanuit het 
gebied van de locus coeruleus en subcoeruleus 
afkomstig zijn van 2 verschillende groepen 
ne.uronen gekarak:teriseerd door 2 typen eindi
gingen, het E- en S-type. Een van deze typen 
eindigingen. waarschijnlijk het E-type, bevat 
noradrenaline als transmitter. 

Wat betreft de functionele betekenis van de 
afdalende banen naar motoneuronen in het 
ruggemerg, wordt het volgende beargumen
teerd: serotonine en noradrenaline hebben een 
faciliterende invloed op motoneuronen door 
hun gevoeligheid voor andere exciterende 
prikkels te verhogen. Deze effecten kunnen 
mogelijk op hun beurt worden tegengewerkt 
door de GABA projecties naar motoneuronen. 
De neuronen in de hersenstam, die de verschil
lende afdalende projecties geven naar moto
neuronen staan zelf onder invloed van delen 
van het limbische systeem. Het lijkt daarom 
waarschijnlijk dat de controle van het lim
bische systeem op de motoriek (deels) wordt 
uitgeoefend via deze verschillende groepen 
neuronen in de lage hersenstam. 
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EHBO en de chirurgische afdeling van het MHAM, de Hr. Faltas, Billy Holiday, Freek de 
Jonge, King Crimson, David Liebman & Richard Beirach, Maarten & Colleen, Marja, Anette 
Peacock, Ruud & Carla, Wayne Shorter, Paul Simon, Soft Machine em Mike Stem .. , 

Tot slot: de meeste dank gaat uit naar hen aan wie dit proefschrift is opgedragen. 
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Curriculum Vitae 

De schrijver van dit proefschrift werd op 17 juli 1954 te Warnsveld geboren. Hij bezocht het 
openbaar lyceum in Zutphen en legde in 1972 het eindexamen HBS B met goed gevolg af. In 
datzelfde jaar begon hij de studie geneeskunde aan de Medische Faculteit te Rotterdam, waar hij 
in 1977 het doctoraal examen behaalde. 

Na zijn kennismaking met de neurowetenschappen en de electronen microscopie op de afdeling 
neuroanatomie van de Erasmus Universiteit te Rotterdam onder leiding van Prof.Dr. H.G.J.M. 
Kuypers, volgde een keuze-practicum in de U.S.A. (Albert Einstein College of Medicine, New 
York) en een student-assistentschap onder begeleiding van Dr. J.J. Dekker 

Vanafmaart 1978 tot december 1983 was hij werkzaam als wetenschappelijk medwerker op de 
afdeling op basis van een drie en een half jarige poolplaats. Onder leiding van Prof.Dr. 
H.G.J.M. Kuypers werd een electronen microscopisch onderzoek verricht naar de afdalende 
banen van de hersenstam naar de motoneuronen in het lumbale ruggemerg van de rat. De 
resultaten hiervan zijn beschreven in dit proefschrift. In deze periode werden tevens senior
coschappen gelopen (artsexamen apri11983). Na zijn militaire dienst als assistent chirurg in het 
Militair Hospitaal te Utrecht volgde in juni 1985 na het vertrek van Prof.Dr. H.G.J.M. Kuypers 
een tijdelijke aanstelling op de afdeling Anatomie onder leiding van Prof.Dr. J. Voogd. In 
november 1987 werd een vaste aanstelling verkregen. 
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