
PATTERN RECOGNITION WITH DISCRETE AND MIXED 

DATA: THEORY AND PRACTICE 





PATTERN RECOGNITION WITH DISCRETE 

AND MIXED DATA: THEORY AND PRACTICE 

PROEFSCHRIFT 

1ER VERKRUGING VAN DE GRAAD VAN DOCTOR 

AAN DE ERASMUS UNIVERSITEIT ROT1ERDAM 

OP GEZAG VAN DE RECTOR MAGNIFICUS 

PROF. DR. A. H. G. RINNOOY KAN 

EN VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN. 

DE OPENBARE VERDEDIGING ZAL PLAATSVINDEN OP 

WOENSDAG 7 SEP1EMBER 1988 OM 13.45 UUR 

DOOR 

CARLOS EDUARDO DE AMORIM QUEIROS 
GEBOREN 1E LIS BOA 



PROMOTIECOMJviiSSIE 

PROMOTOR: PROF. DR. E. S. GELSEMA 

PROMOTOR: PROF. DR. IR. J. H. VAN BEMMEL 

OVERIGE LEDEN: PROF. DR. J. D. F. HABBEMA 

DR. R. P. W. DUIN 



to my parents 

to Isabel, Joana and Teresa 





CONTENTS 

1. Introduction. 

1.1. Medical data and pattern recognition. 
1.2. Contents and organization of this study. 
1.3. Software developments. 
1.4. Basic notations. 

2. Upper bounds. 

2.1. Introduction. 
2.2. The expected non-optimal error component. 
2.3. The bounds. 
2.4. Discussion. 

3. Feature selection. 

3 .1. Introduction. 
3.2. Estimation of classifiers. 
3.3. Specific feature spaces. 

3.3.1. The feature spaces. 
3.3.2. The selection criterion. 

3.3.2.1. Error estimation. 
3.3.2.2. Leave-one-out. 
3.3.2.3. Other ratios for partitioning. 
3.3.2.4. Breaking ties. Insensitivity of the error. 
3.3.2.5. Remark. 

3.3.3. Results. 
3.3.3.1. Search strategy. 
3.3.3.2. Error estimates. 

3.4. Families of feature spaces. 
3.4.1. First family of feature spaces. 
3.4.2. Second family of feature spaces. 
3.4.3. Results. 

3.5. Search space. 
3.6. Concluding remarks. 

4. Incomplete data sets. 

4.1. Introduction. 
4.2. Classification of an object with missing values. 
4.3. Design of a classifier using an incomplete data set. 

1 
3 
5 
5 

7 
8 
10 
15 

17 
20 
21 
22 
29 
30 
30 
31 
32 
33 
33 
33 
37 
45 
47 
53 
57 
57 
58 

61 
62 
63 



4.4. Estimation of missing values. 
4.4.1. Continuous feature spaces. 
4.4.2. Discrete feature spaces. 

4.5. Experiments. 
4.5.1. Setup. 
4.5.2. Continuous features. 
4.5.3. Discrete features. 

4.6. Concluding remarks. 

5. Review of techniques. 

5.1. Introduction. 
5.2. Classifiers. 

5.2.1. Basic models. 
5.2.2. Loglinear models. 
5.2.3. Logistic model. 
5.2.4. Probit model. 
5.2.5. Location model. 
5.2.6. Other models. 
5.2.7. Sampling experiments. 
5.2.8. Remark. 

5.3. Feature selection techniques. 
5.3.1. Algorithms used. 

5.3.1.1. The search strategies. 
5.3.1.2. The selection criteria and the corresponding 

stopping criteria. 
5.3.1.3. The algorithms. 

5.3.2. Other approaches. 
5.3.3. Remarks. 

5.4. Mapping techniques. 
5.4.1. Correspondence analysis. 
5.4.2. Remarks. 

5.5. Error estimation. 
5.6. Final remarks. 

6. Applications to two medical data sets. 

65 
65 
66 
69 
69 
71 
75 
78 

81 
81 
82 
83 
86 
88 
90 
92 
95 
98 
99 
100 
100 

100 
104 
105 
109 
110 
110 
115 
115 
116 

6.1. Introduction. 117 
6.2. Head injury. 118 

6.2.1. Material. 118 
6.2.2. Previous and present analysis. 119 
6.2.3. Training and test sets. Missing values. A-priori probabilities. 120 
6.2.4. Mappings. 121 
6.2.5. A single level classifier. 129 
6.2.6. A two level decision tree. 135 
6.2. 7. Discussion. 140 

6.3. Acute chest pain. 141 



6.3.1. MateriaL 
6.3.2. Present analysis. 
6.3.3. Initial preparation. 
6.3.4. Feature selection. 
6.3.5. Classifiers and error evaluation. 
6.3.6. NON versus CARD (MIN and MIP and AP). 
6.3.7. MIN versus MIP versus AP. 
6.3.8. Mappings. 
6.3.9. Discussion. 

6.4 The problem of the stopping criteria. 
6.5. Concluding remarks. 

7. Final remarks. 

Appendix A. 

Appendix B. 

Appendix c. 
Appendix D. 

Appendix E. 

Appendix F. 

References. 

Summary. 

Acknowledgement. 

141 
143 
144 
150 
152 
152 
157 
169 
175 
176 
177 

179 

181 

185 

187 

191 

193 

197 

201 

209 

211 





CHAPTER 1 

INTRODUCTION 

This thesis is devoted to aspects related to the analysis of medical data bases in the 
context of pattern recognition. It contains both theoretical aspects and practical 
applications and its scope includes questions and problems that arise when 
applying pattern recognition methods and techniques to this type of data. 

As an introduction to this thesis, this chapter contains a general discussion and a 
presentation of the contents and organization of the thesis. Also, the main points of 
notation and terminology are introduced and defined. 

1.1. Medical data and pattern recognition. 

The goal of the application of statistical pattern recognition techniques to medical 
records, is the classification of the (disease) patterns that may be present in such 
records in terms of the information they contain. Typically, a medical record 
contains a description of history, symptoms, results from laboratory tests, signals, 
etc., all related to a given patient, i.e. all the information normally required by a 
physician when making a diagnosis and/or a prognosis. Pattern recognition may 
be used in order to obtain procedures (computer implemented algorithms) to assign 
diagnostic or prognostic classes to a given patient, on the basis of information also 
used by a physician. These procedures are not intended to replace but to assist the 
physician in the decision making process. The procedures are called classifiers or 
discriminants and the symptoms, signals, etc., are called features. Each individual 
record is termed an object, and a collection of objects with qualitatively and/or 
quantitatively similar characteristics, as established by an expert, is called a class. 
It should be clear that pattern recognition can be applied to a wide variety of areas 
and problems, of which (computer-aided) medical decision making is just an 
example. 

In order to arrive at a classifier and restricting ourselves to what is called 
supervised learning, a set of objects known a-priori to belong to two or more 
classes (depending on the problem at hand) is needed. In this set, each object must 
be represented by a group of features and have a class assigned to it. The role of 
medical data bases is now clear: they are the set of objects required for supervised 
learning. 
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Since an object is described by features, we first of all concentrate on the typical 
nature of some of the features that may be found in medical data bases. 

An example of a symptom is the presence or absence of pain at some anatomical 
location. In order to describe this symptom, a variable that can only assume two 
values (categories) should be used. Since the symptom cannot be measured 
quantitatively because it is essentially of a qualitative nature, the way in which the 
two categories are coded is immaterial, provided that they are different. Variables 
that take their values or categories from a domain which is discontinuous and 
which does not include any continuous sub-domain, are called discrete variables. 
Discrete features have often to be considered when coping with medical data. In 
this particular example, and since only two values are possible, we speak of a 
binary discrete feature. 

A further example of a symptom is the following: is the pain located in the chest, 
the left shoulder or the right shoulder ? This is similar to the previous case with the 
exception that there are three possible values (categories) that the symptom may 
assume. 

Another example of a symptom is the following: is the pain mild, moderate or 
strong? Again there is something qualitative that requires a discrete variable (three 
categories) in order to describe it. Nevertheless, there is an intrinsic difference 
between this example and the previous ones. In this symptom, an order relation 
exists between its categories (mild is less than moderate which in turn is less than 
strong) whereas in the other examples, there is no such relation. In order to 
distinguish between these two cases, discrete variables are either ordered discrete 
variables or non ordered discrete variables. 

Laboratory tests generally yield results that assume values in a domain with a large 
(infinite) number of elements. Therefore, continuous variables are particularly 
suited to describe them. 

There are also features (e.g. the age of the patient in years) that can only assume a 
finite number of different values, but that are nevertheless better described by 
continuous variables. This approach can be justified as follows. Firstly, they are 
quantitative measures. Secondly, their discrete nature stems from rounding off 
values in an inflnite domain. Finally, the number of different values they can 
assume is relatively large, implying that errors due to their treatment as continuous 
variables, will not be significant. 

This brief analysis of the various types of features, which may be found in medical 
data bases, indicates that mixed data types (discrete and continuous) will have to 
be dealt with. We may think of three approaches to cope with such data: 

i) The use of methods that can handle mixed data sets. 
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ii) The discretization of continuous features according to some criterion 
followed by the use of techniques suitable for discrete data only. 

iii) The assignment of quantitative values, according to some criterion, to 
discrete categories and the subsequent use of techniques suitable for 
continuous data. 

Intuitively, the first approach appears to be the most logical one. Models can be 
found in the literature that handle mixed data. However, these models may be 
(computationally) fairly complex to apply and may require a large number of 
parameters to estimate. As for the second approach, there are models and 
techniques which are very appealing. Furthermore, the framework of discrete 
feature spaces (i.e. spaces where all features are assumed to be discrete) presents 
the researcher with a fruitful ground to develop and test general procedures that 
can also be applied in other spaces. Nevertheless, the required discretization of 
continuous features, necessarily brings a certain loss of information. Finally, the 
third approach has an important drawback: even if some values can be found 
which quantify categories of a feature such as 'yes' or 'no', it is nevertheless fully 
incorrect to subsequently treat them as continuous variables. 

A major problem that arises in medical data bases, is the unfortunate occurrence of 
missing values. It is usual to find records that are incomplete, i.e. records where 
not all the information required has been collected. Such missing values present 
problems at two levels: at the level of analysis of the medical data base and at the 
level of the application, i.e. at the level of applying classifiers in computer-aided 
medical decision making. 

A literature search which covered some of the most representative journals, 
conference proceedings, textbooks, etc., showed that the problems just 
mentioned, have not been sufficiently studied and analyzed by what can be called, 
'the pattern recognition community'. On the other hand, a substantially large 
amount of papers and textbooks can be found in the more traditional statistical 
literature, although not always directly related to the specific problems associated 
with pattern recognition and discrimination. 

This thesis attempts to look into some of the problems of applying pattern 
recognition techniques to the analysis of medical data bases. 

1.2. Contents and organization of this study. 

Since this thesis concentrates on problems arising when applying pattern 
recognition techniques to medical data bases, two concepts form a central theme: 

1 - The occurrence of discrete features, either in isolation (discrete feature 
spaces) or in combination with continuous features (mixed features spaces). 
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2 - The occurrence of missing values. 

Both concepts present problems. Classical pattern recognition techniques have 
been developed and theoretically analyzed, mainly for continuous feature spaces. 
This applies not only to classification techniques, but also to techniques for feature 
selection and error estimation. Also, in the classical pattern recognition literature, 
the concept of missing values is only superficially treated. 

Therefore, in this thesis it is attempted to treat these two aspects in pattern 
recognition in a systematic way. In doing so, it soon became clear that it was 
desirable to develop the treatment of both areas further than was available in the 
literature. This gave rise to the subjects presented in the following chapters: 

Chapter 2: theoretical work leading to a new error bound. It is valid for a 
certain type of classifier. Since the bound is an expected value with respect 
to all possible training sets of a given size, it takes into account sample 
fluctuations. 

Chapter 3: the development of new methods for feature selection. 
Specifically, these new methods are built around the concept of structure 
selection as opposed to the concept of feature selection. A simulation study, 
presenting results in a well controlled environment, is also included. Finally, 
a theoretical exercise is presented which shows a situation where an incorrect 
but simpler model for the conditional probability of an object given its class, 
yields a classifier which is better than a classifier based on a correct model. 

Chapter 4: an analysis of the problems associated with the occurrence of 
missing values. Also the presentation of new approaches to estimate missing 
values and a simulation study of the design and use of a classifier in the case 
of incomplete data. Both discrete and continuous data are considered. 

Chapter 5: an overview and discussion of existing techniques for discrete 
and/or mixed feature spaces as a background for the study of two medical 
data sets. 

Chapter 6: the analysis of two different medical data bases, where some of 
the techniques described or proposed, were applied. The two medical data 
sets that were analyzed were on acute chest pain and severely head injured 
patients. 

Briefly, it can be said that, given a major general problem (in our case, the 
application of pattern recognition techniques to medical data bases), specific 
problems were identified and solutions were devised and/or proposed. 

The main conclusions, discussion and identification of new problems are 
presented in chapter 7. The somewhat unusual decision to put a review chapter 
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(chapter 5) next to the end of the thesis, is justified by the fact that chapter 5 was 
mainly intended as a background for two studies presented in the following 
chapter. In chapter 5, methods which were not used in the analysis presented in 
chapter 6 were nevertheless also reviewed, for the sake of completeness, and in 
order to make this thesis as much as possible self-contained. 

1.3. Software developments. 

Closely associated with this thesis and, in a way, work which is also to be 
considered part of it, is the extension of the interactive package for pattern 
recognition ISPAHAN (see GELS80) with a versatile set of procedures for 
discrete and mixed data and for incomplete data sets. For this development, some 
existing methods were implemented with or without modifications thought to be 
relevant. Also, a set of new methods was developed and implemented. A brief 
description of this work is given in appendix F. 

The integration of the various algorithms into ISPAHAN, proved its value in the 
analysis of two medical data sets, reported in chapter 6. 

1.4. Basic notations. 

In this section, the main points of notation are defined. An arbitrary object~' 
characterized by p features, will be denoted by a p-dimensional vector 
~ = (x1,x2, ... ,xp)T in which the superscript T indicates the transpose. Also, the 
notation ~l,2, ... ,p will be used to denote an arbitrary object. A realization of a 
discrete feature will be denoted by Xij where ij is the category assumed by the j-th 
discrete feature. The number of categories that the j-th discrete feature can assume, 
will be denoted by Ij. 

Classes will be denoted either by a discrete variable wi, or by an uppercase 
character (e.g. A, B, etc.). Whenever the class membership of an object is known, 
the object will be indicated by the symbol~ with a superscript indicating the class 
(e.g. ~A). 

The probability of object ~' given class wi, is written as Prob~lwi) or P(~lwi)
The joint probability functions of object and class are written as Prob(~,wi) or 
P(~,wi). A-priori class probabilities are written as Prob(wi) or P(wi)· Since a 
Bayes framework is generally assumed throughout this thesis, discriminant 
functions become comparisons between a-posteriori probabilities of a class given 
an object (indicated as Prob(wil~) or P(wil~), or comparisons between joint 
probabilities of object and class. 
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Both the symbols Prob and P, relate to true values. Estimated values are written as 
ProbA or PA (e.g. PA(KIA) is the estimated value of the conditional probability of 
object x given class A). 

The number of objects available in a data set will be denoted by the symbol n. The 
symbol ni will indicate the number of objects available from class wi. Considering 
p discrete features, the symbol nil i2 i , will indicate the number of objects 
available that scored simultaneously in .. the irth category of feature 1, the i2-th 
category of feature 2, ... , and the iP.-th category of feature p. Also, and in order to 
simplify the notation, sometimes the elements of a discrete feature space will be 
indicated by a variable j assuming integer values. In these cases, the symbol nj will 
denote the number of objects available in element j of the discrete feature space. 
The symbols ~ •... ,+,ij,+, ... ,+,ik,+, ... ,+ or Ilj,k will be used to denote the number of 
objects available that scored simultaneously in the irth category of feature j and the 
ik-th category of feature k, the remaining features not being considered. With all 
these symbols and whenever the object's class is known, a superscript indicating 
the class will be added to the symbol. 

It may happen that minor deviations from this notation will appear now and then. 
This will be clearly indicated, whenever appropriate. Also, this basic notation will 
be recalled at the proper places, in order to facilitate the understanding of the text. 
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CHAPTER 2 

UPPER BOUNDS 

In this chapter, upper bounds for the expected classification error and for the 
expected non-optimal error component (expectation with respect to the training 
sets), are derived. They are applicable in the general measurement space (see 
HUGH68) in a two class classification problem. The training sets are assumed to 
be randomly sampled from the universe of objects. 

2.1. Introduction. 

Several upper bounds for the classification error have been proposed with the aim 
of providing easily computable expressions for the error. As pointed out by Duin 
(see DUIN77), they generally do not take into account sampling fluctuations and 
therefore are of no use for answering questions such as, 'How many objects are 
needed to guarantee a given accuracy ?' 

In: DUIN7i (see also DUIN78) a different approach is taken. For the case of the 
general measurement space (see HUGH68) it leads to upper bounds on the 
expected value of the classification error and the non-optimal error component 
(defined later on), that are dependent on the sample size (n), the measurement 
complexity 1 (m) and the Bayes error (e1). 

In this chapter, steps are taken in deriving bounds for the expected values of the 
classification and non-optimal error components, that have as parameters n and m 
(upper bound on the non-optimal error component), and n, m and £ 1 (upper bound 
on the classification error). The theory developed here is applicable whenever we 
have: 

1 The measurement complexity, as introduced by Hughes (see HUGH68) for the 
general measurement space, is the number of different elements in that space. 
More generally, it refers to the number of parameters in a classifier that need to be 
estimated. This is consistent with the Hughes's case. It should not be confused 
with the term dimensionality which refers to the number of features. 
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i) a general measurement space with two classes. 

ii) a classifier based on the Bayes rule, and estimated with the help of a 
training set obtained by randomly sampling from the universe of objects. 

iii) a classifier which, in the case of equal estimates, randomly assigns an 
object to a class. 

This chapter is organized as follows. In section 2, notations and some basic 
concepts are introduced and/or recalled. In section 3 the bounds are presented 
together with the proofs. Finally section 4 presents concluding remarks and a 
discussion. All (tedious) proofs are presented in appendices. 

2.2. The expected non-optimal error component. 

Let 2i be a p-dimensional vector representing an observed object pattern. Let w be a 
random variable representing class membership. The joint probability density 
function (p.d.f.) of,li and w will be represented by 

P(K,A) = P(KIA) P(w=A) 

P(.li,B) = P(KIB) P(w=B) 
(2.1) 

where A and Bare the two possible occurrences ofw (discrimination between two 
classes only is considered here). In order to design a classifier, a set of objects is 
randomly selected from the universe of objects. Based on this sample, estimates 
are obtained for P(.li,A) and P(,li,B). Let P"(.li,A) and P"(.li,B) designate the 
estimates. The error of a Bayes classifier that makes use of P"(.li,A) and P"(.li,B) 
lS 

E = f P(K,A) dx + f P(.li,B) dK 

P"(.li,A) ~"(.li,B) P"(.li,A)>P"(.li,B) 
(2.2) 

or 

E= f P(x,A) dK + f P(,]i,B) dx + 
P"(.li,A)<P"(.li,B) P"(.li,A)>P"(.li,B) 

.5 f (P(.li,A) + P(.li,B)) d,li 

P"(x,A)=P"(x,B) 
(2.3) 
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depending on the way decisions are made when P"(E,A) = P"(K,B): always 
choose the same class (expression 2.2), or randomly choose one of the two 
classes (expression 2.3). Only the latter case is considered. Following Duin 
(DUIN78), the error may be expressed in two components: 

(2.4) 

where £1 is the Bayes error and £2 is the classifier non-optimal error component 

(e2 is the component of the error that, in a specific design situation, may be 
reduced with the help of pattern recognition methods and techniques). It is defmed 
as 

£2 = f (P(K,B) - P(K,A)) dx 

P(K,A)::;P(E,B) 

P"(K,A)>P"(K,B) 

+ f (P(K,A) - P(x,B))dx 

P(E,A)>P(K,B) 

P"(E,A)<P"(K,B) 

+ 

.5 ( f (P(E,B) - P(K,A)) dK 

P(K,A)::;P(K,B) 

P"(K,A)=P"(K,B) 

+ f (P(E,A) - P(E,B))dK ) 

P(E,A)>P(E,B) 

P"(E,A)=P"(K,B) 
(2.5) 

In a specific problem, the expected value of e with respect to all training sets is 

(2.6) 

where 

Ex (e2) = f (P(E,B) - P(K,A)) Prob (P"(E,A) > P"(E,B)) dK + 
P(E,A)::;P(E,B) 

I (P(K,A) - P(K,B)) Prob (P"(E,A) < P"(K,B)) dK + 
P(E,A)>P(E,B) 

.5 f (P(K,B) - P(K,A)) Prob (P"(E,A) = P"(E,B)) dK + 
P(E,A)::;P(E,B) 
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.5 I (P(x,A) - P(K,B)) Prob (P"(K,A) = P"(K,B)) dK 

P(K,A)>P(x,B) 
(2.7) 

This is the expected non-optimal error component of a classifier. It is clear that ~::2 
is the only component of the error that depends on the composition of the training 
set. 

In a discrete feature space, each vector K may be uniquely mapped to a scalar j, 
representing each possible occurrence of K and assuming all integer values in the 
interval [1 , m], where m is the measurement complexity (m = I1 * I2 * ... * Ip). 
Expression (2.7) may then be rewritten as 

ml 

Ex (£2) = L, (P(j,B) - P(j,A)) Prob (P"(j,A) > P"(j,B)) + 
j=l 

m 
L, (P(j,A) - P(j,B)) Prob (P"(j,A) < P"(j,B)) + 

j=m1+1 

ml 

.5 L, (P(j,B)- P(j,A)) Prob (P"(j,A) = P"(j,B)) + 
j=l 

m 

.5 L, (P(j,A) - P(j,B)) Prob (P"(j,A) = P"(j,B)) 
j=m1+1 

(2.8) 

where it is assumed that P(j,A) ~ P(j,B), for 1 ~ j ~ ml> and P(j,A) > P(j,B) for 

m1 + 1 ~j ~ m. This assumption brings no loss of generality. 

2.3. The bounds. 

In order to derive the bound on the expected non-optimal error component, a 
procedure is followed that is basically the maximization of equation 2.8 with 
respect to P(j,A) and P(j,B) for allj, under the constraints ~ 
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m m 
2: PG,A) + 2: PG,B) = 1 
j=l j=l 

m1 m 

L PG,A) + L PG,B) = El 
j=l j=m1+l 

(2.9) 

Further on, these constraints are going to be relaxed. 

A method is needed in order to estimate the parameters of the classifier. The 
maximum likelihood technique is selected. This does not necessarily restrict the 
area of application of the bounds to the case of classifiers estimated with this 
technique (e.g. for the case of a Bayesian estimator which assumes the parameters 
of the classifier to be uniformly distributed, the bound still holds). The maximum 
likelihoods estimates of PG,A) and PG,B) are 

(2.10) 

where n') (nBj) is the number of objects from class A (class B) present in the 
training set that represent the j-th possible occurrence of object,&. 

The sampling distribution can be expressed by a multinomial with parameters 

n, P(1,A), ... , P(m,A), P(1,B), ... , P(m,B) 

Using 2.8, 2.10 and 2.11 the expression to maximize can be written as 

ml 
2: (PG,B)- PG,A)) ( 
j=l 

n min(i,n-i) 
2: 2: n! I (i! t! (n-t-i)!) PG,A)i PG,B)t (1-PG,A)-PG,B))n-i-t -
i=O t=O 

f(n) 
.5 2: n! I (i! i! (n-2i)!) PG,A)i PG,B)i (1-PG,A)-PG,B))n-2i 

i=O 

m 
+ 2: (PG,A)- PG,B)) ( 

j=m1+l 

- 11-
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n min(i,n-i) 
L.. L.. n! I (i! t! (n-t-i)!) PG,B)i PG,A)t (1-PG,B)-PG,A))n-i-t -

i=O t=O 

f(n) 
.5 I, n! I (i! i! (n-2i)!) PG,B)i PG,A)i (1-PG,B)-PG,A))n-2i ) 

i=O 
(2.12) 

where 

f(n) = nl2 ifn is even 

f(n) = ((n + 1) 12)- 1 ifn is odd 
(2.13) 

Unfortunately, the direct maximization of 2.12 under the constraints 2.9, is a 
complex problem. This arises from the fact that 2.12 as a function of PG,A) 
(PG,B)) is not a 'well behaved' function, i.e. the second derivative with respect to 
PG,A) (PG,B)) can be positive in the domain of PG,A) (PG,B)). In order to be able 
to proceed, a change of variables is required. Let 

kG) = PG,A) + PG,B) for 1 ~j ~m 

qG) = IPG,A) - PG,B)I for 1 ~j ~m 

It is clear that qG) ~kG). The constraints in 2.9 can be rewritten as 

m 
L.. kG)= 1 
j=l 

m 

L.. qG) = 1 - 2 Cl 
j=l 

(2.14) 

(2.15) 

The problems concerning the maximization still remain (equation 2.12 as a 
function of qG) is not 'well behaved'). To overcome this, two new constraints are 
imposed. 

k(l) = 1 
(2.16) 

for every j =F 1 
(2.17) 
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These constraints increase the value of 

m 
K =I, k(j) 

j=l 
(2.18) 

so that it is guaranteed that K is larger than 1 (2.16) and is as close as possible to 1 
(2.17). 

It is now proved that the maximum of 2.12 under constraints 2.16 and 2.17 is 
larger than or equal to the maximum of 2.12 under constraints 2.15. It is shown in 
appendix A that 2.12 is an increasing function of k(j). Therefore it is also an 
increasing function of K. Consequently, a maximum of 2.12 under constraint 2.15 
is also larger than or equal to the maximum under constraints 2.9. Constraint 2.17 
does introduce a relation between the values of q(j) and k(j). However, since 2.16 
guarantees that 1 :=;; K, the maximum of 2.12 under these constraints is necessarily 
larger than or equal to the maximum when the constraints are those expressed in 
2.15. Introducing 2.16 and 2.17 in 2.12, we are left with 

m 
.5 I, q(j) (1-q(j))ll + 

j=2 

n 
q(1) ( I, n! I (i! (n-i)!) (.5 (1-q(1)))i (.5 (1+q(1)))n-i + 

i=f(n)+l 

.5 n! I (f(n)! f(n)!) (.5 (1-q(1)))f(n) (.5 (1+q(1)))f(n) 

for n even, and 

m 
.5 I, q(j) (1-q(j))ll + 

j=2 

n 
q(l) I, n! I (i! (n-i)!) (.5 (1-q(1)))i (.5 (1+q(1)))n-i 

i=f(n)+l 
(2.19) 

for n odd. The values that maximize the terms under the summation over the j's are 

q(j) = 1 I (n + 1) for2:=;;j ::;;m 
(2.20) 
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The proof is straightforward. In what concerns the remaining terms in both 
expressions in 2.19 (the maximization with respect to q(1)), the result is derived in 
appendix B. It is sufficient to say here that a gaussian approximation is used. The 
maximum is 

.17I.Vn 
(2.21) 

The bound is now obtained by replacing 2.20 and 2.21 into 2.19. 

Proposition: ect is an upper bound for the expected non-optimal error 
component. 

(2.22) 

The proof has just been presented. 

Corollary: ec is an upper bound for the expected classification error. 

Ex (e) sec= .5 (m- 1) I (n + 1) (1 - 1 I (n + 1))n +.17 I .Vn + £1 
(2.23) 

The proof is immediate. Both 2.22 and 2.23 hold only for a feature space, 
classifier and training set as defined in the introduction. 

Two limits are of interest. When an infinite number of objects is available and the 
measurement complexity is finite, £c and ed are equal to 

lim £ct=O 
n-7oo 

n-7oo 

(2.24) 

Therefore, when n -7 oo, ed and ec are equal to the quantities they bound. 
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2.4. Discussion. 

The bound just presented (only the bound on the expected non-optimal error 
component is considered in this discussion) has three important advantages. First, 
it is easy to compute. Secondly, none of its parameters (n and m) require an 
estimate. Thirdly, form< n and for a given admissible expected non-optimal error 
component, the number of objects required in the training set compares favorably 
to m (e.g. for a maximum admissible expected non-optimal error component equal 
to .05 and a measurement complexity of 100, the bound indicates that 
approximately 420 objects from both classes should be obtained). 

The first two advantages are self evident. In what concerns the third and in order 
to have an idea about the number of objects required to guarantee a given expected 
non-optimal error component, a graph is presented in flg. 2.1 that depicts the 
evolution of Ed as a function of the number of objects available in the training set (x 
axis), parametrized by the measurement complexity m. Only situations such that 
m < n, are shown. This is the region of interest anyhow. 

There are also negative points. First, its field of application is restricted to 
classification problems which satisfy the conditions enumerated in the 
introduction. Secondly, the use of a gaussian approximation seems to bring with it 
the usual requirement of a large n. Thirdly, the methodology followed, i.e. a worst 
case approach, together with the relaxing of important constraints, raises questions 
over the tightness of the bound in a particular situation. 

The rrrst point is inherent. As for the second, it does not apply here (see appendix 
B). As for the tightness, it depends on the particular situation. · 

Finally, the bounds do provide an answer to the question formulated in the 
introduction. Moreover, the relation obtained between m, n, and Ect (m, n, e1 and 

Ec) is a reasonable one (for m < n). 
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Fig. 2.1: Each curve relates the upper bound on the non-optimal error component 
(y axis) with the number of objects available in the training set (x axis) for a given 
measurement complexity (m), for n greater than or equal to m. 
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CHAPfER3 

FEATURE SELECTION 

In this chapter, the main topic is feature selection. We shall elaborate on the 
importance of search strategies allowing for structure changes, by making use of 
qualitative reasoning as well as by presenting the results of sampling experiments. 
These strategies, popular in regression analysis, have generally not been used by 
the pattern recognition community. The overall topic will allow us to digress into 
other areas (e.g. error estimation), where some points are also discussed. 

3.1. Introduction. 

Several arguments may be given for the need of feature selection when the 
practitioner is faced with the design of a pattern recognition system. The most 
important is the possibility of occurrence of the peaking phenomenon, i.e. the 
existence of an optimal complexity 1 beyond which the performance of the pattern 
recognition system starts to deteriorate. Quoting a nicely formulated sentence by 
Jain and Chandrasekaran (JAIN82) 

'In some sense the errors caused by the non-optimal use of added 
information, outweights the advantages of extra information.' 

In order to avoid peaking, the number of features to be used might have to be 
restricted, in which case the best ones should be kept. Hence, there is a need for a 
feature selection strategy and feature selection algorithms. 

Feature selection algorithms are characterized by a search procedure, a selection 
criterion and a stopping rule. These may be roughly defined as the strategy for 
moving in the domain of all possible combinations of features, the quantity used to 
measure the quality of a given feature set, and the set of rules that, if met, will 
cause the algorithm to stop. 

1 The term complexity, in a general sense, refers to the number of parameters in a 
classifier that need to be estimated. See footnote 1 in chapter 2. 
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Generally, the selection criterion is an (implicit or explicit) function of probability 
functions involving features and/or classes (e.g. error rate for a given classification 
problem). Since these probability functions are generally not known, models have 
to be assumed, a structure selected 2, and parameters estimated. 

Usually a model and a structure are chosen a-priori and maintained throughout the 
selection. For instance, if the gaussian model is assumed together with a structure 
of non-independence, neither the model nor the structure are changed (e.g. to a 
non gaussian model and/or to independent features) throughout the selection 
process. This is not satisfactory. In this chapter it will be shown that it is important 
to be more flexible as far as the structure is concerned. The following example 
explains why. 

