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Preface & Structure of the thesis

PCBs (polychlorinated biphenyls) and dioxins are persistent environmental pollutants 

which are known for their (neuro)toxic potential, especially in children. These compounds 

are lipid-soluble and poorly eliminated, features that make them accumulate in the food 

chain when they are emitted in the environment. Humans are exposed to these compounds 

predominantly through food, causing accumulation of PCBs and dioxins in human’s 

body fat. A fetus is exposed to maternal body burdens of these compounds through 

transplacental transport. Moreover, PCBs and dioxins are excreted in breast milk causing 

additional exposure of the infant to relatively large amounts of PCBs and dioxins (1). 

In the late 80’s, breast milk PCB and dioxin concentrations in The Netherlands were 

amongst the highest worldwide (2). Prenatal exposure to high maternal levels of these 

compounds was known to cause neurodevelopmental abnormalities in children (3, 4). To 

explore effects of prenatal and postnatal (lactational) exposure to environmental levels of 

PCBs and dioxins as measured in The Netherlands, a prospective cohort study was initiated 

in 1989. This Dutch PCB/dioxin cohort was recruited by two study centers, in Rotterdam 

(Sophia Children’s Hospital Rotterdam), a highly industrialized area, and in Groningen 

(Academic Hospital Groningen), a more rural area. In the Dutch PCB/dioxin cohort, effects 

of prenatal and postnatal (i.e. perinatal) exposure on growth, health, neurodevelopment and 

behavior have been studied from birth to school age. The Dutch PCB/dioxin study started 

as a cooperative effort between animal and human studies and was initially supported by 

the Dutch Toxicology Research Promotion Program and the Health Research Stimulation 

Program. Effects on end-points from birth to 18 months of age were described in the 

doctoral theses of C. Koopman-Esseboom (Rotterdam) (5) and M. Huisman (Groningen) 

(6). At 42 months of age, a follow-up study was initiated in the Dutch cohort as part of a 

multi-center cohort study in which additionally a German and Danish cohort, both recruited 

between 1994 and 1995, participated. The European Commission financed this multi-center 

study. The cohort studies applied the same inclusion and exclusion criteria, however the 

German and Danish studies held no restrictions in the inclusion of the number of breast-

feeding mothers, in contrast to the Dutch cohort in which half of the infants was breast-fed 

for at least six weeks and the other half formula-fed. The major developmental assessments 

were similar in the cohorts, although study centers included additional outcome variables 

of their own particular interest. The results of the study at 42 months of age in the Dutch 

cohort are described in the doctoral theses of S. Patandin (7) (Rotterdam) and C.I. Lanting 

(8) (Groningen). 

This thesis describes results of a follow-up study in the Dutch PCB/dioxin cohort at 

school age. Associations between perinatal exposure to PCBs and dioxins and several 

neurodevelopmental outcomes, assessed at 6/7 and 9 years of age, are evaluated in these 

studies. This study was also carried out in cooperation with the German and Danish cohorts 



and was financed by the European Commission. Moreover, the supplemental studies that 

were performed in the Rotterdam cohort were sponsored by the American Environmental 

Protection Agency (EPA). 

In Chapter 1, a general introduction is presented on PCBs and dioxins as well as a 

discussion of the results of several cohort studies that address perinatal exposure to 

PCBs and dioxins, including the Dutch PCB/dioxin study. The studies in this thesis are 

structured in two parts. Part I (Chapter 2, 3, and 4) describes relations between perinatal 

exposure to environmental levels of PCBs and dioxins and cognitive and motor abilities 

at school age. Moreover, relations between perinatal exposure and the development of 

these abilities from 3 to 84 months of age are described. Additionally, in this part of the 

thesis, modification of neurodevelopmental effects of perinatal exposure by parental and 

home environmental conditions is addressed. In Part II (Chapter 5, 6, and 7) mechanisms 

of neurotoxic action of perinatal exposure to PCBs and dioxins are explored by means 

of studying relations between perinatal exposure to PCBs and dioxins and behavioral, 

neuropsychological, and neurophysiological endpoints. Chapter 8 summarizes the results 

of the studies in this thesis. In addition, neurotoxic mechanisms of neurodevelopmental 

effects of perinatal exposure to PCBs and dioxins are discussed as well as whether breast-

feeding is still preferred over formula-feeding given the PCB and dioxin contamination. 

Moreover, the magnitude of the effects is discussed and future perspectives are presented 

as well as the overall conclusion.
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1.1 PCBs and dioxins

PCBs and polychlorinated dibenzo-para-dioxins (PCDDs) and polychlorinated dibenzo-

furans (PCDFs) (the latter two are summarized as dioxins) are polyhalogenated aromatic 

hydrocarbons with comparable molecular structures. They consist of a biphenyl ring and, 

depending on the number and position of chlorine atoms on the two rings, there are 209 

theoretically possible discrete PCB compounds, called congeners, and 210 different dioxin 

congeners (75 PCDDs and 135 PCDFs). 

Their basic structure is presented in Figure 1.

PCBs were commercially produced as complex mixtures (under trade names such as 

Aroclor, Clophen, Phenoclor) for a variety of applications such as dielectric fluids for 

capacitors and transformers, heat transfer fluids, hydraulic fluids, lubricating and cutting 

oils, and as additives in pesticides, paints, adhesives sealants, carbonless copy paper, flame 

retardants, organic dilutents, and plastics. Their commercial utility was based largely on 

their chemical and physical stability, including low flammability and their miscibility with 

organic compounds. The total amount of PCBs produced worldwide from 1929 to the 

1980s, when most countries reduced or stopped the production, has been estimated at 

Figure 1.1 Molecular structures of PCBs, PCDDs and PCDFs



16

Ch
ap

te
r 1

approximately 1.5 million metric tons (1, 2). In 1982, it was estimated that 31 % had been 

released to the environment and 65 % was still in use or in storage, or deposited in landfills 

(3). Moreover, PCBs can be formed unintentionally as byproducts in a variety of chemical 

processes that contain chlorine and hydrocarbon sources.

 Dioxins are generally formed as unwanted and often unavoidable byproducts during 

the synthesis of a wide array of commercial chemical products, especially those based 

on chlorinated aromatics, precursors, and intermediates. Moreover, they are formed 

during various combustion processes, such as burning of solid waste from municipal 

incinerators. 

1.1.1 Molecular structure and mechanisms of (neuro)toxicity

The first mechanism that was described for toxic effects of PCBs and dioxins was, after 

entering cells, their interaction with a cytoplasmic receptor protein, the aryl-hydrocarbon 

(Ah) receptor (4). Depending on the positions of the chlorine atoms on the biphenyl ring 

structure (ortho, meta, or para position), and consequently the planar shape, the different 

compounds bind to a certain extent to this receptor. Dioxins as well as dioxin-like PCBs 

(coplanar PCBs; having no chlorine atom on the ortho position) are recognized as potent 

compounds to interact with the Ah receptor (5). Furthermore, two other groups of PCBs 

can be distinguished based on the ability to interact with the Ah-receptor, mono-ortho-

substituted PCBs (weak dioxin-like) and ortho-substituted PCBs (nondioxin-like PCBs). 

Mono-ortho-substituted congeners have one chlorine atom on the ortho position and are 

intermediate in their ability to interact with Ah receptors. Ortho-substituted have more than 

one ortho-substitution on the biphenyl ring, which reduces the planarity of the molecule 

and reduces the ability to interact with the Ah-receptor (6). 

Both non-ortho-substituted (coplanar compounds) and ortho-substituted PCBs are toxic. 

Their mechanism of toxicity however is likely to be different. As described previously, 

toxicity of coplanar compounds appears to be mediated by the Ah receptor (5). The toxic 

potency of a coplanar PCB congener is reflected in a toxic equivalent factor (TEF), based 

on its ability to bind the Ah receptor relative to the binding ability of the most potent 

dioxin, TCDD (7, 8). For noncoplanar PCBs the ability of the TEF to predict their neurotoxic 

potency is low (9, 10). In the last decade there is growing evidence that especially 

nondioxin-like PCBs and weak dioxin-like PCBs and their metabolites such as hydroxilated 

PCBs may produce a wide spectrum of neurotoxic effects, while dioxin-like PCBs may have 

less activity in the central nervous system (CNS) (10-12). 

Neurochemical studies have shown that many elements of the CNS, and especially of the 

developing CNS, are susceptible to exposure to PCBs and dioxins, including cellular and 

synaptic processes, and endocrine systems (13-16). These aspects will be further discussed 

below.
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At the cellular level, PCBs induced alteration in markers for neuronal and glial cell 

development have been reported in several brain areas in rats that were perinatally 

exposed to a PCB mixture (17). The levels of these markers for structural and functional 

brain development were altered in a complex manner, depending on age, sex, or brain 

region of the animal. The changes were suggestive of neuronal damage or death and 

were reported in several areas of the brain including the lateral olfactory tract, striatum, 

prefrontal cortex, and in the cerebellum and brain stem (17). Perturbations were also 

reported on intracellular calcium homeostatic mechanisms and second messenger systems 

that play a role in neuronal growth and normal physiology of cells (18-21). 

Effects of exposure to PCBs on synaptic processes included an inhibition of the synaptic 

transmission assessed in the dendate gyrus of the cerebral cortex in adult rats (22) as 

well as in the hippocampus (23) and in the visual cortex in prenatally exposed rats (24). 

Synaptic transmission can be measured by means of long term potentiation, which is a 

model of synaptic plasticity that is suggested to be related to learning and memory at the 

synaptic level (25). Several brain neurotransmitter systems have been shown to be affected 

by exposure to PCBs and dioxin including dopamine, serotonine, glutamate, GABA, and 

cholinergic systems (15, 26-29). Effects of perinatal exposure on dopaminergic systems 

have been documented most thoroughly. It appeared that in rats, developmental exposure 

to PCBs can result in opposite alterations in brain dopamine concentrations depending on 

the type of the congener. For example, perinatal exposure to ortho-substituted PCBs led 

to decreases in brain dopamine whereas perinatal exposure to a coplanar PCB congener 

resulted in elevated concentrations of dopamine (13, 28). 

PCBs and dioxins, and especially one type of PCB metabolites, the hydroxylated PCB 

metabolites, are presently known as endocrine disrupters (3). Multiple PCB congeners may 

impact upon multiple endocrine systems that may communicate with each other and are 

involved in fetal CNS development. Much of these complex mechanisms of actions have not 

been studied, and their role in developmental neurotoxic PCB and dioxin effects remains 

largely unknown. Most information is available on thyroid hormone changes, generally 

including decreases in plasma thyroid hormone levels in fetal and neonatal rats as well as 

in plasma of the women of the Dutch cohort and their children, two weeks after birth (13, 

30, 31). Moreover, interactions with the steroid hormone system are suggested, due to PCB 

and dioxin induced changes in steroid hormone homeostasis or to endocrine-like actions 

of these contaminants, particularly during development (32). Estrogenic (12, 33, 34), anti-

estrogenic (35-38) and anti-androgenic (39) effects have been described in in vivo and in 

vitro studies, possibly depending on congener type and/or metabolite. 
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1.2 Human exposure to PCBs and dioxins

Human exposure to PCBs and dioxins occurs for 90 % through the diet, with food of animal 

origin being the predominant source (i.e. background exposure) (40). Contamination of 

food is primarily caused by deposition of emissions of various sources on farmland and 

water (e.g waste incineration, production of chemicals) followed by bioaccumulation in 

the food chains in which they are particularly related with fat. Other sources may include 

contaminated feed for cattle, chicken and farmed fish, improper application of sewage 

sludge, flooding of pastures, and waste effluents (40). 

Since PCBs and dioxins are lipid-soluble and are only slowly degraded, with half-life 

times in humans ranging from 1.8 years to 9.9 years (41, 42), these compounds accumulate 

in adipose tissue. During pregnancy, PCBs and dioxins are transferred through the placenta 

and are able to cross the blood-brain barrier, exposing the fetus during a vulnerable time 

of CNS development (43). PCBs have been detected in brain tissue of still born babies, 

exposed to environmental levels of PCBs, from 17 weeks of gestational age onwards (44). 

A breast-fed infant is additionally exposed to relative large amounts of PCBs and dioxins, 

since these compounds are excreted in breast milk. For example, PCB levels were still 

approximately four times higher in 42 month old children that were breast-fed during 

infancy than in their formula-fed counterparts that were predominantly prenatally exposed 

to PCBs and dioxins (45). 

Since these neurotoxic compounds are able to interact with many processes of the CNS, 

including neurotransmitters and hormones that mediate brain development, the developing 

CNS is considered to be especially vulnerable to exposure to these neurotoxic compounds. 

Hence prenatally, the CNS may be most vulnerable to harmful effects of exposure to these 

compounds. Prenatal exposure can be regarded as chronic exposure of the developing 

brain. So far, neurochemical studies do not provide evidence of specific brain areas to be 

especially vulnerable. Postnatally, the CNS continues to develop rapidly doubling in weight 

in the first year of life, reaching 90% of its adult size by 5 years of age. Much of this increase 

is due to an increase in neuronal maturation, production of glial cells, outgrow of dendrites 

and axons, formation of synapses and myelination of axons (46). Moreover, extensive 

cell death and synapse elimination takes place postnatally. These postnatal maturation 

processes may be especially vulnerable to adverse effects of lactational exposure to PCBs 

and dioxins. The maturation rates vary for different brain structures. Therefore, lactational 

exposure to PCBs and dioxins can be hypothesized to cause structure related functional 

differences depending on the time window of exposure. For example, during the first two 

years of life in humans, functional cortical activity increases earliest in the sensorimotor and 

occipital cortices, before 3 to 6 months, the auditory and visual association cortices from 4 

to 7 months, and latest in the frontal cortex, after 6 to 12 months (47, 48). Moreover, timing 
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of maximum brain growth, maximum synaptic density, dendritic arborizations, myelination, 

all occur first in primary motor and sensory areas, and later in the frontal cortex (49-53). 

1.3 Perinatal exposure to PCBs and dioxins and neurodevelopmental outcome 

1.3.1 Accidental exposure

Two accidents (‘Yusho’, Japan, 1968 and ‘Yu Cheng’, Taiwan, 1979) clearly showed 

the neurotoxic potential of prenatal exposure to these compounds. Large populations 

were accidentally exposed for relatively short periods to rice oil that was contaminated 

during the manufacturing process with heat transfer fluids containing PCBs, PCDFs, and 

polychlorinated quarterphenyls (PCQs). Children born to exposed ‘Yusho’ mothers were 

described as dull and inactive at 6 years of age and had IQs averaging 70 (54). Cognitive 

functions were more thoroughly addressed in the Yu Cheng cohort (n=118), showing 

consistent cognitive delays of 5 points from 4 to 7 years of age compared to a matched 

control group (55, 56). In children born up to 6 years after the incident, cognitive abilities 

were comparably affected (55, 56). Moreover, in 7 to 12-year-old Yu Cheng children, 

latencies and amplitudes of the P300 peak of an auditory event related potential, reflecting 

CNS mechanisms that evaluate and process relevant stimuli, were respectively longer and 

decreased in the exposed offspring compared to their matched controls (57). The measured 

P300 latencies in that study were inversely correlated with IQs. In the Yu Cheng cohort at 

6, 7, 8, and 9 years of age, more spatially related cognitive abilities were differently affected 

in boys and girls. Only the exposed boys scored lower than their nonexposed matched 

controls (58). These results, therefore, may have provided the first evidence of sex steroid 

hormone modulating effects of PCBs and dioxins on cognitive development in humans. 

1.3.2 Environmental exposure

The neurodevelopmental effects described in the Yusho and Yu Cheng cohorts leave 

little doubt that high levels of prenatal exposure to mixtures of PCBs and dioxins result 

in neurotoxic effects of these compounds in humans. Subtle neurodevelopmental effects 

of perinatal exposure to PCBs and dioxins have also been described in several cohorts of 

children that were perinatally exposed to environmental levels of PCBs and dioxins (59-64). 

In these cohort studies, neurological, cognitive and psychomotor aspects have been studied 

prospectively. The largest PCB cohorts include two cohorts that were selected based on 

maternal consumption of PCB-contaminated fish from the North American Great Lakes: 

the Lake Michigan cohort (n=313) that was recruited between 1980 and 1981 (65, 66) and 

the more recently (1991-1994) recruited Oswego cohort (n=293) (67). Another large cohort 

study has been executed in North Carolina, consisting of 912 mother-infant pairs that were 
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recruited from a general population between 1978 and 1982 (68). In Europe, the main 

cohort studies include cohorts in Denmark, The Netherlands, and Germany. The two Danish 

cohorts were recruited in the Faroer Islands, the first cohort consists of 435 children born 

between 1986 and 1987 (69), the second cohort was recruited from 1994 to 1995 (n=192), 

as part of a multi-center cohort study in which the Dutch PCB/dioxin study and a German 

study participated as well. The Danish cohorts are different from other Northern European 

cohorts, mainly due to local dietary habits that include consumption of pilot whale blubber 

and whale meat. In these children, PCB levels were higher compared to levels in Northern 

Europe, whereas dioxin levels were comparable (70). The Dutch cohort (n=418) (71) and 

German cohort (n=171) (72), respectively recruited between 1990-1992 and 1994-1995 both 

consist of mother-infant pairs that were drawn from the general population. The cohorts 

had similar inclusion criteria and used similar neurodevelopmental tests. In the Dutch 

cohort, however, restrictions were applied on the number of included breast-fed children 

to study lactational exposure to PCBs and dioxins more thoroughly. Half of the recruited 

population has been breast-fed for at least six weeks during infancy and the other half was 

fed with formula milk in which PCBs and dioxins were not detectable. The formula-fed 

children represent children that were exposed mainly prenatally to PCBs and dioxins. The 

study design, inclusion and exclusion criteria and PCB and dioxin measurements applied in 

the Dutch PCB/dioxin study are presented in more detail in paragraphs 1.5.2 and 1.5.3.

Neonatal neurological effects of prenatal exposure to PCBs include deficits such as 

poorer autonomic regulation and more abnormal reflexes (66, 67), hypotonia (73, 74) 

and hyporeflexia (73). At 18 months of age, prenatal exposure to PCBs was negatively 

associated with the neurological condition in the Dutch PCB/dioxin cohort (75), however 

this adverse effect was not seen on the neurological condition in these children at 42 

months of age (76).

Assessment of standardized developmental tests, measuring general cognitive and 

psychomotor abilities, showed negative effects of prenatal exposure to PCBs on 

psychomotor abilities until 2 years of age in the North Carolina (63, 77) and in the Dutch 

cohort at 3 months of age (61). Cognitive effects of prenatal exposure to PCBs were seen at 

7 months of age (72) and more pronounced negative effects were seen on more matured 

general cognitive abilities measured at 42 months (59, 60) and at 11 years of age (62). In 

the North Carolina study, however, prenatal exposure to PCBs was not related to cognitive 

and psychomotor abilities at 3, 4, and 5 years of age (78).

Negative effects of prenatal exposure to PCBs have also been described on more specific 

cognitive domains such as, processing time, attention, and memory skills (both verbal and 

numerical auditory memory) in children at 4 years of age (79, 80). Moreover, negative 

relations between prenatal PCB exposure and verbal comprehension skills at 42 months 

of age (60) and 11 years of age (62) have been described, in addition to verbal IQs and 

concentration skills (62).
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Effects of lactational or postnatal exposure to PCBs and dioxins have been detected in a 

few studies. In the Dutch cohort, psychomotor abilities at 7 months of age were decreased 

in children that were breast-fed with relatively high concentrations of PCBs and dioxins 

(61). At 42 months of age, in the German cohort, negative effects of postnatal exposure 

have been described on general cognitive abilities (59). 