Assume that the selection algorithm uses a forward search (at each step a new 
feature is selected and added: this is the type of search considered throughout this 
chapter), and that the selection criterion is a function of joint probability functions 
of features and class membership. 

i) Let no structure at all be imposed on the probability functions involved. 
All possible interactions between features are then taken into account and the 
discriminatory ability available in such interactions may be retained. 
However, only a relatively small number of features may be expected to be 
reliably selected since the set of objects available for estimation has a finite 
size and the number of parameters required may be large even for a small 
number of features. The resulting restricted set may not be adequate to 
achieve a reasonable discrimination between classes. 

ii) Let a stronger probability structure be assumed. For instance, conditional 
independence of the features given the class. In this case, the number of 
parameters that needs to be estimated is drastically reduced and the number 
of features that may be selected may not be as limited as in case i). However, 
neglecting the interactions between features (this is the consequence of 
having assumed independence) may cause loss of discriminating power even 
in stages of the search where interactions could be safely taken into account 
(it is assumed that a structure of independence is also used in the final design 
of the classifier). 

2 Given a model for a multidimensional feature space, its structure are the relations 
of independence assumed between the features. A strong probability structure is 
one where all features are independent whereas a weak probability structure (or no 
structure at all) is one where there are few (or no) relations of independence or 
conditional independence between features. 
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These two cases are two extreme situations. Nevertheless, they show how the 
performance of a feature selection algorithm may be affected and how this may 
affect the fmal classifier. 

The importance of a more flexible approach allowing for structure changes, will be 
stressed here, i.e. given a convenient general model, at each step, test the quality 
of a feature not only in one but in various settings considering different 
interactions with the set of features so far selected. Selecting a feature, implies the 
acceptance and subsequent estimation of a number of unknown parameters. For a 
given model, allowing for structure changes amounts to a more refmed analysis of 
the unknown parameters that each feature brings into play. Instead of feature 
selection, the term parameter selection is more appropriate. 

It is very difficult (if not impossible) to present conclusive theoretical results (the 
same holds for all non-optimal search strategies). Consequently, computer 
experiments had to be performed. Only discrete feature spaces were considered. A 
general pattern for the various experiments may now be given. 

Various feature spaces defined by a number of binary features were established. 
For each space, two classes were defined with equal a-priori probabilities, 
assumed to be known. Each experiment consisted of the execution of various 
feature selection algorithms. These can be grouped in three sets, according to the 
overall search strategy (and/or model) used (assumed). They are: 

i) Algorithms I (Independence). 

The algorithms that use a stepwise forward search and that assume that 
initially and throughout the selection the features are independent given the 
class, i.e. no structure changes being allowed. These algorithms will be 
referred to as algorithms I. 

ii) Algorithms F (Full). 

The algorithms that use a stepwise forward search and that assume initially 
and throughout the selection a full multinomial model for the probability 
functions of the features given the class, i.e. no structure changes being 
allowed. These algorithms will be referred to as algorithms F. 

iii) Algorithms C (Change). 

The algorithms that assume the basic model (see chapter 5) as the general 
model and that allow structure changes during the selection. This search 
strategy will be called the augmented stepwise forward search. The 
structures allowed are restricted only to those admitting independence 
between sets of features given the class. This set of structures includes both 
the cases of full independence and full multinomial. However, it does not 
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include every possible structure. These algorithms will be referred to as 
algorithms C. 

Therefore, two search strategies were used that adopt a fixed structure and one that 
allows for structure changes. 

The performance of the various algorithms was compared by means of criteria to 
be defined later on. 

The experiments themselves may be grouped into two sets. In one case, it was 
required to randomly generate artificial data. In the other case, a more theoretical 
approach was followed, which did not require data to be randomly generated. 

In the following sections, the various experiments are presented. Also the selection 
criteria used and the question of estimating the parameters of a classifier, given its 
model and structure (the selection criteria used require that classifiers are 
estimated), are dealt with. Since the latter applies to both sets of experiments, it 
will be presented first. The notation used is the one presented in chapter 1, unless 
otherwise stated. 

3.2. Estimation of classifiers. 

For every experiment, three estimators were used. Let us assume k sets of 
independent features given the class 3. Let nJ be the number of samples available 
from class J, m the complexity of the space defined by all features, mi the 
complexity of the subspace defined by a set of non-independent features, 
P"\I, ... ,ik the estimated probability given class J (the indicator ij may assume all 
the integer values in the interval [1,mjJ). Note that m = q m1 ... mk where q does 
not need to be equal to 1 (if not all the features are used, then q > 1). Let 
nJ +, ... ,+,il,+, ... + be the number of samples available from class J that score in 
element i1 of the corresponding subspace. The three estimators are then: 

i) Maximum likelihood (MLK) 

P"1n, ... ,ik = (n1il,+, ... ,+ I n1) * ··· * (n1 +, ... ,+,ik I n1) 
(3.1) 

3 When all features are assumed to be fully independent, k is equal to the number 
of features. When independence is not assumed (the probability function given the 
class is best represented by a full multinomial), then k is equal to 1. 
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ii) Bayesian estimate (BAY) 

PNil, ... ,ik = (nlil,+, ... ,+ + 1) I (n1 + m1) * ... * (n1 +, ... ,+,ik + 1) I (n1 + mk) 

iii) Another Bayesian estimate (ANB) 

p/\}il, ... ,ik = (nlil,+, ... ,+ + m/ml) I (nJ + m) * ... 
* (nl +, ... ,+,ik + m/mk) I (nJ + m) 

(3.2) 

(3.3) 

A few more words concerning the estimators BAY and ANB. The first one is a 
commonly used Bayesian estimator and is derived by assuming that the 
probabilities of a subspace defined by a set of non-independent features (i.e. the 
parameters of the subspace) have an uniform distribution. If this is true, the 
estimator is Bayesian optimal. As for the second, each marginal estimate is derived 
by assuming a two class problem and that the probabilities for the full 
dimensionality (not for subspaces as in the case of the BAY estimator) are again 
uniformly distributed. If this is true and if a classifier is designed using only one 
subset of non-independent features, then the classifier is Bayesian optimal. If more 
then one set of non-independent features are used, then it is not optimal anymore. 

3.3. Specific feature spaces. 

The first set of experiments uses three different discrete feature spaces for the 
discrimination between two classes. In a simulation experiment, for each feature 
space, 30 different training sets of a given size were generated, sampling 
independently per class. Each set of data contained 32 (in some cases 64) objects 
per class. 

For every space and training set, the three basic search strategies were applied with 
various selection criteria, based on three different ways of estimating the error rate. 
Also, the three classiller estimators described in the previous section were applied 
in order to obtain classifiers as required by the error rate estimators. The selection 
was stopped either whenever all features were selected or when two consecutive 
iterations produced error estimates larger than the current minimum. It was decided 
not to stop when the error did not decrease (a more obvious rule) because in 
discrete feature spaces, very often the error does not change when a single feature 
is added, whereas if a second feature is added a substantial decrease may occur. 
The smallest set of features that gave the minimum error estimate was the set 
selected. 
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The outcome of each selection process is a set of features and a structure for the 
classifier (either imposed a-priori or selected). The performance of each selection 
process was assessed by computing the actual error of the classifier designed in 
accordance with the results of the selection procedure. This quantity could be 
computed since the underlying distributions were fully known. The error average 
over the 30 training sets is an estimate of the expected error with respect to the 
training sets and therefore was used to assess the quality of each selection 
technique for a particular discrimination problem and object set size. 

In the next two subsections, both the feature spaces used as well as the different 
ways of estimating the error rates are discussed in detail. 

3.3.1. The feature spaces. 

The first feature space used is dermed by 10 binary features. Given the class, these 
are assumed to be independent. A log-linear model (see chapter 5) was used to 
represent each class-conditional probability function. The non-zero coefficients of 
the model are given in table 3.1. This table shows that only the differences 
between ten parameters are important for discrimination. The Bayes errors for each 
individual feature as well as for the ten features taken together are given in table 
3.2. It is thus a highly structured discrimination problem. This space will be 
referred to as the H (highly structured) space. 

The second feature space is again defined by 10 binary features. Given the class, 
six features and the set composed of the remaining four, are assumed to be 
independent. Again a log-linear model (see chapter 5) was used to represent each 
class conditional probability function. The non-zero coefficients of the model are 
given in table 3.3. This table shows that only the differences between 20 
parameters are important for discrimination. All but the fourth order factor are non
zero for the four features assumed to be non-independent. The interactions 
between these four features are important for discrimination. Table 3.4 presents 
the Bayes errors for each feature taken individually as well as for the ten features 
taken together. We thus have a moderately, leaning to highly, structured 
discrimination problem. This space shall be referred to as the M (moderately 
structured) space. 

The third feature space used is defined by 5 binary features. In this case, the log
linear model was not used. Instead, a pseudo-random generator was used to obtain 
preliminary values for each individual probability. Final values were obtained by 
applying the constraints that the probabilities have to sum up to one, and that the 
Bayes error for the full dimensionality should be equal to 0.1. Table 3.5, presents 
the Bayes error when every feature is considered individually and when all 
possible combinations of four features are considered. The 'poor' performance of 
all combinations of four features does suggest that the class conditional probability 
functions are highly non-structured and that the discriminatory power lies in the 
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Coef. Class A Class B 

c (1) .0793 -.0793 

c (2) .1477 -.1477 

c (3) .2079 -.2079 

c (4) .2616 -.2616 

c (5) .3100 -.3100 

c (6) .3543 -.3543 

c (7) .3949 -.3949 

c (8) .4324 -.4324 

c (9) .4674 -.4674 

c (10) .5000 -.5000 

Table 3.1: Non-zero coefficients of the log-linear model used to define feature 
space H. 
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Features Bayes error 

·Feat. 1 .46 

Feat. 2 .43 

Feat. 3 .40 

Feat. 4 .37 

Feat. 5 .35 

Feat. 6 .33 

Feat. 7 .31 

Feat. 8 .30 

Feat. 9 .28 

Feat. 10 .27 

All .14 

Table 3.2: Bayes error for each individual feature and for the full dimensionality, 
in the case of feature space H. 

-24-



Coefficients Class A Class B 

c (1) .5 -.5 

c (2) .4 -.4 

c (3) .3 -.3 

c (4) .2 -.2 

c (5) .1 -.1 

c (6) .05 -.05 

c (7) .05 -.05 

c (8) .05 -.05 

c (9) .05 -.05 

c (10) .05 -.05 

Table 3.3: Non-zero coefficients of the log-linear model used to define feature 
space M (see continuation). 

-25-



Coefficients Class A Class B 

c (7,8) .2 -.2 

c (7,9) .3 -.3 

c (8,9) .3 -.3 

c (7,10) .4 -.4 

c (8,10) .4 -.4 

c (9,10) .4 -.4 

c (7,8,9) .3 -.3 

c (7,8,10) .4 -.4 

c (7,9,10) .4 -.4 

c (8,9,10) .4 -.4 

Table 3.3: Continuation. 
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Features Bayes error 

Feat. 1 .27 

Feat. 2 .31 

Feat. 3 .35 

Feat. 4 .40 

Feat. 5 .45 

Feat. 6 .47 

Feat. 7 .36 

Feat. 8 .36 

Feat. 9 .36 

Feat. 10 .35 

All .075 

Table 3.4: Bayes error for each individual feature and for the full dimensionality, 
in the case of feature space M. 
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Features Bayes error 

Feat. 1 .43 

Feat. 2 .50 

Feat. 3 .46 

Feat. 4 .47 

Feat. 5 .36 

4 Features .25 

4 Features .28 

4 Features .22 

4 Features .27 

4 Features .21 

All .10 

Table 3.5: Bayes error for· each individual feature, for every combination of 4 
features and for the full dimensionality, in the case of feature space L. 
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interactions between the features. It can also be inferred that the differences 
between a minimum of 15 (24 -1) and a maximum of 31 (25- 1) parameters are 
important for discrimination. This space will be referred to as the L (low 
structured) space. 

The justification for using these three feature spaces now follows. Firstly, it was 
decided to consider feature spaces with varying degrees of structure. If a scale 
measuring structure was constructed, space H, space M and space L would be in 
this order in that scale, from high to low. Secondly, unfavourable spaces for 
algorithm C as compared to one of the other competing strategies, were sought. 
This is the case for space H and space L. In these two situations, a-priori 
knowledge about the true structure is present in one search strategy: for space H, 
strategy I, and for space L, strategy F. A better performance for strategy C was 
not expected but it was important to compare it with the performance of an 
optimum strategy. Thirdly, the feature spaces were tailored in such a way that no 
single feature (or, e.g. pairs offeatures) could give errors close to the optimum. In 
this way, more detailed analyses were required from the selection algorithms. 
Finally, and in particular for space L, the need to obtain reasonably stable 
classifiers, has led us to consider 5 binary features only. 

3.3.2. The selection criterion. 

A key parameter in the overall performance of a feature selection algorithm is the 
selection criterion. It was decided to use the error rate. Two reasons may be given 
for this choice: 

i) The error rate is the natural choice for comparing classifier designs (and 
that is what feature selection is about). 

ii) The experiments with feature selection provided a good opportunity to 
evaluate some error estimation techniques 4. 

Three different error estimators were used. They are presented in the following. 

4 A good estimator is one that gives estimates close to the true values. However, 
for the specific purpose of feature selection, this definition can be loosened: good 
estimators are those that give estimates that rank in the same order as the true 
values. That is, if the actual error associated with a set of features is larger than the 
one associated with another set of features, then the estimated value of the former 
should be larger than the estimated value of the latter. In other words, the need for 
a good estimator in the general sense, is a sufficient although not a necessary 
condition for good performance of the feature selection algorithm. 
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3.3.2.1. Error estimation. 

Due to the fact that the number of objects available was small, rotation techniques 
were used. A general framework for these kind of techniques is as follows. Given 
a set of objects, the entire data is partitioned a number of times into a training and a 
test set. For each partition, a classifier is designed using the objects in the training 
set, and is applied to the objects in the test set. The error is then estimated by 
counting the number of misclassifications and averaging over all partitions. 

Therefore, in order to apply rotation methods, and given a set of data, both the size 
of one set (e.g. training set) and the number of partitions to be used have to be 
defined. If n objects are available and it is decided to use test sets of size k (k < n), 
the number of ways to partition the data available is equal to number of 
combinations of k elements in a set containing n elements. For reasons of 
reliability, the three estimators adopted all require that more than one partit;ion be 
used. 

3.3.2.2. Leave-one-out. 

If k is equal to 1 and all possible partitions are explored, we have the first rotation 
technique used. This is the leave-one-out method 5 (LACH67). This is a well 
known technique, its main properties are: 

i) it yields an almost unbiased estimate (LACH67). 

ii) for discrete feature spaces it has a large variance (GLIC78). 

Although it requires the design of several classifiers, it can be implemented in such 
a way that in the case of discrete feature spaces, computing time remains 
acceptable. Throughout this chapter, the leave-one-out technique will be referred to 
as estimator 1. 

5 This method is often referred to as a jackknife method. This is not correct. 
Although both methods partition the objects available and make use of different 
partitions, for each partition, the leave-one-out uses all the objects either as 
members of the training set or as members of the test set, whereas a jackknifing 
technique does not use, in any way, the objects left out (see MILL74). 
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3.3.2.3. Other ratios for partitioning. 

Other partitioning ratios may be used although most likely not all possible 
partitions can be explored. Indeed, their number may be enormous and the 
computer time required absurd. Still, a given number may be randomly selected, 
the number being such that computer time remains manageable. 

Error estimators number two and three can now be defmed: 

- Second estimator: rotation using test sets with 3 samples from each class 
and 25 different randomly generated partitions. 

- Third estimator: rotation using test sets with 16 samples from each class 
(i.e. half the data available) and 7 different partitions, again randomly 
generated. 

Since a-priori probabilities were assumed to be known and an equal number of 
objects per class was available, the generation of each training set was subject to 
the condition that it should contain an equal number of objects from both classes. 
These two estimators will be referred to throughout this chapter as estimators 2 
and 3, respectively. 

The size of each the test set used in the second estimator, was imposed to be 
approximately 10% of the total number of objects available (32 per class). The 
number of partitions used was established taking into account the computer time 
required. As for the third estimator, which Toussaint (TOUS7 4) calls the modified 
hold-out method, each test set contained 50% of the total number of objects 
available and the number of partitions was fixed by the requirement that estimators 
2 and 3 should have a similar chance. A good measure of equality is, in this case, 
the computer time required. In arriving at the number of 7, it was assumed that the 
time required for one classification was equal to the time the program requires to 
make use of one object in the estimation of the classifier and that the design of an 
'optimal' program would have to be different. It may be remarked that every error 
estimate requires 150 classifications when estimator 2 is used, and 224 
classifications when estimator 3 is used. 

The properties of such estimators, to our knowledge, have not yet been studied. 
However, some conclusions may be made from qualitative reasoning about the 
properties. 

i) Bias: 

Each partition in each estimator, yields an error estimate that is known to be 
pessimistically biased. Furthermore, the bias will increase when the number 
of objects assigned to each training set is decreased.Therefore, it may be 
concluded that both estimators are pessimistically biased. Moreover, this 
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bias is likely to be more pronounced in the case of the third estimator since 
fewer objects are used to design the classifiers. 

ii) Variance: 

Two effects have to be considered: 

1 - The number of different values that, in each partition, the estimated 
error may assume in the interval [0., 1.], is larger for estimator 3. 

2 - More partitions are used in estimator 2. 

The first effect leads us to expect that estimator 3 has a smaller variance 
(following a reasoning similar to Glick's (see GLIC78) when discussing the 
variance of the leave-one-out). The second effect leads us to expect that 
estimator 2 has smaller variance. Which of these effects is dominant and 
how the variances compare to the variance of the leave-one-out method, 
theoretically it is not clear. 

3.3.2.4. Breaking ties. Insensitivity of the error. 

However good the estimator may be, the error rate will perform poorly as a 
selection criterion if its insensitivity is not taken into account. Specifically, and in 
the context of a forward search, several candidate features may yield the same 
error when combined with the set of features already selected, in spite of the fact 
that individually some might have a good discrimination ability and others might 
not be able at all to discriminate. A random choice is then required and it may 
happen that the feature selected is one with no discriminatory ability at all. This 
poses problems: a useless feature is selected and the performance of the algorithm 
.in the next steps of the search, is handicapped. Duin (DUIN78) has shown this 
effect for the case of independent binary features. Ben-Bassat (BEN80) has 
addressed the same problem by allowing more general models and introducing the 
question of insensitivity with respect to a-priori probabilities. Both have assumed 
that the relevant probabilities are known. It is clear that the problem remains when 
estimates are used. The case studied by Duin is of special significance here since 
independence models are explicitly assumed. To correct for the insensitivity, a 
solution proposed by Ben-Bassat (BEN80) has been used. In case of equal error 
estimates, the tie is broken by selecting the feature and structure for which the 
variance of the error over the current candidate space is largest. This variance is 
estimated either by estimator 1, or 2, or 3, if the estimator used for the error is 1, 
or 2, or 3, respectively. 

Finally, in the case of a tie both in the error as well as the variance, the tie-breaking 
rule is then to select the feature and structure that require the smaller number of 
parameters. 
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3.3.2.5. Remark. 

Three different error estimators (estimators 1, 2 and 3) were applied. Since all of 
them require that classifiers are estimated and since three different estimators were 
used for this purpose (MLK, BAY and ANB), a total of 9 different selection 
criteria were used. 

3.3.3. Results. 

The results of the experiments are presented in tables 3.6 through 3.14. Each table 
relates to a particular feature space and a given method of estimating the parameters 
of a classifier (e.g. table 3.6 relates to space H and the MLK estimation 
technique). Each row in a table is related to a given search technique (i.e. C, F or I 
defined above) and a given error estimation method (i.e. estimators 1, 2 and 3 
defined above), and presents the estimated mean and standard deviation (between 
parentheses) of the actual error (i.e. the true classification error), the estimated 
error, the number of features selected and the number of parameters per class that 
had to be estimated. All these entries relate to the 'best' classifier as chosen by a 
feature selection algorithm. 

In the following, an analysis and discussion of the results with respect to the 
search strategies and the error estimators, is presented. 

3.3.3.1. Search strategy. 

Considering first the highly structured space H (i.e. independence between 
features; tables 3.6 - 3.8), it appears that the best strategy is I followed by C. 
'Best' is here assessed by the true errors of the resulting classifiers. This is not 
surprising in this space since search I always makes correct assumptions as far as 
the structure of the space is concerned. Nevertheless, and except for the 
combination of Bayesian designs and the leave-one-out error estimator as the 
selection criterion, the performances achieved are similar for these two strategies. 
As for strategy F, the assumption of interactions between features, which has no 
meaning in this space, implies that generally fewer features are selected which in 
turn implies that the results are the worst. Nevertheless, for the combination of 
maximum likelihood design and the leave-one-out error estimator, the performance 
of search F comes close to the C search. For this specific combination, an 
experiment involving again 30 different sets with 64 objects per class, was 
performed. The results are shown in the first three rows of table 3.15. The 
improvement achieved when going from search F to search C, is clearly seen. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 22.6 (3.4) 10.6 (3.6) 5.3 (1.9) 10.1 (6.0) 
...... 
8 

F 24.8 (3.6) 11.7 (3.0) ~ 3.9 (0.6) 15.3 (7.1) 
.§ 
"' ~ 

I 21.3 (2.6) 12.2 (3.6) 5.0 (1.6) 5. (1.6) 

c 24.5 (3.5) 11.6 (3.9) 5.2 (1.9) 9.4 (4.4) 
N 

8 
F 26.8 (3.8) 14.7 (5.2) 3.1 (1.0) ~ 10.9 (7.3) 

.§ 
~ 

I 22.6 (3.7) 15.9 (6.1) 5.1 (1.7) 5.1 (1.7) 

c 22.3 (3.6) 14.8 (3.6) 5.6 (2.1) 9.0 (4.6) 
('<) 

8 
F 26.7 (3.6) 19.3 (3.7) 2.6 (1.2) 7.2 (6.5) ~ a 

~ 
I 22.3 (4.7) 16.5 (4.4) 5.1 (2.7) 5.1 (2.7) 

Table 3.6: Results of the experiments described in section 3.3, for space H and 
classifiers estimated using the MLK estimator. Each entry in the table shows an 
estimated mean and between parentheses, an estimated standard deviation. All 
values have been multiplied by 100. For more details, see subsection 3.3.3. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 25.6 (8.2) 8.2 (5.1) 6.2 (1.9) 77.0 (155.3) 
...... 
..... 
B 

F 38.1 (5.2) 1.0 (1.6) 7.6 (1.0) 240 (166.1) <':! s ·.o 
"' w 

I 21.6 (3.0) 12.7 (3.7) 5.1 (1.6) 5.1 (1.6) 

c 22.9 (3.3) 10.3 (3.8) 5.9 (2.0) 12.1 (6.0) 
<'I 
..... 
B 

F 26.8 (3.8) 14.7 (5.2) 3.1 (1.0) 10.0 (7.3) <':! 

.§ 
~ 

I 22.3 (3.8) 12.0 (3.6) 5.1 (1.7) 5.1 (1.7) 

c 21.9 (3.6) 13.7 (4.3) 6.3 (2.4) 12.5 (6.1) 
~ 
..... 
B 

F 26.7 (3.6) 19.3 (3.7) 2.6 (1.2) 7.2 (6.5) <':! s 
~ 

I 21.7 (5.6) 15.9 (4.5) 5.7 (2.7) 5.7 (2.7) 

Table 3.7: Results of the experiments described in section 3.3, for space Hand 
classifiers estimated using the BAY estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 24.4 (7.3) 8.2 (5.1) 6.1 (1.9) 59.4 (132.5) 
"· ,...... 

8 
F 38.1 (5.2) 1.0 (1.6) 7.6 (1.0) 240 (166.1) ro 

8 ·..::: 
"' 114 

I 20.6 (3.0) 11.8 (3.3) 5.5 (2.2) 5.5 (2.2) 

c 22.9 (3.9) 9.7 (3.7) 5.7 (2.1) 12.2 (12.6) 
N 
.... 
~ F 26.8 (3.8) 14.7 (5.2) 3.1 (1.0) 10.0 (7.3) 
8 ·..::: 
"' 114 

I 21.2 (3.1) 12.1 (3.5) 5.5 (1.7) 5.5 (1.7) 

c 22.1 (3.0) 13.4 (3.7) 5.4 (2.0) 9.3 (4.3) 
(<) 

.... 
B 

F 26.7 (3.5) 19.3 (3.7) 2.6 (1.2) 7.2 (6.5) ro 
8 ·..::: 
"' 114 

I 21.5 (5.1) 15.3 (4.8) 5.5 (2.3) 5.5 (2.3) 

Table 3.8: Results of the experiments described in section 3.3, for space Hand 
classifiers estimated using the ANB estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Turning now to theM feature space (tables 3.9 - 3.11), algorithms using search C 
yield generally the best results, the exception being the combination of Bayesian 
designs and leave-one-out error estimators (search I is then the best). It may be 
remarked that this combination tends to yield classliiers (for the C and F searches) 
that require more parameters than the number of objects available which explains 
why search I is the best 6. This behavior occurred also in the H feature space and 
denotes a failure of the stopping criterion. For the combination of maximum 
likelihood design and leave-one-out error estimator, the performance of search I 
comes close to that of search C. For this specific combination, an experiment 
involving again 30 different sets with 64 objects per class, was performed. The 
results are shown in the last three rows of table 3.15. The improvement achieved 
when going from search I to search C, is clearly seen. It is interesting to observe 
that search F replaces search I as the second best. This can be attributed to the 
larger number of objects used. 

Finally, turning now to the low structured space (tables 3.12 through 3.14), the 
best search is F, followed by search C. This is a feature space where the 
discriminating power is mainly concentrated in high-order interactions between 
features making search F specially attractive for this space. Search I yields a very 
poor performance and this may be traced to the assumption of independence, 
which implies the omission of exactly those significant interactions between 
features. Also, the small number of features selected by this strategy, is not 
surprising. 

In general, it may be said that search C yields better results. Either it is the best or 
close to it. The latter occurs when the knowledge available in one of the competing 
strategies matches with the space structure. The good performance of search C is a 
direct cause of its flexibility with respect to the structure of the space. 

3.3.3.2. Error estimates. 

Comparing the performance of the three error estimators in terms of the achieved 
classifier performance, it can be said that they yielded similar results. It may be 
added that the leave-one-out method, in the case of the structured spaces (spaces H 
and M) and Bayesian designs, yielded the worst results whereas this combination 
performed better in the L space. 

6 It is certainly an incorrect practice to allow for more parameters than the number 
of objects available. However, this is an experiment and it is important to identify 
both the positive as well as the negative aspects of the various parts of the feature 
selection algorithms tested. 
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Actual error Estimated error Num. of feat Num. of param. 

c 20.2 (4.9) 9.1 (3.6) 5.6 (1.7) 12.4 (5.1) -3 
F 23.5 (5.2) 11.5 (3.4) 3.9 (0.6) 15.8 (9.9) CCI 

8 
".:::1 

"' ~ 
I 21.4 (2.5) 14.2 (4.0) 4.7 (1.6) 4.7 (1.6) 

c 20.5 (4.4) 8.8 (3.9) 6.6 (1.8) 13.9 (6.7) 
N 
..... 
2 

F 24.2 (5.4) 13.7 (4.7) 3.6 (1.0) 14.3 (9.5) CCI 

.§ 
t:i 
~ 

I 24.1 (4.3) 14.4 (5.2) 4.5 (2.1) 4.5 (2.1) 

c 21.2 (4.7) 13.4 (4.4) 6.4 (2.4) 10.8 (4.7) 
<:'"l 

3 
F 28.9 (4.8) 19.3 (3.7) 2.4 (1.2) 6.0 (4.9) CCI 

8 
".:::1 

"' ~ 
I 24.2 (4.2) 17.6 (3.9) 4.1 (2.1) 4.1 (2.1) 

Table 3.9: Results of the expenments described in section 3.3, for space M and 
classifiers estimated using the MLK estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Nwn. of feat. Nwn. of param. 

c 23.9 (9.7) 5.4 (6.0) 6.5 (1.7) 83.1 (189.6) 
....... 

2 
F 33.4 (7.8) 0.2 (0.6) 7.0 (1.3) 203.8 (253.9) <:<! s ·.o 

"' ll.l 
I 22.3 (2.8) 14.5 (4.2) 5.6 (5.4) 5.6 (5.4) 

c 20.6 (4.9) 8.5 (4.3) 5.7 (1.9) 11.5 (5.2) 
N 

2 
F 24.2 (5.4) 13.7 (4.7) 3.6 (1.0) 14.3 (9.5) <:<! 

.§ 
~ 

I 24.2 (4.1) 14.2 (5.6) 4.6 (2.0) 4.5 (2.0) 

c 18.7 (5.2) 12.4 (4.3) 6.5 (2.4) 17.2 (9.8) 
~ 

2 
F 28.9 (4.8) 19.3 (3.7) 2.4 (1.2) 6.0 (4.9) <:<! s ·.o 

"' ll.l 
I 24.2 (4.1) 17.2 (4.4) 4.7 (2.3) 4.7 (2.3) 

Table 3.10: Results of the experiments described in section 3.3, for space M and 
classifiers estimated using the BAY estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 27.9 (10.6) 3.4 (4.7) 6.6 (1.6) 122.1 (204.6) 
,..... 

>-< 
.8 

F 33.4 (7.8) 0.2 (0.6) 7.0 (1.3) 203.8 (253.9) ~ 

.§ 
"' >l4 

I 24.1 (2.5) 15.2 (3.4) 4.5 (1.6) 4.5 (1.6) 

c 21.7 (7.0) 8.4 (4.9) 5.5 (1.8) 16.5 (11.0) 
N 

>-< 
.8 

F 24.2 (5.4) 13.7 (4.7) 3.6 (1.0) 14.3 (9.5) ~ 

.§ 
"' >l4 

I 24.8 (3.8) 15.7 (5.6) 4.5 (2.0) 4.5 (2.0) 

c 19.7 (6.4) 12.1 (5.3) 5.8 (1.9) 14.5 (9.0) 
C'l 

>-< 
.8 

F 28.9 (4.8) 19.3 (3.7) 2.4 (1.2) 6.0 (4.9) ~ 

8 

~ 
I 25.9 (4.4) 18.2 (5.5) 4.0 (2.1) 4.0 (2.1) 

Table 3.11: Results of the experiments described in section 3.3, for space M and 
classifiers estimated using the ANB estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 23.8 (6.3) 18.2 (5.1) 4.3 (0.8) 18.7 (11.7) 
........ 
.... 
B 

F 22.0 (5.9) 17.0 (4.0) 4.5 (0.7) 23.3 (9.3) o:l 

.§ 
"' J:.I4 

I 38.1 (4.4) 32.6 (6.3) 1.9 (1.2) 1.9 (1.2) 

c 26.7 (8.3) 20.8 (6.8) 4.1 (1.0) 12.5 (9.6) 
N .... 
B 

F 24.6 (8.1) 19.7 (5.5) 4.0 (1.4) 20.6 (12.0) o:l s 
~ 

I 39.0 (5.1) 32.3 (6.0) 1.3 (1.0) 1.3 (1.0) 

c 27.8 (8.0) 25.6 (6.4) 4.1 (1.3) 13.9 (10.6) 
M 
.... 
B 

F 27.1 (7.8) 26.3 (5.9). 3.5 (1.5) 15.4 (11.5) o:l 

.§ 
t:l 

J:.I4 
I 39.1 (4.8) 34.1 (6.3} 1.4 (0.8) 1.4 (0.8) 

Table 3.12: Results of the experiments described in section 3.3, for space L and 
classifiers estimated using the MLK estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Num. of feat. Num. ofparam. 

c 22.7 (6.2) 14.3 (7.6) 4.5 (0.8) 21.6 (12.1) 
....... 
.... 
.8 

F 19.7 (4.6) 10.9 (5.2) 4.9 (0.4) 29.1 (5.8) ro 
8 ·.:= 
rn 

J:.I4 
I 38.1 (4.1) 32.5 (6.0) 1.9 (1.3) 1.9 (1.3) 

c 27.3 (8.7) 21.7 (7.1) 4.1 (1.5) 12.0 (9.3) 
N 
.... 
.8 

F 24.6 (8.1) 19.7 (5.5) 4.0 (1.4) 20.6 (12.0) ro 
s ·.:= 
rn 

J:.I4 
I 38.5 (4.7) 32.4 (6.1) 1.3 (1.0) 1.3 (1.0) 

c 27.8 (8.1) 25.9 (5.9) 3.8 (1.3) 13.3 (10.9) 
t<"l 
.... 
.8 

F 27.1 (7.8) 26.3 (5.9) 3.5 (1.5) 15.4 (11.5) ro 

.§ 
rn 

J:.I4 
I 38.8 (4.5) 34.2 (6.3) 1.4 (0.8) 1.4 (0.8) 

Table 3.13: Results of the experiments described in section 3.3, for space Land 
classifiers estimated using the BAY estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Estimated error Num. of feat. Num. of param. 

c 23.2 (6.7) 14.7 (7.9) 4.4 (1.0) 21.4 (12.3) 
,..... 

..... 
.8 

F 19.7 (4.6) 10.9 (5.2) 4.9 (0.4) 29.1 (5.8) ro 
.§ 
Jj 

I 38.7 (3.9) 33.2 (5.3) 1.7 (1.2) 1.7 (1.2) 

c 27.6 (8.7) 21.7 (6.9) 3.9 (1.4) 11.8 (9.5) 
C"l 

£ 
F 24.6 (8.1) 19.7 (5.5) 4.0 (1.4) 20.6 (12.0) ro s 

~ 
I 39.2 (4.9) 32.2 (6.2) 1.3 (1.0) 1.3 (1.0) 

c 28.0 (7.6) 26.6 (6.3) 3.8 (1.4) 13.1 (10.4) 
~ 

£ 
F 27.1 (7.8) 26.3 (5.9) 3.5 (1.5) 15.4 (11.5) ro 

.§ 
Jj 

I 39.1 (4.8) 34.3 (6.3) 1.4 (0.8) 1.4 (0.8) 

Table 3.14: Results of the experiments described in section 3.3, for space Land 
classifiers estimated using the ANB estimator. All values have been multiplied by 
100. For more details see both subsection 3.3.3 and the caption of table 3.6. 
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Actual error Number of features Number of param. 

c 19.3 (2.9) 6.3 (1.9) 12.1 (6.6) 

H F 23.4 (2.5) 4.8 (0.5) 27.8 (9.8) 
e•• 

I 17.5 (2.1) 6.5 (2.0) 6.5 (2.0) 

c 16.3 (4.3) 5.9 (1.9) 16.2 (8.5) 

M F 18.6 (4.5) 4.6 (0.6) 24.6 (10.8) 

I 19.9 (2.2) 5.8 (2.2) 5.8 (2.2) 

Table 3.15: Results of the experiments described in subsection 3.3.3, when data 
sets of 64 objects per class were used. The upper part relates to the H space and 
the lower part to the M space. In both cases, the selection criterion was the leave
one-out error estimator and the classifiers required were designed using the MLK 
technique. 
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As for the estimates themselves, it is clear that a common feature seems to hold for 
all error estimates of the 'best' classifiers: all are substantially optimistic. This 
contradicts the expected behavior of the estimators described above. An 
explanation follows. The properties presented above pertain to the estimate of the 
error rate of one particular classifier. The error estimate of the 'best' classifier is 
the estimate of the minimum error over a set of classifiers by means of a set of 
objects that essentially remains the same for every evaluation. Thus, it is a 
completely different statistic. The importance of this aspect may better be seen by 
considering the case where only one feature is to be selected. In table 3.16 the 
results of a simple experiment are compiled. Using intermediate results from the 
experiments described above, mean values and standard deviations were estimated 
for the estimated values of the error of the single best feature (actual best feature) 
and for the single 'best' feature as selected by the selection criteria. Here again the 
latter is optimistic for the three estimators considered, whereas the relation between 
the number of parameters (in this case one) and the number of objects available (32 
objects per class) is a reasonable one although not for the minimum error over a 
set, as shown by the results. 

Briefly the three estimators failed to cope with the new circumstances introduced 
by the selection and produced a misleading final estimate. If part of the samples 
available (e.g. half) had been set aside and used exclusively for the estimation of 
the error of the 'best' classifier as produced by the feature selection, a more 
realistic value would have been attained. Nevertheless, in order to achieve better 
performance with feature selection, it is important that efforts are directed towards 
the study of the properties of the various available selection criteria (be it the error 
rate or others ones), when the circumstances of their application involves an 
optimization procedure. 

3.4. Families of feature spaces. 

In the previous section, three specific feature spaces have been used in order to 
show the importance of allowing structure changes during the selection. Similar 
experiments but involving feature selection over families of feature spaces (and all 
training sets of a given size) will now be presented. The search strategies used 
were the three techniques mentioned in section 3.1. The selection criterion was the 
mean recognition accuracy, a concept first introduced by Hughes (see HUGH68) 
and used by this author and others (e.g. CHAN71, CHAN74, CHAN75, etc.), to 
study the peaking phenomenon. It is the expectation of the probability of correct 
recognition over all training sets and over an assumed family of feature spaces. 
That is: 

(3.4) 
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Error estimator 1 Error estimator 2 Error estimator 3 

H 22.9 (2.9) 22.3 (3.3) 21.9 (3.5) 
..... 
"' <l) 
.0 
'"d M 24.4 (3.5) 21.8 (4.1) 23.4 (4.0) 2 
(.) 

..9:l 
<l) 

IZl 
L 34.3 (5.6) 32.6 (6.0) 34.7 (6.6) 

H 25.5 (4.3) 27.4 (6.1) 25.5 (4.5) 
..... 
"' <l) 
.0 
c;:j M 27.1 (4.6) 27.0 (6.7) 26.9 (5.8) 
B 
~ 

L 35.8 (6.7) 36.0 (6.6) 37.0 (8.6) 

Table 3.16: This table shows the results ofthe experiments described in subsection 
3.3.3.2. Each entry in this table shows the estimated means and standard 
deviations (between parentheses). Column-wise, the results relate to the three error 
estimators used. Row-wise, the results relate to the three feature spaces and to the 
selected 'best' feature and the actual best feature. The upper part of this table, is 
associated with estimates for the 'best' feature as indicated by the selection criteria. 
The lower part is associated with error estimates for the actual best feature. 
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The symbol P cr indicates the probability of correct recognition, the symbol Ex; 
indicates expectation with respect to all training sets of a given size and the symbol 
Ee indicates expectation with respect to the parameters of a family of feature 
spaces. 

It should be remarked that this criterion could be computed exactly, and therefore 
did not require an estimate. Nevertheless, and in order to apply it, classifiers had 
to be estimated. Three different estimators (MLK, BAY, ANB) were again used. 
The stopping criterion was taken to be a decrease in the value of the mean
recognition accuracy. 

Two different families were considered. Each feature space in each family was 
assumed to be defined by p binary features, yielding a space composed of m = 2P 
different elements. Furthermore, two classes, called A and B, were assumed with 
equal a-priori probabilities. In the following subsections, the two families and the 
results obtained are presented. 

3.4.1. First family of feature spaces. 

In order to completely define a family of feature spaces, a probability distribution 
for the parameters of the spaces composing the family, has to be defined. Let P(ui) 
and P(vi) be the probability of a parameter of the space for class A and class B, 
respectively. A general measurement space is assumed (see HUGH68) and 
therefore each parameter is the joint probability of an element of the space and a 
class. It is assumed that: 

(3.5) 

Furthermore, it is also assumed that P(u1, ... ,um) is uniform for 0::;; u1 ::;; a::;; 1 
and zero otherwise. That is: 

where k1 is equal to 

k 1 = (m-1)! I (1- (1-a)m-1) 

for 0 ::;; u 1 ::;; a ::;; 1 
otherwise 
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This guarantees that the probabilities do sum up to one. As for class B, it is 
assumed that P(v1, ... ,vm) is uniform for 0 :s; a :s; v1 :s; 1 and zero otherwise. That 
is: 

P (v1, ... ,vm) = k2 dv1 ... dvm 
=0 

where k2 is equal to 

k2 = (m-1)! I (1-a)m-1 

for 0 :s; a :s; v1 :s; 1 
otherwise 

(3.8) 

(3.9) 

With respect to this family, the three estimation techniques used in the design of 
classifiers, are all non-optimal (it would be trivial if it were not so). In the first 
place, an infinite number of objects in the training set was not considered and 
hence the conditions of optimality of the MLK estimator are not met. Secondly, the 
probabilities P(ur. ... ,um) and P(vr, ... ,vm) do not coincide with the ones assumed 
for the derivation of the Bayesian estimators, and hence the conditions of 
optimality for the two Bayesian estimators are also not met. This situation reflects 
a common problem associated with the Bayesian design of classifiers, where it is 
very difficult to known and/or to obtain estimates of the a-priori distribution of the 
parameters. 

For this family and for most of the spaces that belong to it, the condition of 
independence (or quasi-independence) between features or sets of features does 

not hold. For the case of 2 binary features and for a= 0.25, the probability of 

quasi-independence is equal to ~ * 0.3415 (class A) and~* 0.7172 (class B). 

Variable ~ quantifies the quasi-independence and its significance can better be 
perceived by remarking that the probability of quasi-independence between 
features is, e.g. for class A, 

where 

(3.10) 
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The symbol kin the expression above, is a constant that guarantees that: 

a 
( f du1 

0 

1-ul 1-ul-u2 
f du2 f du3 ) I k = 1 
0 0 

(3.11) 

For reasonable values of f3, the probability is indeed small. Thus, a second type of 
error (the first type of error is related to the estimation techniques used and was 
already indicated above) affected the design of classifiers that assumed 
independence between features. The error is itself this assumption. 

For this family and in expectation, it should be remarked that all combinations of 
the same number of features have the same discriminatory power. So, the selection 
of features was, in this case, the selection of a structure and the selection of a 
number of features. 

The mean recognition accuracy is equal to 

nA! nB! (m-1)! (m-1)! / (1-a)m-1 (1- (1-a)m-1) * 

m 

( F ( A B A B ) + ~ F ( A A. B B. A B ) ) 1 n 1,n 1,n ,n ,m,a """ 2 n 1on 1,n 1,n 1,n ,n ,m,a 
i=2 

(3.12) 

Functions F1(nA1,nB 1,nA,nB,m,a) and F2(nA1,nAi,nB 1,nBi,nA,nB,m,a) are 
defined in appendix C. 

The expression above can be greatly simplified if the classifier assumes full 
multinomials for the conditional probability functions (the expectation is then the 
same for all m-1 elements other than element 1). Unfortunately, this is not the case 
when independence is assumed. As such, and in order to avoid excessive 
computation times, only small set sizes and spaces defined by a small number of 
features, were considered. Specifically, spaces defined by two, three and four 
binary features, assuming a number of objects per class ranging from 1 to 3, have 
been dealt with. Also due to excessive computation times, with four binary 
features the number of objects considered per class was either 1 or 2. As for a, it 
was taken to be 1/m. 

The results of the experiments are presented in tables 3.17 through 3.19. Each 
entry in a given table represents the value of the mean recognition accuracy 
obtained and the structure chosen (the structure is coded in terms of the number of 
different elements in each marginal). 
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Search I Search C Search F 

1,1 .5895 (2-2) .5895 (2-2) .5868 (4) 

~ 2,2 .6279 (2-2) .6292 (4) .6292 (4) 
::E 

3,3 .6449 (2-2) .6542 (4) .6542 (4) 

1,1 .5908 (2-2) .5908 (2-2) .5868 (4) 

~ 2,2 .6279 (2-2) .6292 (4) .6292 (4) 
I=Q 

3,3 .6435 (2-2) .6542 (4) .6542 (4) 

1,1 .5868 (2-2) .5868 (2-2) .5868 (4) 

I=Q 2,2 .6254 (2-2) .6292 (4) .6292 (4) 
~ 

3,3 .6457 (2-2) .6542 (4) .6542 (4) 

Table 3.17: This table shows the results of the experiments described in subsection 
3.4.1. (flrst family of feature spaces) when two binary features are considered. 
Each entry in the table shows the mean recognition accuracy and, between 
brackets, the structure selected (e.g. the upper left entry indicates that 2 binary 
features, assumed to be independent, were selected). The flrst column indicates the 
estimator used for the classifiers, the second column indicates the number of 
objects considered and finally, the fust row indicates the search strategy. 
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Search I Search C Search F 

1,1 .5514 (2-2-2) .5514 (2-2-2) .5494 (8) 

~ 2,2 .5777 (2-2-2) .5829 (8) .5829 (8) 

3,3 .5923 (2-2-2) .6069 (8) .6069 (8) 

1,1 .5514 (2-2-2) .5514 (2-2-2) .5494 (8) 

~ 2,2 .5778 (2-2-2) .5829 (8) .5829 (8) 
~ 

3,3 .5906 (2-2-2) .6069 (8) .6069 (8) 

1,1 .5494 (2-2-2) .5494 (4-2,8) .5494 (8) 

~ 2,2 .5777 (2-2-2) .5829 (8) .5829 (8) 
-< 

3,3 .5934 (2-2-2) .6069 (8) .6069 (8) 

Table 3.18: This table shows the results of the experiments described in subsection 
3.4.1. (first family of feature spaces) when three binary features are considered. 
See also the caption in table 3.17. 
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Search I Search C Search F 

1,1 .5281 (2-2-2-2) .5281 (2-2-2-2) .5273 (16) 

~ 2,2 .5449 (2-2-2-2) .5494 (16) .5494 (16) 

1,1 .5282 (2-2-2-2) .5282 (4-2-2) .5273 (16) 

~ 
i=Q 

2,2 .5449 (2-2-2-2) .5494 (16) .5494 (16) 

1,1 .5273 (2-2-2-2) .5273 (8-2) .5273 (16) 

~ 2,2 .5455 (2-2-2-2) .5494 (16) .5494 (16) 

Table 3.19: This table shows the results of the experiments described in subsection 
3.4.1. (first family of feature spaces) when four binary features are considered. 
See also the caption in table 3.17. 
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3.4.2. Second family of feature spaces. 

As in the previous subsection, the probability distribution of the members of this 
family of feature spaces had to be defined. It was assumed that: 

P (u1, ... ,um,vl, ... ,vm) = P(u1, ... ,um) P(v1, ... ,vm) 
(3.13) 

P(v1, ... ,vm) is the same as P(ul>···,um) in the previous section. As for class A, 
P(ur, ... ,um) is uniform over the permissible range of ur, ... ,um. That is: 

(3.14) 

Thus, this is a family similar to the one in the previous subsection. The three 
estimation techniques used in the design of classifiers are again non-optimal 
although the probability function given class B is optimally estimated when 
estimator ANB is used. 

The probability of spaces where quasi-independence between features holds, was 
again quantified for the case of two binary features. For a = 0.25, the probability 

of quasi-independence is equal to j) * 0.5 (class A) and j) * 0.3415 (class B). 
Similarly as with the first family, two types of errors affect the design of 
classifiers when independence is assumed, and one type of error when 
independence is not assumed. 

Also for this family and in expectation, all combinations of the same number of 
features have the same discriminatory power. So, the selection of features is again 
the selection of a structure and the selection of a number of features. 

The mean recognition accuracy is now equal to 

nA! nB! (m-1)! (m-1)! I ( (1-(1-a)m-1) (nA+m-1)! ) ( 

m 
G1(nAr,nBr,nA,nB,m,a) + L, G2(nAi,nB1,nBi>nA,nB,m,a) ) 

i=2 
(3.15) 

F t. G ( A B A B ) d G ( A. B B. A B ) d f. d unc 1ons 1 n 1,n 1,n ,n ,m,a an 2 n 1,n r,n 1,n ,n ,m,a are e 1ne 
in appendix D. Expression 3.15 may again be greatly simplified when, for a given 
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Search I Search C Search F 

1,1 .6351 (2-2) .6351 (2-2) .6171 (4) 

~ 
::'E 

2,2 .6881 (2-2) .6881 (2-2) .6715 (4) 

3,3 .7144 (2-2) .7144 (2-2) .7041 (4) 

1,1 .6441 (2-2) .6441 (2-2) .6171 (4) 

~ 2,2 .6918 (2-2) .6918 (2-2) .6715 (4) 
i=Q 

3,3 .7112 (2-2) .7112 (2-2) .7041 (4) 

1,1 .6171 (2-2) .6171 (2-2) .6171 (4) 

~ 2,2 .6777 (2-2) .6777 (2-2) .6715 (4) 

3,3 .7106 (2-2) .7106 (2-2) .7041 (4) 

Table 3.20: This table shows the results of the experiments described in subsection 
3.4.2. (second family of feature spaces) when two binary features are considered. 
See also the caption in table 3.17. 
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Search I Search C Search F 

1,1 .6353 (2-2-2) .6353 (2-2-2) .5946 (4) 

::s 
~ 

2,2 .6842 (2-2-2) .6842 (2-2-2) .6441 (8) 

3,3 .7097 (2-2-2) .7097 (2-2-2) .6825 (8) 

1,1 .6353 (2-2-2) .6353 (2-2-2) .5946 (4) 

~ 2,2 .6909 (2-2-2) .6909 (2-2-2) .6441 (8) 
f:Q 

3,3 .7066 (2-2-2) .7127 (2-4) .6825 (8) 

1,1 .5946 (2-2-2) .5946 (4-2) .5946 (4) 

~ 2,2 .6594 (2-2-2) .6594 (2-2-2) .6441 (8) 

3,3 .6991 (2-2-2) .6991 (2-2-2) .6825 (8) 

Table 3.21: This table shows the results of the experiments described in subsection 
3.4.2. (second family of feature spaces) when three binary features are 
considered. See also the caption in table 3.17. 
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Search I Search C Search F 

1,1 .6276 (2-2-2-2) .6276 (2-2-2-2) .5815 (2) 

~ 
~ 2,2 .6689 (2-2-2-2) .6689 (2-2-2-2) .6142 (2) 

1,1 .6313 (2-2-2-2) .6322 (4-2-2) .5815 (2) 

~ 
1=0 

2,2 .6753 (2-2-2-2) .6753 (2-2-2-2) .6142 (2) 

1,1 .5815 (2) .5815 (2) .5815 (2) 

~ 2,2 .6293 (2-2-2) .6293 (2-2-2) .6142 (2) 

Table 3.22: This table shows the results of the experiments described in subsection 
3.4.2. (second family of feature spaces) when four binary features are considered. 
See also the caption in table 3.17. 
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problem and training set, the classification of an object depends only on the 
number of samples available of the same type. If structure is assumed, this is not 
the case. This implies large computation times and consequently, the experiments 
performed are again limited. Specifically the same cases as in the previous section, 
have been dealt with. The results of the selection are presented in tables 3.20 
through 3.22, where each entry presents the mean recognition accuracy obtained 
and the structure selected. 

3.4.3. Results. 

Looking at tables 3.17 through 3.22, it is clear that search Cis either the best or 
the co-best. If, for the families of spaces defined by two binary features this may 
be considered trivial (in the sense that all possible types of classifiers are tested), 
the same does not hold for other cases. Nevertheless, it is fair to say that the mere 
increase in search space always gave search Can advantage, since the selection 
criterion is not an estimate (and therefore is not affected by sampling variations). 

The better performance of search C is the result of permitting structure changes 
which allowed it to select more structured classifiers when the ratio between 
sample size and number of independent estimates required per classifier was small, 
and less structured classifiers when the ratio increased. 

This theoretical exercise also shows how classifiers assuming incorrect structures 
(more precisely, structures with a small probability of occurrence), may perform 
better than classifiers that assume correct structures (more precisely, structures 
with a large probability of occurrence), but requiring a larger number of estimates. 
In this case, this was due to the use of non-optimal estimation techniques. 

3.5. Search space. 

A search strategy allowing for structure changes, implies an increase in the search 
space and consequently in computer time. Hence it is important to quantify the size 
of the search space 7. Assuming that it is required to select n out of N features, the 
size of the search space is: 

- For a forward search, selecting one feature at each iteration and not 
allowing structure changes 

7 The size of the search space is the number of feature sets and/or structures that 
are tested, when it is required to select n out of N features. 
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S = n N - .5 n2 + .5 n 

- For search strategy C 

Nmin = N + 2 ( (n-1) (N-1)- .5 (n-1)2 + .5 (n-1)) 

Nmax = (N+ 1) (nN- n2f2 + n/2)- ( N (N+ 1) (2N+ 1) .

(N-n) (N-n+1) (2(N-n)+1)) I 6 

(3.16) 

(3.17) 

where S is the size of the search space. In expression 3.17 the lower limit relates 
to the situation where at each step, the full multinomial model is selected. The 
upper limit relates to the situation where at each step, structures of complete 
independence are selected. 

The increase in the search space is indeed significant, especially if the selection 
criterion has to be computed from scratch for every classifier tried (this is the case 
of the error rate). A question has now to be raised: how does this search compare 
with others that adopt a fixed structure, but, at each step, add more than one 
feature and/or allow forward and backward tracking? Briefly, how does search C 
compare with other search strategies that do not allow for structure changes but 
test a comparable number of solutions ? The answer to this question is very 
difficult to give. On the one hand a better result is to be expected from the fixed 
structure search, since combinations of features are tested instead of single 
features. On the other hand, the basic problems associated with fixed structure 
algorithms will generally be magnified. Which one of these effects will prove to be 
dominant is difficult to predict It is nevertheless tempting to suggest that for small 
sample sizes, the second aspect is, most likely, the dominant one. 

3.6. Concluding remarks. 

The results of computer experiments concerning feature selection algorithms using 
various selection criteria and various ways of estimating the parameters of a 
classifier and involving specific feature spaces and families of feature spaces, have 
been presented. To these experiments, can be added those reported by Queiros et 
al. (QUEI84), which are similar to the ones presented here, the main differences 
concerning the selection criterion used (test of the model of independence between 
the random variable representing class membership and the random variable 
representing the candidate feature given the model and structure so far selected; 
this criterion is reviewed in chapter 5) and the fact that more structures were 
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allowed. All the results support the qualitative reasoning given in the first section 
of this chapter. 

Whenever a new feature is selected, it brings with it the requirement that one or 
more parameters will have to be estimated. It may happen that not all these 
parameters are important for discrimination. If nothing is known a-priori about the 
discriminatory ability of some of these parameters, it is important to make a more 
refined analysis of the discriminatory power of a feature. This can be achieved 
with feature selection algorithms incorporating structure selection. 

All the experiments presented and/or referenced here, involved only binary 
features. There are no apparent reasons that may prevent the results to be 
generalized for spaces defined by non-binary features. 

In the examples presented above, the set of admissible structures did not cover all 
possible ones. If the computational burden is manageable (for instance if the 
number of features is small or the selection criterion does not need to be 
recomputed every time), it might be worthwhile to increase the number of 
admissible structures. If this is not the case, then the set has to be restricted and/or 
the selection criterion simplified. 

There is a need for further studies concerning some of the selection criteria used in 
feature selection algorithms. In particular those that are directly or indirectly related 
to the error rate. What is known about some properties of some criteria (e.g. bias), 
is not valid when these criteria are used in an optimization procedure. 
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CHAPTER 4 

INCOMPLETE DATA SETS 

In this chapter, the main topic is incomplete data sets. This subject is analyzed and 
some methods for estimating missing values are presented. Furthermore, the 
results of a simulation experiment are presented. 

4.1. Introduction. 

The design and use of statistical classifiers is sometimes rendered difficult by the 
occurrence of objects with missing data values. That is, the description of some 
objects may not be complete, due to the fact that some of the measurements 
required were not performed or recorded. In other words, some objects may have 
missing values. 

There may be various reasons for the occurrence of missing values in a data set. A 
few examples are: 

- Human forgetfulness to take or record the values. 

- Sudden malfunction of the equipment when the value of a feature is to be 
measured. 

-Deliberate omission (e.g. a patient may refuse to answer a question). 

- The feeling that the most important data is already present, so that the rest 
of the data may be omitted. 

- Urgency to make a decision implying that time consuming measurements 
have to be disregarded. 

If for some causes remedies can and should be found, it is clear that this may not 
be the case for others. Thus, the occurrence of missing values may have to be 
taken into account, both in the design of a classifier, which implies estimation 
from an incomplete training set, as well as when the classifier is applied in 
practice. Throughout this chapter, it will be assumed that missing values occur at 
random. 
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Sections 4.2 and 4.3 are devoted to an analysis of methods that have been 
proposed in order to cope with this problem, starting with the case of a classifier 
applied in practice. Section 4.4 presents some methods of estimating missing 
values and in section 4.5 an experiment is described involving the design of 
classifiers with sets of objects that are incomplete. Finally, section 4.6 contains 
concluding remarks. 

4.2. Classification of an object with missing values. 

Three basic methods have been proposed for the classification of incomplete 
objects. These are indicated with the terms: 'subspace classification', 'estimate and 
replace' and 'delete'. 

In the first method, classification is done in the subspace defined by the features 
that are known for the object under consideration. 

The second method estimates values for the features missing and then proceeds to 
classification as if the object were complete. 

The 'delete' method simply amounts to the refusal to classify. 

From a theoretical point of view, 'subspace classification' is the best approach. In 
the first place, Sebestyen (SEBE62) has proved that when using an optimal 
classifier, no useful purpose can be achieved by estimating and replacing missing 
values, as compared to making the decision in the subspace defmed by those 
features with no missing values. Therefore, at the theoretical level, the first method 
always yields results that are equal or better than those yielded by the second 
method. Secondly, a refusal to classify has to be considered as an error and 
therefore, 'subspace classification' is also theoretically better than the 'delete' 
method. 

In a practical application, 'subspace classification' may cause problems if Bayes 
classifiers are used and continuous features are involved. Complex integrations are 
then required which may prove to be too time consuming to perform (Monte Carlo 
methods may be needed). Solutions for this problem have been proposed that may 
be divided into two groups: 

- Brute force methods that store decision functions for all possible 
combinations of missing values (see HAND74). 

- Use of decision functions that avoid complex integrations either by 
omitting terms (see HAND76) or can be easily modified to cope with 
missing values (see KITT78). 
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Both groups have drawbacks. For the first group, it is sufficient to point out that if 
p features define the complete space, there are 2P - 1 different ways in which one 
or more missing values may occur. If pis large, this leads to an unreasonably 
large number of decision functions to be estimated and saved. As for the second, 
the point has to be raised whether the limitations imposed on the domain of the 
decision functions (so that integrations can be avoided), do or do not lead to a 
classifier that is far from optimal. 

In discrete feature spaces, the practical problem just mentioned does not arise since 
an integration in a continuous space is a summation in a discrete feature space. 

From a theoretical point of view, the 'estimate and replace' technique is equal or 
worse than the 'subspace classification' (as indicated above) but equal or better 
than the 'delete' technique. Given an object with missing values for classification, 
the 'delete' technique always yields an error whereas the use of the 'estimate and 
replace' method may or may not cause an error. 

The problems associated with the 'estimate and replace' approach are directly 
related to the complexity required for the estimators of the missing values. If in 
some cases a very simple technique (e.g. use as an estimate the estimated mean 
value) may not seriously damage the performance, in other situations more 
sophisticated procedures may be required (e.g. an estimate is obtained as a linear 
combination of the values of the known features). In such cases, a considerable 
number of different estimators may be required (e.g. one for every combination of 
missing features) and features not needed for classification may have to be 
measured in order to estimate missing values. 

The major advantage of the 'delete' technique is its speed and simplicity. It is 
particularly attractive if the probability of occurrence of objects with missing 
values is low, since the effects on the classifier error will not be significant. 
However, situations may arise where the method cannot be applied at all (e.g. a 
patient in a critical condition requiring an urgent diagnosis on part of the data 
normally available). 

These are some of the advantages and drawbacks of the three methods mentioned 
above. Depending on the practical circumstances of the problem at hand, either just 
one or combinations of the three, may prove to be the best. 

4.3. Design of a classifier using an incomplete data set. 

The design of a classifier on the basis of a set of labeled objects that contains 
missing values, presents problems that are conceptually different from the case 
introduced in the previous section. In the following, the various techniques 
proposed by various authors are presented and discussed. 
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When the training set contains missing values, the simplest approach is to ignore 
objects and/or features that are incomplete. This is the 'delete' technique, 
analogous to the one mentioned in section 4.2. The advantage of this method is its 
inherent simplicity, its major drawback being the loss of information caused by the 
deletion of objects and/or features. This may be significant if objects and/or 
features have a small percentage of missing values. On the other hand, if a given 
object (or feature) has a large percentage of missing values, the loss of information 
that results from excluding it from further analysis is most likely not significant. 

A second method is the 'estimate and replace'. In spite of the difficulties that may 
be associated with the estimation, the method is also inherently simple since it 
provides data sets that may subsequently be manipulated as if they were complete, 
making them suitable to be analyzed by any available software package that 
assumes the data to be complete. No information is lost but the question has to be 
raised how the errors in the estimates affect the design of a classifier. A definite 
answer cannot be provided but nevertheless, two aspects can be mentioned 
suggesting that these errors may not be significant: 

1 - It is not so uncommon to have data sets with a large number of features, 
some of them correlated. This is particularly relevant with medical data 
bases. 

2 - Objects tend to cluster in terms of their classes. Otherwise, good results 
can not be expected from any classifier. 

If both conditions are met, it can be expected that a reasonable missing value 
estimator will provide good estimates. Nevertheless, if an object (or feature) has a 
large number of missing values, any attempt at estimation is bound to lead to poor 
results. 

For the case of discrete feature spaces, a third technique assumes that missing 
values are a new possible value for the feature in which they occur. This method 
has appealing aspects such as its simplicity and the fact that, at least technically, no 
information is lost nor is the data corrupted. On the other hand, the increase in the 
domain of a feature implies that more parameters need to be estimated. Moreover, 
if a feature is ordered, the order relation is lost with the introduction of the new 
values. Also, there may be strong reasons (e.g. the reduction in the number of 
features) to suggest that the occurrence of missing values may be contrplled and 
consequently the addition of a 'missing' category bears no meaning. 

A fourth technique is to treat the data as it is, i.e. using those values that are 
known and ignoring those that are not. This is only practical in some restricted 
cases because of computational problems among others. 

The first two techniques have been further analyzed and applied. In section 4.5 
simulation experiments are presented that 'quantify' their relative merits in two 
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specific discrimination problems. In chapter 6, they are jointly applied in two 
practical cases. This combination of 'delete' and 'estimate and replace' is appealing 
in view of the following reasons. If a given object (or feature) has a large number 
of missing values, the loss of information that results from its exclusion from 
further analysis is not significant, whereas the estimation of a missing value will 
most probably result in a significant error. Hence the 'delete' technique is a better 
choice. On the other hand, if a given object (or feature) has a small number of 
missing values, then the loss of information is significant if the 'delete' technique 
is applied whereas good estimates may be expected for the values missing. Hence 
the 'estimate and replace' technique is a better choice. Therefore, these two 
techniques combined together can better handle cases where there are both a large 
and a small number of missing values in the data. 

4.4. Estimation of missing values. 

In this section, some methods for the estimation of missing values, required by the 
'estimate and replace' technique, are analyzed. Some modifications for existing 
methods are introduced and a new approach is proposed for the estimation of 
missing values in the case of discrete feature spaces. 

4.4.1. Continuous feature spaces. 

For continuous feature spaces, two methods will be described here: 

1 - The first method uses an iterative procedure. Assuming a set of n objects 
in a p dimensional space and supposing that m objects have no values 
recorded on the first q features, then: 

Step 1 -For the first q features compute the mean values using the 
complete objects and assign them to the missing values. 