The results of the neurodevelopmental studies from birth to 42 months of age in the 

Dutch PCB/dioxin cohort are summarized in Table I.

1.3.3 Behavioral animal studies

The potential of subtle neurodevelopmental effects of perinatal exposure to environmental 

levels of PCBs and dioxins seen in human studies is supported by the results of behavioral 

animal studies. Perinatal exposure to PCBs and dioxins has been related to several motor 

deficits, including impaired development of the righting reflex in rats and in mice with 

impaired ability to remain on a rotating rod (81, 82). Moreover, in mice, perinatal exposure 

to a dioxin-like PCB congener was related with ‘spinning’ behavior, diminished grip 

strength, and ability to traverse a wire rod (83). 

Perinatal exposure to a PCB mixture resulted in impairment on several tasks that 

involve acquisition or recollection of spatial information, including impaired performance 

on spatial (based on the location of an object) discrimination reversal tasks (84-86) and 

decreased accuracy on a spatial delayed alteration task in monkeys (85, 87). In both tasks, 

memory and attentional processes are involved. Since the accuracy deficit did not worsen 

with increasing delay, the effect was interpreted not as a memory impairment but rather as 

failure of attentional processes (85). Monkeys that were perinatally exposed to a mixture 

of PCBs also performed differently on a fixed interval scale (88). In this task, a range of 

functions is assessed including inhibitory processes, maximal response rates and temporal 

organization of behavior (89). The exposed monkeys showed disruptions in the temporal 

pattern of responding and slight elevations in their response rate (88).

It has been suggested that in some of these behavioral deficits processes related to the 

prefrontal cortex are involved in the mechanism of neurotoxic action of PCBs, potentially 

including mesocortical dopaminergic projections that terminate in the prefrontal cortex 

(84, 85). The deficit patterns on the discrimination reversal learning task (84, 85) and on 

the delayed spatial alteration showed similarities with deficits of monkeys with lesions to 

the dorsolateral area of the prefrontal cortex (90). However, the current knowledge on 

brain structure related effects of perinatal exposure to PCBs is too limited to support the 

hypothesis of prefrontal cortex involvement in the mechanism of effect.
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1.4.  Topics of interest to human neurodevelopmental PCB and dioxin risk 
assessment studies 

1.4.1 Prenatal versus postnatal exposure to PCBs and dioxins

First, it is important to know whether it is still safe to breast-feed a child considering the 

contamination by PCBs and dioxins. A second object of interest is to differentiate the 

potential effects of prenatal and lactational exposure to PCBs and dioxins. Due to the 

long half-life times of PCBs and dioxins in humans, maternal levels of these compounds 

and consequently fetal exposure levels are difficult to reduce. The amount of lactational 

exposure, however, could be controlled by breast-feeding a child for a limited period 

or giving formula milk that contains no PCBs and dioxins. It is therefore important to 

distinguish the extent and effect of prenatal and postnatal exposure to PCBs and dioxins 

and not only consider the negative (e.g. the contamination), but also the positive effects 

of breast-feeding. 

Although much larger quantities of PCBs and dioxins are transferred to the child 

postnatally through lactation than prenatally, human epidemiological studies suggest 

more pronounced neurodevelopmental effects of prenatal exposure to PCBs and dioxins 

compared to postnatal exposure to these compounds. However, several animal studies 

have shown profound behavioral impairments induced by postnatal exposure to low levels 

of a mixture of ortho-substituted PCB mixtures that is representative of the PCB mixture 

found in human milk. In these monkeys impaired performance was seen on spatial learning 

tasks, including impairment in learning a delayed spatial alteration task (91, 92), and more 

perseverative responding (91, 93). Moreover, slower acquisition of a fixed interval task 

and an inability to inhibit inappropriate responding have been associated with postnatal 

exposure to PCB mixtures (91, 94). These impairments suggest a discrimination learning 

deficit and difficulty in adaptively changing response patterns; deficits that are suggestive 

of involvement of prefrontal cortex processes in the neurotoxic mechanism of PCBs and 

dioxins (91). Effects of lactational exposure on these functions need to be addressed more 

thoroughly in the human studies.

In human studies, addressing neurodevelopmental effects of lactational exposure to 

PCBs and dioxins is complex. Breast milk contains several substances, such as several 

long-chain polyunsaturated fatty acids, that are not available in formula milk. These acids 

are important constituents of the structural lipids of nonmyelinated cell membranes in 

the developing nervous system and essential for growth, function and integrity (95), and 

may therefore be important for optimal brain development. A meta-analysis of studies that 

addressed neurodevelopmental benefits of breast-feeding provided evidence for enhanced 

early cognitive development that sustained through childhood and adolescence (96), taking 

in account a number of studies that suggested that differences in cognitive development 

were attributable to the generally associated differences in social economic conditions. The 
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latter aspect forms another complicating feature of assessing neurodevelopmental effects of 

lactational exposure: in Western societies, parents who choose to breast-feed their child are 

likely to be different in several parental and home environmental conditions. These aspects 

may influence the susceptibility to harmful effects of perinatal exposure to PCBs and 

dioxins. The results of prenatal exposure to PCBs and dioxins on general cognitive abilities 

at 42 months of age in the Dutch cohort may illustrate the complexity of exploring effects of 

exposure to PCBs and dioxins in breast-fed children. At 42 months of age, negative effects 

of prenatal exposure to these compounds were more pronounced in the formula-fed group 

compared to the breast-fed group of children (60). 

1.4.2 Sex steroid related behavioral PCB and dioxins effects

Neurotoxic effects of perinatal exposure to PCBs and dioxins that cause developmental 

deficits may be mediated by endocrine-disrupting properties of PCBs and dioxins. For 

example, steroid hormones play a mediating role in CNS development and influence not 

only reproductive but also nonreproductive behaviors that show sex differences (97, 98). 

In animals, some effects of perinatal exposure to PCBs and dioxins on nonreproductive 

behaviors have been reported. For example, a feminizing effect on sweet preference was 

found in male rats that were perinatally exposed to a PCB mixture representative to PCBs 

found in human milk. In their female counterparts, sweet preference was not affected 

(39). In contrast, prenatal exposure to a dioxin (TCDD) and coplanar (dioxin-like) PCBs 

decreased sweet preference in female rats, which can be interpreted as a masculinizing 

effect in females. In the exposed males no change in sweet preference was seen (38). The 

animal studies suggest both feminizing and masculinizing effects of perinatal exposure to 

PCBs and dioxins on sex-specific behavior, which may suggest steroid hormone mediated 

effects of PCB and dioxin exposure.

In human studies, effects of perinatal exposure to PCBs and dioxins on nonreproductive 

sex-specific behavior have hardly been addressed. The only study that provided some 

evidence for steroid hormone mediated behavioral effects of prenatal exposure to PCBs and 

dioxins is the study in the highly exposed children of the Yu Cheng cohort. In this cohort, 

more spatially related cognitive abilities, which generally show some sex differences, were 

differently affected in boys and girls. Only the exposed boys scored lower than their 

nonexposed matched controls (58). 

1.4.3 Neurodevelopmental interstudy differences

The results of epidemiological studies that address neurodevelopmental effects of perinatal 

exposure to environmental levels of PCBs show inconsistencies both between cohorts as 

well as within cohorts at different ages. These differences in outcome do not necessarily 
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undermine conclusions that prenatal exposure to environmental levels of PCBs is related 

to subtle harmful effects on child neurodevelopment. The differences could be related to 

a number of factors including differences in exposure assessment techniques, differences 

in composure of environmental PCB mixtures, and differences in exposure levels. 

Moreover, differences in parental and home environmental conditions or the occurrence 

of other neurotoxic agents, which may confound relationships between exposure and 

neurodevelopmental outcome, may have lead to differences in results. Additionally, 

different neurodevelopmental outcome variables have been used in the cohort studies. 

Furthermore, addressing neurodevelopmental effects of perinatal exposure to PCBs and 

dioxins as well as comparison of effects assessed by different cohorts at different ages is 

complicated by the fact that the outcome variables are developmental qualities. Effects of 

perinatal exposure to PCBs and dioxins may not become evident until further maturation 

of the child. Some of these issues will be discussed below.

1.4.3.a  Exposure levels

Exposure levels in the cohorts are difficult to compare since in the earlier American studies 

different assessment techniques have been used compared to the later initiated studies. In 

a recent effort to compare exposure levels of several cohorts, median levels of PCB153 in 

maternal blood were used for comparison (99). This congener is always among the PCB 

congeners present at the highest concentration and constitutes a large proportion of the 

PCBs mixtures in all studies. That study showed that the median Dutch PCB153 level (0.10 

μg/g lipid) was comparable to the median level in the Lake Michigan cohort (0.12 μg/g 

lipid), the North Carolina cohort (0.08 μg/g lipid) and the German median levels (0.14 μg/g 

lipid). The median exposure level in the Faroer Islands cohort (recruited between 1994 and 

1995) was 3 to 4 times higher than in these studies (0.45 μg/g lipid). 

1.4.3.b  Confounding variables and potential differences in susceptibility to effects of PCB and dioxin exposure

It is a common feature of the epidemiological studies that subjects could not be randomly 

assigned to predetermined levels of exposure or type of feeding during infancy. Samples 

were based on volunteer mother-infant pairs and parents were free in choosing the type of 

infant feeding they preferred because of acceptable ethical concern. Therefore, all cohort 

studies have made efforts to assess potential confounding variables, to adjust for these 

variables when studying the relation between perinatal exposure to PCBs and dioxins and 

neurodevelopment. 

In Western societies, the relation between perinatal exposure to PCBs and dioxins and 

neurodevelopment is often confounded by parental and home environmental conditions. 

Due to the physical stability and accumulation of PCBs and dioxins in human tissues, PCB 
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and dioxin body burdens are strongly related to maternal age at birth. Women at older age 

that give birth to a child are often higher educated and have higher IQs than women at 

younger age that give birth to a child. Maternal age may also reflect other aspects of social 

economic conditions as well as psychosocial age-related attributes (100). 

Child development is a process in which structural changes and environmental 

experiences influence each other mutually. For example, many cognitive skills, including 

IQs, verbal and spatial abilities, perceptual speed (101-103), have been shown to be under 

genetic influences. Environmental or psychosocial aspects, such as intellectual stimulation, 

organization of the home environment, verbal responsivity of the parents, variability of 

daily experience, and parental involvement also influence cognitive development (104). 

In animal studies, environmental aspects influenced cortical differentiation and dendritic 

formation, thereby changing the functional connectivity of the nervous system. Several lines 

of evidence point towards the relationship between dendritic and synaptic changes and 

experiences and more specifically learning (105-108). Moreover, numerous animal studies 

showed that environmental enrichment can compensate for and possibly even reverse 

some of the adverse effects of developmental insults (109-111). These studies suggest 

potential for structural and functional recovery throughout the cortical maturation period 

in animals. In humans, evidence of neural plasticity throughout the maturation period may 

be supported by results of studies in low birth weight children. These studies reported 

that in children at high biological risk, favorable early parental and home characteristics 

could compensate for or mask developmental delays (112-114). Hence, these genetic 

and environmental conditions are important predictors of cognitive development and 

can additionally be important in determining the vulnerability of an individual child or a 

given population to the effects of neurotoxicants. It can be hypothesized that favorable 

parental and home environmental conditions may protect some groups against negative 

neurodevelopmental effects of perinatal PCB and dioxin exposure. Evidence for this 

hypothesis is seen in the Dutch study showing less pronounced effects of prenatal 

exposure to PCBs in breast-fed children compared to formula-fed children at 42 months of 

age (60). A reanalysis in the Lake Michigan cohort similarly showed that prenatal exposure 

to PCBs was related with lower IQs at 11 years of age in predominantly the group of 

formula-fed children (n=56, 31%) (115). In the North Carolina cohort, prenatal exposure to 

PCBs was not related to later cognitive and motor development from 3 to 5 years of age, 

in contrast to the Lake Michigan and Dutch study. In the North Carolina cohort, a relatively 

high proportion of the population was breast-fed during infancy (88%). Moreover, the 

average years of college education in the North Carolina cohort was 3 years and in the Lake 

Michigan cohort 1 year. In the Dutch cohort, 40% of the mothers have finished high school 

and 30% of them finished professional and university training. Some of the differences 

in neurodevelopmental effects of PCB exposure between study centers can therefore be 
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hypothesized to be related to cohort differences in the levels of these conditions that are 

important to child development. 

1.4.3.c  Confounding by other neurotoxic compounds

Due to the correlational feature of the epidemiological studies addressing effects of 

perinatal exposure to PCBs and dioxins, relations between these compounds and outcome 

are potentially related to exposure to other neurotoxic compounds, such as methyl mercury 

and lead. For example, in the Faroer study, in which the local diet consists predominantly 

of fish and fish products, PCB and dioxin levels were seen to be relatively high compared to 

other European studies as were the levels of methyl mercury. Significant relations between 

prenatal exposure to PCBs and reaction time and (semantic) memory skills appeared to be 

mainly attributable to prenatal exposure to methyl mercury compounds (116). However, in 

children exposed to high levels of methyl mercury, effects of prenatal exposure to PCBs on 

these outcome variables were more pronounced than in children exposed to lower levels 

of methyl mercury, suggesting a potential interaction between these neurotoxic compounds 

in their neurodevelopmental effects. In the Lake Michigan cohort, mothers were selected 

based on their diet history on Lake Michigan PCB-contaminated fish. Fish and other aquatic 

species form often the source of exposure to PCBs as well as other neurotoxic compounds, 

such as methyl-mercury. The relations between neurodevelopment and prenatal PCB 

exposure as described in the Lake Michigan studies, therefore, may have been confounded 

by exposure to this compound. However, based on the congruence between the results 

of animal studies and several human cohort studies it has been suggested that the deficits 

observed in the Lake Michigan studies result at least in part from PCB exposure (117). In 

contrast to the Lake Michigan study, the North Carolina, Dutch and German cohort were 

recruited from the general public which may reduce the risk of confounding by methyl-

mercury. In the Netherlands, PCB and dioxin exposure occurs mainly through dietary 

intake of predominantly dairy products, as well as processed food and meat and fish 

products (118). In the Dutch PCB/dioxin population, lead and cadmium levels in blood 

samples drawn from 18 months old children (n=151) were relatively low (119) and not 

related to cognitive outcome at 42 months of age (60). 

1.4.3.d  Neurodevelopmental tests and the development of cognitive abilities

The cohort studies also show differences in the neurodevelopmental testing protocols 

that were used to explore neurotoxic effects of perinatal exposure to PCBs and dioxins. 

Neurodevelopmental assessment has occurred at different ages using different test 

materials, which complicates comparison of the different cohorts, especially due to the 
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developmental nature of cognitive and motor abilities and since some affected functions 

may not become apparent at a more mature age. 

Most prospective longitudinal studies have assessed general cognitive and motor abilities 

by means of developmental tests that were reassessed repeatedly through childhood. 

Performance on the developmental tests reflects, especially at a more mature age, a 

broad range of domains of function, including memory, visuo-spatial abilities, verbal and 

quantitative reasoning, and attentional aspects. Although general cognitive development 

seems to be the most relevant outcome variable in risk assessment studies, because of its 

predictive feature for later outcome, general cognitive ability indices may be too general 

to assess subtle effects of exposure to neurotoxic compounds. The general cognitive score 

can obscure important individual differences in specific cognitive profiles, since children 

with different cognitive profiles can have comparable scores on this outcome variable. 

Moreover, it can be reasoned that general cognitive scores reflect the product of learning, 

which is strongly related to social economic aspects, rather than processes of learning. 

The development of general cognitive abilities may progress at different rates. Reported 

negative effects of prenatal exposure to PCBs at different assessment times within one 

cohort do not resolve the question whether the same children are affected in their abilities 

at the different assessment times. Consequently, risk assessment studies into effects of 

perinatal exposure to PCBs and dioxins on cognitive and motor abilities in children may 

benefit from addressing the level and course of the development of these abilities.

It can be hypothesized that early PCB and dioxin exposure induces changes in brain 

structures that continue to influence neurodevelopment during maturation resulting in 

delayed effects on functions that develop later in childhood. Especially when effects 

of lactational exposure to PCBs and dioxins are addressed, structure related functional 

differences, potentially depending on the time window of exposure, can be hypothesized 

due to differences in maturation rates of different brain structures. The exploration of 

neurotoxic effects of perinatal exposure to neurotoxic agents therefore should address 

more specific domains of cognitive functioning that can be assessed at a more mature age. 

These domains are not sufficiently measured by developmental or IQ tests, since most 

domains are indicated by too few items to provide reliable measurement of domain specific 

performance. 

1.5 Content of this thesis

This thesis describes the results of follow-up assessment in the Dutch PCB/dioxin cohort at 

school age. Children enrolled in the Dutch PCB/dioxin cohort (Rotterdam and Groningen 

cohort) were invited to participate in follow-up assessment at 6/7 years of age and half 

of the Rotterdam cohort was invited at 9 years of age as well. The assessment included 
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(general) cognitive and motor abilities, gender role play behavior, neuropsychological 

functions and a neurophysiological assessment. 

1.5.1 Aims of the study

The general aim of this thesis was to evaluate neurodevelopmental effects of perinatal 

exposure to environmental levels of PCBs and dioxins in normal Dutch children at school 

age, as well as to explore effects on the development of general cognitive and motor abilities 

from 3 to 84 months of age. In addition, the goal was to gain more insight into potential 

compensating effects of parental and home environmental conditions and breast-feeding, as 

well as into neurotoxic mechanisms of effects of perinatal exposure to these compounds.

This aim was addressed by studying the following questions:

1. Is perinatal exposure to environmental levels of PCBs and dioxins related to 

cognitive and motor abilities at school age and are effects of perinatal exposure to 

these compounds related to breast-feeding or parental and home environmental 

conditions (Chapter 2)?

2. Is perinatal exposure to environmental levels of PCBs related to the development 

of general cognitive and motor abilities from 3 to 84 months of age, and what are 

important determinants of these outcome variables (Chapter 3)?

3. Is the interrelationship of general cognitive and motor development and parental 

and home environmental conditions different for low versus high prenatally 

exposed children that are born to younger or older mothers (Chapter 4)? 

4. Is perinatal PCB and dioxin exposure related to sex-specific play behavior at 7 years 

of age and are observed effects sex-specific (Chapter 5)?

5. Is perinatal PCB and dioxin exposure related to neuropsychological functions at 9 

years of age (Chapter 6)?

6. Is perinatal PCB and dioxin exposure related to neurophysiological endpoints at 9 

years of age (Chapter 7)?

1.5.2 Subjects and inclusion and exclusion criteria

The Dutch PCB/dioxin cohort consists of 418 healthy mother-infant pairs who were 

recruited from June 1990 to June 1992. Half of the study population was recruited in 

Rotterdam (n=207), a highly industrialized and densely populated area, and the other half 

in Groningen (n=211), a semiurban area in The Netherlands. Healthy pregnant women were 

asked by their obstetrician or midwife to participate in a prospective neurodevelopmental 

study. The cohort consists of Caucasian mother-infant pairs. Pregnancy and delivery had 
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been without complications; instrumental deliveries or caesarian sections were excluded. 

Only first or second at term born infants (37-42 weeks of gestation) were included who had 

no congenital anomalies or diseases. Because of these criteria, the cohort of children can be 

presumed to be at relatively low risk for neurodevelopmental deficits.

To study the effects of prenatal as well as postnatal PCB and dioxin exposure, it was 

aimed to include an equal number of women who intended to breast-feed their child for at 

least six weeks (BF) and women who intended to use formula-feeding (FF). All infants in 

the FF group received formula from a single batch (Almiron M2, Nutricia NV, Zoetermeer, 

The Netherlands) from birth until 7 months of age. In this formula, concentrations of both 

PCBs and dioxins were below the detection limit. 