Step 2 - Compute the mean vector and covariance matrix using both 
complete and completed objects. Proceed to a multivariate regression 
of the first q variables on the last p-q variables. 

Step 3 - Using the regression coefficients and the mean values 
estimated in the previous step, obtain new estimates for the values 
originally missing. 

Step 4 - If there is no appreciable change or if the maximum number of 
iterations allowed is reached, stop and use the estimates obtained in 
step 3 of the current iteration. Otherwise go to step 2. 
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The assumptions made above do not represent a loss of generality; the 
algorithm may just have to be repeated for other combinations of missing 
values. 

This procedure is the one reported in BEAL75. 

2 - The second method uses a nearest neighbours approach, using a 
Euclidian distance metric. As with all procedures based on a Euclidian 
metric, the data set is first scaled, such that the standard deviations for all 
features are equal. The objects are then processed sequentially. If an object 
(object i) with one or more missing values is encountered, the following 
procedure is activated for each unspecified feature f separately: 

Denoting the subspace spanned by the known features by S and the 
subspace spanned by the known features plus feature f by s+, a search 
inS is made for all objects completely defined ins+. Among these 
objects, the k objects nearest to object i are identifled and the missing 
value of object i is replaced by the average value off calculated from 
the k nearest neighbours. 

This algorithm is a modified version of a method originally introduced by Dixon 
(see DIX079). The modification, introduced in this thesis, consists in the way the 
set of candidate nearest neighbours is formed. In Dixon's case, this set is 
composed of all objects that do not have a missing value in the feature under 
consideration. Hence a heuristic metric was required in order to cope with objects 
that have arbitrary patterns of missing values. This modified version avoids the 
use of the heuristic metric. Also, all information available is used in a way that 
agrees with Sebestyen conclusions (SEBE62). 

4.4.2. Discrete feature spaces. 

In order to estimate missing values in discrete feature spaces, the following new 
technique is proposed. 

Let the vector (xl>x2·····xp) represent an object with known components x2, 
... ,xP., and for which the f1rst component x1 is missing and may take one of I1 
possible values. The proposed technique selects as an estimate for x 1 the value xk1 
for which 

(4.1) 

for all 1 :::;; j :::;; I 1· 
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The justification for this approach is as follows. The estimation of a missing value 
of a discrete feature is equivalent to the assignment of a class label to an object. In 
both cases, a discrete variable representing either a feature or class membership, is 
assigned a value on the basis of other variables. Thus, in discrete feature spaces, 
the estimation of missing values may be treated as a classification problem. From 
general pattern recognition theory, it is known that if xi is selected according to 
rule 4.1, the average probability of error is minimized. Therefore, the proposed 
technique is optimal. 

Rule 4.1 is equivalent to the following rule: 

Choose Xki such that 

(4.2) 

If more than one value is missing in an object, e.g. when features 1, ... , q with I I' 
... , Iq possible values are missing, rules 4.1 and 4.2 take the form: 

Choo~e ~rom all II* ... *Iq possible combinations for XJ> ... , xq that 
combmatlon xkl> ... , Xsq such that: 

(4.3) 

for all1 $j $II, ... , 1 $ r $ Iq, or equivalently: 

(4.4) 

for all 1 $ j $I I' ... , 1 $ r $ Iq. Rules 4.3 and 4.4 amount to the classification into 
one ofii* ... *Iq classes and are also optimal. 

The probabilities in rules 4.1, 4.2, 4.3 and 4.4, are generally not known and have 
to be estimated using a limited number of objects (all or part of the objects 
available in the data set). In particular for rule 4.3, the following assumption of 
independence may have to be made in order to obtain reliable estimates. 
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q 
P (xl, ... ,xqlxq+l, ... ,xp) =II P (xklxq+l, ... ,xp) 

k=1 
(4.5) 

The estimation of x 1, ... ,~g is therefore decomposed in q independent classification 
problems, thereby simplifying the estimation. 

So far the discussion has been general, showing the feasibility and optimal 
properties of the 'classifier-estimator' approach. In the following, two specific 
algorithms are introduced. 

Algorithm 1: The corresponding 'classifier-estimator' follows a Bayes 
approach which assumes that features without missing values are 
independent given a feature where a missing value occurs. The assignment 
of an estimate to a missing value is then done according to rule 4.1. In the 
case of a tie, the most represented value among all the objects in the data set 
is selected. If an object has more than one missing value, each related feature 
is treated independently. For each missing value, the 'classifier-estimator' is 
estimated using all the objects in the data set that do not have a missing value 
in the feature under consideration and which have known values in the 
subspace defined by the features known in the object under consideration. 

Algorithm 2: The corresponding 'classifier-estimator' is a nearest neighbour 
classifier that uses the following metric: the distance between two objects is 
equal to the number of features in which they differ. The estimate for the 
value missing is then the most represented value among the nearest 
neighbours. In the case of a tie, the most represented value among all objects 
in the data set is selected. If an object has more than one missing value, each 
related feature is treated independently. The search for the nearest 
neighbours is done among all the objects in the data set that do not have a 
missing value in the feature under consideration and which have known 
values in the subspace defined by the features known in the object under 
consideration. 

Algorithm 1 corresponds to a parametric design whereas algorithm 2 corresponds 
to a non-parametric design. Since the number of objects generally available may be 
small and the number of features may be large, it was decided to use a simplified 
model for the 'classifier-estimator'. Both algorithms apply Sebestyen conclusions 
(SEBE62): the classification is done within the subspace defined by the features 
known in the object under consideration. 
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4.5. Experiments. 

This section presents a set of experiments that simulate a conventional pattern 
recognition design problem, involving both the design of a classifier and the 
estimation of its error (using the hold-out estimator). They were performed in 
order to quantitatively assess the effects of missing values and to evaluate some of 
the techniques which have been proposed to cope with them. The techniques 
analyzed were the 'delete' and versions of the 'replace and estimate' using the 
estimators described in the previous section. Both a discrete and a continuous 
feature spaces were considered. 

4.5.1. Setup. 

In all simulations a two-class discrimination problem in a four dimensional space 
was considered. The a-priori probabilities of the classes were assumed to be 
known and equal. 

From each of the two distributions, 50 objects were sampled at random. These 
objects were divided in a training and test set of equal sizes. A classifier was then 
designed using the training set and evaluated using the test set. 

Having thus defined and evaluated a classifier for the complete data set, missing 
values were then inserted in the objects, using a pseudo random number generator 
for the selection of the position of missing values in the data matrix. The constraint 
that every object should have at least two features with known values was imposed 
on the process. 

Two incomplete data sets were thus generated, containing 15% and 25% of 
missing values, respectively. The incomplete data sets were then processed, using 
five different approaches: 

DEL - Ignore all objects with missing values in the training and in the test 
sets. 

PARl - Estimate and replace missing values treating the training and the test 
sets separately. For the continuous case, the regression approach technique 
was used; in the discrete data set, the missing values were estimated using 
the Bayes classifier described above; in both cases, the objects were pooled 
from the two classes. 

PAR2- Same as PARl but treating the classes in the training set separately. 

NNl -Estimate and replace missing values using the nearest neighbours 
methods in the continuous and in the discrete spaces. In both cases, the 
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objects from the two classes were pooled, and the training and test sets were 
treated separately. 

NN2- Same as in NN1, but treating the classes in the training set separately. 

Thus, besides the 'delete' method, four different versions of the 'estimate and 
replace' method were defined, differing in the estimator adopted and in whether or 
not classes in the training set were pooled. The training and test sets were always 
treated separately so that the independence between these sets was not 
compromised. 

The data sets thus obtained were then treated as complete sets and classifiers were 
designed and evaluated as for the complete data set, as described above. 

The overall experimental set up was as follows: 

1 - Generate a complete data set (50 times) from the conditional 
distributions. For each complete data set design and evaluate a classifier. 

2 - For each of the 50 data sets, generate the incomplete data sets both with 
15% and with 25% of missing values. 

3 - For each of the incomplete data sets, reconstruct a 'completed' set 
according to the 5 methods described above and design and evaluate a 
classifier. 

The performances of the classifiers designed with the complete data sets and with 
the five versions of the completed data sets, were evaluated on the basis of the 
mean true error. This was estimated as follows. Each time the experiment was 
repeated, the true errors of the classifiers were either computed exactly (discrete 
features) or estimated from a sample containing 1500 objects (continuous 
features). The mean true error was then estimated by taking averages over the 50 
times that the experiment was repeated. 

Wilcoxon's two-sided sign rank test (see, e.g. SIEG76) was then applied to the 
estimated mean true errors in order to test if the differences between them were 
significant or due to chance. 

The effects of missing values on the estimation of the error rate (test set error) was 
evaluated by computing averages of error estimates over the 50 times that the 
experiment was repeated. Standard deviations were also estimated. 
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4.5.2. Continuous features. 

The generating distributions for the two classes were assumed to be Gaussian, 
with mean vectors 

!11 = [ 0.5, 1.0, 1.5, 2.0]T 

!12 = [ 0.6, 1.2, 1.8, 2.4]T 

and with a common covariance matrix: 

L = L1 = L 2 = .004 .002 .002 .oo2 
.002 .004 .002 .002 
.002 .002 .004 .002 
.002 .002 .002 .004 

(4.6) 

(4.7) 

For each data set, maximum likelihood estimates !J,./\1, U./\2 and LA were obtained, 
pooling the objects from both classes in the computation of LA. The following 
decision rule was then applied: 

Assign object 2!, to class 1 if: 

and to class 2 otherwise. 
(4.8) 

This is the Bayes optimal decision rule for normally distributed features when the 
classes have the same covariance matrix and when the a-priori probabilities are 
equal. 

The results of the experiments are presented in tables 4.1 (15% of missing values) 
and 4.2 (25% of missing values). 

The tables are organized as follows. The fist column applies to the complete data 
set, the last columns refer to the five different versions of the completed sets. In 
the first three lines, the values of the mean estimated error, the corresponding 
standard deviation and the mean true error are given. The lower part of the tables 
contain the matrix of Wilcoxon's two-sided rank test probabilities applied to the 
corresponding differences in the values of the mean true error. Since this matrix is 
by definition symmetric, only the lower left part is given. 
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Table 4.1: Results of the simulation experiment described in subsection 4.5.2 
(continuous feature space). The incomplete data sets contained 15% of missing 
values. 
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Table 4.2: Results of the simulation experiment described in subsection 4.5.2 
(continuous feature space). The incomplete data sets contained 25% of missing 
values. 
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As expected, the best classifier was obtained with the complete data set. From the 
Wilcoxon's probability matrix it may be seen that the differences with the 
performances of the classifiers based on the completed data sets were in most 
cases significant. 

Nevertheless, the 'estimate and replace' methods generally yielded classifiers with 
mean true errors closer to the one for the complete set. The 'delete' approach 
always yielded the lowest classifier performance. 

The pooling of classes did not make a significant difference in the case of the 
nearest neighbour estimation. This may be explained as follows. Objects clustered 
in terms of the two classes, also in the sub spaces where the selection of the nearest 
neighbours was done. Therefore, with the nearest neighbours estimation and with 
the classes pooled, the nearest neighbours selected also tended to be objects from 
the same class as the object under consideration. Hence, even with the classes 
pooled it can be said that class information was implicitly used. 

With the regression technique, the pooling of classes did make a difference. 
Paradoxically, the best results were obtained with the classes pooled. The paradox 
stems from the fact that better results were expected with the classes not pooled, 
since estimates are obtained based on a mean vector and a covariance matrix and 
therefore, with the classes pooled only global information is used. The behaviour 
observed may be related to the estimation of the covariance matrices required 
throughout the regression, and the number of objects used (larger with the classes 
pooled) in its estimation. 

Comparing the mean true errors in tables 4.1 and 4.2, it can be concluded, as 
expected, that the performance of a classifier deteriorates with an increase in the 
number of missing values. 

The error estimates as obtained by the hold-out technique, had large standard 
deviations. This may be explained both by the small number of objects used and 
the relatively large true errors of the classifiers. The combination of these two 
factors was particularly important and damaging for the 'delete' technique. 

The mean estimated errors were generally pessimistic when compared to the mean 
actual errors. This may be explained by the following reasons. Firstly, the hold
out estimator is known to be pessimistically biased. Secondly, the mean true errors 
were computed without considering the possibility of occurrence of missing values 
(the true error is larger or equal when missing values occur) whereas in this 
simulation test sets were used that contained missing values. 
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4.5.3. Discrete features. 

For the discrete case, binary features were considered with class definitions such 
that an optimal classification error of 0.1 could be obtained for the full 
dimensionality. The model for the classes was generated in the same way as the 
low structured space (space L) described in chapter 3. Classifiers were designed 
assuming full multinomial models for the probability of an object given its class. 
Maximum likelihood was used to estimate the required parameters. 

The results of this set of experiments are presented in tables 4.3 (15% of missing 
values) and 4.4 (25% of missing values). These tables are organized in a way 
similar to tables 4.1 and 4.2. 

The best classifiers were obtained when all objects were complete, the differences 
being generally significant according to Wilcoxon's test 

The 'delete' technique generally yielded classifiers with the highest mean true error 
with two exceptions, both when there were 15% of missing values and an 
'estimate and replace' technique was used with the data pooled over the two 
classes. 

Among the versions of the 'estimate and replace', the nearest neighbours 
estimators performed worse than their Bayes counterparts. This may be explained 
by the poor metric adopted for the nearest neighbours estimator. 

The pooling of classes always made a significant difference according to 
Wilcoxon's test: better results were obtained with the classes not pooled for both 
classifier-estimators. In what concerns the nearest neighbours estimator, this 
behaviour may be related to the poor metric adopted and the low structure of the 
feature space considered. As for the Bayes classifier, both the low structure of the 
space and the fact that global information is used in the estimation when classes are 
pooled, may explain the differences found. 

The overall best method to deal with missing values was the version that uses a 
Bayes classifier and applies it separately per class (the results of Wilcoxon's test 
suggest that the differences found between this and the other methods, were 
significant). 

Comparing the mean true errors in tables 4.3 and 4.4, it can be concluded that the 
performance of a classifier deteriorates with an increase in the number of missing 
values. 

The standard deviations and mean estimated errors showed a behaviour similar to 
the case of the continuous features. The discussion presented above also applies 
here. 
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Table 4.3: Results of the simulation experiment described in subsection 4.5.3 
(discrete feature space). The incomplete data sets contained 15% of missing 
values. 
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Table 4.4: Results of the simulation experiment described in subsection 4.5.3 
(discrete feature space). The incomplete data sets contained 25% of missing 
values. 
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4.6. Concluding remarks. 

An analysis has been presented of methods to cope with the occurrence of missing 
values in the design and application of statistical classifiers. Several techniques 
were introduced for the estimation of missing values which were used in an 
experiment that compared the 'estimate and replace' and the 'delete' methods, in 
the design of classifiers. A new approach has been presented for the estimation of 
missing values in discrete feature spaces. 

In terms of the performance of classifiers, the simulation study has shown that 
missing values are a nuisance and that every effort should be directed at their 
elimination. Both in terms of classifiers and of error estimates, the performance 
decreased with an increase in the percentage of missing values. 

The simulation study has also shown that the 'estimate and replace' techniques 
were able to cope with the occurrence of missing values showing that the errors in 
the estimation may be manageable as compared to an outright disregard of 
incomplete objects and/or features. Nevertheless, if a data set has objects (or 
features) with large percentages of missing values and objects (or features) with 
small percentages of missing values, a combination of 'delete' and 'estimate and 
replace' is appealing as explained in section 4.3. 

If a selection has to be made among the 'estimate and replace' versions used, the 
results of the simulation presented in the previous section may be used in spite of 
the drawback that it was a limited set of experiments. For the discrete feature 
space, the Bayes classifier applied without pooling the classes was the best 
approach and therefore is the one selected. For continuous features, the selection is 
the nearest neighbour approach with the classes not pooled. The results of the 
simulation are not sufficiently clear in order to justify this selection. Two other 
reasons should be given. Firstly, the way the regression and the nearest 
neighbours algorithms were implemented, allows the information available to be 
used more efficiently by the nearest neighbours estimator. Secondly, class 
membership information has to be used in situations like the one presented in fig. 
4.1 (showing objects from two classes in a two dimensional space). 

Finally, given an incomplete data set, it may appear attractive to concentrate 
incomplete objects either in the training set or in the test set. This approach is to be 
avoided since either the selection of classifier or the estimation of its error is 
compromised, and the rule of random partitioning is broken. 
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-79-





CHAPTER 5 

REVIEW OF TECHNIQUES 

In this chapter, procedures and techniques for pattern recognition with discrete 
and/or mixed data types, are reviewed and discussed. The subjects discussed 
include classifiers as well as procedures normally required in the design of a 
pattern recognition system, such as feature selection, error estimation and mapping 
techniques. 

5.1. Introduction. 

The methods described hereafter are applicable to situations where one or more of 
the features used in discrimination are of a discrete nature. A discrete feature is one 
that assumes only a finite number of values. 

The aims this chapter tries to achieve, are, on the one hand, to provide a review 
and compilation of methods, and, on the other hand, to present the procedures 
applied in the analysis of two medical data sets. The results of this analysis are 
presented in chapter 6 of this thesis. This review is by no means complete. Further 
details will have to be found in the literature duly referenced. 

The organization of this chapter is as follows. Section 5.2 deals with classifiers. 
Some of these can only be applied with discrete or discretized features, whereas 
others can cope with mixed data types (i.e. mixtures of discrete and continuous 
features). Section 5.3 is dedicated to the presentation of feature selection 
procedures. It is, in a way, an extension of the material of chapter 3 with an 
emphasis on the selection criteria. Section 5.4 presents a technique for mapping, 
i.e. correspondence analysis. Section 5.5 treats error estimation. Finally, section 
5.6 presents concluding remarks. 

5.2. Classifiers. 

Assuming a Bayes framework, the selection of a classifier is translated into the 
selection of a suitable model (or models) to represent the underlying probabilities 
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of interest 1, and the subsequent estimation of the parameters that define the 
model. Therefore, in a Bayes framework, in this review models are discussed that 
have been proposed in the literature for discrete and/or mixed feature spaces. As it 
will become clear, Bayes classifiers will occupy us mostly. Nevertheless, other 
types will be du1y referenced. 

5.2.1. Basic models. 

An object described by p discrete random variables x· (variable Xj assuming Ij 
values), can assume one of l1 *l2*··· *Ip distinct realizations. Assuming two 
classes, w1 and w2, a Bayes classifier is defined as: 

Choose w2 otherwise. 
(5.1) 

A simple model for the conditional probabilities P(x1, ... ,xplwi), is the full 
multinomial. Under this model, the probability of an element of the feature space 
(an element is one of the possible realizations an object can assume) given its 
class, is assumed to be independent of the probabilities of all the other elements in 
the feature space, the only restriction being that their sum be equal to 1. In other 
words, Prob(x1, ... ,xl?lwi) is a function of I1*I2* ... *lp-1 independent variables 
(where each variable IS the probability of occurrence of an element). This model is 
called a non-structured modeL 

With a classifier based on such model, all possible interactions between variables, 
whether or not relevant for classification, are accounted for. However, such a 
classifier requires the estimation of I 1 *l2* ... *Ip-1 parameters. 

The large number of parameters that is required, and the resu1ting estimation errors 
leading to either large classifier design errors or large training sets if those errors 
are to be contained, suggest the assumption of relations of independence between 
sets of features or conditional independence given combinations of features. This 
reduces the number of parameters to be estimated. Introducing this kind of 
assumptions is equivalent to giving more structure to the modeL The 'most' 
structured model is the one that assumes all features to be independent given the 
class: 

1 By probabilities of interest it is meant either the a-posteriori probability of a class 
given a set of measurements, or the joint probability of class and object, or finally, 
the conditional probability of an object, given its class. 
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(5.2) 

for class w1, and similarly for class w2. It can be easily seen, that in this case, a 
total of (11-l)+ ... +(lp-1) parameters needs to be estimated. 

Between the complete independence and the full multinomial, there is a whole 
range of structured models, corresponding to independence between sets of 
features and/or conditional independence given certain combinations of features. 
There are also cases that cannot be expressed in terms of relations of independence 
and which will be more conveniently introduced as a loglinear model (see next 
subsection). 

The large number of models that can be constructed assuming different relations of 
independence, provide a largely flexible way of constructing decision functions. 
This ability together with readily obtained estimates (both maximum likelihood and 
Bayesian estimates were already introduced in chapter 3), makes the basic models 
attractive. 

However, they can only be applied to discrete or discretized feature spaces. The 
latter develop if some of the features are continuous variables, in which case their 
range is divided into a finite number of intervals and the probabilities in each 
interval estimated, implying a loss of information. Moreover, order relations in 
ordered discrete features or discretized continuous features are lost Order relations 
are important because they can be seen as constraints, with direct implications on 
the estimation of parameters. 

So far, only conditional probabilities have been considered. However, this set of 
models can also be applied to joint probabilities of class and object, provided that 
class membership is not assumed independent of any feature (the assumption of 
independence between the variable expressing class membership and a feature is 
equivalent to the assumption that the feature has no discriminatory power and 
therefore is useless). 

5.2.2. Loglinear models. 

Instead of probabilities, their logarithms can also be considered. Following Bishop 
(BISH75), the logarithm can be decomposed as: 

p j 

ln P(x1, ... ,xplwi) = <Xo(wi) + 2: <Xx/wi) + 
j=l 
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j,k l, .. ,p 
+ k axj,xkCwi) + ··· + axl, ... ,xpCwi) 

j<k 

where the various a's satisfy the following relations: 

I· J 
= k 

Xj=l 

j,k 
axj,xk (wi) 

Ik j,k 
= k axj,xk (wi) 
Xk=l 

(5.3) 

... =0 

(5.4) 

and represent the effects of the various features and interactions between features 
on the logarithm of the probability. The superscripts denote the features involved 
and the subscripts denote the values assumed by the features involved. The 
dependence on wi indicates dependence on the class. The term a 0 is called the 

overall mean, the terms wxj are called the main effects, the terms w,kxj,xk the first 

order effects (interactions), the terms ~,k\ · xk xl the second order effects 
(interactions), etc .. This representation is called' the log-linear model. If all 
possible a's are assumed different from zero, then the model is called saturated 
(BISH7 5) and it is equivalent to the full multinomial. 

A Bayes classifier can be easily derived (two classes, w1 and w2, are assumed). 

Decide for w 1 if 

p j j 

ln (P(w1))- ln (P(w2)) + ao(w1)- ao(w2) + k (axjCwi)- axjCw2)) + 
j=l 

j,k j,k l, ... ,p l, ... ,p 
k (axj,xk(wl)- axj,xkCw2)) + ··· + axl, ... ,xp(WI) - axl, ... ,xpCw2) 2:: 0 

j<k 

Decide for class w2 otherwise. 
(5.5) 
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Structured models can also be expressed by the so called (BISH75) non-saturated 

hierarchical models 2 in which some of the a's are assumed to be equal to zero. 
For example, 

p j 

In P(x1, ... ,xplwi) = ao(wi) + L, axj(wi) 
j=l 

(5.6) 

In this case, only the main effects are non-zero. This model corresponds to the 
case of independence of the features given the class. The corresponding classifier 
is easily established. 

There are cases where a log-linear model cannot be interpreted in terms of 
independence (this also applies to the basic model). For instance, in a space 
defined by 3 features in which the second order interaction term is assumed to be 
zero, a given probability cannot be expressed in terms of the product of the 
marginals probabilities (BISH75 sets the conditions where these cases occur; 
further back, BIRC63 also discusses these points). In such cases, the maximum 
likelihood estimates have to be obtained by a special iterative algorithm known as 
the Deming-Stephen algorithm (see BISH75 and FINB70). This algorithm is able 
to obtain maximum likelihood estimates in the first iteration when the probabilities 
can be expressed in terms of the products of the marginal probabilities. 

Summarizing, for every basic model there is a corresponding log-linear model. 
This is a one to one correspondence. The differences between the standardized 
coefficients a for the different classes, are directly related to the discriminating 
power. 

Finally, if a suitable modification is introduced in the model, order relations can be 
taken into account (see EVER77). In this case, the one to one correspondence 
mentioned above is broken. As with the basic models, continuous feature must be 
discretized before the model can be applied. However, if the model handles order 
relations, implicit in continuous features, then at least this aspect is kept. 

2 A model is hierarchical if the following rule applies: given an a with superscript 

S that is assumed to be different from zero, every a for which the superscript is 
contained in S is also assumed to be non-zero .. 
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5.2.3. Logistic model. 

Somewhat unusual in a Bayes probabilistic context, the logistic model is applied 
directly to the a-posteriori probabilities of a class given an object. This model has 
been thoroughly studied by Anderson (see ANDE72, ANDE74, ANDE79, 
ANDE82). An earlier reference is DAY67. More recently Lesaffre has also 
analyzed several aspects of the model (LESA86). 

Assuming 2 classes the logistic form of the posteriori probabilities is (see 
ANDE72) 

Prob (wliK) = exp (~o + ,aTK) I (1 + exp (~o +aT~)) 

Prob (w2IK) = 1 I (1 + exp (~o +,aT~) 
(5.7) 

Since a-posteriori class probabilities are used, the decision function is immediate 
and involves only the computation of a linear function. 

In a k class problem, the logistic form for the a-posteriori probabilities are 

k-1 
Prob (wiiK) = exp (~o(wi) + ,aT(wi)K) I (1 +I exp (~o(w8) + .J2T(w8)~)) 

s=1 

for 1 :::; i :::; k - 1, and 

k-1 
Prob (wkiK) = 1 I (1 +I exp (~o(w8) + ,aT(w8)K)) 

s=1 
(5.8) 

In order to fully explain the meaning of these expressions, both the meaning of x 
as well as that of the ,a, have to be analyzed. 

Following the usual notation, the symbol x indicates a vector representing an 
object, whereas the symbol.ll is a vector indicating the coefficients (parameters) of 
the distribution. Let the features be binary and coded as either 0 or 1. According to 
the formulation of the logistic model presented in ANDE72, both .ll and x are p*1 
vectors, where p is the number of features. Each element in x represents a variable 

and each element in a is associated with a variable. 
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In order to cope with variables assuming more than two values, two situations 
may be distinguished: 

- if the variable is an ordered variable, it may be represented in x and U by 
one element. 

- if the variable is categorical, in order to remove the ordering implied by the 
model, it must be replaced by Ir 1 dummy binary variables, where Ij is the 
number of different values the original variable may assume. 

This clarifies the remark above about the effect of an order relationship: it reduces 
the number of parameters required by the model, resulting in more robust 
estimates. 

The logistic model shown in expressions 5.7 and 5.8, includes distributions such 
as multivariate discrete distributions following a log-linear model with equal (not 
necessarily zero) interactions between variables. In other words, it is equivalent to 
a Bayes classifier where the basic model is applied assuming the features to be 
independent given the class. 

The model can be further extended by introducing relations between variables. In 
the so-called quadratic logistic discrimination (see ANDE82), first order 
interactions between variables are introduced. In the model above and for binary 
discrete variables, this amounts to code a vector x with p (representing the main 
effects of the variables) plus p*(p+ 1)/2 elements (representing interactions 
between variables). That is 

(5.9) 

where Xi is coded as one or zero. Correspondingly, ji is a vector of the same 
dimension, where each element represents the contribution of a main effect or an 
interaction. In this case, the logistic model includes models such as the log-linear 
model with unequal main effect and first order interactions and equal (not 
necessarily zero) higher order interactions. 

Clearly, more complex models involving higher order interactions may be 
similarly constructed. More complex models also involve more parameters to 
estimate. With respect to this, Lesaffre (LESA86) has shown the importance of 
deciding upon the optimal base class (that is class wk above) since there may exist 
one such class, for which the number of parameters required is minimal. 

The discussion so far has concentrated on discrete variables. The logistic model 
can also be applied with continuous variables. If all features are continuous, the 
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logistic model may include distributions such as multivariate normal distributions 
with equal covariance matrices (in this case each feature is represented by one 
element in 2£.). The quadratic logistic model may also include multivariate normal 
distributions with unequal covariance matrices. Naturally, joint distributions of 
continuous and discrete variables following the distributions referenced above, can 
also be modeled in the logistic form. 

Anderson (ANDE72) developed maximum likelihood estimators for the parameters 
of the logistic model, in case of mixture sampling (i.e. sampling from the universe 
of objects), separate sampling (i.e. sampling per class) and conditional sampling 
(i.e. sampling at an object). Questions arise when considering separate sampling 
with continuous variables (see ANDE82). In order to obtain maximum likelihood 
estimates, Anderson (ANDE72) proposed an iterative procedure based on the 
Newton-Raphson procedure (quasi-Newton procedures have also been proposed). 
Our own experience with the Newton-Raphson approach suggests that 
convergence is obtained in a few iteration steps. Nevertheless, there are cases 
where the algorithm does not converge, or, more precisely, where the maximum 
likelihood estimate occurs at infinity. Anderson identified these cases as being 
those of complete separation between the training objects from different classes 
(ANDE72), and those of zero marginal proportions (ANDE74). 

Summarizing, logistic models appear to be quite powerful. They can handle 
continuous and discrete variables and are able to model a wide range of 
distributions. Specifically, for every logistic model, there is an equivalent log
linear model which includes all interactions and main effects included in the 
logistic model, plus all other implied lower order terms. Possibly, the major 
deficiencies of this model, arise in the estimation of its parameters. The iterative 
nature of the method proposed and two cases where the maxima are at infinity 
have already been observed. It should be added, that the use of the Newton
Raphson procedure requires the inversion of a ((k-l)*(p+l))*((k-l)*(p+l)) 
matrix 3, and this for the case where only main effects are taken into account. 

5.2.4. Probit model. 

Mathematically, the probit model is very similar to the logistic model. It also 
models directly a-posteriori probability distributions and the rationale for the model 
may be put as follows (see TALL75, ALBE81, ALBE81). 

Consider a discrimination problem which involves two classes. Further, let y be a 
variable which takes values in a continuous interval, and is a function of ~ 
(y=fW ). Each value of y may be thought of as a measurement in a scale, on which 

3 k is the number of classes and p is the number of features. 

- 88-



every object (represented by ~.) in the feature space can be plotted. If the two 
classes represent two quantitatively but not qualitatively distinct groups (see 
ALBE81), a possible defmition of these classes in terms ofy, is 

Class w1 =set of all x such that y = f(x):::;; z 

Class w2 = set of all x such that y = f(x) > z 
(5.10) 

As an illustration, consider the following example. Let an object be a student in a 
given school. Each student is described by the marks obtained. The variable y 
represents the performance in some way expressed in terms of the marks. The 
definition of two classes, i.e. good and bad students, amounts to the selection of a 
threshold z on the scale of y. 

The posteriori probabilities of a class given an object are: 

Prob(w11~ = Prob(y::;zJ~ 

Prob(w2l~ = Prob(y>zl~ 

and the decision function follows immediately. 

(5.11) 

To complete the definition of the pro bit model, it remains to define the function f 
and distribution of y given x. In the pro bit model, y is a linear combination of the 
elements of x: 

where 

(5.12) 

and the distribution of y given x is the normal distribution: 

(5.13) 

This model is applicable to both continuous and/or discrete features and maximum 
likelihood estimates have been obtained both for the cases of sampling from the 
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mixture and separate sampling. In both cases, Newton-Raphson procedures are 
required. 

Since (see ALBE81) 

exp(1.6*t) I (1 + exp(1.6*t)) 
(5.14) 

is a good approximation to <!>(t), the probit and logistic models lead to numerically 
closely related functions. · 

Finally, to our knowledge, there are no extensions yet of the probit model, to 
enable it to be applied in cases involving discrimination between more than two 
classes. 