The medical ethics committee of the University Hospital Rotterdam/ Sophia Children’s 

Hospital and the Academical Hospital Groningen approved the study design and the 

parents gave informed consent.

1.5.3 Exposure measurements

The exposure variables that were used in these studies included PCB levels in maternal 

and cord plasma. Maternal plasma samples were collected from the mothers during the last 

month of pregnancy and cord plasma samples were collected directly after birth. These 

samples were analyzed by means of gas chromatography with electron capture detection 

(GC-ECD) for four PCB congeners, International Union for Pure and Applied Chemistry 

(IUPAC) numbers 118, 138, 153 and 180 (71, 120). 

Two weeks after delivery, a 24-hour representative breast milk sample was collected 

from the mothers who were breast-feeding their children. These samples were analyzed 

for 17 most abundant dioxins (PCDDs and PCDFs), and three dioxin-like PCBs (IUPAC 

numbers 77, 126, 169) by means of gas chromatography-high-resolution mass spectometry 

(GC-HRMS). In these samples, 23 nondioxin like PCBs (IUPAC numbers 28, 52, 66, 70, 99, 

101, 105, 118, 128, 137, 138, 141, 151, 153, 156, 170, 177, 180, 183, 187, 194, 195, and 202) 

were measured by GC-ECD (71). Toxic potency of the mixture of dioxins and dioxin-like 

PCBs was expressed by using the toxic equivalent factor approach (121). 

Prenatal exposure to PCBs is defined as the sum of the concentrations of the four PCB 

congeners measured in maternal plasma and in cord plasma. PCB and dioxin concentrations 

in breast milk were assessed shortly after birth and form an indirect measure of prenatal 

exposure (68). Postnatal exposure to PCBs and dioxins through lactation was estimated in 

the BF group by multiplying breast milk levels of PCBs, dioxin-like PCB TEQs and dioxin 

TEQs with the number of weeks of breast-feeding.
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Abstract

The purpose of this study was to evaluate whether effects of exposure to environmental 

levels of PCBs and dioxins on development in the Dutch cohort persist until school age. In 

the Dutch PCB/dioxin study, cognitive and motor abilities were assessed with the McCarthy 

Scales of Children’s Abilities in children at school age. During infancy, half of this population 

was fully breast-fed for at least 6 weeks and the other half formula-fed. Prenatal exposure to 

PCBs was defined as the sum of PCB118, 138, 153, and 180 in maternal and cord plasma. In 

breast milk, additional measurements of 17 dioxins, 6 dioxin-like PCBs, and 20 nondioxin-

like PCBs were done. Negative effects of prenatal PCB and dioxin exposure on cognitive 

and motor abilities were seen when parental and home characteristics were less optimal. 

These effects were not measurable in children raised in more optimal environments. 

Conclusions: Neurotoxic effects of prenatal PCB and dioxin exposure may persist into 

school age, resulting in subtle cognitive and motor developmental delays. More optimal 

intellectual stimulation provided by a more advantageous parental and home environment 

may counteract these effects of prenatal exposure to PCBs and dioxins on cognitive and 

motor abilities. 
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Introduction

Negative effects of prenatal exposure to environmental levels of PCBs and dioxins on child 

development have been described in a number of prospective long-term follow-up studies. 

Animal studies addressing effects of perinatal exposure on the developing central nervous 

system (CNS) show direct effects on neuronal and glial cell development and disruption 

of neurotransmitters and several endocrine systems, such as thyroid and sex hormones, 

that may affect CNS development indirectly (1, 2). In humans, several epidemiological 

studies have addressed these neurotoxic effects with cognitive and motor abilities as 

neurodevelopmental outcome. In the North Carolina cohort, lower psychomotor skills from 

6 to 24 months of age were associated with higher prenatal PCB exposure (3, 4). At 3, 4, 

and 5 years of age, cognitive and motor abilities were not related to prenatal PCB levels 

(5). In the Lake Michigan cohort, however, lower visual recognition memory at 7 months 

of age (6), lower verbal and memory scores at 4 years of age (7) and lower IQ scores at 11 

years of age (8) were associated with higher prenatal PCB exposure. In the Oswego Study, 

negative effects of prenatal exposure on visual recognition memory were described at 6 

and 12 months of age (9).

In The Netherlands, a prospective follow-up study was started in 1989. In contrast to the 

previously described studies, half of the study group was formula-fed (FF) during infancy, 

representing children with mainly in utero exposure to PCBs and dioxins. The other half 

of the group was breast-fed (BF) and was exposed to PCBs and dioxins also postnatally 

through lactation. Prenatal PCB exposure was related to poorer neurological condition at 

birth (10) and 18 months of age (11), lower psychomotor abilities at 3 months of age (12), 

and lower cognitive abilities at 42 months of age (13). Postnatal PCB and dioxin exposure 

was only related to lower psychomotor abilities at 7 months of age (12). 

At 42 months of age, negative effects of prenatal PCB exposure on cognitive abilities 

were more pronounced in the FF than in the BF group (13), although BF children were 

exposed to higher prenatal and postnatal PCB levels (14). Children in the BF group had 

higher general cognitive abilities, as well as older mothers, parents with higher education 

levels and verbal IQs, and higher scores on the HOME questionnaire (13). It was not clear 

whether nutrients in breast milk, or the more optimal parental and home environment often 

provided by families of BF children, might have counteracted negative effects of prenatal 

PCB exposure.

At school age, the Dutch cohort was reassessed to examine the effects of perinatal 

exposure to PCBs and dioxins on cognitive and motor abilities, to explore the potential 

differences of these effects in FF and BF children, and to evaluate whether these effects are 

related to differences between the two feeding groups in parental and home environmental 

characteristics.
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Methods

Subjects

The study population consisted of 418 healthy mother-infant pairs who were recruited from 

1990 to 1992. Half of the study population was from Rotterdam, a highly industrialized 

and densely populated area, and the other half from Groningen, a semiurban area, in The 

Netherlands. The study design, recruitment process, and chemical analysis of PCBs and 

dioxins have been described in detail elsewhere (15). All included mother-infant pairs were 

white, and pregnancy and delivery had been without complications. Only first or second 

term-born infants were included. In addition to women who intended to use formula-

feeding, women who intended to breast-feed their child for at least six weeks were also 

included. All infants in the FF group received formula from a single batch (Almiron M2, 

Nutricia NV, Zoetermeer, The Netherlands) from birth until 7 months of age. In this formula, 

concentrations of both PCBs and dioxins were below the detection limit. The medical 

ethics committee of the University Hospital Rotterdam/ Sophia Children’s Hospital and the 

Academical Hospital Groningen approved the study design. The parents gave informed 

consent.

Test Material

The Dutch version of the McCarthy Scales of Children’s Abilities (16, 17) was used to 

assess cognitive and motor abilities at 6 ½ years of age. The McCarthy Scales of Children’s 

Abilities consists of 18 subtests from which six subscales are composed: verbal, perceptual-

performal, quantitative, memory and motor subscale (mean, 50; SD, 10). An age-

standardized General Cognitive Index (GCI) (mean, 100; SD, 15) is derived from the sum of 

the verbal, perceptual-performal and the quantitative subscales. Effects of PCB and dioxin 

exposure on the GCI and the memory and motor scales will be evaluated.

Assessment of exposure variables

Plasma samples were collected from the mothers during the last month of pregnancy and 

cord plasma samples were collected immediately after birth. These samples were analyzed 

for four PCB congeners, International Union for Pure and Applied Chemistry (IUPAC) 

numbers 118, 138, 153 and 180 (15, 18). Two weeks after delivery, a 24-hour representative 

breast milk sample was collected from the mothers who were breast-feeding their children. 

Breast milk samples were analyzed for 17 dioxins (PCDDs and PCDFs), 6 dioxin-like PCBs 

(IUPAC numbers 77, 105, 118, 126, 156, and 169), and 20 nondioxin-like PCBs (IUPAC 

numbers 28, 52, 66, 70, 99, 101, 128, 137, 138, 141, 151, 153, 170, 177, 180, 183, 187, 194, 

195, and 202) (15, 19). Toxic potency of the mixture of dioxins and dioxin-like PCBs was 
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expressed by the toxic equivalence factor (TEF) approach (20). Toxic equivalents (TEQs) 

were calculated by multiplying the concentration of each congener by its TEF value.

Prenatal exposure to PCBs in the total study population is defined as the sum of the 

concentrations of the four PCB congeners measured in maternal plasma (ΣPCB
maternal

) and in 

cord plasma (ΣPCB
cord

). The breast milk samples were used as indirect measures of prenatal 

exposure to PCBs and dioxins (21). In the BF group, therefore, three additional prenatal 

exposure measurements were defined: the TTEQ value (the sum of the TEQ values of the 

17 dioxins and the 6 dioxin-like PCBs), ΣPCB
milk 

(the sum of PCB118, 138, 153, and 180), 

ΣPCB
20 nondioxin-like

 (the sum of 20 nondioxin-like PCBs). 

Postnatal exposure to PCBs and dioxins through lactation was estimated in the BF group 

by multiplying, respectively, breast milk levels of TTEQ, ΣPCB
milk

, and ΣPCB
20 nondioxin-like 

with 

the number of weeks of breast-feeding.

Assessment of covariables

Variables that may influence child neurodevelopment were assessed. These variables 

included birth weight, duration of gestation, fetal exposure to alcohol and cigarette 

smoking, maternal age at birth, parental education level, and parity (items on a 

questionnaire addressing obstetric, social economic, and perinatal conditions (22)), type 

of feeding during infancy, duration of breast-feeding, and sex. The quality of intellectual 

stimulation and emotional support provided by the child’s home environment was assessed 

by the Home Observation for Measurement of the Environment (HOME) (23). The verbal 

IQ of the parent who spent the most time with the child (usually the mother) was measured 

by 2 subtests, Information and Vocabulary from the Dutch version of the Wechsler Adult 

Intelligence Scale (WAIS) (24).

Statistical analysis

We used a Student’s t-test, χ2 test, and Mann-Whitney U test to compare groups for a single 

variable. PCB and dioxin levels were positively skewed and were, therefore, normalized by 

a natural logarithmic transformation (LnExposure). 

Effects of PCB and dioxin exposure on cognitive and motor abilities were studied by 

means of multiple regression analyses. Variables that were likely to affect cognitive and 

motor abilities, based on literature and clinical knowledge, were included in the regression 

model as a fixed set of explanatory variables. These variables were [1] type of feeding 

during infancy (BF or FF) and [2] duration of breast-feeding (0 for FF children), [3] sex, 

[4] age at examination, [5] highest education level of the parents (low, primary school, 

secondary school not finished; middle, secondary school finished; high, high school 

finished, professional and university training), [6] parental verbal IQ, and [7] HOME score. 
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Because two examiners, one in each study center, carried out the cognitive and motor 

assessment, the variable study center was included in the fixed set to adjust for interrater 

variability. In addition covariables were selected by means of partial F tests. Variables with 

a relation (p ≤ 0.2) with at least one of the exposure variables and at least one of the six 

subscales of the McCarthy Scales of Children’s Abilities, adjusted for the variables in the 

fixed set, were included in the final regression model. These variables were considered 

potential confounders for effects of PCB and dioxin exposure on cognitive and motor 

abilities. Candidate confounders were alcohol use (yes/no) and smoking (yes/no) during 

pregnancy, duration of gestation (weeks), birth weight (grams), maternal age at birth, and 

parity (first or second born). In the final regression model, the variables included were 

study center, sex, parity, type of feeding, duration of breast-feeding, maternal age at birth, 

parental education level, parental verbal IQ, HOME score, and age at examination.

To evaluate effects of prenatal PCB exposure in the two feeding groups separately, an 

interaction variable (the product of feeding type and lnΣPCB) ‘feeding type*lnΣPCB’
 
was 

included in the regression model. 

Interaction effects, first-order (linear interaction) and second-order interaction effects 

(parabolic interaction) of PCB and dioxin exposure and the variables in the regression 

model that were significantly different for the two feeding groups (maternal age, parental 

education and verbal IQ, and HOME scores) were explored in separate analyses. Because 

of the explorative nature of this study, no correction for multiple testing was made, and 

2-tailed p-values ≤ 0.05 were considered significant. Nonetheless, all relevant interactions, 

including the nonsignificant ones, will be presented together with the actually calculated 

p-values. 

Results 

At school age, 376 children (90 %) of the original cohort of 418 children (189 from Rotterdam, 

187 from Groningen) were willing to participate in the follow-up assessment. Forty-two 

children were lost to follow-up, 21 because of a lack of interest, 20 because of emigration, 

and one because of death in an accident. Four children were excluded from data analyses 

because of circumstances that are known to influence the score on the McCarthy scales 

of Children’s Abilities other than PCB and dioxin exposure (Turner’s syndrome, pervasive 

development disorder, Volkmann’s contracture after a humerus fracture, and attention 

deficit hyperactivity disorder treated with methylphenidate hydrochloride). Five children 

failed to finish all subtests of the McCarthy Scales of Children’s Abilities; these GCIs (n=5), 

memory (n=2), and motor scores (n=4) were not included in the data analyses. 

Prenatal PCB and dioxin levels of the children that did not participate in the study at 6 ½ 

years of age and the participating children were similar. However, nonparticipating children 
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were significantly more likely to be FF and BF for shorter periods. Maternal age, parental 

education level, and verbal IQ scores were significantly lower in this group (Table 2.1). In 

addition, more boys than girls did not participate at school age. 

Table 2.I   Significant differences in characteristics of participating and nonparticipating children at school age.Table 2.I   
Characteristics Participants Nonparticipants p-value 
Sex (male/female) 190/182 32/14 0.019a 
BF/FF 194/178 15/31 0.018a 
Breast-feeding period (wk) 24.2 (+ 15.2) 13.8 (+ 5.4) 0.005b 
Maternal age (y) 29.2 (+ 3.8) 27.9 (+ 4.1) 0.030b 
Parental education (low/medium/high) 37/112/223 8/24/14 0.001a 
Parental verbal IQ 119.2 (+ 15.9) 111.0 (+ 17.0) 0.005b 

 Values are numbers or means (± standard deviations). Parental education: low = primary school, secondary school not finished, middle 
= secondary school finished, high = high school finished, professional and university training; Parental verbal IQ: score on two subtests, 
Information and Vocabulary, of the Wechsler Adult Intelligence Scale, assessed from one of the parents. a Chi-square test; b Mann-Whitney U test.

The mean age at examination of the total group was 6.7 years (+ 0.3; 6.1-7.3 years) (Table 

2.2). The mean GCI and scores on the memory and motor scales were comparable to a 

normal population. Maternal age, parental education level and verbal IQ, HOME scores, 

and prenatal PCB exposure levels were significantly higher in the BF group than in the FF 

group, as were the mean (not adjusted) GCI and memory scores (Table 2.2). 

Results of multiple regression analyses on GCI, memory and motor scores by using 

maternal PCB levels are presented in Table 2.3. Significant effects using cord PCB levels 

(p≤0.05) are presented in the text, and for reasons of clarity not shown in Table 2.3 or 

in the figures. Prenatal PCB levels were not related to GCI, memory and motor skills, 

after adjustment for covariables (Table 2.3A). In Table 2.3B, results of multiple regression 

analyses evaluating the effects of prenatal PCB exposure on the GCI, memory, and motor 

scores in the two feeding groups are presented. Effects of prenatal PCB exposure on the 

GCI, memory, and motor scores were not significantly different for BF and FF children. 

In the two feeding groups separately, prenatal PCB exposure was not related to GCI or 

memory skills. In FF children, however, higher maternal PCB levels tended to be related to 

lower motor scores (Table 2.3B). 
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Table 2.2   Characteristics of the study population.Table 2.2    
Characteristics Total 

(n=372) 
Breast-fed 

(n=194) 
Formula-fed 

(n=178) 
Study center (Rotterdam), n (%) 186 (50.0 %) 96 (49.5 %) 90 (50.6 %) 
Sex (male), n (%) 190 (51.3 %) 105 (54.1 %) 85 (47.8 %) 
Parity (1st born), n (%) 179 (48.1 %) 100 (51.5 %) 79 (44.4 %) 
Breast-feeding period (wk)  20 (6-78)  
Maternal age at birth (y) * 29.2 (+ 3.8) 29.7 (+ 3.5) 28.7 (+ 4.0) 
Parental education level **     

Low, n (%) 37 (9.9 %) 8 (4.1 %) 29 (16.3 %) 
Middle, n (%) 112 (30.1 %) 36 (18.6 %) 76 (42.7 %) 
High, n (%) 223 (59.8 %) 150 (77.3 %) 73 (41.0 %) 

Parental verbal IQ ** 119.2 (+ 15.9) 125.2 (+ 11.8) 112.55 (+ 17.1) 
HOME **      47.8 (+ 3.2) 48.5 (+ 2.9) 47.0 (+ 3.3) 
    
Exposure variables    
ΣPCBmaternal (µg/l) **  2.04 (0.59-7.35) 2.22 (0.73-7.35) 1.85 (0.59-5.08) 
ΣPCBcord (µg/l) ** 0.38 (0.08-2.08) 0.38 (0.08-2.08) 0.34 (0.08-1.98) 
TTEQ (ng/kg fat)  63.30 

(24.16-136.54) 
 

ΣPCBmilk (µg/kg fat)   403.66 
(158.35-1226.38) 

 

ΣPCB20 nondioxin-like (µg/kg fat)  451.05 
(186.11-1121.02) 

 

    
School age scores on the McCarthy  
Scales of Children's Abilities 

   

GCI ** 104.7 (+ 12.6) 108.2 (+ 11.7) 100.8 (+ 12.4) 
Memory ** 46.5 (+ 7.6) 48.2 (+ 7.2) 44.7 (+ 7.7) 
Motor 52.2 (+ 9.8) 52.3 (+ 9.2) 52.06 (+ 10.5) 

 
 Values are numbers (percentages), means (± SD) or medians (range).

Parental education level: low = primary school, secondary school not finished, middle = secondary school finished, high = high school finished, 
professional and university training; Parental verbal IQ: score on two subtests, Information and Vocabulary, of the Wechsler Adult Intelligence 
Scale, assessed from one of the parents; ΣPCB: sum of PCB congeners IUPAC nos. 118, 138, 153, 180; TTEQ: sum of the dioxin TEQs and dioxin-like 
PCB TEQs in breast milk. *p ≤ 0.05; ** p ≤  0.01, difference between BF and FF group. 

In Table 2.3C to F, results of multiple linear regression analyses are presented, including the 

following interaction variables in the regression models, respectively: ‘lnΣPCB
maternal

*maternal 

age’, ‘maternal age2’, and ‘lnΣPCB
maternal

*maternal age2’ (because the interaction effect 

of lnΣPCB
maternal

 and maternal age was of parabolic nature) (C), ‘lnΣPCB
maternal

*parental 

education level’ (D), ‘lnΣPCB
maternal

*parental verbal IQ’ (E), ‘lnΣPCB
maternal

*HOME’ (F). In 

the Figure (2.1A to D), these interaction effects are visualized by presenting the effects of 
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doubling maternal PCB exposure on GCI, memory, and motor scores in relation to maternal 

age (A), parental education level (B), parental verbal IQ (C) and HOME score (D).

Effects of prenatal PCB exposure on the GCI were significantly modified by maternal 

age (combined p
PCBcord, mat.age

 (p
PCBcord*mat. age 

and p
PCBcord*(mat age)2

) =0.003) and parental verbal 

IQ (p
PCBcord*VIQ

=0.004). Negative effects of prenatal PCB exposure on the GCI were seen in 

children born to younger mothers and to parents with lower verbal IQ scores; these effects, 

however, were not evident with increasing maternal age and parental verbal IQ. Similar 

relations were seen exploring effect modification of prenatal PCB exposure by parental 

education level. 