5.2.5. Location model. 

The location model, is applicable in discrimination problems involving both 
continuous and discrete features. In a traditional framework, the model is applied 
to conditional probabilities given the class. 

Let an object be described by p features, the first m being continuous variables and 
the remaining p-ro being discrete variables. The probability of an object given its 
class, can then be decomposed as 

where 

(5.15) 

Prob(Kc;IX<I,Wi) is a multivariate probability conditional on both the class and the 
element of the feature space as defined by the values assumed by the discrete 
features. The location model assumes that the Prob(Kc;IX<I,Wi) is a multivariate 
gaussian probability density function, with the same covariance matrix for each 
class and every combination of the discrete features, and mean dependent on the 
class and the values of the continuous and the discrete features. As for 
Prob(Kdlwi), the basic model is assumed. The location model is presented in 
KRZA75, KRZA79 and KRZA80, where only binary discrete variables are 
assumed. · 
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Assuming for the time being that a full multinomial is considered for the discrete 
features and that there are only binary discrete features coded as 0 or 1, the mean 
vector for class wi is expressed as 

p i p p i 

lli = Yi + .E a~xj + .E .E Jij,kxjxk + ... 
j=m+l m<j<k 

···· + :¥m+l, .... p Xm+l ··· Xp 
(5.16) 

The vectors ~ij (dimension m*1) relate to main effects, the vectors J3_ij,k 
(dimension m*1) to first order interactions, and so on. The vector Yi is the mean 
vector taking only into consideration the continuous features. The overall mean 
given values for the discrete features lli.i), can be obtained just by inserting the 
values of the discrete variables. 

If models other than the multinomial are assumed for the discrete features, then the 
terms accounting for interactions that are not needed, are dropped from the 
expression above. Specifically, if the discrete features are assumed to be 
independent, then the last expression reduces to 

p i 
11. =v· +.E a·x· -""1 -1 --'j J 

j=m+l 
(5.17) 

Expressions for the estimation of the means and the pooled covariance matrix of 
Prob(~IKct,Wi) can be found in, e.g. KRZA75. They involve the inversion of a 
matrix which can be large (its dimension depends on the number of discrete 
features and the complexity of the model assumed for the discrete space). 
However, an iterative procedure is not required. For the estimation of Prob(Ectlwi), 
the techniques developed for the basic models apply. 

The location model can be heavy in the sense that it may require a large number of 
estimates. Furthermore, if marginal probabilities have a zero maximum likelihood 
estimate, problems will arise in the estimation of the model parameters (the matrix 
which is to be inverted is singular whenever this situation occurs). 

The location model can be easily extended in order to cope with variables 
assuming more than two values. If such a variable is not ordered, dummy binary 
variables can be used and the model applied directly. If a variable is ordered, the 
definition of dummy variables is not needed and the order relation may be kept 
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5.2.6. Other models. 

The number of models which can be found in the literature, is not limited to the 
ones just presented. For completeness, some other models as well as other 
classification schemes, not necessarily based on Bayesian approaches, are briefly 
introduced here. 

Hills (HILL67) proposed a nearest neighbours approach. Essentially, a distance 
metric suitable for a discrete feature space is used (the distance between two 
objects is equal to the number of features in which they differ). Due to the intrinsic 
differences between continuous and discrete feature spaces, the decision function 
has to be suitably adapted. Specifically, the concept of nearest neighbour has to be 
modified. A neighbour region has to be defined and the set of objects within the 
neighbour region is the neighbour set. The decision function takes into account the 
number of objects from each class in the neighbour set, possibly weighted by the 
total number of objects per class in the reference set. Also, other distance metrics 
can be defined, that more or less can take into account order relations if ordered 
discrete features are used. 

Extensions of the Parzen's estimators to discrete feature spaces can also be found 
in the literature. Aitchison et al. (AITC76) present the method and propose a kernel 
of the form 

k(y.ix,A) = )J>-d(x,J0 (1-A)d(x,.Y) for 0.5 ~A~ 1 
(5.18) 

where A is a smoothing parameter, pis the dimension of the feature space, and 
d(xs.) is the distance between x and y_. The distance is the same as used in 
HILL67. 

Habbema et al. (HABB78) have applied the variable kernel method. The authors 
introduced several kernels suitable for discrete (either ordered or non ordered) and 
continuous variables. This makes the variable kernel approach applicable to mixed 
data types. 

Orthogonal expansions have also been used. Martin et al. (MART72) developed a 
model for multinomial distributions, on a space defined by a set of binary features, 
where the conditional probabilities are of the form 

Prob (Kiwj) = Prob W (1 + h<£wi,K)) 
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h(~wi,x) = :E aj <l>j(~) 
j 

<l>oW=1 <!>iCE)= 2xi -1 for i = 1, ... ,p 

s 
<l>.ct(~.) =IT <l>yj(.E) 1. = (''fi, ... ,y2) for s = 2, ... ,p and Ys £ [1, ... ,p] 

j=l 
(5.19) 

where the <l>j form a set of orthogonal polynomials and the .l!wi,j are coefficients 
specific to a given class. In a Bayesian context, and for a k class discrimination 
problem, the decision function is 

where 

(5.20) 

The polynomial hC.l!wi,x) is a least square approximation to (Prob(wiiE)!Prob(wi) -
1). Depending on the number of terms retained in hC.l!wi,X), full or reduced models 
can be adopted. 

Ott et al. (OTT76) have also estimated probability functions by using an 
orthogonal expansion. The set of orthogonal functions adopted was 

(5.21) 

where E' is the transpose of .E (coded with O's and 1's) and I is a binary index that 
numbers all the different objects in the feature space. The parameters of the 
expansion are computed according to a mean least square criterion. Again, terms 
may or may not be deleted from the expansion. 

Bahadur (BAHA61) has also a contribution to the modelization of discrete 
probability spaces. Assuming a feature space defined by a set of binary features 
(coded as 1 or 0), Bahadur's model expresses a conditional probability distribution 
in the form 
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where, dropping the class indicator, 

f(:lS) = 1 + ~ rijZiZj + ~ rijkZiZjZk + ... + rl...pz1 ... Zp 
i<j i<j<k 

p . . 
f1 (20 =II Prob(xi = 1)X1 (1 - Prob(xi = 1))1-xi 

i==l 

and 

zi =(xi- Prob(xi = 1)) I-/ (Prob(xi = 1) (1 - Prob(xi = 1))) 

r··- E (z·z·) 1]- 1 J 
(5.22) 

and the symbol E indicates expectation. As in previous models, parcels in f(:lS) may 
be assumed to be zero, i.e. high order correlations may be assumed to be zero. In 
practical cases and with a limited number of training objects, this is what should be 
done. Possibly, the appeal of this reparametrization, was the ability to represent 
multinomial distributions in terms of means, correlations, etc .. However, this may 
result in negative estimates of probability. 

Chow et al. (CHOW68) proposed the modelling of a discrete probability 
distribution by means of a product approximation in which only dependencies of a 
variable on another one are used. Specifically 

Prob(:lS) =IT Prob (xmi I Xmj(i)) 
i==l 

O:::;;j(i):::;;i 

(5.23) 

where (m1, ... ,mp) is an unknown permutation of the integers 1, .... ,p. This is a 
special case of the basic model presented above. Also, only p-1 (of a total of p* (p-
1)/2) dependencies between the p variables are considered. The contribution of 
Chow is a method to select the most suitable set of dependencies. 

The methods just presented may be grouped as follows. Firstly, methods which 
have their counterparts in continuous spaces (e.g. kernel and nearest neighbours), 
and therefore can be thought of as extensions of methods developed for 
continuous spaces. Secondly, methods which are finite series expansions of the 
multinomial space (Bahadur, Martin, Ott). Thirdly, procedures which are 
optimization techniques to select a convenient model among those offered by the 
basic model (Chow). If a fourth group is added comprising the methods presented 
in previous sections, a classification is established which covers the lines of action 
of the work on discrete/mixed classifiers. Missing from this classification scheme, 
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are the work of, e.g. Nakache (NAKA80), based on correspondence analysis, 
Young et al. (YOUN81), with the A distribution, Dillon et al. (DILL78), with the 
distributional distance, Stoffel (STOF74), with the prime event theory, Gieser 
(GLES72) with sequential decision trees, and possibly others. 

Finally, and at the level of application, examples can be found where the specific 
nature of discrete features was simply ignored. Procedures developed for 
continuous features (e.g. Fisher's linear discriminant) are sometimes used without 
any explicit adaptation, provided that 'unreasonable' things do not occur (e.g. 
divisions by zero). 

5.2.7. Sampling experiments. 

In this section some sampling studies are presented where several classification 
procedures were compared. 

Gilbert (GILB68) tested five types of classifiers: 

1 - A Bayes classifier based on a full multinomial model, with parameters 
estimated by maximum likelihood. 

2- Similar to 1) but with the features assumed to be independent given the 
class. 

3 - Linear logistic model with maximum likelihood estimates of the 
parameters. 

4- Similar to 3) but with minimum chi-square estimates. 

5 - Fisher's linear discriminant. 

All classifiers except classifier 1, are or may be put into the form of linear 
procedures in the variables. Several populations were used, all of them defined by 
6 binary features, and arising from a model where only main effects and first order 
interactions were assumed. All experiments involved discrimination between two 
classes. The various classifiers were compared based on their actual error rate and 
the mean correlation coefficient (see GILB68 for a definition of the correlation 
coefficient). For each population (15 in total), 100 data sets with 100 objects and 
100 data sets with 500 objects, were generated. In view of the structure chosen for 
the populations, the sample size and the number of parameters required by the 
various classifiers, a similar behaviour of the four linear procedures was found. 
All of these were superior to the full multinomial approach. 

Moore (MOOR73) has also evaluated five discrimination techniques. They were: 
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1 - A Bayes classifier based on a full multinomial model, with parameters 
estimated by maximum likelihood. 

2 - Classifier based on a first order Bahadur modeL 

3 - Classifier based on a second order Bahadur modeL 

4 - Quadratic classifier. 

5- Fisher's linear discriminant. 

Classifiers 2 and 5 are linear procedures in the variables. Classifiers 4 and 5 are 
suited for continuous feature spaces. Populations defined by six binary variables 
were used. However, and differently from Gilbert (GILB68), Bahadur models 
were used in order to generate the populations under study. Three population 
groups were considered: independence between features (group I), only one 
nonzero correlation coefficient (group II), and all correlations positive (group III). 
As in GILB68, the criteria to compare performances, were the actual error and the 
correlation coefficient. In group I classifiers 2 and 5 performed better and the 
worst was the full multinomial. For group II, the relative performances remained 
similar, whereas in group III, the second order Bahadur model performed better. 

Dillon et al. (DILL78, GOLD78) also undertook a simulation study which is 
similar to the studies just presented. Again feature spaces defined by 6 binary 
variables and with two classes were considered. A Bahadur second order 
approximation was used to model the populations under simulation. Three 
population groups were considered. Group I is similar to Moore's group il (only 
one correlation in one class is assumed to be different from zero). Group il and Ill 
were similar to Moore's group ill (group II is the case where correlations are 
different in the two classes, whereas in group ill the correlations are the same in 
both classes). The classifiers tested were: 

1 - A Bayes classifier based on a full multinomial model, with parameters 
estimated by maximum likelihood. 

2- Similar to 1) but with the features assumed to be independent given the 
class. 

3 - Fisher's linear discriminant 

4- A classifier based on the distributional distance (see DILL78). 

5 - A classifier based on a first order Bahadur model. 

6- A complete model of the Martin-Bradley expansion. 
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7 -A model based on the Martin-Bradley expansion but taking only main 
effects into account. 

8- A model based on the Martin-Bradley expansion taking into account main 
effects and first order interactions. 

With sample sizes of 200 and 400 (100 trials) their conclusions were as follows. 
For group I, the linear procedures were comparatively better except for large 
values of the correlation coefficient and larger sample sizes. This pattern was the 
same for group II, and group III. 

In Schmitz et al (SCHM83), another simulation study of four classification 
procedures is presented. They are: 

1 - Fisher's discriminant. 

2 - Quadratic discriminant. 

3 - Classifier based on the linear logistic modeL 

4 - Classifier based on the kernel modeL 

Several feature spaces defined by three discrete features and one continuous 
feature were used. The data was generated from several four dimensional gaussian 
distributions (with various mean vectors and different covariance structures) 
followed by discretization of three features. As a result, feature vectors were 
obtained composed of one continuous variable, an (assumed) ordered discrete 
feature (4 categories), a (assumed) non-ordered discrete feature (3 categories) and 
a binary feature. All experiments involved discrimination between two classes. 
The various classifiers were compared by means of a rank-order analysis of four 
performance measure: the error rate, the quadratic scoring rule, the modified 
logarithmic scoring rule and a doubt-based scoring rule (see SCHM83). These 
performance measures were estimated using test sets independent of the training 
sets and with the same number of objects. With sample sizes of 50 objects per 
class (16 trials for 45 different spaces) and 100 objects per class (9 trials for 36 
different spaces) their conclusions were as follows. There were small differences 
in performance between training sample sizes of 50 and 100. The major factor in 
deviation from an overall average performance was the covariance structure. The 
linear discriminants (1 and 3 above) had similar performance. With unequal 
covariance structure the kernel method was the best and the linear discriminators 
were the worst. This ranking was reversed in the case of equal covariance 
structures. 

Schmitz et al (SCHM85) undertook another simulation study offive classification 
procedures. They were: 

1 - Fisher's discriminant. 
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2 - Quadratic discriminant. 

3- Classifier based on the linear logistic model. 

4 - Classifier based on the kernel model. 

5 - Classifier based on an independence model. 

As in SCHM83, mixed data was considered. Several feature spaces defined by 
three binary features and three continuous feature were used. The data was 
generated according to the location model. Several correlation structures, various 
distances between classes and interactions between the binary variables were 
selected, yielding various feature spaces. All experiments involved discrimination 
between two classes. The various classifiers were compared by means of two 
performance measures: the error rate and the modified logarithmic scoring rule. 
These performance measures were estimated using test sets independent of the 
training sets and with either 200 or 500 objects per class. Training set sizes of 500 
objects per class, 100 objects per class, 25 objects per class and 25 objects for one 
class and 100 for the other class, were used. Their conclusions were as follows. 
When the variables are independently distributed, the linear classifiers (1, 3 and 5 
above) have similar performance and perform better than the non-linear 
procedures. For equal interaction structures and absence of non-linearities 
(induced by the conditional distribution of the continuous variables), classifiers 1 
and 3 were the best. For non-linearities the non-linear procedures (2 and 4) 
performed better. The performance of classifiers 2 and 4 was more dependent on 
the size of the training set. 

These experiments mainly show the importance of the relation between the size of 
the training sample, the complexity (number of parameters for which estimates are 
required) of the classifier adopted, and the structure of the feature space under 
consideration. Classifiers did not behave better because they were, e.g. basic 
model classifiers or Bahadur classifiers, but because they were linear when the 
sample size was small, or took into account a sufficient number of higher order 
interactions between features, when the training sample was larger and differences 
in these interactions among the various classes were significant. 

5.2.8. Remarks. 

The material just presented indicates the large variety of classifiers that can be 
found in the literature. Among the various methods presented, a justification is 
given for the three models which were applied in chapter 6. These models were 
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thoroughly discussed in the previous subsections 4_ This justification will proceed 
through various steps. 

Firstly, Bayes classifiers were selected. This stems directly from the fact that at the 
theoretical level in a statistical framework, they are optimum. 

Secondly, parametric classifiers were preferred to non-parametric classifiers. 
There are two reasons for this. Generally, and in 'real' life, the size of training 
samples is small. Secondly, some of the parametric models selected also give very 
flexible ways to model the feature space. 

Thirdly, some of the models originate from a set of hypotheses which induce at 
least curiosity in their use. 

These are a set of basic reasons which are satisfied in total or in part by the models 
selected. In the following each of the classifiers selected is briefly recalled. 

The basic model (or its log-linear version) is simple, naive, and yet powerful, and 
estimates are easily obtained. 

The logistic model has the very interesting aspect of dealing directly with a
posteriori distributions. It can cope with mixed data types in contrast to the basic 
model. 

The location model was mainly selected for its ability to deal with mixed data 
types, and its naive approach: it separates discrete from continuous features. 

Finally, it should be remarked that some of the models yield equivalent 
discriminants. 

5.3. Feature selection techniques. 

Feature selection, in discrete or in continuous feature spaces, is basically the same. 
In both spaces, feature selection algorithms require the choice of a search strategy, 
a selection criterion and a stopping criterion. 

Differences between comparable strategies in continuous and discrete feature 
spaces are mainly of a computational nature. In other words, in discrete feature 
spaces there is the possibility to apply strategies that would be impractical in a 
continuous feature space due to difficulties in computing the selection criteria in a 

4 Although the probit model was also thoroughly discussed, it was not used 
because of its similarities with the logistic model. 
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continuous feature space, e.g. a summation in a discrete feature space is an 
integration in a continuous feature space. 

Selection criteria have to take into account the nature of the discrete space (i.e. if 
they involve probability functions, then these have to be modeled by discrete 
probability functions). This also applies to the stopping criteria. Exceptions to this 
are the heuristic criteria. 

Following a pattern similar to the previous section on classifiers, methods used in 
chapter 6 are first dealt with. Other approaches found in the literature as feature 
selection procedures in discrete feature spaces, are then presented. Some final 
remarks conclude this section. 

5.3.1. Algorithms used. 

Instead of describing the algorithms one by one, we will rather concentrate on the 
search strategies, and on the selection and stopping criteria used. Each particular 
algorithm used is then a combination of a search strategy, a selection criterion and 
a stopping criterion. 

5.3.1.1. The search strategies. 

Forward sequential search strategies were used. Two variants to be called B 1 and 
B2 were applied. Both variants allowed for structure changes during the search. 
That is, at each step of the selection a new feature is chosen, and a 'best' structure 
is identified. Variants B 1 and B2 differ in the set of structures allowed. Variant B 1 
allows for independence between sets of features. Variant B2 allows for 
independence between sets of features as well as conditional independence 
between sets of features, given the values of other features. Thus, variant B 1 is a 
restricted version of variant B2. A restriction of this type was required for some 
selection criteria in order to avoid excessive computation time. Further comments 
on the search strategies, may be found in chapter 3. 

5.3.1.2. The selection criteria and the corresponding stopping 
criteria. 

The selection criteria used are either based directly on the error rate or on measures 
associated with the error rate. Three different selection criteria and three associated 
stopping criteria were used. They will be referred to as criteria A, B and C. 
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Criterion A is an estimate of the error rate according to the leave-one-out technique 
with a correction for insensitivity as proposed by Ben-Bassat (see chapter 3). 
Since the leave-one-out technique implies a classifier, Bayes classifiers were used 
with the basic model assumed for the conditional probabilities given the class. 
Naturally, and according to the search strategy, various structures and variations 
on the model can be assumed. As for the estimation of the parameters of the 
classifiers, two techniques, i.e. maximum likelihood estimation and Bayesian 
estimation were used (see chapter 3, and expressions 3.1 and 3.2, respectively). 
Depending on the way a particular training sample was obtained (either sampling 
from the universe of objects or sampling per class), a-priori probabilities were 
either estimated with the help of the training sample, or given a value which 
somehow reflected expert knowledge. The stopping criterion was an increase in 
the error rate as estimated by the leave-one-out method. 

Criterion B is also calculated using a leave-one-out technique. It works as follows: 
for every object in the training set, a-posteriori probabilities are estimated using all 
the other objects in the training set. A penalty score is then computed. For a c class 
classification problem, if object Ki belongs to class wj, the corresponding penalty 
score is 

c 
si = ::E ( P"(wkiKi) - P"(wjiKi) ) 

k=l 

c c 

::E P"(wkiKi) - ::E P"(wjiKi) 
k=l k=l 

1 - c * P"(w-lx-) J -1 

and the criterion is 

= 

(5.24) 

(5.25) 

where n is the total number of objects in the training set 5. In a two class problem, 
a correct classification (using a classifier based on the Bayes rule) gives a negative 
value to the corresponding si whereas an incorrect classification results in a 
positive value. With more than 2 classes, incorrect classifications give either 

5 S in expression 5.25 is a scoring rule. In HILD78, the concepts of proper and 
strictly proper scoring rules are introduced. Sis a non-proper scoring rule. 
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positive or negative values to si but a correct classification gives si the largest 
negative value. The larger the difference between the a-posteriori probabilities, the 
larger the 'reward' (or 'punishment') for the classification. 

The a-posteriori probabilities required by the selection criterion were computed in 
accordance with the structure and estimation technique being tested and were 
estimated using all the objects but the one being classified. The basic model and 
maximum likelihood and a Bayesian estimation method were used. Criterion B is a 
risk averaging technique which is directly related to the error rate. The stopping 
criterion is defined in terms of an increase in the value of S. 

Criterion C involves a test statistic which is given by the log-likelihood ratio test 
(GOOD70). This criterion is computed testing the model of independence between 
the random variable expressing class membership and the random variable 
representing the candidate feature, given the features and structures so far adopted. 
Under the null hypothesis (independence), the test statistic is distributed as a chi
square with a given number of degrees of freedom (GOOD70). The basic model is 
used for the various probabilities needed. 

Suppose that at some step, features xi' xk and xi have been selected together with 
the structure (for the joint probability tunction) 

Prob(wi>xj,xk>xl) = Prob(whxj,xk) Prob(wi,Xj,XI) I Prob(wi,xj) 
(5.26) 

where Prob(wi,Xj, ... ,xz) is the generic representation of the joint probability 
function of class wi and features Xj, ... ,Xz. If a candidate feature Xr is subsequently 
assessed and, e.g. it is assumed that feature Xr is independent of features Xj, xk 
and xi, the following two hypotheses are constructed: 

and 

Prob(wi,xj,xk,xl>xr) = Prob(wi,xj,xk) Prob(wi,xj,xi) Prob(wi,xr) I 

Prob(wi,xj) I Prob(wi) 
(5.27) 

(5.28) 

~or the first hypothesis, the maximum likelihood estimate of Prob(wi,Xj>Xk,xl>xr) 
lS 
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and 

X2(1) = 2 L nijklr loge [(nijklr nij ni) I (nir nijk nijl)] 
ij,k,t,r 

is distributed as a chi-square with the number of degrees of freedom equal to 

c Ij Ik It Ir - c Ij Ik - c Ij It - c Ir + c Ij + c 

(5.29) 

(5.30) 

(5.31) 

For the second hypothesis, the maximum likelihood estimate of 
Prob(wi,Xj,Xk>Xt,Xr) is 

P"(wi,Xj>Xk,Xt,Xr) = (nijk nijl nr) I (n2 nij) 
(5.32) 

and 

(5.33) 

is distributed as a chi-square with the number of degrees of freedom equal to 

The difference between X2(2) and X2(l) is also distributed as a chi-square: 

with 

x2(2)- x2(1) = 2 L nijklr loge (nir n I ni I Dr) 
i,j,k,l,r 

(5.34) 

(5.35) 

(5.36) 

degrees of freedom. The symbol ni.klr indicates the number of objects from class 
wi that score in categories j, .. ,r of features Xj, ... , xr> the symbol~ indicates the 

- 103-



number of categories of variable xj and the symbol c indicates the number of 

classes. In this way, the quantity x.,2c2)- :x;2(1) measures the change in the degree of 
association between the variable expressing class membership and the features, 
when feature xr is added according to the structure assumed. It tests the model of 
independence between the random variable expressing class membership and the 
random variable representing the candidate feature, given the features and structure 
so far selected (null hypothesis). The feature for which Prob (z > x2<2rx2(1)) is a 
minimum (z is a general variable) is conditionally selected. Structures that require 
more estimates or features with a larger value of categories (again implying more 
parameters to estimate), yield a larger number of degrees of freedom. For the same 
value of the test statistic, this implies a decrease in the confidence level for 
rejecting the null hypothesis. Features with higher discriminating power yield a 
larger value for the test statistic and therefore an increase in the confidence level for 
rejecting the null hypothesis. Thus this selection criterion evaluates the quality of a 
feature (in terms of discrimination ability) as well as its cost (in terms of the 
number of parameters). An expression similar to 5.35 is computed in the first step 
of the search, when each feature is analyzed individually. Therefore, if the 
algorithm keeps track of previous computations, they do not have to be repeated in 
later steps. This stems from the selection criterion itself, and the implicit 
assumption that the structure in class conditional probabilities is the same as the 
structure in joint probabilities (see TOUS74). This is a weak assumption and 
rarely verified. Nevertheless, it speeds up the feature selection. Finally, the 
stopping criterion is defined in terms of a limit on the confidence level of the test. 

5.3.1.3. The algorithms. 

The algorithms used in chapter 6, can be grouped as follows: 

i) Search strategy B 1 with selection criteria A an B and the corresponding 
stopping criteria. 

ii) Search strategy B2 with selection criterion C and the corresponding 
stopping criterion. 

Group i) includes four different feature selection algorithms since two estimation 
techniques were used in order to estimate the classifiers required by the selection 
criteria A and B. Group ii) includes one feature selection algorithm. 

Search strategy B2 was not applied with selection criteria A and B, due to 
excessive computation times. For the same reason, two additional selection criteria 
indicated in chapter 3 were not used. Finally, the outcome of each selection is both 
a set of features as well as a structure for the class conditional probability function 
required in a Bayes classifier. 
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5.3.2. Other approaches. 

For reasons of completeness, some feature selection algorithms, which appeared 
in the literature in the specific context of discrete feature spaces, will now be 
shortly reviewed. For each algorithm presented in chronological order, the search 
strategy, the selection and stopping criteria are given. 

Raiffa (RAIF61) introduces two 'item selection procedures'. Two class 
discrimination problems and binary features are considered although the 
extensions to more than two classes and to features with more than two categories, 
are immediate. The search strategy is either forward sequential with s features 
added at each step or a restricted 'adds take away r' (with s > r). At each step, s 
features are conditionally selected. From theses features, r features are removed, 
at the end of each iteration. The selection criterion is the expected value of the 
Bayes risk plus the cost, suitably expressed, of measuring a feature. The selection 
stops when the cost of obtaining a new feature is larger than the decrease in the 
risk function. The cost associated with the features can be made dependent on the 
features selected at a given step enabling an easy and elegant way to introduce 
restrictions in the order of selection. 

Hills (HILL67) proposes a forward sequential search pr()cedure and two selection 
criteria. The first of these is the divergence, defmed as: 

m 

~ (Prob(Kilw1) - Prob(Kilw2)) loge( Prob(Kilw1)/Prob(Kilw2)) 
i=l 

The second criterion is an approximation to the divergence: 

m 
~ (Prob(Kilw1) - Prob(Kilw2))2 /(Prob(Kilw1)+Prob(Kilw2)) 
i=l 

(5.37) 

(5.38) 

The variable m indicates the number of different elements in the feature space. For 
the first criterion, both Prob(Kilw1) and Prob(Kilw2) must be always different from 
zero whereas for the second only their sum has to be always different from zero. 
Hills mainly considered two class discrimination problems and binary features. 
The extension to other features is straightforward whereas the extension to more 
than two classes requires, in the case of the divergence, a selection for every 
combination of two classes followed by a heuristic to combine the various results 
obtained. A generalization is suggested for the second criterion (see HILL67). 
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Lachin (see LACH73) describes a selection criterion which guides an 'add 1, take 
away 1' search strategy. At each step, a feature is selected and a feature may be 
removed depending on a given criterion. Lachin's selection criterion uses a test 
statistic which is an equivalent of the Pearson goodness of fit chi-square. Consider 
a two class problem and a full multinomial model for the class conditional 
probabilities. The test statistic 

X2(1) == n (1- L, (n\ .. k n2j ... k n) I (n1 n2 nj ... k)) 
j ... k 

(5.39) 

is asymptotically distributed as chi-square with Cf 1 degrees of freedom (Cj is the 
complexity of the space at step j in the selection). In the above expression nij ... k is 
the number of samples from class Wi in categories j, ... ,k of features Xj, ... ,xk, 
nj ... k == n\ .. k + n2j ... k and ni is the number of objects from class wi in the training 
set. The null hypothesis of independence between the variable expressing class 

membership and the features can be tested with X2(l)· If a new feature is added, 

another hypothesis of independence can be tested with the new chi-square (X2(2)) 

having Cj+l-1 (cj+l > cj) degrees of freedom. Lachin shows that X2(3) == x2(2)

X2(l) is also asymptotically distributed as a chi-square with Cj+l- cj degrees of 
freedom. The null hypothesis of conditional independence between the variable 
expressing class membership and the new feature, given the features already 

selected, can be tested by X2(3)· This statistic is a measure of the effectiveness of 
the new feature for discrimination, given the others already selected. The feature 
for which the probability Prob(z>X2(3)) is a minimum (z is a general variable) is 
conditionally selected. If this probab1lity is less than the minimum acceptable 
probability level (m.p.a.) for the addition of a new feature, the feature is accepted. 
Otherwise the procedure is discontinued. At the end of each iteration, each feature 
is tentatively removed from the selected set and a new set of values, one for each 

feature, of Prob(z>X2(3)) is computed and compared with the minimum acceptable 

probability level for the deletion of a feature (m.p.d.). Features with Prob(z>X2(3)) 
> m.p.d. are deleted. Both m.p.a. and m.p.d. are levels of significance and 
m.p.a. > m.p.d .. 

Goldstein et al. (GOLD75) propose feature selection algorithms in the context of a 
two class discrimination problem. Surprisingly an exhaustive search strategy is 
indicated, limiting the applicability of the algorithms to feature spaces with low 
dimensionality. Two selection criteria are indicated, both based on a distance 
measure (ranging from zero to one) between discriminant scores, large values 
being associated with better discrimination. The distance results from the work of 
Glick (GLIC73) and is defined as 
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d =mini 1.VProb(~.i,w1)- .VProb(~.i,w2) I 
for .VProb(Ki,wl)- .VProb(Ki,w2) =I= 0 

(5.40) 

where i scans the feature space. Full multinomial models are assumed and an 
estimate of dis obtained by inserting the maximum likelihood estimates of the joint 
probabilities. The selection criteria proposed are then 

mini I (.Vn 1i - .Vn2i) I .Vr I 
for (.Vn li - .Vn2i) I .Vr =I= 0 

(5.41) 

and 

averagei I (.Vnli- .Vn2i) I .Vr I 
for (.Vn li- .Vn2i) I .Vr =1= 0 

(5.42) 

The set of features selected is the one for which 5.41 (5.42) is maximum. In 
expressions 5.41 and 5.42, r is the complexity of the space defined by those 
features not yet selected and the index i scans the feature space defined by those 
features already selected and the candidate feature. The symbol nij denotes the 
number of objects available in the training set from class wi that score in element j 
of the feature space under consideration. The first criterion discards too much 
information whereas the second is expected to be more reliable at the cost of an 
increase in computer time. In short, both are somewhat rude approaches. 