Table 2.3   Estimated effects of lnΣPCBmaternal on the three outcome variables GCI, memory and motor scores on the McCarthy Scales of Children’s 
abilities. 

 

Table 2.3  
GCI (n=353) Memory (n=354) Motor (n=352)  

lnΣΣΣΣPCBmaternal Regr. 
coef. 

SE p Regr. 
coef. 

SE p Regr. 
coef. 

SE p 
 

A a          
PCB -0.14 1.58 0.929 -0.36 1.02 0.725 -2.45 1.45 0.092 
Ba          
PCB in BF -0.01 2.00 0.996 -0.25 1.30 0.844 -1.28 1.84 0.486 
PCB in FF -0.30 2.22 0.891 -0.49 1.44 0.733 -3.92 2.04 0.055 
PCB*FT (BF=0) -0.29 2.79 0.916 -0.24 1.81 0.896 -2.64 2.56 0.305 
C a          
PCB -147.51 50.44 0.004 -82.58 32.89 0.013 -77.99 46.78 0.096 
PCB*Mat. age          9.37 3.41 0.006 5.38 2.22 0.016 4.73 3.16 0.132 
PCB*(Mat. age)2 -0.15 0.06 0.011 -0.09 0.04 0.021 -0.07 0.05 0.166 
D a          
PCB  -5.84 3.29 0.077 -3.25 2.14 0.129 -5.93 3.05 0.052 
PCB*Educationb 3.75 1.92 0.052 1.92 1.25 0.125 2.41 1.78 0.177 
E a          
PCB -26.06 10.37 0.012 -16.49 6.72 0.015 -21.24 9.58 0.027 
PCB*VIQ 0.22 0.09 0.012 0.13 0.06 0.016 0.16 0.08 0.048 
F a          
PCB -26.92 22.79 0.238 -12.99 14.75 0.380 -46.65 20.92 0.026 
PCB*HOME 0.60 0.48 0.240 0.26 0.31 0.392 0.92 0.44 0.035 

PCB: LnΣPCBmaternal; GCI: General Cognitive Index; FT: Feeding type (BF or FF); Mat. Age: maternal age at birth; Education: parental education level; 
VIQ: parental verbal IQ; HOME: score on the Home Observation for the Measurement of the Environment, at school age. a Results of regression 
analysis, adjusted for study center, sex, age at examination, type of feeding, duration of breast-feeding, maternal age, parental education level, 
parental verbal IQ, HOME score, and parity. b Education is used as a linear trend variable, 0 = low, 1 = middle, 2 = high. For each outcome variable, 
6 separate regression analyses (A-F) are presented according to various effect modification of LnΣPCBmaternal. In A the regression coefficient of 
LnΣPCBmaternal, SE of the mean, and p-value are presented assuming no effect modification. In B the regression coefficient of lnΣPCBmaternal, SE of 
the mean and p-value are presented for the BF and FF group and the statistical difference in effect of LnΣPCBmaternal between the feeding groups 
is indicated by the regression coefficient, SE of the mean, and p-value of the interaction variable ‘PCB*FT’. In C, D, E, F the regression coefficient, 
SE of the mean, and p-value of the interaction variable indicate the effect modification of LnΣPCBmaternal by maternal age, parental education 
level, parental verbal IQ, and HOME score, respectively.
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 a constant effect of respectively -0.25 (=-0.36ln(2)) and -1.7 (=-2.45ln(2)). In (D), the PCB effect on GCI 

and m
em

ory skills is not significantly different from
 a constant effect of respectively -0.1 (=-0.14ln(2)) and -0.25 (=-0.36ln(2)).



Perinatal exposure to PCBs and dioxins and cognitive and motor abilities at school age 49

Effects of prenatal PCB exposure on memory skills were significantly modified by 

maternal age (combined p
PCBcord, mat.age

=0.027) and parental verbal IQ (p
PCBcord*VIQ

=0.050). 

Negative effects of prenatal PCB exposure on memory skills appeared to decrease when 

maternal age and parental verbal IQ increased. 

Effects of prenatal PCB exposure on motor skills were significantly modified by parental 

verbal IQ (p
PCBcord*VIQ

=0.021) and HOME scores. Negative effects of prenatal PCB exposure 

on the motor scores were seen to decrease in children born from parents with higher verbal 

IQ and higher HOME scores.

In the BF group, levels of the TTEQ, ΣPCB
milk

, and ΣPCB
20 nondioxin-like

 in breast milk were 

not significantly related to GCI, memory, and motor scores when adjusted for confounding 

variables. Effects of prenatal TTEQ exposure on motor skills were modified by parental 

verbal IQ levels (β
TTEQ

= -48.005, p= 0.036, β
TTEQ*VIQ

= 0.386, p= 0.036). Negative effects of 

prenatal TTEQ exposure were seen to decrease in children born to parents with higher 

verbal IQ’s.

Postnatal exposure to PCBs and dioxins through lactation was not significantly related to 

GCI, memory, and motor scores, and effects of postnatal exposure were not significantly 

modified by parental and home environmental characteristics. 

Discussion

In the Dutch PCB and dioxin study at school age, subtle effects of prenatal exposure to 

PCBs and dioxins were seen on cognitive and motor abilities. At 42 months (13) and at 6 1/

2 years of age, FF children had significantly lower cognitive abilities than BF children. In the 

FF group in our cohort, parental and home environmental characteristics are less optimal 

compared with these characteristics in the BF group. Effects of prenatal PCB exposure 

on cognitive abilities of children at 42 months of age were more pronounced in the FF 

than in the BF group, although BF children were exposed to higher prenatal exposure 

levels and higher postnatal exposure levels of PCBs and dioxins in particular. To explore 

whether these differences in effect were related to nutritional benefits of breast-feeding or 

to more advantaged parental and home characteristics, we evaluated whether effects of 

PCB and dioxin exposure were modified by parental and home characteristics that were 

significantly different for the two feeding groups. The present results give evidence for 

effect modification by parental and home environmental conditions in the total cohort. The 

adverse effects of prenatal PCB exposure were more pronounced when parental and home 

characteristics were less optimal, whereas these effects were not evident when parental and 

home characteristics were more advantaged. At school age, differences in vulnerability to 

prenatal exposure to PCBs between the BF and FF group were not statistically different. 

Differences in vulnerability to effects, however, were related to more subtle differences 
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in parental and home environmental characteristics, varying across both feeding groups. 

These results suggest, therefore, that the differences in vulnerability of the BF and FF 

children, seen at 42 months of age, were more likely to be related to parental and home 

characteristics than to beneficial effects of breast-feeding per se. 

In some neurotoxic epidemiological studies, effects of exposure to these compounds 

on child development were also seen to be related to socioeconomic risk factors (25-28). 

Children from lower social economic backgrounds were more vulnerable to negative 

cognitive effects of prenatal exposure to lead than children in more advantaged families. 

Comparable effects have also been reported in studies of low birth weight children where 

in children at high biological risk, favorable early parental and home characteristics could 

compensate for or mask developmental delays (29-33). The results of the present study 

give evidence for counteracting processes or for ‘cumulative deficits’ in respect of effects 

of prenatal exposure to PCBs on cognitive and motor abilities. Cognitive and motor 

development is influenced by many factors, and not all of them were controlled for in this 

study. Whether the interaction effects presented here reflect not measured variables such 

as subtle parent-child interaction aspects or aspects related to self-esteem and emotional 

development is not known. On the one hand, maternal age at birth is related with higher 

PCB and dioxin levels, and conversely, with higher education levels, verbal IQs and HOME 

scores. There is no reason to believe that maternal age itself is directly related to cognitive or 

motor outcome; factors associated with maternal age are more likely to explain the reported 

interaction effects. We suggest that these factors include among others that older mothers 

may more consciously choose for parenthood and may have different parental values and 

orientation towards child development than younger mothers. Effect modification of PCB 

and dioxin exposure by maternal age at birth, parental education level and verbal IQ, and 

HOME scores could not be analyzed in one regression analysis because these interaction 

variables correlated highly with each other. We therefore choose a statistical procedure in 

which effect modification of exposure by parental and home environmental characteristics 

was explored separately. Consequently, we are not able to differentiate the relative effects 

of the several aspects of parental and home characteristics. 

It should be stressed here that the study population consists of families that were 

motivated to participate in this study for 7 years. Parental and home characteristics of this 

group are likely to be more advantaged than in the average Dutch population. These results 

suggest that effect of exposure to these environmental pollutants on cognitive and motor 

abilities might be more pronounced in less advantaged populations.

As cognitive outcome variables, we used the GCI and memory scales of the McCarthy 

Scales of Children’s Abilities. The GCI scale is a composite scale of three subscales, verbal, 

perceptual-performal, and quantitative. Because of the complex nature of this study, we 

decided not to include these subscales in the analyses and use only the composite GCI 

scale, memory and motor scales as outcome variables.
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In the present study, the demonstrated effects of cord plasma PCB levels on cognitive 

and motor abilities are generally comparable to those using maternal PCB levels. In the 

BF group, prenatal exposure to TTEQ was associated with lower motor scores in children 

born to parents with lower verbal IQ scores. Exposure to nondioxin-like PCBs and 

ΣPCB
milk

 showed comparable relationships, although they did not reach significance. In the 

environment, PCBs and dioxins are present as complex mixtures of various congeners that 

may vary in metabolism and toxicity. The sum of PCBs 118, 138, 153, and 180 consists of 

the four most abundant congeners, constituting 46% of the total PCBs (34). In our cohort 

TTEQ levels, the sum of the nondioxin-like PCBs, and the sum of the four PCBs in breast 

milk and in maternal and cord plasma, correlated highly (35). It is uncertain whether 

described effects of the sum of the four PCBs in plasma might also reflect effects of dioxins 

and other related organochlorine compounds and their metabolites.

In agreement with the results at 42 months of age in this cohort (13), and other 

epidemiologic studies (3-5, 7-9), our results show that postnatal exposure to PCBs and 

dioxins through lactation was not related to cognitive and motor abilities at school age. 

Prenatally, the developing CNS seems to be more susceptible to harmful effects of these 

compounds than during the early postnatal period.

In contrast to the examined effects at school age, negative effects at preschool age of 

prenatal PCB exposure on cognitive abilities were seen in the total cohort. This difference 

could be explained by a number of factors. At school age, children that participated in the 

follow-up had significantly higher parental and home characteristics compared with the 

nonparticipating children. The higher mean levels of these background variables might 

explain that no effect of prenatal PCB exposure is seen in the total cohort, adjusting for 

the mean population levels of the confounders. The interaction effects seen at school 

age between PCB and dioxin exposure and parental and home characteristics show the 

importance of the distribution of these variables in a cohort. Differences in the results of 

effects of prenatal PCB exposure could also reflect differences in the test materials used 

to assess cognitive abilities. At 42 months of age, the Kaufman-ABC (36) was used, and 

at school age the McCarthy Scales of Children’s Abilities was used. These developmental 

tests assess different neuropsychologic functions to compose a general cognitive index. 

The McCarthy Scales of Children’s Abilities was also used in the North Carolina cohort 

(5) (at 3 to 5 years) and in the Lake Michigan cohort (7) at 4 years of age. In both study 

populations, no relationship between prenatal PCB exposure and the GCI was seen. In the 

Lake Michigan cohort however, prenatal PCB exposure was related with lower memory 

skills and lower scores on the verbal scale of the McCarthy Scales of Children’s Abilities. In 

comparing effects seen in different cohorts, we have to consider differences in exposure 

levels between these cohorts that are difficult to compare because of differences in analytic 

methods used to measure exposure. There is reason to believe that exposure levels in the 
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Dutch cohort and the Lake Michigan cohort are roughly comparable, whereas exposure 

levels in the North Carolina cohort are suspected to be lower (13). 

We conclude that neurotoxic effects of prenatal PCB and dioxin exposure may persist into 

school age and may result in subtle cognitive and motor developmental delays. Parental 

and home environmental characteristics influenced the consequences of these neurotoxic 

effects for cognitive and motor abilities. When these characteristics were less optimal, 

negative effects of prenatal PCB exposure were seen on cognitive and motor abilities, 

whereas these negative effects of prenatal PCB exposure were not measurable in children 

raised in more optimal environments. These data indicate that children might be at risk 

to these neurotoxic pollutants because of prenatal exposure to PCBs and dioxins. Follow-

up studies into adulthood in children exposed to different levels of these contaminants, 

while growing up in different environments, should be conducted to investigate the future 

implications of our findings.
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Abstract 

In the present study, we analyzed effects of prenatal PCB exposure on cognitive and motor 

development from 3 to 84 months of age by random regression modeling. Additionally, 

important determinants of cognitive and motor development were identified. In the 

Rotterdam cohort (n=207) of the Dutch PCB/dioxin study, cognitive and motor abilities 

were assessed at 3, 7, 18, 42, and 84 months of age. Prenatal exposure to PCBs was defined 

as the sum of PCB118, 126, 138, 153 in maternal plasma. Higher prenatal exposure to PCBs 

was associated with a lower level of cognitive and motor development. Effects of prenatal 

exposure to PCBs on cognitive development were significantly modified by maternal 

age. Important determinants of cognitive development were prenatal PCB levels, its 

modification by maternal age, along with parental education, parental verbal IQ and HOME 

scores. Motor development was efficiently predicted by prenatal PCB levels including its 

interaction with HOME scores along with parental education.

Conclusions: These results suggested neurotoxic effects of prenatal exposure to PCBs 

and related compounds on the level of cognitive and motor development; effects that may 

be modified by conditions that are favorable to child development. Compared to the large 

positive effects of more optimal parental and home environmental conditions, the negative 

effects of prenatal PCB exposure on cognitive development were relatively small. Effects 

prenatal PCB exposure on motor development were more pronounced and this outcome 

may serve as a sensitive tool to assess neurodevelopment risks of prenatal PCB exposure. 
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Introduction

PCBs and polychlorinated dibenzo-para-dioxins (PCDDs) and polychlorinated dibenzofurans 

(PCDFs) (the latter two are summarized as dioxins) are lipophilic and bioaccumulating 

environmental pollutants that have comparable molecular structures. These compounds are 

known for their potential neurotoxic effects in animals and humans. Children are prenatally 

exposed to maternal PCBs and dioxins and, additionally, through breast milk, thus during 

vulnerable periods of rapid development of the central nervous system (CNS). The neurotoxic 

mechanism of effects of these compounds on the CNS is complex, including direct neuronal 

effects and effects on neurotransmitters and endocrine systems, such as thyroid hormones 

and sex-steroid hormones, that may indirectly affect CNS development (1, 2). 

To address neurotoxic effects of perinatal exposure to environmental levels of PCBs, most 

epidemiologic studies used general cognitive and motor abilities as endpoints. The results are 

inconsistent, showing discernable differences between study centers and within cohorts at 

different ages of assessment. In the North Carolina study, cognitive and motor development 

was studied in children from 6 months to 5 years of age (3-5). A negative effect of prenatal 

exposure to PCBs was only detected on psychomotor abilities until 2 years of age (3, 5). In 

the Lake Michigan cohort, prenatal exposure to PCBs was associated with lower verbal and 

memory scores but not with general cognitive abilities at 4 years of age (6) whereas at 11 

years of age higher prenatal PCB exposure was related with lower IQ scores (7). 

In the Dutch PCB/dioxin study, effects of prenatal and lactational exposure to PCBs on 

cognitive and motor development have been evaluated in a cohort of healthy born children 

from birth to school age. Prenatal PCB exposure was related to lower psychomotor scores 

at 3 months of age (8) and lower cognitive abilities at 42 months (9). Cognitive abilities at 3, 

7, and 18 months and psychomotor abilities at 7 and 18 months of age were, however, not 

related with prenatal PCB exposure (8). At school age, negative effects of prenatal exposure 

to PCBs on general cognitive and motor abilities were suggested in children that were 

raised in lower parental and home environmental conditions, whereas in children raised 

in relatively more privileged environments these subtle effects of prenatal PCB exposure 

were not detectable (10). 

Although in human studies, addressing neurotoxic effects of prenatal exposure, cognitive 

and motor abilities are highly relevant, these outcome variables are complex because they 

are developing qualities and because they are influenced by various factors such as prenatal 

circumstances and hormonal status, and parental and home environmental characteristics. 

Epidemiologic studies usually examine neurodevelopmental effects at separate assessment ages 

without properly capturing the course of development of these outcome variables. Therefore, the 

objective of this study was to evaluate effects of prenatal exposure to PCBs on the development 

of cognitive and motor abilities assessed from 3 to 84 months of age. Additionally we aimed to 

identify important (significant) determinants of cognitive and motor development. 
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 Methods

Subjects

In 1990, a prospective follow-up study in healthy children was started in Rotterdam, The 

Netherlands. The study population comprised 207 Caucasian mother-infant pairs, recruited 

between 1990 and 1992. The study design and recruitment process, chemical analysis and 

PCB concentrations have been described in detail elsewhere (11). Only first or second, 

term born healthy children were included. One hundred and five children were exclusively 

breast-fed for at least six weeks and 102 children were fed with formula from a single batch 

(Almiron M2, Nutricia NV, Zoetermeer, The Netherlands) from birth until 7 months of age. 

In this formula, concentrations of PCBs were undetectable. The medical ethics committee 

of the University Hospital Rotterdam/ Sophia Children’s Hospital approved the study design 

and the parents signed informed consent. 

Exposure variables

Plasma samples were collected from mothers during the last month of pregnancy. These 

samples were analyzed for four nonplanar PCB congeners, International Union for Pure and 

Applied Chemistry numbers 118, 138, 153, and 180. The sum of the four PCB congeners is 

used as prenatal exposure variable (ΣPCB).

Outcome variables

The children were invited to participate in cognitive and motor assessments at 3, 7, 18, 42 

and 84 months of age. Cognitive and motor abilities at 3, 7 and 18 months were assessed 

by the mental developmental index and psychomotor developmental index of the Dutch 

version of the Bayley Scales of Infant Development (BOS 2-30) (12, 13). At 42 months 

of age, cognitive abilities were assessed by the combined score of the sequential and 

simultaneous processing scales of the Dutch version of the Kaufman Assessment Battery 

for Children (Dutch K-ABC) (14). Motor development at 42 months of age was measured 

by the sum of the standardized scores of two subtests of the Dutch K-ABC: gross and fine 

motor skills. At 84 months of age, the general cognitive index and the motor score of the 

Dutch version of the McCarthy Scales of Children’s Abilities (15) assessed cognitive and 

motor abilities, respectively. All developmental scores were derived from tests that have 

been standardized and scores were, except for the motor scores at 42 and 84 months, 

transformed into scores with a mean ( ± SD) of 100 (± 15). The motor score at 42 months of 

age is a sum score of two subtests after being normalized to a mean of 10 (± 3). The motor 

score at 84 months of age was normalized into a mean score of 50 (± 10).
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Confounding variables

Variables that may influence child neurodevelopment have been assessed from birth 

to school age. These included prenatal circumstances such as birth weight, duration of 

gestation, fetal exposure to alcohol and cigarette smoking, maternal thyroid plasma levels 

during pregnancy (total thyroxine TT
4
, free thyroxine FT

4
, total triiodothyronine TT

3
, and 

thyroid stimulating hormone TSH), child and nutritional characteristics such as gender, 

parity and type of feeding during infancy (breast-fed or formula-fed) and duration of breast-

feeding, and demographic characteristics such as maternal age at birth of the child and 

parental education level. Parental verbal IQ was assessed by two subtests, Information and 

Vocabulary from the Dutch version of the Wechsler Adult Intelligence Scale (WAIS) (16) 

in the parent who spent the most time with the child, usually the mother. The quality of 

intellectual stimulation and emotional support provided by the child’s home environment 

was assessed by the Dutch version of the Home Observation for Measurement of the 

Environment (HOME) (17) at 18, and 42 months of age (version 0-3 years), and 84 months 

of age (version 3-6 years). 

Data analyses 

Longitudinal data analysis was done on repeated measurements of cognitive and motor 

abilities from 3 to 84 months of age by means of Random Regression Modeling (RRM). 

The outcome variables, cognitive and motor development, represent the measurements of 

cognitive and motor abilities as a function of time both at individual and population levels 

and can be referred to as a personal trend or change model (18). RRM has the advantage 

over and beyond MANOVA that missing data on the outcome variable is allowed, assuming 

the data are missing at random (MAR) (19). Moreover, time-varying and invariant covariates 

can be included in the models (20, 21). RRM allows more general and realistic error 

structures. In this study, the error structure is assumed to be unstructured which implies 

that both correlations between the measurements and variances within the measurements 

are allowed to be different. 

The general analysis strategy started by exploring whether the time trend was linear, 

and whether the linear trend should be considered as fixed or random. Next, the exposure 

variable as well as confounding variables and, if relevant, effect modification terms (e.g. 

effect modification of PCB exposure by time was explored) were added as fixed terms to 

the RRM model. To address the first objective of the study, the unbiased effect of perinatal 

exposure to PCBs was estimated taking into account all relevant confounding variables 

and effect modification. To address the second objective of the study, to identify relevant 

determinants of cognitive and motor development, the analysis strategy was similar, except 

that nonsignificant variables were eliminated from the model. Details on the elimination 

procedure are presented below. 
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 Preparation of the data for RRM consisted of the following adaptations: Motor scores at 

42 and 84 months of age were transformed for data analysis into scores with a mean of 100 

(± 15). Maternal plasma ΣPCB concentrations were positively skewed and were therefore 

normalized by natural logarithmic transformation (lnΣPCB). The HOME score was assessed 

at three moments of measurement, using two age-appropriate versions of the HOME. To use 

these scores in the analyses as a time-varying covariate, the mean and standard deviation of the 

scores at 42 and 84 months were adapted to the mean and standard deviation of the HOME 

score at 18 months.

In order to reduce the number of observed variables and to avoid the occurrence of 

multicollinearity, principal components analysis was performed. The two variables, type 

of feeding, breast-fed or formula-fed, and duration of breast-feeding (0 for formula-fed 

children) were combined to distinguish three feeding groups (formula-fed, breast-fed for 6-

17 weeks (< 50th percentile), and breast-fed longer than 17 weeks (>50th percentile). Two 

dummy variables were used to represent these groups in the models. 

In the initial RRM model the following variables were included: lnΣPCB, age at 

assessment (3, 7, 18, 42 and 84 months of age, to control for a linear time trend in the 

outcome variable), alcohol use (0/1= no/yes) and smoking (0/1= no/yes) during pregnancy, 

birth weight, gender (0/1=boy/girl), parity (0/1= fist/second born), maternal age, breast-

feeding duration, HOME, parental education level (maximum level of either parent; 0=low 

= primary school, secondary school not finished; 1=middle = secondary school finished; 

2=high = high school finished, professional and university training, entered as a continuous 

variable) and parental verbal IQ. 

To eliminate skewness, the cognitive and motor development outcome variables were 

logarithmically transformed. Effects of the prenatal thyroid hormone status were explored 

by analyzing the four maternal thyroid hormone measurements separately. 

Since at 84 months of age, effects of prenatal exposure to PCBs on cognitive and motor 

abilities were modified by maternal age at birth, parental education level, HOME score, and 

parental verbal IQ, these interaction variables were added simultaneously to the models. 

To avoid multicollinearity, these variables in addition to LnΣPCB were centered and their 

products were included in the models (i.e. LnΣPCB*Maternal age, LnΣPCB*Education level, 

LnΣPCB*HOME, LnΣPCB*Verbal IQ) (22). Centering of these variables decreased their 

intercorrelations discernibly.

To identify important determinants of cognitive and motor development, separate 

random regression models were applied to cognitive and motor development (backward 

elimination procedure, one by one (p>0.05, two-tailed)), while the linear time trend 

was included in the models throughout. Interaction variables and their main terms were 

hierarchically eliminated; the main term was not eliminated from the model before the 

interaction term with the main effect in it. Analyses were carried out with SAS version 8 for 

Windows. Results were considered significant if p≤0.05 (two tailed).
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Results 

Three children were excluded from data analysis due to circumstances that were likely to 

influence cognitive and motor outcome other than perinatal PCB exposure (i.e. Pervasive 

Development Disorder, Turner syndrome, Volkmann contracture). Subjects with missing 

data on the determinants were not included in the analysis. The number of subjects 

included in the analyses, therefore, depended on the nonoccurrence of missing data on 

the particular variables in the models (see Table 3.1). Data on cognitive and motor abilities 

assessed from 3 to 84 months of age were available for all analyzable children (n=204), the 

mean cognitive and motor scores are presented in Table 3.2.

Table 3.1 Characteristics of all subjects included in the analyses (n=204).

 

 

Table 3.1  

Characteristics  
Birth weight (g) 3465 (+ 447) 
Fetal exposure to alcohol, yes  35 (17 %)  
Fetal exposure to smoking, yes 48 (24 %) 
Gender, boys  108 (53 %)  
Maternal age (yr)  29 (18-39) 
Feeding type, breast-fed   102 (50 %) 
Breast-feeding duration (wk)  17 (6-72) 
Parity, 1st born  100 (49 %) 
Parental education   
      Low 27 (13 %) 
      Middle 69 (34 %) 
      High 108 (53 %) 
HOME   
      18 months (n=204) 40.5 (+ 2.6) 
      42 months (n=190) 39.2 (+ 3.6) 
      84 months (n=186) 48.0 (+ 3.2) 
Parental verbal IQ (n=190) 121.7 (+ 16.0) 
Maternal thyroid levels  
FT4 (pmol/L) (n=203)  11.6 (+ 2.0) 
TT4 (nmol/L) (n=203)  157.5 (+ 27.6) 
TT3 (nmol/L) (n=203)  2.5 (+ 0.4) 
TSH (µlU/ml (n=203)  1.4 (+ 1.3) 
Exposure variable  
ΣPCB (µg/L) (n=203) p10=1.23 / p25=1.55 / p50=2.04 /  

p75=2.76 / p90=3.48 

 Values are numbers (percentages), means (± standard deviations) or medians (range).
Parental education: low = primary school, secondary school not finished, middle = secondary school finished, high = high school finished, 
professional and university training; Parental verbal IQ: score on two subtest of the Wechsler Adult Intelligence Scale, Information and 
Vocabulary, assessed from one of the parents; HOME: Home Observation for the Measurement of the Environment, version 0-3 years (18 and 42 
months) and version 3-6 years (84 months); FT4: free thyroxine; TT4: total thyroxine; TT3: total triiodothyronine; TSH: thyroid stimulating hormone; 
ΣPCB: sum of PCB congeners IUPAC nos. 118, 138, 153, 180 assessed from maternal plasma.
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Table 3.2 Mean cognitive and motor scores at 3, 7, 18, 42 and 84 months of age.

 

 

Table 3.2  

Cognition   
  3 months (n=198)a 126.7 (+ 12.8) 
  7 months (n=204)a 113.3 (+ 10.0) 
  18 months (n=204)a 109.9 (+ 17.5) 
  42 months (n=188)b 115.5 (+ 13.8) 
  84 months (n=186)c 104.2 (+ 12.8) 
Motor  
  3 months (n=196)a 117.4 (+ 12.0) 
  7 months (n=204)a 113.2 (+ 13.9) 
  18 months (n=203)a 109.0 (+ 15.4) 
  42 months (n=188)b  113.9 (+ 14.7)d 
  84 months (n=184)c 106.3 (+ 14.8)d 

 The values are means ± standard deviations.

 
a Bayley Scales of Infant Development; b Kaufman Assessment Battery for Children; c McCarthy Scales of Children’s Abilities; d transformed scores. 

Initially, all selected variables of potential relevance to cognitive and motor development 

from 3 to 84 months of age were included in the RRM models in addition to a fixed linear 

time trend. There was no evidence of modification of effects of PCB exposure by the age of 

assessment. Higher prenatal exposure to PCBs was significantly related to a lower level of 

cognitive (β=-0.07, p=0.048) and motor development (β=-0.07, p=0.004), both adjusted for 

all other variables. Maternal thyroid hormone levels TT
4
, FT

4
, TT

3
, and TSH were not related 

to cognitive and motor development when analyzed in separate models. 

Table 3.3 Results of RRM analysis estimating effects of prenatal exposure on cognitive and motor development from 3 to 84 months of age, 
including the interaction variables simultaneously in the models.

 

 

Table 3.3  

Cognitive development Motor development  

Regression 
coefficient 

SE p Regression 
coefficient 

SE p 

LnΣPCB -0.033 0.013 0.014 -0.051 0.020 0.002 
LnΣPCB*Maternal age 0.008 0.003 0.008 0.006 0.003 0.109 
LnΣPCB*Education -0.008 0.021 0.719 0.020 0.026 0.446 
LnΣPCB*Verbal IQ 0.001 0.001 0.621 -0.001 0.001 0.561 
LnΣPCB*HOME 0.002 0.005 0.681 0.006 0.005 0.275 

 
 
 
Table 3.4  

 Cognitive development  Motor development 
 Regression 

coefficient 
SE p Regression 

coefficient 
SE p 

Intercept 4.770 0.006 <0.001 4.734 0.007 <0.001 
Time -0.002 <0.001 <0.001 -0.001 <0.001 <0.001 
LnΣPCB -0.031 0.013 0.014 -0.046 0.014 0.001 
Maternal age -0.001 0.001 0.523    
Education  0.039 0.009 <0.001 0.032 0.009 <0.001 
Verbal IQ 0.001 <0.001 0.014    
HOME 0.010 0.002 <0.001 0.005 0.002 0.010 
LnΣPCB*Maternal age 0.008 0.002 0.001    
LnΣPCB*HOME    0.009 0.004 0.025 

 

Results of RRM analysis on repeated measurements of cognitive and motor abilities, natural logarithmic transformed, adjusted for: time trend, 
alcohol and smoking during pregnancy, birth weight, gender, parity and breast-feeding duration. LnΣPCB: natural logarithmic transformation 
of the sum of PCB congeners IUPAC nos. 118, 138, 153, 180 assessed from maternal plasma; Education: parental education level, 0 = low; 1 = 
middle; 2 = high; Verbal IQ: parental verbal IQ; HOME: Home Observation for the Measurement of the Environment, version 0-3 years (18 and 42 
months) and version 3-6 years (84 months).

Inclusion of the four interaction variables (i.e. LnΣPCB*Maternal age, LnΣPCB*Education 

level, LnΣPCB*HOME, LnΣPCB*Verbal IQ) showed that effects of prenatal exposure to 

PCBs on cognitive development were significantly modified by maternal age (Table 3.3). 
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Effect modification by the other parental and home environmental variables was not 

significant in this model (p>0.60). In regard to motor development, the PCB effects were 

not significantly modified by either of the four parental and home environmental variables 

in the full model.

Table 3.4 Results of RRM analysis estimating significant determinants of cognitive and motor development from 3 to 84 months of age. 

 

 

Table 3.3  

Cognitive development Motor development  

Regression 
coefficient 

SE p Regression 
coefficient 

SE p 

LnΣPCB -0.033 0.013 0.014 -0.051 0.020 0.002 
LnΣPCB*Maternal age 0.008 0.003 0.008 0.006 0.003 0.109 
LnΣPCB*Education -0.008 0.021 0.719 0.020 0.026 0.446 
LnΣPCB*Verbal IQ 0.001 0.001 0.621 -0.001 0.001 0.561 
LnΣPCB*HOME 0.002 0.005 0.681 0.006 0.005 0.275 

 
 
 
Table 3.4  

 Cognitive development  Motor development 
 Regression 

coefficient 
SE p Regression 

coefficient 
SE p 

Intercept 4.770 0.006 <0.001 4.734 0.007 <0.001 
Time -0.002 <0.001 <0.001 -0.001 <0.001 <0.001 
LnΣPCB -0.031 0.013 0.014 -0.046 0.014 0.001 
Maternal age -0.001 0.001 0.523    
Education  0.039 0.009 <0.001 0.032 0.009 <0.001 
Verbal IQ 0.001 <0.001 0.014    
HOME 0.010 0.002 <0.001 0.005 0.002 0.010 
LnΣPCB*Maternal age 0.008 0.002 0.001    
LnΣPCB*HOME    0.009 0.004 0.025 

 RRM analysis on repeated measurements of cognitive and motor abilities, natural logarithmic transformed.
Time: time trend; LnΣPCB: natural logarithmic transformation of the sum of PCBs IUPAC nos. 118, 138, 153 and 180, assessed from maternal 
plasma; Education: parental education level, 0 = low; 1 = middle; 2= high; Verbal IQ: parental verbal IQ; HOME: Home Observation for the 
Measurement of the Environment, version 0-3 years (18 and 42 months) and version 3-6 years (84 months).

Backward elimination, one by one, of nonsignificant variables (p>0.05) from the RRM 

models, resulted in different models for cognitive and motor development (Table 3.4). For 

cognitive development, effects of prenatal PCB exposure were significantly modified by 

maternal age. Additionally, parental education level, HOME scores, and parental verbal IQ 

were identified as important determinants of cognitive development. In regard to motor 

development, effects of prenatal exposure to PCBs were significantly modified by the 

HOME scores. Additionally, parental education was identified as an important determinant 

of motor development. Moreover, for both cognitive and motor development, a significant 

negative linear time trend was seen. 

Joint effects of the important determinants are visualized in Figure 3.1, presenting the 

estimated cognitive (a) and motor (b) development for children with either low or high 

levels of the appropriate determinants (i.e. 25th/75th percentile) relative to prenatal PCB 

levels. Effect modification of prenatal exposure to PCBs by maternal age and HOME 

score, respectively, on cognitive and motor development, is integrated in these figures. 

The estimated level of cognitive development is presented for children born to younger 

and older mothers (25th/75th percentile). The level of motor development is presented for 

children raised by parents that had low and high HOME scores (25th/75th percentile).
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Figure 3.1a Mean cognitive development from 3 to 84 months of age in relation to prenatal PCB exposure for children born to younger (Y) or 
older (O) mothers with low or high levels of parental education (E), verbal IQ (V) and HOME score (H), (EVH). 

Figure 3.1b Mean motor development from 3 to 84 months of age in relation to prenatal PCB exposure for children with low or high levels of 
parental education (edu) and HOME score.

In children born to younger mothers, the estimated level of cognitive development of high 

prenatally exposed children (75th percentile) was approximately 3 points lower than in low 

exposed children (25th percentile), whereas in children born to older mothers, this estimated 

difference was approximately ½ a point. A difference of approximately 10 points was seen 

between children raised in low and high parental and home environmental conditions (i.e. 

low or high parental education level, HOME scores, and parental verbal IQ). 
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In regard to motor development, high exposed children with low HOME scores scored 

approximately 4 points lower than their low exposed counterparts, whereas a difference 

of 2 points was estimated for low and high exposed children with high HOME scores. 

In children raised by higher educated parents, the level of motor development was 

approximately 4 points higher than in children with lower educated parents. 

Discussion 

This is the first empirical investigation of neurotoxic effects of PCBs on the longitudinal 

development of cognitive and motor abilities. Analyses of cognitive and motor abilities at 

separate ages showed inconsistencies of effects of prenatal PCB exposure in the Dutch 

PCB/dioxin project. In contrast to the studies so far, we have analyzed effects of prenatal 

exposure to PCBs on the development of cognitive and motor abilities of the individual 

child. Higher prenatal exposure levels were related with a lower level of cognitive 

and motor development. Moreover, effects of prenatal exposure to PCBs on cognitive 

development were modified by maternal age, suggesting that higher prenatal exposure 

levels were related with more pronounced negative effects in children born to younger 

mothers than in children born to older mothers. 

At 84 months of age, effects of prenatal exposure to PCBs on cognitive abilities were 

similarly modified by maternal age, as well as by parental education, parental verbal IQ 

and HOME score, when these effect modifications were studied in separate regression 

models. In the present study, centering of the relevant variables allowed us to include 

these effect modification terms simultaneously in the models. The effect modification of 

prenatal exposure to PCBs on cognitive development by maternal age overruled effect 

modification by the other parental and home environmental variables. In the Dutch cohort, 

older maternal age is related to higher education levels, higher verbal IQs and higher scores 

on the HOME environment questionnaire. Maternal age is also likely to reflect other aspects 

of social economic conditions as well as psychosocial age-related attributes (23). 

In this study, we additionally aimed to identify important determinants of cognitive 

and motor development. Cognitive and motor development appeared to have different 

important determinants. Cognitive development was estimated more efficiently by 

parental and home environmental conditions that are more related to cognitive genetic 

or stimulating aspects, whereas motor development was predicted efficiently by generally 

stimulating home environments. In the predictive model for motor development from 3 to 

84 months of age, effects of prenatal PCB levels were modified by the HOME scores. This 

is in agreement with the results of the previous study in the Dutch cohort at 84 months of 

age in which the HOME environment was also the most pronounced modifier of the effect 

prenatal exposure on motor development.
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These results suggest that neurotoxic effects of prenatal exposure to PCBs can be masked 

or compensated by conditions that can be considered to be relatively more favorable 

to child development. These results are in line with animal studies that show a positive 

impact of an enriched environment on brain development and on effects of brain lesions 

(24). In human studies, comparable evidence of effect modification by parental and home 

environmental conditions on neurodevelopment has been reported in some of the studies 

that address effects of perinatal exposure to lead (25, 26) and methyl mercury (27) as well 

as in follow-up studies in very low birth weight children (28-30). It should be stressed here 

that the study population consists of families that were motivated to participate in this study 

for a long period. Parental and home characteristics of this group are likely to be more 

advantaged than in the average Dutch population. These results suggest that effects of 

exposure to these environmental pollutants on cognitive and motor abilities might be more 

pronounced in less advantaged populations.

The Figures showed that the estimated negative effects of prenatal exposure to PCBs 

on cognitive development were relatively small compared to the positive effects of higher 

parental education levels, verbal IQs and higher HOME scores. In these models, effects of 

prenatal exposure to PCBs on motor development were more pronounced than on cognitive 

development. Moreover, the magnitude of the negative effects of prenatal exposure on 

motor development in children with low HOME scores was equal to that of the positive 

effect of higher parental education levels. This may suggest that motor development is 

more vulnerable to prenatal exposure to PCBs than cognitive abilities. However, it may also 

reflect the complexity of the cognitive outcome variable that is influenced by a relatively 

broader spectrum of socio-parental factors compared to motor development. Motor 

development may, therefore, be a more sensitive outcome measurement in risk assessment 

studies of prenatal exposure to PCBs. Figure 3.1a. illustrated some of the complexity of the 

cognitive outcome. Older maternal age is likely to reflect favorable conditions to cognitive 

development and these results also suggest that older maternal age masks or counteracts 

cognitive effects of prenatal exposure to PCBs. However, based on the present model, at 

lower levels of prenatal PCB exposure children born to older mother had a lower estimated 

cognitive development than children born to younger mothers. The current knowledge of 

the factors affecting cognitive development as well as on the characteristics of mothers at 

older age that give birth to children is too limited to explain this finding.

Cognitive and motor abilities were measured with different tests at different assessment 

ages. The Dutch versions of the Bayley and the K-ABC have been standardized in Dutch 

populations in respectively 1976 (13), and 1989 (14). For the McCarthy scales of Children’s 

Abilities only American norms were available (31). The negative linear time trend, therefore, 

can be attributed to standardization of the different tests, and should not be interpreted as 

a decrease in growth of cognitive and motor abilities over time. The linear time trend in 
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the model can therefore be understood as an adjustment for the different test materials that 

were used over the years.