Nakache et al. (NAKA78) propose a technique analogous to stepwise regression 
with a forward sequential search strategy. The selection criterion adopted 
essentially borrows the mathematics of stepwise regression (see KEND66 vol 2, 
chap. 27). In order to apply stepwise regression, a coefficient of association 
between variables (i.e. variables representing features and class membership) is 
needed. Cramer's coefficient of association in contingency tables (see KEND66 
vol 3, chap. 33) which relates two discrete variables, is adopted (it assumes values 
between 0, in the case of independence, and 1, in the case of complete 
association). A multiple association coefficient is then defined in terms of 
coefficients of partial association and coefficients of association, by an expression 
equivalent to the one that in regression relates multiple correlation with partial 
correlation and correlation. The variable expressing class membership is assumed 
to be the dependent variable whereas the features are the independent variables. 
The selection criterion is the increase in the coefficient of multiple association. The 
feature to which the largest increase is associated is selected, provided that the 
increase is larger than a minimum level. If no features can be found, the algorithm 
stops. 
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Habbema et al. (HABB81) describe a program that uses a forward sequential 
procedure for feature selection. Six selection criteria are indicated. They all are 
weighted (by the estimated a-priori probabilities) means of the average of penalty 
scores per class. A common expression is 

c ni 
Q = :r, P"(wi) (ni)-1 :r, q(xij) 

i=l j=l 
(5.43) 

where q(iij) is an individual penalty assigned to object Kj from class wi, in the 
training set. Six forms are proposed for the individual penalties yielding six 
selection criteria. They are 

q1 (iij) = 0 when the object is correctly classified 
= 1 when the object is incorrectly classified 

- [ loge Yi,j,i + £ L- loge (Yij,W £ ) ] 
i:;tk 

where Yij,k = (1-£) P" (wk I Kij) + E and Eisa small number 

= (1 - P" (wi I Kij))2 + :L, P" (wk I Kij)2 
k:;ti 

k 

qsCxij) = :L- (I(~i)- :L- P"(ws I Kij))2 
k s=l 

where I(~i) = 0 if the object is correctly classified 
and I(~i) = 1 if the object is incorrectly classified 

q6(xij) = loss incurred if object Kj from class wi is assigned to class k. 
(5.44) 

The penalty score q1 (Kij) yields the error rate, ~(Kij), q3(iij) and q4(Kij) are 
monotonic functions of a-posteriori probabilities, qs(Kij) takes into account a 
possible natural ordering of the classes, and finally q6(xij) results in a risk 
function. The a-posteriori probabilities required are estimated by the leave-one-out 
method and a feature is selected according to the minimum of Q. The selection 
stops when the decrease in Q is lower than a threshold value. 
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Other papers are those by, e.g. Leonard et al. (LEON74), where an algorithm is 
presented that selects binary features for use with linear classifiers, Bezdek et al. 
(BEZD77), where again binary features are considered and fuzzy sets are used, 
Goldstein et al. (GOLD78), where a procedure is reported that relies on the work 
of Kullback (KULL59), Anderson (ANDE82), where a likelihood ratio is tested 
and used for the selection of features in the logistic model, Li et al. (LI84) where a 
measure of association between binary vectors is proposed, etc .. 

Typically, the selection criteria are either estimates of the error or functions of it, 
statistical tests, etc .. This is the same for continuous feature spaces, the differences 
resulting from the nature of a discrete space and from computational aspects as 
indicated at the beginning of section 5.3. In particular, distance measures that 
assume the existence of a metric space, are not suitable with non-ordered discrete 
features. 

5.3.3. Remarks. 

As in the section on classifiers, the choice of the feature selection methods used in 
the applications in chapter 6 will now be justified. The selected methods were 
presented in section 5.3.1. In the following, the aspects of search strategies, 
selection criteria, models and estimates are discussed. 

As for search strategies, forward sequential searches were used with structure 
changes at each step and throughout the search. The reasons for allowing structure 
changes have already been indicated in chapter 3. The results of simulation 
experiments were also given there. 

Three selection criteria were used. Two are directly related to the error rate and one 
makes use of a statistical test. Since the error is the benchmark of a classifier its 
use as a selection criterion is a natural choice. Criterion C was used because, 
firstly it had been applied in a simulation experiment involving feature selection 
(QUEI84), and secondly, it is computational very efficient. 

The basic model was used whenever probability functions were required. Its 
simplicity, its power for modelling complex structures, and the easy and efficient 
ways in which estimates (e.g. maximum likelihood) can be computed, were the 
main reasons. 

Duin (D UIN78) has shown the importance of the choice of an estimation technique 
in the design of a Bayes classifier. Either a maximum likelihood estimate or a 
Bayesian one (with the exception of selection criterion C and this for obvious 
reasons) were used. Although these two approaches may not yield the 'best' 
estimates, the point is made that it is important to test more than one type of 
estimators. 
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Having selected features using one of the above procedures, a classification 
procedure may then be formulated on the basis of the basic model, the structure 
and the features selected. Whenever selection criteria A or B are used, the feature 
selection procedure is also an implied classifier selection procedure. 

5.4. Mapping techniques. 

Mapping techniques to be applied to sets of objects described by discrete features 
(either ordered or non ordered), have to take into account the uncomfortable fact 
that the original data is of a qualitative nature. For instance, let a discrete feature be 
'colour of the eye', with 4 possible outcomes (black, blue, brown, other). It is not 
possible to apply directly a numeric transformation to such a set of data. First, it is 
necessary to suitably code the data before the transformation can be obtained and 
applied. Since the original data is qualitative and the results are projections on a 
metric space, mapping techniques can also be viewed as techniques to quantify 
qualitative data. This type of data occurs in a wide range of sciences (e.g. social 
sciences, psychology, etc.), and many efforts have been directed to the problem of 
quantification of discrete data. There exists a specialized literature (e.g. the journal 
Psychometrika from the Psychometric Society) covering this topic. A remarkable 
paper on the quantitative analysis of qualitative data is YOUN81. 

Among the various techniques available, correspondence analysis has been used. 
In the following section, the method is introduced. 

5.4.1. Correspondence analysis. 

Correspondence analysis is a multivariate statistical technique which has been used 
for the analysis of multivariate discrete data. In the literature this, or closely related 
techniques, are also known under the names of reciprocal averaging, multiple 
correspondence analysis, homogeneity analysis. Various treatments and 
applications may be found in BENZ73, GELS82, GELS84, GIFI81, HILL73, 
HILL74, LEBA77, LORE77, NAKA77, NISH80, QUEI83, etc .. The technique 
may be approached from several angles and has been developed by various 
authors in attempts to solve a wide variety of problems. Here, it will be introduced 
as a mapping technique applicable to discrete data, following LEBA 77. 

Consider an I*J contingency table. Such a table may be used to group n objects 
according to two different characteristics. Each entry in the table (nij) is the 
number of objects having attribute i of the first characteristic and attribute j of the 
second. One characteristic may, e.g. represent a division in I classes of the 
universe of objects. The other one may, e.g. represent a set of properties which an 
object may or may not have. In this way, a class may be described by the 
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distribution of its objects among the J properties. Similarly, a property may be 
described by the way objects having the property, are distributed among the I 
classes. Instead of the raw numbers nij, the table with general element given by 

fij = nij In 
(5.45) 

is considered. Here n is the total number of objects and the table with elements fij 
is called a frequency table. Applying correspondence analysis to such a set of data 
results in a mapping onto a lower dimensional space (defined by a set of 
orthonormal axes) in such a way that similarities between classes and between 
properties (i.e. rows and columns) are preserved as much as possible, according 
to a certain metric. The so called row and column profiles (BENZ73) are used to 
represent rows and columns respectively, and the metric used is the chi-square 
distance (BENZ73). In the following, the profiles and chi-square metric are 
presented and commented upon. Instead of identifying the profiles as row and 
column profiles, the terms class and property profiles shall be used in order to 
remain consistent with the (restricted) interpretation given above. 

A class may be considered as a point in _RJ with coordinates given by 

J 

PC .• -f·I(Lf·) lJ - lJ lJ 
j=l 

(5.46) 

This is the so-called class-profile. By choosing this form of representation, the 
similarity between classes is made independent of the total number of objects. The 
distinguishing characteristic of a class is the distribution of its objects among the 
various properties. Since the sum of the coordinates of a profile is equal to 1, the 
profiles may be thought of as to be contained in a subspace of RJ with a maximum 
possible dimension of J-1. 

The same reasoning may be applied to the properties. Property profiles have as the 
general element 

I 

Pp. · - f.· I ( L f.· ) IJ - lJ lJ 
i=l 

(5.47) 

and may be thought of as to be contained in a sub-space of Rl with a maximum 
possible dimension ofl-1. 

The chi-square distance, as introduced by Benzecri (BENZ73) is defined as 
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i) Distance between classes i and i'. 

J I 
d2(i,i') = 1: (1: fij)-1 ( Pcij- Pcij )2 

j=1 i=1 

ii) Distance between properties j and j'. 

I J 

d2G,j') = 1: (1: fij)-1 ( pPij- pPij' )2 
i=l j=l 

(5.48) 

The chi-square distance differs from the conventional Euclidian distance by the fact 
that each square in the sum is weighted by a coefficient that may be different for 
different terms. Each coordinate is scaled by its mean value so as to give 
comparable weights to different coordinates. It guarantees a certain invariance of 
the results with respect to the divisions imposed on the data in terms of the 
definitions of the two characteristics, i.e. classes having the same profile may be 
merged without affecting the distances between property-profiles; reciprocally, 
properties having the same profile may be merged without affecting the distances 
between class-profiles. The chi-square metric necessarily implies a different 
definition of the norm and the scalar product in the sense that the contributions of 
each coordinate are also weighted. 

Using the profile concept and the chi-square metric, the mapping axes (factorial 
axes) are obtained by maximizing the sum of the squares of the distances between 
the projections and the mean projection under constraints of orthonormality 
( orthonormality here is also to be interpreted in terms of the chi-square metric). In 
order to respect the real distribution of the population, each distance is weighted by 
the frequency of occurrence of the class (property) it relates to. Otherwise too 
much emphasis would be given to rare classes (properties). 

The maximization can be done either with respect to the class profiles or with 
respect to the property profiles. In both cases it leads to an eigenvalue problem 
where the first eigenvalue (always equal to 1) and corresponding eigenvector are 
trivial. Subsequent eigenvectors may be used as mapping axes and the 
corresponding eigenvalues are equal to the variance of the projections on the axes. 
Ignoring the trivial solution, a maximum of I -1 or J -1 (whichever is the smaller of 
the two) eigenvectors may be obtained. At this point, a parallel with the technique 
of principal components, is easily formulated. 

The two maximizations (either for class profiles or for property profiles) yield the 
same set of eigenvalues and different sets of eigenvectors, which are related one to 
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the other. The so called transition formulas (see, e.g. LEBA77), relate the 
projections of both classes and properties and can be used to obtain the 
representation of classes and properties on the same plot (they also allow to map 
classes and properties not considered when solving the eigenvalue problem). Such 
a plot is called a simultaneous representation. In the common plot, the relative 
position of the elements of a set (either classes or properties) is still interpretable in 
terms of similarities between them. The projection of a class is, up to a constant, 
the weighted mean of the projection of the properties and vice-versa. If objects in a 
class tend to have a certain property, it may be expected that the projections of that 
class and of that property are close. Conversely, if the objects in a class rarely 
have a certain property, it can be expected that the corresponding projections come 
far apart. If the constant just mentioned would be equal to 1, the projection of a 
class would be the mean of the projections of the properties, each one weighted by 
the percentage of objects within the class having that property. The projection of a 
property would be the mean of the projections of the classes, weighted by the 
percentage of objects per class. This is a way to represent two different sets. 
Correspondence analysis tries to approach this situation, as well as possible, and 
in accordance with a criterion. 

Two sets of coefficients - the absolute and relative contributions - can be computed 
and used to support the interpretation of the mappings. The absolute contribution 
of a row (or column) is the fraction of the total variance along a given factorial 
axis, which is due to that row (column). The relative contribution of a row 
(column) is the fraction of the total variance of a row (column) which is explained 
by a given factorial axis. 

Correspondence analysis can also be applied to p-way contingency tables, by 
using incidence tables. It is then called multiple correspondence analysis, or first 
order correspondence analysis or also homogeneity analysis. If n objects described 
by p discrete features are available, an incidence table is constructed in the 
following way. For each feature Xj, a matrix Zj_(dimension equal to n*9 is 
defined where n is the total number of objects and Ij is the total number of 
categories that feature j assumes. Each entry is of the form 

if object i assumes the k-th category offeature Xj 

if object i does not assume the k-th category of feature Xj· 
(5.49) 

The p matrices resulting from the p features can be collected in a super matrix Z: 
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(5.50) 

with n rows and the number of columns equal to the sum of the number of 
categories each feature has. Correspondence analysis may then be just applied to 
z. 

In the application of correspondence analysis in chapter 6, an approach (the class
approach) was used which will now be explained. First an incidence table is 
constructed just as above, with each row of the table representing an object. Next, 
the rows representing objects from the same class are merged in a single row. The 
merging is done by summing the various row vectors. This results in a new table 
with the number of rows equal to the number of classes. At this point, 
correspondence analysis is applied to this new table. As a result, 2D plots are 
obtained with the projections of classes and features into two mapping axes. The 
eigenvectors vectors chosen are generally those associated with the largest 
eigenvalues (after ignoring the trivial eigenvector), i.e. those where the variance of 
the projections is larger and which show the major trends in the data. 

In the factorial plots obtained, the distance between the projections of two classes 
is related to their similarity. A discrete feature is represented by a set of points, 
each one corresponding to one category of the feature. Closeness between the 
mapping of a class and certain categories of the features, indicates that the objects 
of that class tend to assume these feature values. Proximity to the origin implies an 
average profile. Therefore, rare profiles are projected away from the origin. This 
allows a simple characterization of the data. 

By using classes instead of single objects in order to obtain the factorial axes, 
more concise plots are obtained. The first non-trivial eigenvector (the one 
associated with the largest non-trivial eigenvalue) is the axis that maximizes the 
separability (defined by the chi-square metric) between classes (represented by 
profiles), the second non-trivial eigenvector is the axis, orthogonal to the first 
eigenvector, that maximizes the separability between classes, and so on. 

Single objects were also mapped into the mapping space, using the transition 
formulas. The robustness of the plots may be checked by mapping single objects 
not used in the construction of the table to which correspondence analysis was 
applied. 

Finally, it should be stressed that correspondence analysis is derived using 
algebraic concepts in spite of the fact that, at some steps, the formulation might 
suggest a statistical component. 
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5.4.2. Remarks. 

With incidence tables, an initial quantification of the discrete data is obtained. A 
category is coded as either a one or a zero depending on whether or not the object 
assumes a certain category in a feature. This implies that the projections of the 
categories on an axis, can be interpreted as a quantification of the categories. The 
quantification is such that when considering projections on the first non trivial 
factorial axis, the first eigenvalue of the corresponding correlation matrix, is 
maximized. 

The incidence tables, as indicated above, are constructed in such a way that 
interactions between features are not preserved. As a result, the plots obtained do 
not reflect these interactions. This can be avoided by the use of incidence tables 
where the elementary matrices Zj are not associated with a single feature but with 
combination of features. In practice, however, the number of objects available 
would soon be too small to guarantee stable mappings. 

Since there are no appropriate restrictions and the initial coding of the data is not 
appropriate either, order relations, in ordered discrete features, are not used and 
may be lost in the plots. 

5.5. Error estimation. 

In chapter 6, and in order to design classifiers, the data sets available were divided 
evenly in a training and a test set. Leaving the test set aside in order not to 

. compromise the error estimation, a classifier was selected, following the usual 
steps. At this point, its error was estimated by means of several estimation 
techniques. 

The errors were generally estimated by three different techniques: 

A) The hold-out technique. 

B) The leave-one-out estimator applied to all data available. 

C) Rotation technique applied to all data available and averaged over a given 
number of randomly generated partitions of the data, each one resulting in a 
training and a test set. 

Also, an estimate of the variance of the error estimate, was obtained for method C. 
This is given by 
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n 
(n-1)-1 [:E c?- c2] 

i=l 
(5.51) 

where c is the average error estimate, Ei is the estimate obtained with partition i, 
and n is the number of partitions. 

The properties of the hold-out estimator are well known. Specifically, it yields 
pessimistically biased estimates. 

As for the other two estimators, their properties have already been indicated and/or 
discussed in chapter 3. Nevertheless, the following aspect should be noted. They 
were applied to all data available. Half of this data was used for the selection of the 
('best') classifier to be tested and therefore lower estimates of the error should be 
expected as compared to the case where all the data had not been used in order to 
select the 'best' classifier. 

5.6. Final remarks. 

This chapter has been devoted to the review and presentation of procedures and 
techniques for pattern recognition with discrete and/or mixed data types. The 
topics reviewed or presented, with more or less detail, were classifiers, feature 
selection, correspondence analysis and error estimation. Both the text and the 
references in it, should be fairly sufficient for anyone who has to design classifiers 
capable to handle discrete data. 

Whenever a model or a technique, suited only for discrete types, is to be applied to 
mixed data, then the continuous features need to be discretized before use. The 
loss of information that is caused by the discretization, can be minimized by 
choosing the intervals in such a way that the number of objects falling in each one 
is approximately equal (LORE77). 

The next chapter presents the application, of some the techniques reviewed and 
discussed here, to two medical data sets. 
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CHAPTER 6 

APPLICATIONS TO TWO MEDICAL DATA SETS 

This chapter presents two applications using the procedures discussed in previous 
chapters. The data sets studied include a set of records on head injured patients and 
a set of records on patients with acute chest pain. Both medical aspects and the 
performance of the various procedures used, are discussed. 

6.1. Introduction. 

Procedures of missing value estimation, of feature selection and of error estimation 
have been discussed in previous chapters. In this chapter their use in the analysis 
of two real data sets will be illustrated. 

The two data sets apply to two different medical domains: severe head injury and 
acute chest pain. Although the domains are quite different from a technical point of 
view, the data sets share common characteristics, often found in medical data. 

i) The occurrence of discrete features. In the first set all features are discrete; 
the second set is of mixed types. 

ii) The occurrence of missing values. This is an unfortunate aspect in data 
analysis. As it will be seen, for some features, the percentage of missing 
values is quite high. 

iii) The data sets were obtained from outside. The author was not involved in 
the data acquisition. This is also the real life situation. Too often the data 
analyst is involved in a phase where all data is already collected. In that 
sense, this set-up simulates an unfortunate experimental reality. 

iv) For both data sets, the analysis presented here is more general than the 
analysis performed by the original investigator. 

In the following, the technical terminology will be used, rather than the equivalent 
medical terminology. Each data set is a collection of medical records. A record will 
be referred to as a patient or an object. Each record contains information, hereafter 
referred to as features, considered to be relevant for diagnosis and/or prognosis. In 
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both cases there are more than two diagnostic and/or prognostic classes possible. 
These will be simply referred to as classes. 

6.2. Head injury. 

This data set contains records of 990 head injured patients. It was supplied by Dr. 
Titterington 1, who has originally acquired the data and analyzed them (TITT81), 
in a retrospective study comparing several discriminators. The original data set 
contained 1000 patients, made available in the form of punched cards, 10 records 
per card. Apparently, during the transfer, one card was lost. 

6.2.1. Material. 

The data on patients with severe head injury was collected with the purpose of 
investigating the feasibility of predicting the recovery of individual patients (see 
TITT81). The ultimate clinical goal was to design procedures to be used for the 
allocation of limited intensive care resources to those patients with a fair chance of 
moderate or even good recovery. 

Patients entered the study if in coma for at least 6 hours, i. e. if a minimum level of 
brain damage was present (see TITT81). The outcomes (the classes to assign the 
patients to) were expressed in terms of the patient's state, 6 months after injury. 
The outcomes considered were: 

i) dead or vegetative (DEAD; 498) 
ii) severe disability (SEV; 97). 
iii) moderate disability or good recovery (MILD; 380). 

Above, in brackets the mnemonics for each class and the number of patient data 
actually used are given. As indicated above, our version of the data set contains 
990 records. However, for reasons to be given later on, 15 of these were 
disregarded. The sampling in this case may be considered as sampling from the 
universe, so that a priori class probabilities may be estimated from the number of 
patients per class. 

Each patient record consists of six features (the mnemonics in capitals will be used 
throughout this text): 

1 We would like to express our gratitude to Prof. Jennett and Dr. Titterington, 
from the University of Glasgow (U.K.), for making this data set available to us. 
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1 - AGE: age of the patient; 
2- EMV: composite score of eye, motor and verbal response; 
3 - MRP: motor response pattern; 
4 - CHANGE: change in the neurological function over the first 24 hour; 
5 - EYEIND: eye indicant; 
6 - PUPIL: pupil reaction to light . 

This feature set corresponds to subset III in TITT81. A brief description of these 
features, adapted from TITT81, follows. Feature AGE indicates the patient's age 
and is grouped into decades (0-9, 10-19, ... , 70+). EMV is a raw sum of three 
scores: the E, the M and the V scores. The E score indicates the eye opening to 
stimulation and is graded from 1 (nil) to 4 (normal). TheM score indicates the 
motor response of the best limb to stimulation and is graded from 1 (nil) to 6 
(normal). The V score indicates the verbal response to stimulation and is graded 
from 1 (nil) to 5 (normal). Feature EMV is grouped as 3, 4, 5, 6, 7, 8, 9-15. 
Feature MRP is an overall summary of the motor response in the four limbs and is 
graded from 1 (nil) to 7 (normal). Feature CHANGE is graded 1 (deteriorating), 2 
(static) or 3 (improvement). Feature EYEIND is a summary of three other 
measures related to eye responses, and is graded 1 (bad), 2 (impaired) or 3 
(good). Finally, feature PUPIL is graded from 1 (non-reacting) to 2 (reacting) and 
codes the pupil reaction to light. The values in the data set were the best from a 
series of successive tests done during the first 24 hours after the onset of coma. 

All features but AGE and CHANGE, quantify a patient's reaction to stimuli. They 
are coded in such a way that the higher values indicate normal reactions. As for 
CHANGE, this feature is associated with a development towards normality and is 
coded such that a higher value (3), indicates improvement. All features may thus 
be regarded as ordered features, the coding of the categories reflecting their order. 

6.2.2. Previous and present analysis. 

In TITT81, a comparison of discriminant techniques applied to this data set is 
given. Restricting the discussion to what in TITT81 is called set III (our present 
data), a large number of discriminants was applied. Most of them were 
discriminants designed for discrete feature spaces (16). Three discriminants based 
on the assumption of normality were also defined, mainly forreasons of curiosity, 
as the author explains. 

Three remarks must be made about the original analysis: 

i) For this data set, no attempt was made at selecting features and testing 
discriminants in subspaces. 

ii) No systematic procedure for uncovering the structure of the feature space 
was used. 

- 119-



iii) No attempts at multi-level discrimination were made. 

In the present analysis, apart from visualizing the data by means of mappings, 
various single level and multi-level decision strategies were designed, with 
systematic feature selection and structure selection at the various branch points. 
Both the basic model and the logistic model, taking the ordering properties of the 
features into account, were used for discrimination. 

6.2.3. Training and test sets. Missing values. A-priori probabilities. 

Since the number of objects in the data set is fairly large and the number of 
categories in all the features are small enough considering the total number of 
objects, no compression of categories for any feature was done. 

Feature All data Training set Test set 

Age 0.0% 0.0% 0.0% 

EMV 5.1% 5.6% 4.5% 

:MRP 3.7% 4.2% 3.3% 

Change 26.3% 26.4% 26.1% 

Eyeind 20.7% 22.0% 19.4% 

Pupils 2.4% 2.6% 2.4% 

Table 6.1: Missing data for severely head injured patients. 

The entire data set was divided into a training set and a test set with approximately 
the same number of objects per class in each set. The test set was used exclusively 
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for error estimation. Both sets are the same as in TITT81 (this information was 
coded in the punched cards), with the exception of the 10 lost records. 

There are missing values in the data set. Table 6.1 indicates the percentages, per 
feature, for the entire data, the training and the test sets. It can be seen that features 
CHANGE and EYEIND have, by far, the largest percentages of missing values. 
The missing values are approximately equally distributed among the training and 
test sets. All objects were kept for further analysis, except those in the training set 
with 3 or more values missing. A total of 15 objects were thus discarded. The 
remaining objects with missing values were completed by estimating values for 
those missing. The classification approach, with a Bayes classifier assuming 
independence between features (see chapter 4), was the estimation technique used. 
The estimates were obtained separately for the training and test sets. For objects in 
the training set, the estimation was done for each class separately. By separating 
training and test sets, the independence between these sets was preserved. 

A priori class probabilities were estimated from the proportions of objects in the 
original training set 

6.2.4. Mappings. 

Since the data set is fairly large and the number of features is comparatively small, 
it was decided to first inspect plots of the training set, taking all features into 
consideration. 

Using correspondence analysis, factorial plots were obtained. Fig. 6.1 shows the 
projections of the three classes onto the plane spanned by the trrst two factorial 
axes, fig. 6.2 the projections of the features and fig. 6.3 the projections of the 
objects. The factorial axes were obtained using the class-approach (see chapter 5). 
Since there are three classes, there are only two non-trivial factorial axes; the trrst 
axis accounts for 93 % of the total variance. 

Objects from class MILD tend to project on one side of the trrst axis. Objects from 
class DEAD tend to project on the other side and objects from class SEV tend to be 
in the middle. Nevertheless, the overlap is significant, even between classes MILD 
and DEAD. 

In fig. 6.2, it can be seen that all features but AGE and CHANGE, project along 
the first axis in such a way that categories corresponding to normal measurements 
are close to objects from class MILD, and 'abnormal' categories are close to 
objects from class DEAD. The projection of feature AGE, indicates that young 
patients tend to be classified as MILD, whereas old patients tend to be classified as 
DEAD. As for feature CHANGE, the category 'deteriorating condition' projects 
more closely to the DEAD class, whereas the other two categories project closer to 
the MILD class. 
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Fig. 6.1: Mapping of the three classes onto the two factorial axes. 
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Fig. 6.2: Mapping of the six features onto the two factorial axes. Each feature is 
represented by a set of points (each one associated with a category), joined by 
straight lines. The point closer to character A, is related to the age range 0- 9. By 
moving away from this point and along its associated segment, the age is spanned 
in an orderly manner. The same applies to the other features but now the 
movement is from 'abnormality' to 'normality'. The points associated with 
'abnormality' are indicated by the characters B (EMV), C (MRP), D (CHANGE), 
E (EYEIND) and F (PUPILS). See also the two following pages. 
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Fig. 6.2: Continuation. 
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Fig. 6.2: Continuation. 

- 125-

·•- EYEIND 

·0- PUPILS 



Axis 1 

-1.9 

Axis 2 

Fig. 6.3: Mapping of objects from class MILD onto the two factorial axes. 
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Fig. 6.3 (continuation): Mapping of objects from class SEV onto the two factorial 
axes. 
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Fig. 6.3 (continuation): Mapping of objects from class DEAD onto the two 
factorial axes. 
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Order relations are not taken into account by correspondence analysis. 
Nevertheless, the projections of the categories onto the first axis, follow their 
natural ordering. 

6.2.5. A single level classifier. 

It was decided to try first a single level classification strategy. The corresponding 
decision tree is shown in fig. 6.4. In TITT81, the same decision tree is used, 
although without feature or structure selection. Therefore, a number of feature 
selection algorithms, able to test several structures, were applied. The results are 
presented in table 6.2. Both the ranking of the features and the structures selected, 
are shown. 

AIL 

MILD SEV DEAD 

Fig. 6.4: A one level decision tree. 

Except with algorithms that use selection criterion A, all 6 features were selected. 
The structures selected consisted of groups of at most two non-independent 
features. Nevertheless, some structures required a number of estimates that was 
large in view of the number of objects available in class SEV (this was not the case 
for the classes MILD and DEAD). 

Even if only 3 features are considered, there are large differences in the feature 
ordering and structures selected (an exception are the results of the algorithms 
using selection criterion A). Since the number of objects available is large (except 
for class SEV; nevertheless, since the prior probability of this class is low, it 
should not influence the results too much), suggesting that robust estimates may 
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Algorithm Ranking Structure 

Search strategy B1 1-MRP 1 2-PUPILS Selection criterion A 3-AGE 2-3 
MLK estimates 

1-MRP 

Search strategy B 1 2-PUPILS 1-4 3-AGE Selection criterion A 4-EYEIND 2-3 
Bayesian estimates 5-EMV 5 

1-EYEIND 1-2 
Search strategy B1 2-AGE 3-5 3-EMV Selection criterion B 4-PUPILS 4 

MLK estimates 5 -CHANGE 6 

6-MRP 

1-EYEIND 1 
Search strategy B1 2-MRP 2 3-AGE Selection criterion B 4-PUPILS 3 
Bayesian estimates 5-EMV 4 

6-CHANGE 5-6 

1-EYEIND 1 

Search strategy B2 2-PUPILS 2 
3-EMV 3 Selection criterion C 4-MRP 4 Conf. lim. 99 % 5-AGE 5 

6-CHANGE 6 

Table 6.2: This table presents the results of the feature selection algorithms (see 
chapter 5) for the decision tree in fig. 6.4. The first column indicates the algorithm 
used (see chapter 5), the second column indicates the feature ranking and the third 
column the structure chosen: e.g. the first algorithm selects a structure with two non 
independent sets of features (MRP, PUPILS and AGE). 
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be expected, we may conclude that the discriminating power of some of the 
features (e.g. MRP and EYEIND) is very similar. 

In order to evaluate the feature combinations and the structures selected in the 
previous step, several discriminants were used. Also, several error estimators 
were applied. The discriminants are: 

1) A Bayes classifier, assuming the basic model (see chapter 5) for the 
conditional probabilities, given the class, the parameters of which were 
estimated using either maximum likelihood or Bayesian approaches. Briefly, 
the classifiers and/or models used by the feature selection algorithms, were 
tested. 

2) A classifier based on the logistic model, but adapted in such a way as to 
take the ordering properties of all features into account (see chapter 5). Such 
a model requires the estimation of (Nc- 1 ) * (Nf + 1) parameters (Nc is the 
number of classes and Nf is the number of features), which makes it very 
attractive (see chapter 5). 

Applying one type of classifier, the errors may in principle be estimated in 
different ways (see chapter 5): 

a) the hold-out estimator. 

b) the leave-one-out estimator applied to all data available. 

c) rotation technique applied to all data available and averaged over 20 
randomly obtained partitions, each one resulting in a test set with 
approximately l/3 of the total number of objects. 

All these estimators were applied to the basic model. Using the discriminator based 
on the logistic model, only estimator a) was used. Computational, it would be very 
heavy if estimators b) and c) were used because an iterative procedure requiring 
inversion of matrices, is required in order to estimate the logistic model (see 
chapter 5). 

The results are presented in fig. 6.5, where the chart number and lettering reflects 
the combination of classifier and error estimation technique used. Fig. 6.5 shows 
the error estimates obtained as functions of the number of features used and 
according to the ranking, and in case of the basic model, to the structure selected. 
With 0 features, the estimates shown were obtained by using only the maximum 
likelihood estimates of the a-priori probabilities. Features were progressively 
added, in accordance with the ranking produced by the corresponding feature 
selection algorithm. Each chart has five curves, each one related to a feature 
selection algorithm. 
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Fig. 6.5: Error estimates for the decision tree in fig. 6.4. In every chart, each error 
function is associated with a feature ranking produced by a feature selection 
algorithm. Each chart is related both to an error estimation technique and to a 
classifier design. The two symbols under each chart indicate the estimator (letter) 
and the classifier (number) used. See text, for the meaning of the symbols under 
each chart 
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An analysis of fig. 6.5 reveals the following points: 

i) At least one feature contributes significantly to a decrease in the error rate. 

ii) The rate at which the error decreases, reduces with the number of 
features, and the error is more or less constant after the third feature, 
suggesting that 3 or 4 features are sufficient. 

iii) The different error estimators yield very similar results. In view of the 
large number of objects, this behaviour is to be expected. 

iv) Both the Bayes and logistic classifiers, yield similar results. Since the 
logistic classifier requires fewer estimates, it should be preferred. 

The estimated standard deviation of the error estimates, obtained with the averaged 
rotation technique, ranges between 1.2% and 2.5%. The confusion matrices, 
reveal that very few objects from class SEV were correctly classified (see fig. 6.6 
for an example of a confusion matrix). 

:MILD SEV DEAD 

:MILD 166 7 25 

SEV 24 2 22 

DEAD 40 5 199 

Fig. 6.6: Typical confusion matrix for the decision tree in fig. 6.4. The rows 
indicate the true class membership, whereas the columns indicate the computer 
classification. 

Fig. 6.5 shows that in terms of results, all the algorithms yield a combination of 
features and structure that give similar results when tested. Nevertheless, the 
charts in fig. 6.5 show that the curves related to algorithm B2-C-99% are upper 
bounds to the other curves. More steps are required to achieve results similar to the 
others. The explanation of this behaviour must lie with the selection criterion used 
by this algorithm. It is not directly related to the error rate (as the other selection 
criteria are) and weak assumptions about the underlying probability functions (see 
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chapter 5) are made. All stopping criteria but the ones used by algorithms Bl-A
MLK and B2-C-99%, allowed the selection of features which were not necessary 
(see fig. 6.5), and structures that required a relatively large number of parameters. 

Finally, the results presented in fig. 6.5 and those presented in TITT81, are very 
similar. The error rates (for the full dimensionality) presented in TITT81 range 
from 23.2% to 33.8% depending on the classifier used. The logistic model used 
here gave similar results to the one in Tm8 L Nevertheless, it was able to achieve 
this with fewer parameters to estimate. 

6.2.6. A two level decision tree. 

In view of the results obtained so far, it was decided to test another classification 
strategy. The corresponding decision tree is shown in fig. 6.7. 

AIL 

MIX 

SEV DEAD 

Fig. 6. 7: A two levels decision tree. 

As it may be seen, this is a two level decision tree, not explored by Titterington et 
al .. At the first level of decision, class MILD is separated from the other two 

- 135-



Algorithm Ranking Strucurre 

1-EMV 
Search strategy B 1 2-CHANGE 1-2-3 

Selection criterion A 3-EYEIND 4 
:MLK estimates 4-PUPILS 5 

5-AGE 

1-EMV 
Search strategy B 1 2-CHANGE 1-2 

Selection criterion A 3-AGE 3 
Bayesian estimates 4-EYEIND 4-5 

5 -PUPILS 

1-EMV 

Search strategy B 1 2-AGE 1-2 
3 -PUPILS 3 Selection criterion B 4-EYEIND 4 :MLK estimates 5-MRP 5-6 

6-CHANGE 

1-EMV 1-5 
Search strategy B 1 2-MRP 2 3-AGE Selection criterion B 4-PUPILS 3 
Bayesian estimates 5-CHANGE 4 

6-EYEIND 6 

1-EYEIND 1 

Search strategy B2 2 -PUPILS 2 
3-EMV 3 Selection criterion C 4-MRP 4 

Conf. lim. 99 % 5-AGE 5 
6-CHANGE 6 

Table 6.3: This table shows the results of the feature se1ection algorithms when 
applied to the root node (node ALL) of the tree in fig. 6.7 (see also the caption ln 
table 6.2). 
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(MIX). The reason for merging the two classes SEV and DEAD in the first level is 
based on the mappings shown in figs. 6.1 and 6.3. At a second level, the 
separation between classes SEV and DEAD is attempted. The two decision levels 
were analyzed separately. 

Feature selection algorithms were applied to node ALL yielding the results shown 
in table 6.3. Just as with the one level decision tree, there are large differences 
between the rankings and structures selected. The comments written above, apply 
here as well. Feature EMV, was always ranked first by the algorithms using an 
error related selection criterion. At least in one case (B 1-A-MLK), a structure with 
a group of three non-independent features, was selected. 

For error evaluation, Bayes classifiers assuming the basic model and logistic 
classifiers were used. The error estimators used were the same as those applied to 
the single level decision tree. The results are shown in fig. 6.8. 

The charts in fig. 6.8 show again that the curves related to algorithm B2-C-99% 
are upper bounds to the other curves. This has already been commented on, in 
another case (see above). It is also worthwhile noting that this algorithm makes a 
bad selection already at the first step. 

With feature EMV alone, an error rate of 26.5 % is achieved. The error tends to 
stabilize after the third feature at a value of 21 %. This value is thus a lower bound 
for the total tree. This lower bound will be actually attained if an error free 
classifier can be designed at node MIX. The estimated standard deviation of the 
error estimates obtained with the averaged rotation technique, ranges between 
1.3% and 2.4%. The performances of the Bayes classifiers based on the basic 
model and of the logistic classifiers, are again similar. 

Next, the classification problem at node MIX was analyzed using the same 
procedures as for node ALL. The results (not shown here), are as follows. Feature 
EYEIND always ranks first and the stopping criteria of all but algorithm Bl-A
MLK, allow structures requiring a large number of parameters, to be selected. 
There is a clear failure to discriminate between classes SEV and DEAD. There is 
no decrease in the error rate if features are used. An analysis of the confusion 
matrices shows that either all objects are classified as DEAD (in which case the 
minimum error is attained, since this corresponds to assignment according to the 
highest prior probabilities alone), or there are errors both in the classification of 
objects from SEV and from DEAD. 

An estimate of the error rate associated with the decision tree in fig. 6.7, can be 
readily composed by summing the error rate at node ALL (21 %) with the error 
rate at node MIX (16.7 %) multiplied by the sum of the a-priori probabilities of 
classes SEV and DEAD (.56). The result of these operations is approximately 
30%. The one level decision tree performed better. 
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Fig. 6.8: Error estimates for node ALL of the decision tree in fig. 6.6. See also the 
caption in fig. 6.5. 
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6.2.7. Discussion. 

The study in TITT81 on head injured patients, has been expanded here by the 
application of feature selection algorithms and by the use of classifiers not 
considered by Titterington. Also both a single level and a two levels decision tree 
were used. The performance of the classifiers has been assessed exclusively by 
error estimates. When comparing these results with those obtained by Titterington 
(TITT81), it can be concluded that they are similar. 

The possibility of separation between the classes MILD and DEAD, and between 
the classes MILD and SEV, was also analyzed. As above, the research involved 
feature selection and error estimation. From the results obtained (not shown here) 
it can be concluded that: · 

- for MILD versus DEAD, an error rate slightly less than 20 %, can be 
achieved with 2 or 3 features. 

- for MILD versus SEV, the best error rate occurs when the classification is 
based solely on a-priori probabilities. 

MILD versus DEAD, MILD versus SEV and SEV versus DEAD, are all the 
possible combinations of two classes. The error rates obtained, indicate that SEV 
is strongly overlapped with both MILD and DEAD and that even the overlap 
between MILD and DEAD is significant. Taking into account the fact that the data 
set is fairly large, that the number of parameters required by most of the classifiers 
tested compare favourably with the number of objects used to estimate them 
(implying that the error estimates are stable and subsequent conclusions about 
overlaps between classes may be generalized), it can be concluded that the task of 
discriminating between the three classes with a smaller error, requires the 
defmition and use of new features. 

The various feature selection algorithms used yielded different rankings and 
structures for all decision levels studied. Whenever the number of objects was 
large (e.g. MILD versus MIX), these differences were interpreted in terms of 
features and structures with similar discriminating power. For other cases (e.g. 
SEV versus DEAD), estimation errors have also to be taken into account. The 
stopping criteria generally failed to act when they should. Features were selected 
beyond the point of stabilization of the error rate, as shown by the evaluation of 
some classifiers. Also, structures were selected requiring a large number of 
estimates. Since this behaviour also occurred with the acute chest pain data base, it 
will be analyzed later on in this chapter. 
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6.3. Acute chest pain. 

This data set contains records of 300 patients with acute chest pain. It was 
supplied by Dr. F. T. de Dombal2 who acquired and analyzed them (DOMB83). 

6.3.1. Material. 

The data on patients with acute chest pain was collected with the purpose of 
studying the possibilities of defining a set of procedures to assist a physician in 
making decisions based solely on clinical data. 

Acute chest pain may originate from the heart, from the lungs, or from elsewhere. 
If the pain is of myocardial origin, it is important to predict whether or not the 
patient will suffer from further complications (possibly causing death), requiring 
treatment in an intensive care unit (see BOMB83). 

Although the diagnosis generally presents little difficulty if ECG and enzyme data 
are available (see DOMB83), in remote locations (where an electrocardiograph and 
suitable laboratory equipment may not be available) or at an early stage (when the 
typical changes are not yet fully developed), a first diagnosis may have to be made 
based solely on the patient symptoms and signs (Le. clinical data). 

The data set consists of 300 records with the following (confirmed) diagnoses and 
outcomes (survival or death): 

a) 100 cases with non-specific chest pain, i.e. with the source of the pain not 
cardiovascular. 

b) 42 cases with myocardial infarction (M.I.) who survived with no further 
problems. 

c) 42 cases with M.I. who survived but developed further problems 
(arrhythmias, 22 cases, pump failures and arrhythmias, 12 cases, pump 
failures, 8 cases). 

2 We would like to express our gratitude to Dr. F. T. de Dombal, from St. 
James's Hospital Leeds (U.K.), for making this data set available to us. Also, Ms. 
Biba Unwin, from Dr. de Dombal's group, who retrieved and organized the data, 
is hereby gratefully acknowledged. 
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d) 16 cases with M.I. who developed further problems (arrhythmias, 8 
cases, pump failures and arrhythmias, 6 cases, pump failures, 2 cases), and
died. 

e) 90 cases with angina pectoris (A.P.) who survived with no further 
problems. 

f) 10 cases with A.P. that survived but developed further problems 
(arrhythmias, 4 cases, pump failures and arrhythmias, 2 cases, pump 
failures, 2 cases, other problems, 2 cases). 

Four classes were defmed among these groups: 

i) non-specific chest pain, a) above (NON; 100 cases; 0.25). 

ii) M.I. with no further problems, b) above (MIN; 42 cases; 0.20). 

iii) M.I. with further problems, c) and d) above (MIP; 58 cases; 0.30). 

iv) A.P. with or without further problems, e) and f) above (AP; 100 cases; 
0.25). 

In parentheses the mnemonics for each class, the number of records in the data set 
and estimates of the prior probabilities (see below), are given. 

The sampling may be considered as sampling per class, the classes being NON, 
AP and MI (MIN and MIP). The a-priori probabilities estimates shown above 
were indicated to us and reflect the situation at an emergency department in Leeds 
(U.K.). 

Each patient record contains 34 features. The mnemonics (in capitals) that will be 
used throughout this text, and the meaning of the features are as follows 3: 

1 - ONSET; pain onset, either sudden or gradual. 
2 - OCCUR; pain occurrence, either continuous or intermittent 
3- SEV; pain severity, either moderate or severe. 
4- DURA T; pain duration. 
5 - TYPE; type of the pain. 
6 - SITE; site of the pain. 
7 - RAD; radiation. 
8- PROG; progress. 
9- DISP; dispnoea. 
10- SPUTUM; sputum. 

3 Appendix E presents a description of these features. 
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11 - NAUSEA; nausea. 
12 - VOMIT; vomiting. 
13 - SWEAT; sweat. 
14- COLD; whether the patient feels cold/clammy. 
15 - COUGH; cough. 
16- MOOD; the patient's mood. 
17 - COLOUR; the colour of the patient. 
18- RMOV; respiratory movements. 
19 - NP; Jugular venous pressure. 
20 - HSOUND; heart sounds. 
21 - CSOUND; chest sounds. 
22 - PPAIN; previous chest pain. 
23 - PILL; previous relevant illness. 
24 - NUMB; numbness. 
25 - APPET; appetite. 
26 - TENDER; tenderness. 
27 - BOWELS; the functioning of the bowels. 
28 - TEMP; temperature. 
29 - PERC; percussion. 
30 - AGE; age of the patient. 
31 - PULSE; pulse rate. 
32 - BPSYS; systolic blood pressure. 
33 - BPDIA; diastolic blood pressure. 
34 - RRA TE; respiratory rate. 

Some comments are now due on this set of features. Firstly, there are discrete as 
well as continuous features (features AGE, PULSE, BPSYS, BPDIA and 
RRATE, are the continuous features). Secondly, some of the discrete features 
have a large number of categories (e.g. TYPE, SITE, RAD, PILL). Thirdly, for 
some discrete features, there is a set of basic categories together with other 
categories which are combinations of some of these basic categories. Finally, not 
all records are complete, i.e. there are missing values. 

6.3.2. Present analysis. 

In DOMB83, results are presented concerning the analysis of a similar data set. 
Unfortunately the author does not specify the steps leading to the results. In the 
present analysis, various multi-level decision strategies were designed, with 
systematic feature selection and structure selection at the various branch points. 
Single level decision strategies were not used because of the natural hierarchy in 
this data. Faced with a patient with acute chest pain, the first and fundamental 
question to answer is whether the source of the pain is in the heart or elsewhere. 
Following this, urgent decisions concern only those patients where the source of 
the pain is located in the heart. In the following sub-sections the various steps of 
the analysis are indicated. 
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6.3.3. Initial preparation. 

As indicated in section 6.3.1, for some of the discrete features, the number of 
categories is large as compared to the number of objects. If they are not 
compressed, i.e. merged into a smaller number of categories, the estimation of the 
selection criteria in feature selection algorithms, the estimation of classifiers, etc., 
is going to be seriously compromised in view of the limited number of objects 
available. On the other hand, the merging brings with it a loss of information. 
Nevertheless, since this information cannot be properly used (due to the limited 
number of objects), it was decided to merge some categories in some features. 
Depending on the feature, one or more heuristic criteria were used. Features with 
more than 9 categories, were considered for merging. 

Feature TYPE, had initially 34 different categories. It was decided to keep the 
basic categories which have fairly large numbers of objects, merge into these 
categories others that were combinations involving them, and create another 
category (others) where several categories are merged. The result of this 
transformation was another version of feature TYPE with 5 categories, as follows; 
heavy, tight, sharp, ache and other. 

Feature SITE had initially 12 different categories. The transformation applied here, 
resulted in a new feature SITE with 7 categories as follows; central, across, left 
side, across and left side, chest, central and left side, other. Essentially, the same 
criteria governed the merging here, with the exception that some of the categories 
that are combination of the basic categories were retained (across and left side, 
central and left side) in view of the relatively large number of objects in them. 

Feature RAD had initially 41 different categories. Of these categories, one 
indicates the absence of radiation and the remaining 40 indicate to where the pain 
radiated. There is an unbalance between categories since two different entities were _ 
coded here: the occurrence and the location of radiation, the second one being 
conditional on the first one. In order to correct this unbalance and at the same time 
reduce the number of categories, it was decided to just consider the presence or 
absence of radiation. 

Feature MOOD had. initially 10 different categories. It was transformed into 
another feature MOOD, with 5 categories, as follows; normal, anxious, lethargic, 
distressed and other. The criteria used here, were essentially those applied to 
feature TYPE. 

Feature PILL had initially 23 categories. Of these categories, one indicates the 
absence of any previous relevant illness, whereas the remaining 22 specify the 
relevant illnesses. After an analysis of the distribution of the objects among these 
categories, it was decided to merge the 22 categories specifying the relevant 
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illnesses into a single category, so that only the information on presence or 
absence of previous illnesses was retained. 

An analysis of the distribution of objects among the categories of some of the other 
discrete features shows, that for some features some of the categories have very 
few objects. This is an indication that the condition to which the category relates is 
rare. This implies that, if they are kept, these categories can have a disturbing 
effect in the selection of structures. Whenever a condition of non independence is 
established between two or more features, the number of parameters that require . 
an estimate is equal to the product of the number of categories of the features, 
minus 1. Consequently, a rare category can bring a substantial increase in the 
estimates required, without any substantial gain in discrimination ability. 
Therefore, it was also decided to merge 'rare' categories into categories with a 
larger number of objects. The features affected by this transformation on account 
of the reasons just given, were features DURAT, COLOUR, BOWELS, TEMP 
and CSOUND. In feature DURAT, category 'more than 1 week' was merged with 
category 'between 24 hours and 1 week'. In feature COLOUR, categories 
'cyanosed and pale' and 'cyanosed' were merged with category 'pale'. In feature 
BOWELS, categories 'diarrhoea' and 'constipated' were merged into a new 
category which may be called 'abnormal'. In feature TEMP, categories 'below 
normal' and 'above normal' were merged into an 'abnormal' category. In feature 
CSOUND, 6 categories indicating abnormal chest sounds were merged into a 
single category. 

Also the number of categories in feature PROG was reduced from 4 to 3 by 
dropping category 'varied' Gust one patient had its progress described as 'varied'). 
This was done by considering it to be a missing value since it was difficult to 
choose one of the remaining categories (better, same and worse) for merging. 
Finally the number of categories of feature COUGH was reduced from 5 to 4, 
after an error was found in the coding of the data. 

Feature PERC was disregarded because an analysis of the distribution of objects 
among its categories, revealed that all but 5 objects were either missing (18 
objects) or scored in one particular category. Hence, no discriminatory power 
could be expected from this feature. 

After this initial transformation of the data, the entire data set was divided into a 
training set and a test set with the same number of objects for each class. 

There are missing values in the data set. Table 6.4 indicates the percentages per 
feature for the entire data, the training and the test sets. Also indicated there are the 
type of variable (continuous or discrete) which best represents the feature it relates 
to, and the number of categories of the initial and transformed discrete features. 

Looking at the percentages of missing values per feature, it can be seen that some 
of them are very large. Since good estimates for replacements are not to be 
expected when there is a large percentage of those missing, it was decided to 
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Table 6.4: Missing data for acute chest pain patients. Also included are the feature's 
types (continuous or discrete) and the number of categories of the discrete features, 
both originally and after merging of categories. See continuation. 
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discard all features with more than 25% of missing values. This decision affected 
features NUMB, TENDER, RRATE, APPET, BOWELS and TEMP. All subjects 
were kept, since all of them had less than 50% of values missing. 

For all remaining missing values, replacements were estimated. The estimation 
was done separately for the discrete and the continuous features. The classification 
approach with a Bayes classifier assuming independence between features (see 
chapter 4) was the estimation technique used for the discrete features. The nearest 
neighbours approach with 3 neighbours and the features normalized so as to have 
unit standard deviation (see chapter 4), was the technique used for the continuous 
features. In both cases, the estimates were obtained separately for the training and 
test sets. For objects in the training set, the estimation was done separately per 
class. 

6.3.4. Feature selection. 

After some features were eliminated due to the existence of a large number of 
missing values, there remain still 27 features, 23 ·discrete features and 4 
continuous features. A strategy is required in order to deal with this large number 
of features and· the complexity it introduces. In the following, the strategy is 
explained and justified. 

Following a classical approach in pattern recognition, subsets of features were 
defined and feature selection was performed on these subsets. The partial results 
were then assembled into a 'final' feature selection. 

The subsets defined were: 

1- a subset whose members are the continuous features, i.e. AGE, PULSE, 
BPSYS and BPDIA. 

2- a subset whose members are features DISP, SPUTUM, NAUSEA, 
VOMIT, SWEAT, COLD, RMOV, JVP, HSOUND, COUGH, MOOD, 
COLOUR and CSOUND. 

3 - a subset composed of features ONSET, OCCUR, SEV, DURAT, TYPE, 
SITE, RAD and PROG. 

4 - a subset whose members are the remaining two features: PP AIN and 
PILL. 

The rationale for this subdivision is the following. First, a division was made with 
respect to the nature of the features. In this way, the discriminating power of 
continuous and discrete features can be assessed separately with algorithms suited 
to the variables in question. 
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A second division concerns the discrete features only. Specifically, three subsets 
of discrete features were established. The first subset groups all the features that 
'describe' the patient but are not related to the pain itself. The second subset 
groups all the features that describe the pain. Finally, the third subset includes two 
features which are related to the patient history. 

For the continuous features, feature selection was achieved through the application 
of stepwise linear discriminant analysis as described by Cooley and Lohnes 
(COOL71). This starts with a 'best' feature and sequentially adds those features 
which have the largest additional separating power as expressed by the F-ratio's. 
The procedure, as implemented in ISPAHAN (GELS80), allows the control ofF
values thresholds for inclusion and removal from the selected set of features. 

The algorithms applied for the selection of discrete features were those applied 
with the head injured patients data set, with the exception of the algorithm that 
employed selection criterion C. One reason justifies this exclusion. The 
implementation of the algorithm requires that objects are sampled from the 
universe and this was, with the present data set, not generally the case. 

A final remark concerns the selection of the subsets of discrete features. A 
maximum of five features was always requested (this limit is immaterial as far as 
the last subset is concerned). 

The various partial selections yielded sets of variables that could include both 
discrete and continuous features. For the final selection, only algorithms suitable 
for discrete data were applied. Specifically, the same four algorithms used in the 
partial selection of discrete features were again used here. If continuous features 
were involved, these were first discretized. The discretization was done in such a 
way as to obtain a uniform histogram. 

Whenever a continuous feature was consistently ranked best in the final selection, 
the selection was repeated using only the discrete features. These reruns were done 
in view of the use of the location model. As explained in chapter 5, this model is 
suited for mixed feature types. It decomposes the joint probability of continuous 
and discrete features, into the product of the marginal probability of the discrete 
features and the conditional probability of the continuous features given the 
discrete features. The former is then modeled using the basic model. Therefore, 
and for the marginal probability, a 'best' features combination and structure were 
selected appropriately. 
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6.3.5. Classifiers and error evaluation. 

In order to evaluate the discriminating power of the feature combinations and, for 
some cases, the structures selected, several discriminators and error estimators 
were applied. The discriminators were: 

1) Bayes classifiers assuming the basic model just as was done for the head 
injury data set. 

2) Classifiers based on the logistic model. This model can work with 
discrete, continuous or mixed feature types without requiring any adaptation 
as the basic model does. Nevertheless, it was considered for use only with 
mixed data or whenever there was an ordered discrete feature. Each 
continuous feature accounts for Nc - 1 parameters in the model, Nc being the 
number of classes (see chapter 5). 

3) Classifiers based on the location model. This model can only be applied to 
mixed data types (see chapter 5). 

The error estimators used were those which were also applied to the head injured 
patients data set. Estimators other than the hold-out technique were used only if 
objects belonging to a group to be discriminated (a group is a collection of subjects 
belonging to one or more of the classes defined above: NON, MIN, MIP, AP), 
could be considered as sampled from the universe of objects associated with the 
group. The way these techniques were implemented requires that this condition be 
satisfied. Otherwise, the results obtained would not be consistent. For logistic and 
location classifiers, only the hold-out method was applied, in view of the long 
computation times required by the other methods. As already explained (see 
chapter 5), the logistic and location models require an iterative procedure (logistic 
model) involving a matrix inversion, in order to estimate their parameters. 

6.3.6. NON versus CARD (MIN and MIP and AP). 

The corresponding decision tree is shown in fig. 6.9. Partial selection among the 
continuous features, resulted in the selection of feature AGE only. For the final 
selection, feature AGE was discretized with seven bins.The final results are 
presented in table 6.5. 

All four algorithms selected feature AGE as the best feature. Also to be noted is the 
consistent selection and high rank of feature SITE. Concentrating only on the first 
4 features, the structures selected vary between the full independence and 
dependence between at most 2 features. Again, the results are widely varying even 
if only 2 or 3 features are considered. 

I 
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AIL 

NON CARD 

Fig. 6.9: A decision tree to discri.Jnll:late those cases where the source of the pain is 
in the heart. - - · ·· 

The conditions of the stopping criterion were never fulfilled in spite of the fact that 
structures were selected requiring a number of parameters as large as 56. The 
failure of the stopping criterion is a problem that has manifested itself more or less 
constantly. At the end of this chapter, an attempt will be made to explain this 
behaviour and a revised version will be proposed. 

Since feature AGE was always ranked first and in order to apply the location 
model, the final feature selection was repeated considering only discrete features. 
Feature SITE was twice ranked first and twice ranked second (in these cases, 
feature PILL was the best). Also to be noted is the failure of the stopping criterion, 
admitting in one case a structure requiring 79 parameters. 

Error estimates are presented in fig. 6.10 as functions of the number of features 
used according to the ranking, and, in the case of the basic and location model, 
also according to the structure selected. With no features the estimates shown were 
obtained by using only prior probabilities. The chart corresponding to the location 
model contains the error estimates as functions of the number of discrete features 
only, feature AGE being always considered. For this model, zero marginal 
probabilities did not allow all features selected to be tested, since maximum 
likelihood estimates could not be obtained. 

Only one error estimator was applied; specifically the hold-out estimator, since the 
group formed by classes MIN, MIP and AP, could not be considered as being 
sampled from the associated universe of objects. 
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Algorithm Ranking Structure 

1-Age 
2 -Ppain 1-2 3- Cold 3 Search strategy B 1 4-Mood 4 Selection criterium A 5- Site 5-6 MLK estimates 6 -Sev 

7- Csound 7 

8 -Type 8-9 

9 -Disp 

1-Age 
2-Type 
3- Site 1-7 

Search strategy B 1 4- Sev 2-6 
Selection criterium A 5-Pill 3-8-9 
Bayesian estimates 6-Mood 4 

7- Onset 5 
8- Cold 
9 -Ppain 

1-Age 
2-Rad 
3- Site 1-2 

Search strategy B1 4-Sev 3-4 S-Pill Selection criterium B 6 -Type 5-7-8 
MLK estimates 6 7- Csound 9- 10 8- Onset 

9-Mood 
10- Ppain 

1-Age 
2-Pill 1 3- Site 2 

Search strategy B 1 4- Cold 3-5-6 
Selection criterium B 5- Ppain 4 
Bayesian estimates 6-Rad 7 7- Csound 

8 -Sev 8 

9 -Type 9- 10 

10 -Onset 

Table 6.5: This table presents the results of the feature selection algorithms when 
applied to node ALL of the tree in fig. 6.9 (see also the caption in table 6.2). 
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·•- B1 - B- MLK 
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Fig. 6.10: Error estimates (hold-out estimator) of the decision tree in fig. 6.9. The 
charts show the errors of classifiers based on the basic model (top, previous 
page), the logistic model (bottom, previous page) and the location modeL In every 
chart, each error function is associated with the feature ranking produced by a 
feature selection algorithm. 

An analysis offig. 6.10 reveals the following points: 

1 - With a small number of features the classifiers based on models able to 
handle mixed data types performed better than the basic modeL 

2 - The progression of the error curves is similar when comparing the 
various feature rankings. 

3 - The error curves stabilize after 3 or 4 features. 

4 - An error rate less than 10 % can be achieved with 3 or 4 features. 

Concerning the first point, we associate the behaviour indicated there, with the 
shortcomings of the discretization required by the basic model and the 
discriminative power of feature AGE. The discretization was done in such a way 
as to minimize the loss of information. This does not necessarily imply that the 
loss of discriminant information is also minimized. 

The confusion matrices (see fig. 6.11 for a typical confusion matrix) show that 
errors occur mainly with the classification of objects from class NON. In view of 
the use of Bayes classifiers and the large difference between the prior probabilities 
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(the prior probability of class NON was assumed to be equal to .25), this 
behaviour is to be expected. 

NON CARD 

NON 34 16 

:MIN 3 18 

MIP 0 29 

AP 2 48 

Fig. 6.11: A typical confusion matrix resulting from the test of a classifier at node 
ALL in fig. 6.9. See also the caption in fig. 6.7. 

6.3.7. MIN versus MIP versus AP. 

The second stage in the classification of patients with acute chest pain concerns the 
discrimination between the various classes associated with pain originating within 
the heart. Three classes (:MIN, MIP and AP) are to be considered. 

Three decision strategies were analyzed: a single level strategy, a two levels 
strategy where at the first level discrimination is attempted between class MIP and 
the group formed by classes MIN and AP (see fig. 6.12), and finally, another two 
levels classifier where at the first level discrimination is attempted between classes 
AP and the group formed by classes MIN and MIP (see fig. 6.13). Fig. 6.12 
shows a decision strategy which first tries a discrimination based on whether or 
not further problems developed, whereas the decision strategy shown in fig. 6.13 
first tries a discrimination based on the problem that caused the pain. 

As usual, systematic feature selection (4 algorithms) followed by testing (i.e. error 
estimation) of classifiers was done. 

Starting with the single level approach, partial feature selection among the 
continuous features, selected feature AGE. For the final selection feature AGE was 
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CARD 

MIP NO 

MIN AP 

Fig. 6.12: A two levels decision tree for discrimination between classes MIN, MIP 
andAP. 

CARD 

AP MI 

MIN MIP 

Fig. 6.13: Another two levels decision tree for discrimination between classes 
MIN, MIP and AP. 
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Algorithm Ranking Structure 

1- Sweat 
Search strategy B 1 2- Onset 1-5 

Selection criterium A 3- Pill 2 
MLK estimates 4- Disp 3-4 

5- Ppain 

1- Sweat 
2-Age 

Search st:r:ategy B 1 3- Ppain 1-2-3 
4- Occur 4-6-7 Selection criterium A 5- Pill 5 Bayesian estimates 6- Sev 8 
7- Durat 
8- Site 

1- Disp 
2- Durat 

Search strategy B 1 3- Pill 1-2-3-4 
Selection criterium B 4- Ppain 5-6-7 

MLK estimates 5- Site 8 6- Csound 
7- Sweat 
8- Vomit 

1- Disp 
2- Sweat 1 

Search strategy B 1 3- Csound 2-3-4 
Selection criterium B 4- Ppain 5 
Bayesian estimates 5- Site 6-7 6-Pill 

7- Onset 8 

8- Durat 

Table 6.6: This table presents the results of the feature selection algorithms for the 
single level strategy to discriminate between classes MIN, M1P and AP (see also the 
caption in table 6.2). 
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discretized using 4 bins in view of the number of objects available. The rankings 
and structures obtained are shown in table 6.6. 

The results are widely varying, suggesting difficulties in the discrimination, both 
due to a large overlap between the various classes and also to the small number of 
objects available for training. Features DISP and SWEAT were twice ranked first. 
In just one case was feature AGE selected. Again, the stopping criteria failed to act 
in time allowing the selection of totally inadequate structures, in view of the large 
number of parameters required, and the selection of too many features (see the 
error charts related to this decision tree). 

For error evaluation, only classifiers based on the basic model were used, in spite 
of the fact that feature AGE and feature DURAT (an ordered discrete feature) were 
selected. It was not considered worthwhile to use the logistic and the location 
models because for both features only one algorithm ranked them in a meaningful 
position. 

Three error estimation techniques were used: the hold-out technique, the leave
one-out approach and averaged rotation. As usual, averaged rotation was applied 
using 20 partitions of the data. Each partition resulted in a test set with a number of 
objects approximately equal to l/3 of the total number of objects. The results 
obtained are shown in fig. 6.14. 

An analysis of the results indicates a relative failure to discriminate between the 
three classes. The error curve related to the selection using algorithm B 1-B-MLK 
is always the worst. This behaviour is explained by the large number of 
parameters required by the structures selected, i.e. the failure of the selection 
algorithm. As expected, the hold-out estimator yielded the worst results but it may 
be recalled that this estimator yields pessimistic estimates. The other two 
estimators yielded similar results with estimated variances for the averaged rotation 
ranging between 10.5 % and 20.2 %. These values are larger than those obtained 
with the head injury data set. Since the acute chest pain data set has far less objects 
than the head injured data set, the differences found were already expected. With 3 
features, an error rate of 40 % is achieved. A typical confusion matrix is shown in 
fig. 6.15. 

The decision strategy shown in fig. 6.12 is now considered. Feature selection 
algorithms were applied to node CARD yielding the results shown in table 6.7. 
Consistent results may be found in this table. Specifically, features DISP, SWEAT 
and CSOUND, were selected as the three best features by three selection 
algorithms. Also, the same three algorithms selected a structure which assumes 
non-independence between features SWEAT and CSOUND. The consistency of 
these results suggests that the combination of these features and structure are 
indeed significative. The effectiveness of algorithm B1-A-BAY (the only one 
breaking this consistency) was compromised already at the second step because a 
feature and a structure were selected that required a large number of parameters. 
Also to be noted is the general failure of the stopping criteria. 
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Error 
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10 
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·D- B1- B- BAY 

Fig. 6.14: Error estimates of the single level decision strategy for discrimination 
between classes MIN, MIP and AP. The charts show the errors of classifiers 
based on the basic model. The top chart (previous page) relates to the hold
estimator, the bottom chart (previous page) to the leave-one-out estimator using all 
data available, and the present chart to the averaged cross validation estimator 
again using all the data available. 