Different neurotoxic mechanisms are suggested for the planar dioxin and dioxin-like 

PCB compounds and the weak dioxin-like or nondioxin-like PCB compounds. Toxicity 

of dioxins and dioxin-like PCB compounds appears to be mediated by the Ah receptor. 

The toxic potency of a these compounds is reflected in a toxic equivalent factor (TEF), 

based on its ability to bind the Ah receptor relative to the binding ability of the most 

potent dioxin, TCDD. For nondioxin-like, or nonplanar, PCBs the ability of the TEF to 

predict their neurotoxic potency is low. In the last decade there is growing evidence that 

especially nondioxin-like PCBs and weak dioxin-like PCBs may produce a wide spectrum 

of neurotoxic effects, while dioxin-like PCBs may have less activity in the CNS. The four 

PCB congeners (IUPAC numbers 118, 138, 153, and 180) that maternal plasma samples 

were analyzed for are nonplanar PCB congeners of which PCB 118 is considered to be 

a weak dioxin-like compound. Environmental mixtures contain mostly nonplanar PCB 

congeners (32). The four PCB congeners that were assessed in maternal plasma are among 

the four most abundant PCB congeners, constituting 46% of the total PCBs (33). For the 

study population, multiple prenatal exposure data on PCBs and dioxins were available. 

Apart from the sum of four PCBs in maternal plasma during pregnancy, the sum of the four 

PCBs was measured in cord blood and dioxins, dioxin-like PCBs, and 20 nondioxin-like 

PCBs were assessed in breast milk. PCB levels in maternal and cord blood, and total TEQ 

(Toxic Equivalent) levels of dioxins and dioxin-like PCBs were highly interrelated (11). 

Therefore, whether the observed effects are due to PCBs or other (related) contaminants, 

such as dioxins, is uncertain. In this study we used maternal PCB levels to estimate prenatal 

exposure to PCBs since this prenatal exposure variable showed the strongest relation with 

cognitive and motor development at different time points (8, 9). 

Although a breast-fed child is exposed to considerable amounts of PCBs through 

lactation, negative neurodevelopmental effects of lactational exposure to PCBs have hardly 

been detected (3, 6, 7, 34). In the Rotterdam cohort, negative effects of lactational exposure 

were only detected on psychomotor abilities at 7 months of age. The results of the study 

at 84 months of age did not show evidence of effect modification of lactational exposure 

by parental and home environmental conditions. Generally, the exploration of effects of 

lactational exposure is complicated by a number of aspects. First, the amount of lactational 

exposure can only be estimated by the product of duration of breast-feeding and exposure 

levels in breast milk, or other maternal body burden indicators such as exposure levels 

in maternal blood. The duration of breast-feeding it self is likely to reflect not only the 

duration of exposure to PCBs but also exposure to substances that may be important for 

optimal brain development. In the present study, the duration of breast-feeding was not 

related to cognitive or motor development. We also explored whether lactational exposure, 

derived from the product of the PCB levels in maternal plasma and the duration of breast-
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feeding, was related to cognitive and motor development. These preliminary analyses did 

not suggest negative effects of lactational exposure to PCBs. Secondly, in the Dutch cohort, 

parents that choose to breast-feed their child are often higher educated and have higher 

verbal IQs and higher HOME scores than parents that choose to feed their child with 

formula milk. Therefore, the exploration of interrelations of lactational exposure, parental 

and home environmental conditions and neurodevelopment may benefit from more 

sophisticated statistical modeling techniques.

In our cohort, higher levels of PCBs and dioxins in breast milk were related to lower 

maternal TT
3
 and TT

4
 plasma levels, although all levels were within the normal range, 

except for one mother who appeared to have an autoimmune hypothyroidism with high 

TSH levels (35). In the present study, maternal thyroid hormone status was not related 

to cognitive and motor development. These results, therefore, are not suggestive of 

thyroid hormone involvement in the neurotoxic effect of PCBs on cognitive and motor 

development. A different statistical procedure, however, could be more proper to explore 

in more depth potential mediation by thyroid hormones in effects of exposure to PCB on 

cognitive and motor development. Moreover, hormonal involvement in the mechanism of 

neurotoxic PCB effects may be more pronounced using more specific neuropsychological 

abilities as outcome variables. 

In conclusion, the results of the present study give evidence for negative effects of 

prenatal exposure to environmental levels of PCBs and related compounds, such as dioxins, 

on cognitive and motor development in a normal population of Dutch children. RRM is a 

very useful method to evaluate effects of prenatal PCB exposure on cognitive and motor 

development. These results suggest neurotoxic effects of prenatal PCB exposure on the 

developing brain that can be modified by parental and home environmental conditions. To 

increase our knowledge of potential consequences for human development, the neurotoxic 

mechanism should be studied in more depth in animals as well as in humans. Compared 

to the positive effects of more optimal parental and home environmental conditions, the 

negative effect of prenatal PCB exposure on cognitive development is relatively small. 

Effects of prenatal PCB exposure on motor development were more pronounced and this 

outcome may serve as a more sensitive tool to assess neurodevelopment risks of exposure 

to PCBs. Considering that only one class of neurotoxic agents is addressed in this study, 

these results emphasize efforts to reduce environmental levels of these contaminants and 

other related compounds to reduce maternal body burdens and lower fetal exposure to 

these neurotoxic compounds. 
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Abstract

The aim of the study was to explore the interrelationships of parental and home 

environmental variables and cognitive and motor development by means of structural 

equation modeling (SEM) and to explore differences in this model to be attributed to 

prenatal exposure to PCB and maternal age. In the Rotterdam cohort (n=207) cognitive 

and motor abilities were assessed at 3, 7, 18, 42, and 84 months of age. Prenatal exposure 

to PCBs was estimated by the sum of PCB118, 126, 138, 153 in maternal plasma. The 

interrelationships of cognitive and motor development and their determinants, parental 

education level and verbal IQ and HOME scores, were modeled using SEM. Subsequently, 

the total population was divided in four subgroups, based on prenatal PCB levels (low/

high) and maternal age (</ ≥ 29 years). These groups were compared on both the level and 

the interrelationships of the determinants and outcome variables. The level of cognitive/

motor outcome and their determinants, as well as the relations between determinants and 

cognitive outcome variables were different for the groups. Higher prenatal exposure was 

associated with larger decrements in cognitive and motor development in children raised 

under lower parental and home environmental conditions. For ‘early’ cognitive and motor 

development (3, 7, 18 months of age) this difference was more pronounced in children 

born to older mothers, for ‘late’ cognitive and motor development (42, 84 months of age) 

in children born to younger mothers. 

Conclusion: These results suggest complex effects of maternal age and other parental 

and home environmental conditions on the neurotoxic mechanism of PCBs and related 

neurotoxic compounds. 
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Introduction

Polychlorinated biphenyls (PCBs) and dioxins are environmental pollutants that are 

lipophylic and are not degraded easily. Due to these properties, they are ubiquitous in the 

food chain and detectable in humans in most populations that have been examined. PCBs 

and dioxins are known for their potential neurotoxic effects, especially when the developing 

central nervous system (CNS) is exposed to these compounds. PCBs and dioxins are able to 

cross the placenta, exposing the fetus to maternal PCB and dioxin body burdens. Moreover, 

a breast-fed infant is exposed to relatively large amounts of PCBs and dioxins. 

Neurotoxic effects of predominantly prenatal and to a lesser extent lactational exposure 

to environmental levels of PCBs have been described on cognitive and motor abilities at 

several ages in several cohort studies (1-9). A common feature of these epidemiological 

studies is that subjects were not randomly assigned to predetermined levels of exposure 

and that samples were based on volunteer mother-infant pairs. Above-mentioned studies, 

therefore, have made efforts to identify potential confounding variables when studying 

relations between neurodevelopmental outcome and perinatal exposure to PCBs and 

dioxins. 

In the Netherlands, neurodevelopmental effects of perinatal exposure to environmental 

levels of PCBs and dioxins have been prospectively evaluated in healthy children from 

birth to school age (1, 2, 8, 9). Half of the Dutch PCB/dioxin cohort was breast-fed during 

infancy, and the other half was formula-fed. In this cohort, complex interrelationships of 

confounding, exposure and outcome variables have been observed. At school age, effects 

of prenatal exposure to PCBs on cognitive and motor abilities were related to parental 

and home environmental conditions. In children who were born to younger mothers or 

who were raised by parents who were either less educated or had lower verbal IQs, or 

HOME scores, negative effects of prenatal exposure on cognitive and motor abilities were 

detected. However, if these conditions were more favorable to child development, effects 

of prenatal exposure to PCBs were not detectable (9). Random regression analysis of 

cognitive and motor development from 3 to 84 months of age showed similar modification 

of the effects of prenatal exposure to PCBs by parental and home environmental levels 

(8). In that study we aimed to explore effects of prenatal exposure to PCBs on the 

development of cognitive and motor abilities as well as to identify important determinants 

of these outcomes. For cognitive development, prenatal PCB levels, and its modification by 

maternal age, along with parental education level and verbal IQ and HOME scores were 

important determinants. Motor development was efficiently estimated by prenatal PCB 

levels including its modification by HOME scores and by parental education levels (8). 

Maternal age plays a highly complex role in neurodevelopmental risk assessment of 

perinatal exposure to PCBs since it is positively associated with prenatal PCB body burden 

as well as with parental education level, parental verbal IQ and the HOME score. In the 
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random regression analysis study, the modification of cognitive effects of prenatal exposure 

to PCBs by maternal age overruled effect modification by the other candidate effect 

modifiers (i.e. parental education level, parental verbal IQ, and HOME score) (8). Structural 

modeling of these variables may contribute to disentangle the complex interrelationships 

of these determinants of cognitive and motor development when studying PCB related 

neurodevelopmental effects. Therefore, the first objective of this study was to identify the 

interrelationships of parental education level, parental verbal IQ, and HOME score and 

cognitive and motor development, assessed from 3 to 84 months of age, by the method of 

structural equation modeling. The second objective was to explore, once the most plausible 

model was identified, whether high level of prenatal PCB exposure along with maternal age 

can be differentiated from low level of exposure on this model. 

Methods

Subjects

In 1990, a prospective follow-up study in healthy children was started in Rotterdam, The 

Netherlands. The study population comprised 207 Caucasian mother-infant pairs, recruited 

between 1990 and 1992. The study design and recruitment process, chemical analysis and 

PCB concentrations have been described in detail elsewhere (10). Only first or second, 

term born healthy children were included. One hundred and five children were exclusively 

breast-fed for at least 6 weeks and 102 children were fed with formula milk from a single 

batch (Almiron M2, Nutricia NV, Zoetermeer, The Netherlands) from birth until 7 months 

of age. In this formula, concentrations of PCBs were undetectable. The medical ethics 

committee of the University Hospital Rotterdam/ Sophia Children’s Hospital approved the 

study design and the parents signed informed consent. 

Assessment of exposure variables

Plasma samples were collected from the mothers during the last month of pregnancy and 

cord plasma samples were collected directly after birth. These samples were analyzed for 

four PCB congeners, International Union for Pure and Applied Chemistry (IUPAC) numbers 

118, 138, 153 and 180 (10, 11). Two weeks after delivery, a 24-hour representative breast 

milk sample was collected from the mothers who were breast-feeding their children. Breast 

milk samples were analyzed for 17 dioxins (PCDDs and PCDFs), 6 dioxin-like PCBs (IUPAC 

numbers 77, 105, 118, 126, 156, and 169), and 20 nondioxin like PCBs (IUPAC numbers 

28, 52, 66, 70, 99, 101, 128, 137, 138, 141, 151, 153, 170, 177, 180, 183, 187, 194, 195, and 

202) (10). 
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In the present study, we compared four groups distinguished by prenatal exposure level 

and maternal age at birth of the child. Assignment to these groups was based on the sum of 

the concentrations of the four PCB congeners measured in maternal plasma (ΣPCB
maternal

). 

Children in which ΣPCB
maternal

 levels were < median level (2.04μg/L) were assigned to the 

low exposed group (PCB
low

), and children in which ΣPCB
maternal

 levels were ≥ median to the 

high exposed group (PCB
high

). Subsequently, these exposure groups were dichotomized at 

the median of maternal age at birth (< 29 years = M
young

; ≥ 29 years = M
old

)
 
resulting in the 

following four groups: PCB
low

/M
young

; PCB
low

/M
old

; PCB
high

/M
young

; PCB
high

/M
old

.

Outcome variables

The children were invited to participate in cognitive and motor assessments at 3, 7, 18, 42 

and 84 months of age. Cognitive and motor abilities at 3, 7 and 18 months were assessed 

by the mental developmental index and psychomotor developmental index of the Dutch 

version of the Bayley Scales of Infant Development (12) (BOS 2-30) (13). At 42 months 

of age, cognitive abilities were assessed by the combined score of the sequential and 

simultaneous processing scales of the Dutch version of the Kaufman Assessment Battery 

for Children (Dutch K-ABC) (14). Motor abilities at 42 months of age were measured by 

the sum of the standardized scores of two subtests of the Dutch K-ABC: gross and fine 

motor skills. At 84 months of age, the general cognitive index and the motor score of the 

Dutch version of the McCarthy Scales of Children’s Abilities (15) assessed cognitive and 

motor abilities, respectively. All developmental scores were derived from tests that have 

been standardized and scores were, except for the motor scores at 42 and 84 months, 

transformed into scores with a mean ( ± SD) of 100 (± 15). The motor score at 42 months of 

age is a sum score of two subtests after being normalized to a mean of 10 (± 3). The motor 

score at 84 months of age was normalized into a mean score of 50 (± 10).

Determinants

Parental education was estimated as the highest education level of the parents (low = 

primary school, secondary school not finished; middle = secondary school finished; high = 

high school finished, professional and university training). Parental verbal IQ was assessed 

by two subtests, Information and Vocabulary from the Dutch version of the Wechsler Adult 

Intelligence Scale (WAIS) (16) in the parent that spent the most time with the child, usually 

the mother. The quality of intellectual stimulation and emotional support provided by the 

child’s home environment was assessed by the Dutch version of the Home Observation for 

Measurement of the Environment (HOME) (17) at 18, and 42 months of age (version 0-3 

years), and 84 months of age (version 3-6 years). 
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Data analysis

The analyses for constructing structural equation models (SEM) were conducted with the 

M-Plus program for Windows (version 2.01). Parameters were estimated by using the 

method of maximum likelihood, based on the covariance matrix of the observed variables. 

Any SEM may be expressed as a set of relations between independent and dependent 

exogenous and endogenous variables, and as (co)variances of independent variables. SEM 

involves identification and estimation of parameters representing relations, variances and 

covariances for variables in a postulated or implied model. The aim was that the postulated 

or implied model was the most plausible in representing the observed covariances of all 

included variables. Plausibility was based on statistical criteria and theoretical and clinical 

knowledge on cognitive and motor development. Statistical plausibility comprised the 

following performance measures: (1) χ2 (including degrees of freedom, and p-value): a 

nonsignificant value indicates that the model at issue is not rejected; (2) χ2 /df: a value ≤ 

1.5 indicates a good fit; (3) Comparative Fit Index (CFI) (18) (range 0-1): a value greater 

than 0.95 is indicative of a good fitting model; (4) Tucker Lewis Index (TLI) (19): a value 

approximating 1 indicates a good model fit (5) root mean square error of approximation 

(RMSEA) (20, 21): a value of 0.05 indicates a close fit and (6) standardized root mean square 

residual (SRMR): a value <0.05 suggests adequate fit. Moreover, we applied the principle 

of ‘parsimonious’ modeling: if two models, a simple and a more complicated, are equally 

plausible, the more simple model is preferred. 

Modeling procedure

Motor scores at 42 and 84 months of age were transformed for data analysis into scores 

with a mean of 100 (±15). The HOME score was assessed at three measurement moments, 

using two age appropriate versions of the HOME. The mean and standard deviation of the 

scores at 42 and 84 months of age were adapted to the mean and standard deviation of the 

HOME18 score.

Preceding the modeling procedure, missing data analysis and replacement was 

performed, based on multiple regression analysis in which a random component (i.e. a 

residual from a randomly selected complete subject) was added (22). 

Cognitive abilities, assessed at 3,7,18, 42, and 84 months of age, were combined in two 

scores: C
3, 7, 18

 (the mean of the scores at 3, 7, and 18 months of age) and C
42, 84 

(the mean of 

the scores at
 
42 and 84 months of age). The motor scores, assessed at 3, 7, 18, 42, and 84 

months of age, were similarly grouped: M
3, 7, 18

 and M
42, 84

. The HOME scores at 18, 42, and 

84 months of age were combined in two scores, comparable to the developmental data: 

HOME
18

 and HOME
42, 84

 (the mean score on the HOME at 42 and 84 months of age). 

Based on clinical knowledge we developed a baseline model in which the paths from 

C
3, 7, 18

 to C
42, 84 

and from M
3, 7, 18

 to M
42, 84

 were included as well as paths from C
3, 7, 18

 to M
3, 7, 18
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and from C
42, 84

 to M
42, 84

 and paths for both cognitive variables from the age-appropriate 

HOME variable (HOME
18

 and C
3, 7, 18

; and HOME
42,84

 and C
42, 84

). The covariances between 

the determinants parental education and parental verbal IQ were permitted to be free, and 

for simplification of modeling we decided to model these two variables simultaneously. 

In Table 4.3 the process of modeling is described in the total study population. The 

most plausible model was used for the next step in the modeling procedure: model fit 

comparison of the four groups (PCB
low

/M
young

; PCB
low

/M
old

; PCB
high

/M
young

; PCB
high

/M
old

). 

Group comparison was done by applying constraints of equality across the four groups 

on three parameters: (a) the level of the developmental outcome variables (C
3, 7, 18

 and C
42, 84 

and of M
3, 7, 18

 and M
42, 84

), (b) the level of the determinants (parental education and verbal 

IQ, and HOME), and (c) the regression coefficients between the determinants and outcome 

variables. Eight combinations of constraints were possible, reflecting eight models. By 

comparing the fit of these models we explored group differences in the three parameters. 

Results

Three children of the total population of 207 children were excluded from data analysis due 

to circumstances that were known to influence cognitive and motor outcome (Pervasive 

Development Disorder, Turner syndrome, Volkmann contracture).

The characteristics of the four subgroups are presented in Table 4.1. In Table 4.2, 

the Pearson intercorrelation matrix of the variables that were used in the models are 

presented. 

Table 4.1 Characteristics of the four groups. 