MIN MIP AP 

MIN 12 2 7 

MIP 5 20 4 

AP 12 18 20 

Fig. 6.15: A typical confusion matrix resulting associated with the single level 
decision strategy. See also the caption in fig. 6.7. 
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Algorithm Ranking Structure 

1- Disp 
2- Sweat 

Search strategy B1 3- Csound 1-2-3 4- Durat Selection criterium A 5- Pill 4-5-6 
MLK estimates 6- Onset 7-8 

7- Nausea 
8- Sev 

Search strategy B 1 1- Disp 1-2 
2-Mood 3 Selection criterium A 3- Site 4 Bayesian estimates 4- Ppain 

1- Disp 
2- Sweat 1 

Search strategy B1 3- Csound 2-3-4 4- Site Selection criterium B 5- Durat 5-7 
MLK estimates 6- Sputum 6 

7- Pill 8 

8- Sev 

1- Sweat 
2- Csound 1-2-6 

Search strategy B 1 3- Disp 3 4- Site Selection criterium B 5- Durat 4 
Bayesian estimates 6- Pill 5 

7- Sputum 7-8 

8- Type 

Table 6.7: This table presents the results of the feature selection algorithms when 
applied to node CARD of the tree in fig. 6.12 (see also the caption in table 6.2). 
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Bayes classifiers assuming the basic model were used in order to obtain error 
estimates. Only the hold-out technique was used because objects from the group 
formed by classes MIN and AP cannot be considered as being sampled from the 
universe associated with these two classes. The results are shown in fig. 6.16. 

Error 
20 

estimate 

10 

0 1 2 3 4 5 6 7 8 
Number of features 

·•- B1- A- MLK 

·0- B1 -A- BAY 

·•- B1 - B- MLK 

·D- B1- B- BAY 

Fig. 6.16: Error estimates at node CARD of the decision tree in fig. 6.12. The 
chart shows the hold-out estimate of the error of a classifier based on the basic 
modeL 

The error curve associated with the selection algorithm B 1-A-BAY is the worst. It 
has already been indicated above that this algorithm gave results deviating from the 
other three. This illustrates that one of the advantages of using several selection 
algorithms, is the ability to find consistent results without being subject to 
spurious results arising from specific behaviours associated with a particular 
training set which will be reflected in the performance of a classifier when tested 
on an independent test set. In this case, the error evaluation confirmed that the 
selection made by algorithm Bl-A-BAY was indeed unusual and poor. 

Either the combination of features DISP, SWEAT and CSOUND or the 
combination of features SWEAT and CSOUND show the best results, with an 
estimated error rate of approximately 25%. A related confusion matrix is shown in 
fig. 6.17. 

Next the decision level at node NO was analyzed. The results of feature selection 
are shown in table 6.8. Again, consistent results may be found in this table. 
Specifically, features PPAIN, PILL and ONSET, were selected as the three best 
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MIP NO 

MIN 0 21 

MIP 15 14 

AP 9 41 

Fig. 6.17: A typical confusion matrix associated with node CARD in fig. 6.12. 
See also the caption in fig. 6.7. 

features by three selection algorithms. Another kind of 'consistency' (similarity 
with other results), is the failure of the stopping criteria. 

Error estimates for classifiers based on the basic model are shown in fig. 6.18. 
The three error estimators that have been used throughout this chapter were also 
applied here. The error curves associated with the selection algorithm B 1-B-MLK, 
is always an upper bound for the other error curves. This is explained by the large 
number of parameters required by the structures selected and the errors associated 
with the estimation of the parameters of the classifiers. The comment made above 
concerning the use of several selection techniques, also applies here since 
algorithm B 1-B-MLK was not consistent with the other three. 

With only 2 features (PPAIN and PILL) an error rate of 25 % is achieved. 
Combining this value with the error rate at node CARD and the prior probability 
there, an overall error estimate is obtained which is approximately equal to 40 %. 
Therefore there is no improvement when this decision strategy is applied as 
compared to the single level strategy. Estimated variances for the averaged rotation 
ranged between 13.8 % and 21.2 %. A related confusion matrix is shown in fig. 
6.19. 

As indicated above, another decision strategy was explored. As usual, systematic 
feature selection followed by error estimation of Bayes classifiers based on the 
basic model (no continuous features were selected) was done. At node CARD, the 
results were fairly poor. The error rates obtained were either only slightly better 
than the error rate of a classifier based on prior probabilities, or worse. At node 
MI, some discrimination was achieved. Feature DISP was always ranked first and 
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Algorithm Ranking Structure 

1- Ppain 
2- Pill 1-4 

Search strategy B1 3- Onset 2 

Selection criterium A 4- Disp 3 

:MLK estimates 5- Nausea 5 
6- Sev 6-8 

7- Occur 7 
8- Vomit 

1- Ppain 
2- Pill 

Search strategy B 1 3- Onset 1-4-5 

Selection criterium A 4- Sputum 2 

Bayesian estimates 5- Sev 3-7 
6- Disp 6-8 

7- Nausea 
8- Vomit 

1- Ppain 
2- Disp 

Search strategy B1 3- Onset 1 
4- Vomit 2-3-4 Selection criterium B 5- Site 5-8 :MLK estimates 6- Pill 6-7 
7- Durat 
8- Sweat 

1- Ppain 
2- Pill 

Search strategy B 1 3- Onset 1-6 
4- Vomit 2-3-4-8 Selection criterium B 5- Disp 5 Bayesian estimates 6- Cold 7 
7 -Site 
8-JVP 

Table 6.8: This table presents the results of the feature selection algorithms when 
applied to node NO of the tree in fig. 6.12 (see also the caption in table 6.2). 
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Fig. 6.18: Error estimates at node NO of the decision tree in fig. 6.12. The charts 
show the errors of classifiers based on the basic model. The top chart (previous 
page) relates to the hold-estimator, the middle chart (previous page) to the leave
one-out estimator using all data available, and the current chart to the averaged 
cross validation approach again using all data available. 

MIN AP 

MIN 12 9 

AP 12 38 

Fig. 6.19: A typical confusion matrix associated with node NO in fig. 6.12. See 
also the caption in fig. 6.7. 

either feature SITE or feature SPUTUM were ranked second. Nevertheless, and in 
view of the results at node CARD, no further improvements could be obtained 
over the other two strategies. 

Summing up, it may be concluded that a reasonable error rate could not be 
obtained when discrimination was attempted between classes MIN, MIP and AP~ 
It remains an open question, whether or not a large overlap really exists between 
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these classes since the number of objects available for training was small. This is 
also evidenced by the large estimated variances obtained with the averaged rotation 
approach. 

6.3.8. Mappings. 

Using correspondence analysis, factorial plots were obtained. The set of features 
used was assembled by combining the best subsets selected (as assessed by the 
error estimates) at the various levels of decision shown in figs. 6.9, 6.12, and 
6.13 (the case of J\11 versus AP was excluded in view of the extremely poor results 
obtained). The following features were therefore chosen: AGE (seven bins were 
used for discretization), PILL, SITE, COLD, PPAIN, ONSET, DISP, SWEAT 
and CSOUND. 

The factorial axes were obtained using the class-approach (see chapter 5) and the 
objects present in the training set. The first and second axes account for 72.6 % 
and 20.2 % of the total variance, respectively. Fig. 6.20 shows the projections of 
the four classes onto the plane spanned by the first two factorial axes, fig. 6.21 the 
projections of objects in the training set, fig. 6.22 the projections of objects in the 
test set and, finally, fig. 6.23 the projections of features AGE, SWEAT, DISP and 
PP AIN (these were the features ranked first at the various decision levels). 

The first axis appears to be associated with the discrimination between class NON 
and all the others, since objects from class NON tend to project on one side 
whereas the other three classes tend to project on the other side. Considering the 
projection on the second axis, it may be seen that objects from classes AP and 
MIN tend to project on the lower part, whereas objects from class MIP tend to 
project on the upper part. Therefore, the second axis may be associated with the 
typification of those objects with or without further complications. 

The projections of the objects indicate three degrees of overlap: a large overlap 
between classes MIN and AP, a smaller but still large overlap between class :MIP 
and the other two, and finally, a small overlap between class NON and the other 
three. This is consistent with the numerical discrimination results found. The 
projections of objects in the training and test set are similar. 

The projection of feature AGE shows a progression along the first axis followed 
by a progression along the second axis. The first part corresponds to younger 
patients and the bin associated with the older patients projects next to the 
projections of objects from class MIP. The projections of feature SWEAT 
indicates that sweating is an indication of pain caused by a heart condition with 
possible further complications. As for feature DISP, the occurrence of dispnoea 
both in the past and at present, is also an indicator of possible further 
complications. Finally, the projection of feature PPAIN indicates that the previous 
occurrence of chest pain is again associated with cardiac pain. 
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·0- AP 
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Fig. 6.20: Mapping of the four classes onto the first two factorial axes. The 
factorial axes were obtained using the class approach. 
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Axis 1 

• NON 

·0· AP 

·•- MIN 

·D- MIP 

Fig. 6.21: Mapping of all objects in the training set onto the first two factorial 
axes. 
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Fig. 6.22: Mapping of all objects in the test set onto the first two factorial axes. 

- 172-



2 

A 

• 
·•- AGE 

Axis 1 
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-2 

Axis 2 

Fig. 6.23: Mapping of features AGE, DISP, PPAIN and SWEAT onto the I!rst 
two factorial axes. Each feature is represented by a set of points (each one 
associated with a category), joined by straight lines. See also following page. 
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Fig. 6.23: Continuation. 
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6.3.9. Discussion. 

A study has been made concerning patients with acute chest pain. It consisted of 
systematic feature selection followed by classifier evaluation and mappings. Also 
several decision strategies were tried. 

The separation between class NON and all the others, might be considered 
reasonable although a question remains about its usefulness in a practical case. As 
for the attempted discrimination between the other three classes, the results were 
poor. 

The study in de Dombal (DOMB83) does not specify which classifier is being 
used. Also, it appears that no systematic feature selection was done. The results 
shown cannot be compared with the results obtained here because there is no clear 
indication of the way the errors were estimated. 

In view of the small number of objects available for training purposes, nothing can 
be said about the ultimate overlap between the classes. It is recommended that 
further studies be undertaken, possibly using some of the results obtained here as 
a starting point. 

One of the difficulties encountered in the analysis of this data, was the organization 
of the data itself. Some of the features had a large number of categories requiring 
that some merging was done. This was done heuristically. Although an algorithm 
could be defined that merged the features according to some criterion, it is in our 
opinion better to more strictly define the categories and not allow any deviation 
from a pre-defined set. 

The various feature selection algorithms yielded different rankings and structures, 
although consistent results could be found if only a small number of features is 
considered. The performance of the feature selection algorithms, as assessed by 
the error estimates, was not always similar. In some cases, structures were 
selected that required a large number of parameters. When the associated 
classifiers were tested, large errors resulted. This explains the most significant 
differences in performance. Furthermore, consistency of results was associated 
with comparatively better performances. Since the stopping criteria also failed to 
act in time with the head injury data set, this behaviour will further be discussed in 
a separate section. 

The various error estimators yielded results that were worse for the hold-out 
technique. This was expected. Both the leave-one-out and the averaged rotation 
approaches, gave similar results. If an estimate of the variance of the error estimate 
is not required, then the leave-one-out method is more attractive since it can be 
implemented in such a way that it is faster to apply. 
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6.4. The problem of the stopping criteria. 

Throughout this chapter, failures have been noted of the stopping criteria used by 
the selection algorithms with selection criteria directly related to the error rate. As 
explained elsewhere (see chapters 3 and 5), the stopping criterion associated with 
selection criterion A, acts when the selection criterion does not decrease after two 
more features are added, whereas the stopping criterion associated with selection 
criterion B, acts if the selection criterion does not decrease. In both cases, the 
failure to act in time, resulted either in too many features selected and/or in the 
selection of structures that required too many estimates. Especially the latter is 
particularly damaging. 

The task required from a stopping criterion, is a complex one. At each step in the 
selection, several estimates are computed (each one corresponding to a given 
structure and feature under consideration) and a selection is made according to 
their relative values. If the choice of the best among a set of possible cases is 
already a complex task, particular! y sensitive to the variance of the estimator used, 
the task required from a stopping criterion is even more complex. 

In principle, more restrictive versions of the stopping criteria could be 
implemented, e.g. forcing the selection to stop if the estimated selection criterion 
(error or error related estimates) does not decrease by more than a given threshold, 
greater than zero. However, this may have negative consequences on the 
performance of the selection algorithm as a whole. It may happen, that at a certain 
step in the selection, there is no decrease in the value of the selection criterion, 
whereas in the following step the decrease may be significant. Examples may 
easily be constructed which show that this may occur even with true (not 
estimated) values of the error as a selection criterion. 

In our opinion, a more efficient and effective stopping criterion results if the 
relation between the number of estimates required and the number of objects 
available is considered. Structures not obeying such predefined relations should be 
discarded. A possible way of doing this is to use the results in chapter 2, ignoring 
the assumptions that lead to them. A maximum admissible design error may be 
defined and the curves in fig. 2.1 may be used to check the relation between the 
number of objects and the number of parameters (full multinomials require a 
number of parameters equal to the number of different elements in the space minus 
1: therefore, the curves in fig. 2.1 can also be seen as curves relating the expected 
design error to the number of objects and also to the number of parameters) 
required by a given structure. The assumptions underlying the results in chapter 2 
and ignored if these results would be incorporated in a general stopping rule, 
concern the admissible structures (the results in chapter 2 only considered full 
multinomial structures), the estimation technique (the results in chapter 2 only 
consider the case of maximum likelihood) and sampling from the universe of 

- 176-



objects (the acute chest pain data was a data set obtained by sampling per class). 
Furthermore, since the results in chapter 2 only apply to two-class discrimination 
problems, a simple heuristic would also have to be devised in order to account for 
more than two classes. A conservative approach is to check only the combination 
of the two classes that have the smaller number of objects. 

6.5. Concluding remarks. 

The results of the analysis of the two medical data sets may not justify practical 
applications, in view of the error rates obtained. It is stressed that a rigorous Bayes 
approach was followed and risk factors were not used. 

In view of the large number of objects available in the head injury data set and of 
the results presented in TITT81, it can be concluded that there is a large overlap 
between the classes. Therefore, better results require either the introduction of new 
features or the definition of different classes or both. 

On the other hand, improvements with the acute chest pain data set are not to be 
excluded because the data set analyzed had a small number of objects inhibiting the 
exploration and use of more features and more complex structures. The estimated 
variances obtained with the averaged rotation error estimator support this 
conclusion. Nevertheless a rearrangement of the data is required. 

In both cases, the data sets were assembled over a large span of time. It is 
therefore frustrating to obtain results which are not sufficiently good. It appears to 
us that periodic analyses similar to the ones just presented, applied during the 
formation of the data set and yielding preliminary conclusions and suggestions of 
changes to implement (e.g. redefinition of classes, introduction of new features, 
etc.), is a good approach that will increase the chances of success. Also, a close 
interaction between the medical specialist and the data analyst is of utmost 
importance. This was not the case here. 

Finally, a fairly large number of algorithms and techniques were explored. Their 
application was facilitated and enhanced by their integration into the interactive 
system ISPAHAN (see GELS80). 
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CHAPTER 7 

FINAL REMARKS 

This thesis is devoted to various aspects related to the application of pattern 
recognition techniques for the analysis of medical data bases. In the following, all 
chapters but chapter 5 are briefly reviewed with emphasis on the main points 
discussed and the identification of new problems. 

In chapter 2 new error bounds, applicable in a given situation are established. 
Their main advantage is that they take into account sampling fluctuations. 
Furthermore, one of the bounds is a function of variables that do not require an 
estimate. It would be very important if other non-trivial bounds, also functions of 
variables that do not have to be estimated and taking into account sample 
fluctuations, could be found for other feature spaces and classifiers. These efforts 
should be directed at the classification error itself and not at errors in the estimation 
of a particular distribution. This last point stems from the fact that the condition of 
good estimates of probability density functions is sufficient but not necessary for 
good classifiers. 

Chapter 3 is mainly devoted to feature selection. The most important concept 
introduced there is the concept of structure selection embedded in the process of 
feature selection. Whenever a new feature is selected, it brings with it the 
requirement that one or more additional parameters (depending on the model 
assumed) will have to be estimated. It may happen that not all these parameters are 
important for discrimination. With feature selection incorporating structure 
selection, a more refined analysis of the discriminating power of a feature is made. 
In chapter 3, the need for further study of some of the selection criteria available, 
was also noted. In particular, those that are directly or indirectly related to the error 
rate are of special interest. Specifically, new studies will have to take into account 
the fact that these criteria are used in an optimization procedure. What is presently 
known about the properties (e.g. bias, variance) of some criteria, does not apply 
when these criteria are used in an optimization procedure. 

Chapter 4 is dedicated to missing values. Two points should be stressed here. The 
first point is that missing values are a nuisance and should be avoided as much as 
possible. The second point is the application of pattern recognition techniques in 
order to estimate missing values. 

Chapter 6 presents the application of pattern recognition techniques to two medical 
data bases. The availability and integration of specific algorithms in an interactive 
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system for pattern recognition (ISP AHAN) proved its value. Also the use of 
different algorithms in the same problem, enabled the identification of spurious 
results. The need for periodical analysis of medical data bases in order to yield 
preliminary conclusions was suggested. Also, the importance of a close interaction 
between the medical specialist and the data analyst, was stressed. 
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is an increasing function of kG). Expression A.1 is obtained by making a change 
of variables in 2.12 according to 2.14. Let us first consider the derivative with 
respect to kG) of the terms under the double summation signal. It is equal to 
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This last expression is greater or equal to zero. Therefore A.1 is a non decreasing 
function of kG). This completes the proof. 
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APPENDIX B 

It is considered here the maximization with respect to q(1) of 

n 
q(1) ( I, n! I (i! (n-i)!) (.5 (1-q(1)))i (.5 (1 +q(1)))n-i + 

i=f(n)+l 

.5 n! I (f(n)! f(n)!) (.5 (1-q(1)))f(n) (.5 (1+q(1)))f(n) ) 

for n even, and 

n 
q(1) ( I, n! I (i! (n-i)!) (.5 (1-q(1)))i (.5 (1 +q(1)))n-i 

i=f(n)+l 

for n odd. 

(B.1) 

Making a change of variable of the form q(1) = 1- 2f and rewriting B.1 we have 

n 
(1 - 2f) ( I, n! I (i! (n-i)!) fi (1-f)n-i + 

i=f(n)+l 

.5 n! I (f(n)! f(n)!) ff(n) (1-f)f(n) 

for n even, and 

n 
(1 - 2f) ( I, n! I (i! (n-i)!) fi (1-f)n-i 

i=f(n)+l 

for n odd. 

Since 0 ~ q ~ 1, than 0 ~ f ~ .5. We have therefore in both cases binomial 
distributions. These distributions can be approximated by a gaussian distribution 
with parameters 

n f, ..J (n f (1-f)) 
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Since 0 :::; f:::; .5, the skewness of the binomial is positive. Therefore, the use of 
the gaussian distribution, leads to larger values. We can now write 

(1- 2f) lj> ( x:::;- (n/2- nf) I" (n f (1-f)) == 

2 "(f(1-f)) (.5-f) "n I ("n "(f (1-f))) lj> ( x:::;- (.5-f) "n I "(f (1-f)) 
(B.2) 

where lj> (x) is the standard normal distribution. The maximum of (u lj> (x:::; -u)) 
with respect to u is equal to .17. Therefore 

B.2::;(2" (f(1-f)) .17)1"n:s;.17 l"n 

This completes the proof. 
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APPENDIX C 

These expressions complete the definition of expression 3.12 in chapter 3. 

nB 1 nB1-k nB-nB1+m-1+k 

F1(nA1,nB1,nA,nB,m,a) = ( 2:. a (1-a) g(nB1,nBr-k+1) I 
k=O 

nA1+1 nA1+1-k nA-nA1+m-1+k 

( 2:. a (1-a) g(nA1+1,nA1-k+2) I 
k=O 

if element 1 is classified as class A, 

nB 1+1 nBrk+1 nB-nB1+m-1+k 

F1(nA1,nB1,nA,nB,m,a) = ( 2:. a (1-a) g(nB1+1,nB1-k+2) I 
k=O 

nA..nA1 +m-1 +k 

(1-a) g(nA1,nArk+1) I 
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if element 1 is classified as class B, 

nB1 nBrk nB-nB1+m-1+k 

(2:, a (1-a) nBiJ g(nB1,nB1-k+ 1) I 
k=O 

nAl nArk 

( (nAi+1)! I a 
k=O 

if element i is classified as class A, 

nA-nA1 +m-1 +k . 

(1-a) g(nAI>nA1-k+ 1) I 

nBl nBl-k nB-nBl+m+k 

(I a (1-a) (nBi+1)! g(nB1,nBrk+1) I 
k=O 

nA-nA1+m-1+k 

(1-a) nAi! g(nA1,nA1-k+1) I 
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if element i is classified as class B. Function g(a,b) above is either equal to the 
product of all integers in the interval [b,a] (b ~ a) or equal to 1 if a< b. 
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APPENDIX D 

These expressions complete the definition of expression 3.15 in chapter 3. 

nB1 nB1-k nB-nB1+m-1+k 

2: a (1-a) * 
k=O 

if element 1 is classified as class A, 

nB1+1 . nB1+1-k 

( I a 
k=O 

if element 1 is classified as class B, 

nB-nB1+m-1+k 

(1-a) 

nB1 nB1-k nB-nB1 +m-1 +k 

( 2: a (1-a) * 
k=O 

if element i is classified as class A, 
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nB1-k nB-nB1+m+k 

a (1-a) * 

if element i is classified as class B. For the definition of function g(a,b), see 
appendix C. 
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APPENDIX E 

This appendix contains a brief description of the features present in the acute chest 
pain data base. The analysis of this data base is presented in chapter 6. 

Feature ONSET Binary feature with categories 'sudden' and 'gradual' which 
typifies the onset of the pain. 

Feature OCCUR Binary feature which indicates whether the pain is continuous 
or intermittent. 

Feature SEV Binary feature which indicates whether the pain is moderate or 
severe. 

Feature DURA T Discrete feature that indicates the duration of the pain, grouped 
in a number of intervals (~ 1 hour, ~ 2 h, ~ 4 h, ~ 12 h, ~ 24 

h, ~ 1 week, more than 1 week). It is therefore an ordered 
discrete feature. 

Feature TYPE 

Feature SITE 

FeatureRAD 

Feature PROG 

Discrete feature that indicates the type of the pain. In the data 
set made available to us, 34 different categories can be found, 
which are combinations of one or more of the following 
categories: tight, sharp, crushing, gripping, burning, ache, 
dull, stabbing, nagging and squeezing. 

Discrete feature that indicates the site of the pain. It has 12 
different categories, again combinations of one or more of the 
following categories: central, chest, across, left side, right 
side and epigastrium. 

Discrete feature that indicates whether or not the pain is 
radiating to other sites. If yes, it also indicates where to the 
pain radiates. It has 41 categories, one associated with no 
radiation, and the remaining 40 indicating the location of the 
radiation. These 40 categories are again combinations of one 
of the following categories: left arm, right arm, both arms, 
back, chest, right shoulder, left shoulder, both shoulders, 
neck, jaw, throat, hands and/or fingers and epigastrium. 

Discrete feature that indicates the progress made. It has 4 
categories: better, same, worse and varied. 
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Feature DISP Discrete feature related to the occurrence of dispnoea. It has 5 
categories which are combinations of one or more of the 
following categories: no, now and past. 

Feature SPUTUM Binary feature indicating if the patient has or does not have 
sputum. 

Feature NAUSEA Binary feature indicating whether the patient suffers from 
nausea. 

Feature VOMIT Binary feature indicating whether vomiting has occurred. 

Feature SWEAT Binary feature indicating whether the patient is sweating. 

Feature COLD Binary feature indicating whether the patient feels 
cold/clammy. 

Feature COUGH Discrete feature that indicates whether the patient has or had 
cough. It has 5 categories which are combinations of one or 
more of the following categories: no, now and past. 

Feature MOOD Discrete feature that indicates the patient's mood. It has 10 
categories, which are combinations of one or more of the 
following categories: normal, anxious, distressed, lethargic 
and in shock. 

Feature COLOUR Discrete feature that indicates the patient's aspect. It has five 
categories: normal, pale, flushed, cyanosed and pale and 
cyanosed. 

Feature RMOV 

FeatureNP 

Binary feature that indicates whether the patient's respiratory 
movements are normal or abnormal. 

Binary feature that indicates whether the jugular venous 
pressure is normal or increased. 

Feature HSOUND Binary feature that indicates whether the patient heart sounds 
are normal or abnormal. 

Feature CSOUND Discrete feature that indicates the patient chest sounds. It has 7 
categories which are combinations of one or more of the 
following categories: normal, rhonci, crepitations and 
decreased. 

Feature PP AIN Binary feature that indicates whether or not the patient 
previously had chest pain. 
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Feature PILL Discrete feature that indicates whether the patient had any 
previous relevant illnesses (e.g. myocardial infarction, angina, 
bronchitis, hypertension, diabetes, etc.) and if so, what were 
those illnesses. It has a total of 23 categories. 

Feature NUMB Binary feature that indicates the presence or absence of 
numbness. 

Feature APPET Binary feature that indicates whether the patient's appetite is 
normal or has decreased. 

Feature TENDER Binary feature that indicates whether or not the pain responds 
to pressure. 

Feature BOWELS Discrete feature that indicates whether the bowels function 
normally, constipated, or whether the patient has diarrhoea. 

Feature TE:MP Discrete feature that indicates whether the patient's 
temperature is normal, below normal or above normal. 

Feature PERC Discrete feature that indicates whether the results of 
percussion are normal, dull or hyper resonant. 

Feature AGE Continuous feature that shows the patient's age in years. 

Feature PULSE Continuous feature that shows the patient's pulse rate in beats 
per minute. 

Feature BPSYS Continuous feature that shows the patient's systolic blood 
pressure. 

Feature BPDIA Continuous feature that shows the patient's diastolic blood 
pressure. 

Feature RRA TE Continuous feature that shows the patient's respiratory rate. 
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APPENDIX F 

A brief account is given here of the software developments that were implemented 
into the interactive system for pattern recognition ISPAHAN (see GELS80). These 
developments, made the package able to handle mixed data types and missing 
values. 

This appendix is organized in a number of sections, each one containing a 
description of facilities which are grouped in an ISP AHAN main menu. 

F.l. Discrete populations. Creation of new populations. 

A module is available that allows the user to make known to the system the type of 
features under study. Three types of features are allowed: continuous features, 
ordered discrete features and non-ordered discrete features. The information 
entered is kept by the system and used whenever required. 

A module is available that allows the generation of random populations. 
Multivariate gaussian populations and discrete populations may be generated. The 
discrete populations are generated according to a loglinear model (see chapter 5) 
selected by the user. 

F .2. Missing values. 

A set of modules is available that give information, per feature or per object, about 
the missing values present in the group of objects under consideration. 

A module allows the removal of objects with missing values in the group under 
consideration, according to various criteria defined by the user. These objects are 
excluded from further analysis. 

A module allows the random insertion of missing values in the group of objects 
under consideration. 

A set modules allows the estimation and replacement of missing values. The 
algorithms implemented are the four algorithms described in chapter 4 (two 
suitable for continuous features and two for discrete features). 
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SUMMARY 

This thesis was devoted to aspects related to the analysis of medical data bases in 
the context of pattern recognition. It contains both theoretical aspects and practical 
applications and its scope includes questions and problems that arise when 
applying pattern recognition methods and techniques to this type of data. 

Two concepts form a central theme: 

1 - The occurrence of discrete features, either in isolation (discrete feature 
spaces) or in combination with continuous features (mixed features spaces). 

2 - The occurrence of missing values. 

It was attempted to treat these two complications in pattern recognition in a 
systematic way. In doing so, it soon became clear that it was desirable to develop 
the treatment of both areas further than was available in the literature. This gave 
rise to the following subjects: 

1 - Theoretical work leading to a new error bound. It is valid for a certain 
type of classifier. Since the bound is an expected value with respect to all 
possible training sets of a given size, it takes into account sample 
fluctuations. 

2- Development of new methods for feature selection. Specifically, these 
new methods were built around the concept of structure selection as opposed 
to the concept of feature selection. A simulation study, presenting results in a 
well controlled environment, was also performed. 

3 - Analysis of the problems associated with the occurrence of missing 
values. New approaches to estimate missing values were presented and a 
simulation study was performed in order to better understand the effects of 
incomplete data in the design and use of classifiers. Both discrete and 
continuous data were considered. 

4 - Analysis of two different medical data bases, where some of the 
techniques described or proposed, were applied. The two medical data sets 
used were a data set containing records of patients with acute chest pain, and 
a data set containing records of severely head injured patients. 

Briefly, it can be said that, given a major general problem (in our case, the 
application of pattern recognition techniques to medical data bases), specific 
problems were identified and solutions were devised and/or proposed. 
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PATROONHERKENNING MET DISCRETE EN GEMENGDE 
GEGEVENSBESTANDEN: THEORIE EN PRAKTIJK. 

SAMENV AITING. 

Dit proefschrift behandelt enkele aspecten van de analyse van medische 
gegevensbestanden met behulp van patroonherkenningstechnieken. Het 
beschrijft zowel theoretisch onderzoek als enk:ele practische toepassingen. De 
vraagstelling van het onderzoek was het identificeren en oplossen van 
problemen, die zich bij dit soort gegevensbestanden voordoen. 

Twee complicerende factoren bij de analyse van medische gegevensbestanden 
werden onderzocht: 

1. Het optreden van discrete kenmerken, hetzij in isolatie (in zuivere discrete 
kenmerk-ruimtes) dan wel in combinatie met continu varierende kenmerken 
(gemengde kenmerk-ruimtes). 

2. Het optreden van incomplete kenmerk-vectoren. 

Bij de systematische behandeling van deze twee complicerende factoren werd 
al snel duidelijk, dat het nodig was om de theoretische grondslagen, zoals die 
uit de literatuur bekend zijn verder te ontwikkelen. Dit gaf aanleiding tot de 
volgende cnderwerpen, die m dit proefschrift aan de orde komen: 

1. Theorievorming met als resultaat de afleiding van een nieuwe bovengrens 
voor de foutenkans van een bepaald type klassificator. Deze bovengrens is 
een verwachtingswaarde over alle mogelijke leerbestanden en verdisconteert 
daarom de fluctuaties in de leerverzameling. 

2. De ontwikkeling van nieuwe methodes van kenmerk-selectie, gebaseerd op 
het principe van de selectie van de structuur van de kenmerk-ruimte. 
Resultaten van een simulatie studie aan de hand van gegenereerde bestanden 
worden in het proefschrift beschreven. 

3. Analyse van de problemen verbonden aan het v66rkomen van incomplete 
kenmerk-vectoren. Nieuwe manieren van de schatting van ontbrekende 
waarden werden ontwikkeld en geevalueerd d.m.v. een simulatie-studie. Dit 
leidde tot een beter inzicht in het effect van incomplete kenmerk-vectoren 
op het antwerp en het gebruik van klassificatoren. Zowel discrete als 
continue kenmerken werden hierbij in beschouwing genomen. 

4. De analyse van twee medische gegevensbestanden, waarbij sommige van de 
ontwikkelde technieken werden toegepast. Een bestand betreft patienten met 
acute pijn in de borst, het andere betreft patienten met ernstig hoofdletsel. 

Samenvattend kan gezegd worden, dat bij de analyse van dit soort bestanden 
een aantal problemen werden geidentificeerd, waarvoor oplossingen werden 
ontwikkeld, die vervolgens aan de praktijk werden getoetst. 
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