 

 

Table 4.1  

Characteristics PCBlow/Myoung  
(n=63) 

PCBlow/Mold  
(n=35) 

PCBhigh/Myoung 
(n=30) 

PCBhigh/Mold  
(n=75) 

C3, 7, 18a 116.4 (+ 8.5) 115.8 (+ 8.2) 116.7 (+ 8.2) 117.5 (+ 9.6) 
C42, 84a 106.2 (+ 10.6) 110.8 (+ 10.6) 107.4 (+ 11.5) 112.7 (+ 12.8) 

M3, 7, 18b 114.6 (+ 9.2) 112.7 (+ 8.2) 116.1 (+ 7.6) 111.1 (+ 10.7) 

M42, 84b 109.6 (+ 11.0) 110.6 (+ 12.4) 107.6 (+ 11.5) 111.4 (+ 12.6) 

HOME18 39.8 (+ 2.7) 40.3 (+ 2.5) 40.1 (+ 3.1) 41.3 (+ 2.2) 

HOME42, 84 39.7 (+ 2.3) 40.8 (+ 1.7) 39.9 (+ 2.6) 41.0 (+ 2.0) 

Education 1.1 (+ 0.8) 1.4 (+ 0.7) 1.4 (+ 0.6) 1.7 (+ 0.6) 

Verbal IQ 115.5 (+ 17.1) 119.6 (+ 15.1) 124.1 (+ 13.2) 126.7 (+ 14.2) 

 Numbers are means (± standard deviations). a C = Mean cognitive scores at 3, 7, 18 months of age (C3,7,18) and at 42 and 84 months of age (C42,84); 
b M = Mean motor scores at 3, 7, 18 months of age (M3,7,18) and at 42 and 84 months of age (M42,84). HOME18 and HOME42,84: Home Observation for 
the Measurement of the Environment assessed at 18 months of age (HOME18) and the mean of the transformed scores (to HOME18 mean (SD)) on 
the HOME assessed at 42 and 84 months of age; Education: parental education level, 0 = low = primary school, secondary school not finished, 1 
= middle = secondary school finished, 2 = high = high school finished, professional and university training; Verbal IQ: parental verbal IQ, score 
on two subtests of the Wechsler Adult Intelligence Scale, Information and Vocabulary, assessed from one of the parents. 
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Table 4.2 Pearson intercorrelations of predictor and outcome variables.

4.2a Low prenatally PCB exposed group, maternal age < 29 years (Myoung) 

 

 

Table 4.2  
4.2a  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.50 1.00      
3 M3, 7, 18b 0.44 0.37 1.00     
4 M42, 84b 0.23 0.61 0.30 1.00    
5 HOME18 0.43 0.28 0.06 0.06 1.00   
6 HOME42, 84 0.36 0.44 0.09 0.16 0.62 1.00  
7 Education 0.39 0.49 0.11 0.21 0.37 0.66 1.00 
8 Verbal IQ 0.30 0.32 0.22 0.06 0.50 0.66 0.71 

 
4.2b  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.13 1.00      
3 M3, 7, 18b 0.13 -0.23 1.00     
4 M42, 84b 0.27 0.66 0.05 1.00    
5 HOME18 0.14 0.19 -0.09 0.19 1.00   
6 HOME42, 84 0.05 0.49 -0.15 0.13 0.20 1.00  
7 Education 0.10 0.50 0.01 0.36 0.40 0.55 1.00 
8 Verbal IQ 0.14 0.42 0.05 0.37 0.41 0.23 0.49 

 
4.2c  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.48 1.00      
3 M3, 7, 18b 0.02 0.14 1.00     
4 M42, 84b 0.35 0.66 0.49 1.00    
5 HOME18 0.17 0.05 0.01 0.01 1.00   
6 HOME42, 84 0.28 0.43 -0.07 0.31 0.70 1.00  
7 Education 0.23 0.50 -0.06 0.24 0.03 0.30 1.00 
8 Verbal IQ 0.11 0.65 0.20 0.43 -0.13 0.30 0.59 

 
4.2d  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.54 1.00      
3 M3, 7, 18b 0.52 0.41 1.00     
4 M42, 84b 0.62 0.66 0.55 1.00    
5 HOME18 0.36 0.38 0.26 0.25 1.00   
6 HOME42, 84 0.24 0.49 0.15 0.26 0.54 1.00  
7 Education 0.37 0.52 0.27 0.29 0.19 0.32 1.00 
8 Verbal IQ 0.25 0.59 0.14 0.11 0.37 0.53 0.54 

 

4.2b Low prenatally PCB exposed group, maternal age ≥ 29 years (Mold)

 

 

Table 4.2  
4.2a  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.50 1.00      
3 M3, 7, 18b 0.44 0.37 1.00     
4 M42, 84b 0.23 0.61 0.30 1.00    
5 HOME18 0.43 0.28 0.06 0.06 1.00   
6 HOME42, 84 0.36 0.44 0.09 0.16 0.62 1.00  
7 Education 0.39 0.49 0.11 0.21 0.37 0.66 1.00 
8 Verbal IQ 0.30 0.32 0.22 0.06 0.50 0.66 0.71 

 
4.2b  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.13 1.00      
3 M3, 7, 18b 0.13 -0.23 1.00     
4 M42, 84b 0.27 0.66 0.05 1.00    
5 HOME18 0.14 0.19 -0.09 0.19 1.00   
6 HOME42, 84 0.05 0.49 -0.15 0.13 0.20 1.00  
7 Education 0.10 0.50 0.01 0.36 0.40 0.55 1.00 
8 Verbal IQ 0.14 0.42 0.05 0.37 0.41 0.23 0.49 

 
4.2c  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.48 1.00      
3 M3, 7, 18b 0.02 0.14 1.00     
4 M42, 84b 0.35 0.66 0.49 1.00    
5 HOME18 0.17 0.05 0.01 0.01 1.00   
6 HOME42, 84 0.28 0.43 -0.07 0.31 0.70 1.00  
7 Education 0.23 0.50 -0.06 0.24 0.03 0.30 1.00 
8 Verbal IQ 0.11 0.65 0.20 0.43 -0.13 0.30 0.59 

 
4.2d  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.54 1.00      
3 M3, 7, 18b 0.52 0.41 1.00     
4 M42, 84b 0.62 0.66 0.55 1.00    
5 HOME18 0.36 0.38 0.26 0.25 1.00   
6 HOME42, 84 0.24 0.49 0.15 0.26 0.54 1.00  
7 Education 0.37 0.52 0.27 0.29 0.19 0.32 1.00 
8 Verbal IQ 0.25 0.59 0.14 0.11 0.37 0.53 0.54 

 

4.2c High prenatally PCB exposed group, maternal age < 29 years (Myoung)

 

 

Table 4.2  
4.2a  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.50 1.00      
3 M3, 7, 18b 0.44 0.37 1.00     
4 M42, 84b 0.23 0.61 0.30 1.00    
5 HOME18 0.43 0.28 0.06 0.06 1.00   
6 HOME42, 84 0.36 0.44 0.09 0.16 0.62 1.00  
7 Education 0.39 0.49 0.11 0.21 0.37 0.66 1.00 
8 Verbal IQ 0.30 0.32 0.22 0.06 0.50 0.66 0.71 

 
4.2b  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.13 1.00      
3 M3, 7, 18b 0.13 -0.23 1.00     
4 M42, 84b 0.27 0.66 0.05 1.00    
5 HOME18 0.14 0.19 -0.09 0.19 1.00   
6 HOME42, 84 0.05 0.49 -0.15 0.13 0.20 1.00  
7 Education 0.10 0.50 0.01 0.36 0.40 0.55 1.00 
8 Verbal IQ 0.14 0.42 0.05 0.37 0.41 0.23 0.49 

 
4.2c  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.48 1.00      
3 M3, 7, 18b 0.02 0.14 1.00     
4 M42, 84b 0.35 0.66 0.49 1.00    
5 HOME18 0.17 0.05 0.01 0.01 1.00   
6 HOME42, 84 0.28 0.43 -0.07 0.31 0.70 1.00  
7 Education 0.23 0.50 -0.06 0.24 0.03 0.30 1.00 
8 Verbal IQ 0.11 0.65 0.20 0.43 -0.13 0.30 0.59 

 
4.2d  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.54 1.00      
3 M3, 7, 18b 0.52 0.41 1.00     
4 M42, 84b 0.62 0.66 0.55 1.00    
5 HOME18 0.36 0.38 0.26 0.25 1.00   
6 HOME42, 84 0.24 0.49 0.15 0.26 0.54 1.00  
7 Education 0.37 0.52 0.27 0.29 0.19 0.32 1.00 
8 Verbal IQ 0.25 0.59 0.14 0.11 0.37 0.53 0.54 
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4.2d High prenatally PCB exposed group, maternal age ≥ 29 years (Mold)

 

 

Table 4.2  
4.2a  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.50 1.00      
3 M3, 7, 18b 0.44 0.37 1.00     
4 M42, 84b 0.23 0.61 0.30 1.00    
5 HOME18 0.43 0.28 0.06 0.06 1.00   
6 HOME42, 84 0.36 0.44 0.09 0.16 0.62 1.00  
7 Education 0.39 0.49 0.11 0.21 0.37 0.66 1.00 
8 Verbal IQ 0.30 0.32 0.22 0.06 0.50 0.66 0.71 

 
4.2b  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.13 1.00      
3 M3, 7, 18b 0.13 -0.23 1.00     
4 M42, 84b 0.27 0.66 0.05 1.00    
5 HOME18 0.14 0.19 -0.09 0.19 1.00   
6 HOME42, 84 0.05 0.49 -0.15 0.13 0.20 1.00  
7 Education 0.10 0.50 0.01 0.36 0.40 0.55 1.00 
8 Verbal IQ 0.14 0.42 0.05 0.37 0.41 0.23 0.49 

 
4.2c  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.48 1.00      
3 M3, 7, 18b 0.02 0.14 1.00     
4 M42, 84b 0.35 0.66 0.49 1.00    
5 HOME18 0.17 0.05 0.01 0.01 1.00   
6 HOME42, 84 0.28 0.43 -0.07 0.31 0.70 1.00  
7 Education 0.23 0.50 -0.06 0.24 0.03 0.30 1.00 
8 Verbal IQ 0.11 0.65 0.20 0.43 -0.13 0.30 0.59 

 
4.2d  

  1 2 3 4 5 6 7 
1 C3, 7, 18a 1.00       
2 C42, 84a 0.54 1.00      
3 M3, 7, 18b 0.52 0.41 1.00     
4 M42, 84b 0.62 0.66 0.55 1.00    
5 HOME18 0.36 0.38 0.26 0.25 1.00   
6 HOME42, 84 0.24 0.49 0.15 0.26 0.54 1.00  
7 Education 0.37 0.52 0.27 0.29 0.19 0.32 1.00 
8 Verbal IQ 0.25 0.59 0.14 0.11 0.37 0.53 0.54 

 a C = Mean cognitive scores at 3, 7, 18 months of age (C3,7,18) and at 42 and 84 months of age (C42,84); 
b M =Mean motor scores at 3, 7, 18 months 

of age (M3,7,18) and at 42 and 84 months of age (M42,84). HOME18 and HOME42,84: Home Observation for the Measurement of the Environment 
assessed at 18 months of age (HOME18) and the mean of the transformed scores (to HOME18 mean (SD)) on the HOME assessed at 42 and 84 
months of age; Education: parental education level, 0 = low = primary school, secondary school not finished, 1 = middle = secondary school 
finished, 2 = high = high school finished, professional and university training; Verbal IQ: parental verbal IQ, score on two subtests of the Wechsler 
Adult Intelligence Scale, Information and Vocabulary, assessed from one of the parents. 

The modeling in the total group is presented in Table 4.3. The model building procedure 

showed that Models 5 and 6 (Table 4.3) were most plausible. These models are essentially 

similar. For group comparison we decided to use Model 6 since this model includes paths 

between the variables parental education level and verbal IQ and both HOME variables, 

which is more consistent than permitting one of these relations to be free as in Model 5. 

The interrelationships of the variables in Model 6 (Table 4.3) are presented as standardized 

regression coefficients in a path diagram (Figure 4.1). All interrelations were significant, 

except for the relation between parental verbal IQ and C
3,7,18

, which was only indirectly 

related to C
3,7,18

, via HOME
18

.

Subsequently, Model 6 (Table 4.3) was applied when four groups were distinguished (i.e. 

PCB
low

/M
young

; PCB
low

/M
old

; PCB
high

/M
young

; PCB
high

/M
old

). In Table 4.4, the model performance 

is presented when no constraints of equality across the four groups were applied as well 

as when different combinations of constraints were applied on the three parameters (i.e. 

the mean level of outcome and determinants and relations between the determinants and 

the outcome variables). When constraints of equality across the groups were applied on 

all the parameters, the model did not fit at all (Table 4.4, Model 8). In contrast, the model 

without equality constraints fitted adequately (Table 4.4, Model 1). Moreover, Model 1 

appeared to have the best fit compared to the other models in which different combinations 

of constraints were applied (Table 4.4, Models 2 to 7). These findings suggested that there 

are discernable differences between the four groups in the mean levels of cognitive and/or 

motor development, and in the mean levels of parental education and/or parental verbal 

IQ, and/or HOME scores. Additionally, the relations between either parental education, 

and/or parental verbal IQ, and/or HOME and cognitive (and indirectly motor) development 

were significantly different for the four groups. 
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Table 4.3 Modeling in total group (n=203).

 

 

Table 4.3  

         Baseline model (B): 
C3,7,18⇒ C42,84 & M3,7,18  
C42,84 & M3,7,18⇒ M42,84 
HOME18⇒ C3,7,18 & HOME42,84  
HOME42,84 ⇒ C42,84 

VIQ ≈ Education χχχχ2 df p χχχχ2/df CFI TLI RMSEA SRMR 

1
  

(B) + 
VIQ & Education ⇒ HOME18&HOME42,84 

VIQ & Education /⇒ C3,7,18&C42,84 

56.87 16 <0.001 3.55 0.91 0.85 0.11 0.08 

2
  

(B) + 
VIQ & Education ⇒ HOME18&HOME42,84  

VIQ & Education ⇒ C3,7,18  
VIQ & Education /⇒ C42,84 

45.71 14 <0.001 3.27 0.93 0.87 0.11 0.05 

3
  

(B) + 
VIQ & Education ⇒ HOME18&HOME42,84 

VIQ & Education /⇒ C3,7,18  
VIQ & Education ⇒ C42,84 

29.19 14 0.01 2.09 0.97 0.94 0.07 0.06 

4
  

(B) + 
VIQ & Education ⇒ HOME18  
VIQ & Education /⇒ HOME42,84  

VIQ & Education ⇒ C3,7,18&C42,84 

65.50 14 <0.001 4.68 0.89 0.79 0.14 0.08 

5
  

(B) + 
VIQ & Education ≈ HOME18  
VIQ & Education ⇒ HOME42,84 

VIQ & Education ⇒ C3,7,18&C42,84 

18.03 12 0.11 1.50 0.99 0.97 0.05 0.04 

6
  

(B) + 
VIQ & Education ⇒ HOME18&HOME42,84 

VIQ & Education ⇒ C3,7,18&C42,84 

18.03 12 0.11 1.50 0.99 0.97 0.05 0.04 

7
  

(B) + 
Model 6 +  
HOME18⇒ M3,7,18  
HOME42,84⇒ M42,84 

15.53 10 0.11 1.55 0.99 0.97 0.05 0.03 

 /⇒: no path; ≈: free correlation. 
HOME18 and HOME42,84: Home Observation for the Measurement of the Environment assessed at 18 months of age (HOME18) and the mean of the 
transformed scores (to HOME18 mean (SD)) on the HOME assessed at 42 and 84 months of age; Education: parental education level; VIQ: parental 
verbal IQ; χ2, df, p: a nonsignificant value indicates that the model is not rejected; χ2 /df: a value ≤ 1.5 indicates a good fit; CFI: Comparative Fit 
Index (range 0-1), a value > 0.95 is indicative of a good fit; TLI: Tucker-Lewis Index, a value approximating 1 indicates a good model fit; RMSEA: 
root mean square error of approximation, a value of 0.05 indicates a close fit; SRMR: standardized root mean square residual, a value <0.05 
suggests adequate fit.

To explore whether group differences were more pronounced in relation to either 

maternal age or prenatal exposure level, changes in model fit were compared applying 

constraints of equality when two groups were distinguished (i.e. either dichotomized by 

maternal age or by prenatal PCB levels). The model fit decreased more when constraints of 



Prenatal exposure to PCBs and cognitive and motor development; a SEM study 81

equality were applied across groups that were different in prenatal PCB levels than across 

groups that were different in regard to maternal age (Table 4.5). This suggested that the 

differences between the two prenatal PCB exposure groups are larger than the differences 

between the two maternal age groups. 

Table 4.4 Model performance distinguished by prenatal PCB level and maternal age (PCBlow /Myoung; PCBlow/Mold; PCBhigh/Myoung; PCBlow /Mold). 

 

 

Table 4.4  

Across groups constraints  
+/- a 

 

Meansb Interceptc Regr. 
coef. 

χχχχ2 df p χχχχ2/df CFI TLI RMSEA SRMR 

1 - - - 59.88 48 0.12 1.25 0.98 0.95 0.07 0.06 
2 - - + 89.89 66 0.03 1.36 0.95 0.92 0.08 0.11 
3 - + - 83.15 60 0.03 1.39 0.95 0.91 0.09 0.10 
4 - + + 114.63 78 <0.01 1.47 0.92 0.90 0.10 0.06 
5 + - - 116.90 62 <0.01 1.89 0.89 0.80 0.13 0.14 
6 + - + 146.76 80 <0.01 1.83 0.86 0.81 0.13 0.16 
7 + + - 140.10 74 <0.01 1.89 0.86 0.80 0.13 0.16 
8 + + + 171.48 92 <0.01 1.86 0.84 0.81 0.13 0.19 

 
 
Table 4.5  

Group 
comparison 

Constraints 
+/-a 

χχχχ2 df p χχχχ2/df CFI TLI RMSEA SRMR 

1 Mat. Ageb - 32.77 24 0.11 1.37 0.98 0.96 0.06 0.04 

2 Mat. Ageb + 87.32 38 <0.01 2.30 0.89 0.84 0.11 0.14 

3 PCBc - 31.70 24 0.13 1.32 0.98 0.96 0.06 0.04 

4 PCBc + 115.22 38 <0.01 3.03 0.84 0.77 0.14 0.18 

a + = constrained to be equal across the four groups 
   - = not constrained to be equal across the four groups
b Applies to the variables parental education level, parental verbal IQ, and HOME18 and HOME42,84
c Applies to the variables C3,7,18, C42,84 and M3,7,18, M42,84; χ

2, df, p: a nonsignificant value indicates that the model is not rejected; χ2 /df: a value 
≤ 1.5 indicates a good fit; CFI: Comparative Fit Index (range 0-1), a value > 0.95 is indicative of a good fit; TLI: Tucker-Lewis Index, a value 
approximating 1 indicates a good model fit; RMSEA: root mean square error of approximation, a value of 0.05 indicates a close fit; SRMR: 
standardized root mean square residual, a value <0.05 suggests adequate fit.

Table 4.5 Constraints or no constraints of equality across maternal age groups and across PCB exposure groups.

 

 

Table 4.4  

Across groups constraints  
+/- a 

 

Meansb Interceptc Regr. 
coef. 

χχχχ2 df p χχχχ2/df CFI TLI RMSEA SRMR 

1 - - - 59.88 48 0.12 1.25 0.98 0.95 0.07 0.06 
2 - - + 89.89 66 0.03 1.36 0.95 0.92 0.08 0.11 
3 - + - 83.15 60 0.03 1.39 0.95 0.91 0.09 0.10 
4 - + + 114.63 78 <0.01 1.47 0.92 0.90 0.10 0.06 
5 + - - 116.90 62 <0.01 1.89 0.89 0.80 0.13 0.14 
6 + - + 146.76 80 <0.01 1.83 0.86 0.81 0.13 0.16 
7 + + - 140.10 74 <0.01 1.89 0.86 0.80 0.13 0.16 
8 + + + 171.48 92 <0.01 1.86 0.84 0.81 0.13 0.19 

 
 
Table 4.5  

Group 
comparison 

Constraints 
+/-a 

χχχχ2 df p χχχχ2/df CFI TLI RMSEA SRMR 

1 Mat. Ageb - 32.77 24 0.11 1.37 0.98 0.96 0.06 0.04 

2 Mat. Ageb + 87.32 38 <0.01 2.30 0.89 0.84 0.11 0.14 

3 PCBc - 31.70 24 0.13 1.32 0.98 0.96 0.06 0.04 

4 PCBc + 115.22 38 <0.01 3.03 0.84 0.77 0.14 0.18 
a + = constrained to be equal (means, intercepts, and regression coefficients) across the two groups 
   - = not constrained to be equal (means, intercepts, and regression coefficients) across the two groups
b comparison of the two maternal age groups, dichotomized at the total population median of maternal age (< 29 = Myoung and ≥ 29 years = 
Mold); 

ccomparison of the two prenatal PCB exposure groups, dichotomized at the total population median of ΣPCBmaternal (< 2.04μg/L= PCBlow 
and ≥ 2.04μg/L= PCBhigh); χ

2, df, p: a nonsignificant value indicates that the model is not rejected; χ2 /df: a value ≤ 1.5 indicates a good fit; CFI: 
Comparative Fit Index (range 0-1), a value > 0.95 is indicative of a good fit; TLI: Tucker-Lewis Index, a value approximating 1 indicates a good 
model fit; RMSEA: root mean square error of approximation, a value of 0.05 indicates a close fit; SRMR: standardized root mean square residual, a 
value <0.05 suggests adequate fit.
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Figure 4.1 Path diagram for total group, Model 6 (Table 4.3).
Estimates on the paths are standardized regression coefficients; * p<0.05.

In Figures 4.2a to d, estimated mean cognitive and motor scores of the four groups are 

presented based on Model 1 (Table 4.4). Since the influences of the determinants on the 

outcome variables were different for the four groups, mean cognitive and motor scores 

were estimated for two levels of parental education, parental verbal IQ and HOME scores: 

the 25% and 75% scores on these variables (parental education level: 1=low, 2=high; 

parental verbal IQ: 111=low, 135 =high; HOME
18

: 39.1=low, 42=high; HOME
42,84

: 39.0=low, 

42=high). Differences in estimated C
42,84

 and M
42,84

 scores were seen between children raised 

in low and high levels of parental and home environmental conditions, across the maternal 

age groups as well as across the exposure groups. Comparisons of differences in cognitive 

and motor outcome between low and high exposure within the parental and home 

environmental condition groups and maternal age groups showed the largest decrements in 

scores (C
3,7,18

, M
3,7,18

, C
42,84

, M
42,84

) in the children raised in lower levels of parental and home 

environmental conditions. For C
3,7,18

 and M
3,7,18

 the discrepancy was more pronounced in 

children born to older mothers whereas for C
42,84

 and M
42,84

 the discrepancy was more 

pronounced in children born to younger mothers. 
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Figure 4.2 Estimated mean cognitive and motor development for low and high PCB exposed children born to young and old mothers relative to 
parental education level (E) and verbal IQ (VIQ) and HOME score (H).

Discussion

Structural equation models were compared for different subgroups of the Rotterdam 

PCB/dioxin cohort. The advantage of group comparison by means of SEM over multiple 

regression modeling is that interrelationships of outcome variables and determinants can be 

more properly modeled. Group differences can be estimated in the levels of the variables 

in the model as well as in their interrelationships. In addition, SEM enables to analyze more 

than one outcome variable simultaneously.

The results of this study suggest that the four groups, distinguished by prenatal PCB 

exposure and maternal age, are significantly different not only in levels of cognitive 

and/or motor development and in the levels of parental education and/or parental verbal 

IQ, and/or HOME scores, but also in the relations between either of these determinants 

and cognitive (and indirectly motor) development. The differences in these aspects were 

larger when the total group was dichotomized according to prenatal PCB levels than when 

dichotomization by maternal age was done.

4.2a C3,7,18

4.2b C42,84 

4.2c M3,7,18 

4.2d M42,84
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Previously, we have reported that effects of prenatal exposure to PCBs on cognitive 

and motor abilities at school age were modified by maternal age, parental education level, 

parental verbal IQ and HOME score (9). Moreover, amongst the four candidate effect 

modifiers, maternal age was the most pronounced modifier of effects of prenatal exposure 

to PCBs on the level of cognitive development from 3 to 84 months of age (8). For motor 

development, effect modification by HOME scores was suggested (8). The presently used 

SEM method suggested that, apart from effect modification by maternal age, at least one of 

the other parental and home environmental predictors modified the prenatal PCB effect on 

cognitive (and indirectly motor) development. Consequently, we estimated the difference 

in cognitive and motor development between low and high exposed groups for children 

born to relatively young and old mothers, and raised in relatively low and high parental and 

home environmental conditions. Compared to the difference in scores between the low and 

high exposed children who were raised in relatively high parental and home environmental 

conditions, larger cognitive and motor decrements were seen in children who were raised 

in lower parental and home environmental conditions. For early cognitive and motor 

development this was more pronounced in children born to older mothers whereas for 

later development this effect was more pronounced in children born to younger mothers. 

In higher parental and home environmental conditions, no evidence of negative effects 

of PCB exposure on cognitive and motor development is seen. Figures 4.2a and b even 

suggest that in this group of children early and late cognitive scores, in respectively children 

born to older and younger mothers, were higher in high exposed children than in their 

low exposed counterparts. We explored whether these differences in cognitive outcome 

between low and high exposed children were significant. Applying equality constraints (on 

the level of cognitive outcome variables) across the low and high exposed children raised 

under these conditions did not decrease the model fit. Consequently, these additional 

tests gave no evidence that the cognitive scores were significantly different in high and 

low exposed children raised under high parental and home environmental conditions. In 

The Netherlands, as reflected in our cohort, relatively higher educated women generally 

give birth at older age to children, which is related to a higher PCB body burden due to 

the physical stability of PCBs and their accumulation in human tissues. Consequently, the 

group differences in mean levels of the parental and home environmental variables are 

largely related to maternal age. Moreover, some studies have reported positive effects of 

older maternal age on children’s cognitive abilities (see review (23)), even after adjustment 

for social and economic variables was done. It has been hypothesized that this positive 

effect of maternal age reflects age-related psychological and emotional attributes (23). 

Cognitive and motor abilities that were assessed at the different ages were divided for the 

modeling procedure in two cognitive and two motor variables, ‘early’ and ‘late’ cognitive 

and motor development. This was done to simplify modeling as well as because of the 

changing construct of cognitive and motor abilities that are assessed by the developmental 
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tests during development. Moreover, up until 18 months of age the same test was used 

to assess cognitive and motor development. In contrast to ‘later’ cognitive abilities, ‘early’ 

cognitive and motor abilities were more affected by prenatal PCB exposure in children 

born to older mothers and raised in less advantageous conditions compared to their 

counterparts who were born to younger mothers. One of the possible explanations for this 

potential difference in vulnerability to effects of prenatal exposure to PCBs between ‘early’ 

and ‘late’ development may be that compared to younger mothers, older mothers were less 

inclined to stimulate the early development of their child. Additionally, later development 

is influenced more strongly by genetic and socio-parental conditions, and potential positive 

effects, as well as counteracting effects, of maternal age on child development may 

therefore be more pronounced at more mature age.

Generally, these results may suggest that neurotoxic effects of prenatal exposure to PCBs 

can be compensated by favorable conditions for child development such as a high level of 

parental and home environmental conditions. Some epidemiological studies that addressed 

effects of prenatal exposure to lead and methyl-mercury on child development also 

reported modification of the effects of prenatal exposure to these neurotoxicants by socio-

environmental risk factors (24-27). Moreover, comparable effects have been reported in 

studies in low birth weight children where in children at high biological risk favorable early 

parental and home characteristics could compensate for or mask developmental delays 

(28-32). These findings may be in line with experiments showing significant differences in 

brain chemistry and anatomy, including increased cortical thickness, in animals raised in 

enriched environments (33, 34). Moreover, a positive impact of an enriched environment 

on the effects of brain lesions has been reported in animal studies (34-36). 

In the environment PCBs, their metabolites and related compounds, such as dioxins, 

are present as complex mixtures of various congeners that may vary in metabolism and 

toxicity. The sum of PCBs 118, 138, 153, and 180 consists of the four most abundant 

congeners, constituting 46% of the total PCBs (37). In our study, irrespective of the sum of 

four PCBs in maternal plasma during pregnancy, the sum of the four PCBs was measured 

in cord blood and breast milk and dioxins, dioxin-like PCBs, and additional nondioxin-like 

PCBs were assessed in breast milk. PCB levels in maternal and cord blood, and total TEQ 

(Toxic Equivalent) levels of dioxins and dioxin-like PCBs were highly interrelated (10). 

Therefore, effect of one of the exposure variables cannot exclude effects of exposure to 

other compounds. In this model, we included maternal levels of PCBs since they showed 

the strongest relation with cognitive and motor development at different time points. 

In this paper, we have not evaluated effects of postnatal exposure to PCBs and dioxins 

through lactation. Previous studies in the Rotterdam cohort, in line with most epidemiological 

PCB studies, hardly gave evidence of negative effects of postnatal exposure to PCBs and 

dioxins on general cognitive and motor abilities assessed at 3 to 84 months of age, and 

neither on their development (2-6, 8, 9). In the Dutch PCB/dioxin cohort, psychomotor 
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abilities measured at 7 months of age appeared to be lower in the highest postnatally 

exposed children (1). After that age, using multiple regression analysis, no negative effects 

of lactational exposure to PCBs and dioxins on general cognitive or motor abilities were 

detected. However, recently, negative effects of lactational exposure to PCBs on general 

cognitive abilities at 42 months of age have been described in a German cohort of children 

exposed to environmental levels of PCBs (7). Behavioral animal studies also give evidence 

of profound effects of lactational exposure to low levels of PCBs (38, 39). Exploration of 

effects of lactational exposure to PCBs on child development from 3 to 84 months of age 

will therefore be subject to further detailed study. 

In conclusion, SEM is a promising technique for epidemiological neurodevelopmental 

PCB studies since it enables more proper modeling of relevant variables. This empirical 

study provides evidence of complex effects of maternal age and other parental and home 

environmental conditions on the neurotoxic mechanism of PCBs and related neurotoxic 

compounds and serves as an initial effort to disentangle these mechanisms to increase the 

knowledge in risk assessment of prenatal exposure to PCBs.
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Neurotoxic mechanisms of effects;

effects of perinatal exposure to PCBs and dioxins on play behavior,
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Abstract 

Polychlorinated biphenyls (PCBs) and dioxins are known as neurotoxic compounds that 

may modulate sex steroid hormones. Steroid hormones play a mediating role in brain 

development and may influence behaviors that show sex differences, such as childhood 

play behavior. In this study, we evaluated the effects of perinatal exposure to environmental 

levels of PCBs and dioxins on childhood play behavior and whether the effects showed sex 

differences. As part of the follow-up to the Dutch PCB/dioxin study at school age we used 

the Pre-School Activity Inventory (PSAI) to assess play behavior in the Rotterdam cohort 

(n=207). The PSAI assesses masculine or feminine play behavior scored on three subscales: 

Masculine, Feminine, and Composite. Prenatal exposure to PCBs was defined as the sum of 

PCB118, 138, 153, 180 in maternal and cord plasma, and in breast milk. For breast milk we 

measured additional PCBs as well as 17 dioxins. Respondents returned 160 questionnaires 

(age 7.5 years (± 0.4)). Effects of prenatal exposure to PCBs, measured in maternal and cord 

plasma, on scores on the Masculine and Composite scales were different for boys and girls. 

In boys, higher prenatal PCBs levels were related with less masculinized play, whereas 

in girls higher PCB levels were associated with more masculinized play. Higher prenatal 

dioxin levels were associated with more feminized play in boys as well as girls, assessed 

by the Feminine scale. 

Conclusion: These effects suggest prenatal steroid hormone imbalances caused by prenatal 

exposure to environmental levels of PCBs, dioxins and other related organochlorine 

compounds.
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Introduction

Polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and 

polychlorinated dibenzofurans (PCDFs) (the latter two termed dioxins) are lipophilic and 

bioaccumulating environmental pollutants that are known for their neurotoxic effects in 

animals and humans. These fat-soluble toxicants are present in human beings and cross the 

placenta during pregnancy, thereby exposing children during the rapid development of the 

central nervous system (CNS). In the last two decades, several prospective epidemiologic 

studies in industrialized countries have shown subtle effects of exposure to background 

levels of PCBs and dioxins on health, growth and development in children (1, 2). Many 

systems of the developing CNS may be affected by the neurotoxic effects of prenatal 

exposure to PCBs and dioxins (2). One property of PCBs and dioxins is the modulation of 

the endocrine system, including sex steroid hormones such as estrogens and androgens 

(3, 4). Steroid hormones play an important mediating role in the development of the 

CNS and influence not only reproductive but also nonreproductive behaviors that show 

sex differences (5, 6). In evaluation of steroid hormone disrupting effects of PCBs and 

dioxins, effects on sexual dimorphic neurobehavior may therefore be important endpoints. 

Moreover, prenatal sex differences in sex steroid hormone metabolism could cause sex 

differences in endocrine-disrupting effects of PCBs and dioxins. 

Sex-specific effects of perinatal PCB and dioxin exposure have been reported in animal 

studies on sexual dimorphic neurobehaviors such as sweet preference (7, 8), and spatial 

learning (9, 10). In humans, sex-specific neurobehavioral effects of prenatal exposure to 

PCBs and dioxins have been described only for the Yu-Cheng accident (11). In this cohort 

of children born to mothers who were accidentally exposed to high levels of PCBs and 

PCDFs in rice oil, cognitive abilities, as assessed by a test that measured predominantly 

spatial cognitive abilities, were more affected by prenatal exposure to PCBs/PCDFs in boys 

than in girls. 

In animal studies, nonreproductive behaviors that were altered by gonadal steroids 

include spatial and visual discrimination learning (12, 13), open field exploration (14), and 

rough and tumble play (15). Especially behaviors that show sex differences were altered 

by gonadal steroids, whereas no such effect has been reported on behaviors that do not 

show sex differences. In humans, childhood play behavior shows marked sexual dimorphic 

differences and gives the clearest evidence for prenatal hormonal influence on human 

behavioral development (16). 

In The Netherlands, a cohort of children born healthy has been prospectively followed 

from birth to school age to address neurotoxic effects of perinatal exposure to PCBs and 

dioxins. In this cohort, prenatal PCB exposure was related to lower psychomotor scores 

at 3 months of age (17) and lower cognitive abilities at 42 months (18). At school age, 

negative effects of prenatal PCB exposure on cognitive and motor development were seen 
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in children with relatively low parental and home characteristics, whereas in children raised 

in relatively more favorable environments these subtle effects of prenatal PCB exposure 

were not detectable (19). 

As part of the follow-up assessment at school age, we measured gender-role play in the 

Rotterdam cohort, half of the Dutch PCB and dioxin population. Our aim in this study was 

to evaluate effects of perinatal exposure to PCBs and dioxins on play behavior and whether 

these effects show sex differences.

Method

Subjects and study design

The study population consisted of 207 healthy Caucasian mother-infant pairs who were 

recruited from June 1990 to February 1992 in the area of Rotterdam, in The Netherlands. 

The study design and recruitment process, chemical analysis and PCB and dioxin 

concentrations have been described in detail elsewhere (20). Pregnancy and delivery were 

uncomplicated. Only first- or second-born children, born healthy at term, were included. 

Half of the group of children was breast-fed (BF) (n=105) for at least six weeks, the others 

were formula-fed (FF) (n=102) during infancy. All FF infants received formula from a single 

batch (Almiron M2, Nutricia NV, Zoetermeer, The Netherlands) from birth until 7 months of 

age. In this formula, PCBs and dioxins were not detectable. The medical ethics committee 

of the University Hospital Rotterdam/ Sophia Children’s Hospital approved the study design 

and the parents gave informed consent. 

Assessment of exposure variables

Plasma samples were collected from the mothers during the last month of pregnancy and 

cord plasma samples were collected directly after birth. These samples were analyzed for 

four PCB congeners, International Union for Pure and Applied Chemistry (IUPAC) numbers 

118, 138, 153 and 180. Two weeks after delivery a 24-hour representative breast milk 

sample was collected from the mothers who were breast-feeding their children. Breast 

milk samples were analyzed for 17 dioxins (PCDDs and PCDFs), 6 dioxin-like PCBs (3 

planar PCBs and 3 mono-ortho PCBs), and 20 nondioxin-like PCBs. Toxic potency of the 

mixture of dioxins and dioxin-like PCBs was expressed by using the toxic equivalent (TEQ) 

approach (21). 

We estimated prenatal exposure to PCBs in the total study population by using the sum 

of the four PCB congeners in maternal (ΣPCB
maternal

) and in cord plasma (ΣPCB
cord

). In the 

BF group additional prenatal exposure measurements were used: the ΣPCB
milk 

(the sum of 

PCB 118, 138, 153, and 180), the dioxin, planar, mono-ortho and total TEQ value (the sum 
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of the TEQ values of the 17 dioxins and the 6 dioxin-like PCBs) and the ΣPCB
20 nondioxin-like

 

(the sum of 20 nondioxin-like PCBs). 

Postnatal exposure to PCBs and dioxins through lactation was estimated by multiplying 

the number of weeks of breast-feeding with respectively ΣPCB
milk

, the dioxin, planar, mono-

ortho and total TEQ, and ΣPCB
20 nondioxin-like

 concentrations in breast milk.

Assessment of play behavior 

Parents were asked to complete the Dutch version of the Pre-School Activities Inventory 

(PSAI) (22) (Appendix) when the children reached school age. This questionnaire, along 

with a questionnaire on problem behavior and a health questionnaire, was sent to the 

parents in two mailings, depending on the age of the child (in 1998 and 1999), near the 

end of a school year. 

The PSAI is designed to discriminate play behavior both within and between the sexes. 

It consists of 24 questions addressing three aspects of play behavior: type of toys, activities, 

and child characteristics. Answers are given on a 5-point scale ranging from never to 

very often. The questions assess either feminine or masculine play behavior from which 

three scales are derived: a Composite scale, integrating both masculine and feminine play 

behavior, and a Masculine and Feminine scale. The Composite scale is essentially defined 

as the difference: Feminine scale minus Masculine scale. A negative score on the Composite 

scale implies masculine play behavior and a positive score feminine play behavior. A higher 

score on the Feminine scale indicates more feminine play behavior whereas a higher score 

on the Masculine scale indicates more masculine play behavior. 

The questionnaire has been validated in a group of preschool English children (n= 102), 

additionally, a test-retest reliability for the scores on the PSAI of .62 for boys, and .66 for girls 

has been found (22). The PSAI has been assessed in various cohorts for standardization and 

norming purposes. These cohorts include normal preschool children across several samples 

in the UK (Pilot study (n=75); Validation study (n=102); and a cohort obtained through 

the magazine Practical Parenting (n=1643)), in the United States (n=203), and also in the 

Netherlands, using a Dutch translation of the questionnaire (n=341) (23). 

Assessment of other variables

Variables that may influence child neurodevelopment have been assessed and included 

birth weight, duration of gestation, fetal exposure to alcohol and cigarette smoking, 

maternal age at birth of the child, parity, type of feeding during infancy, duration of breast-

feeding, sex, and parental education level. The verbal IQ of the parent who spends the 

most time with the child (usually the mother) was assessed, during the follow-up session 

at 42 months by two subtests, Information and Vocabulary from the Dutch version of the 
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Wechsler Adult Intelligence Scale (WAIS) (24). At 7 years of age, follow-up assessment in 

this cohort was done at home by a psychologist (HV). During this visit, the child’s home 

environment was assessed by the Home Observation for Measurement of the Environment 

(HOME) (25). 

Data analysis

To compare groups for a single variable we used either the Student’s t-test (for continuous 

variables), the chi-square test (for categorical variables), or the Mann-Whitney U test. Plasma 

and milk PCB and dioxin values were positively skewed and were therefore normalized 

by natural logarithmic transformation. We studied the effects of PCB and dioxin exposure 

on the scores for the play behavior scales using multiple linear regression analyses 

(SPSS, version 9). Variables that were likely to affect play behavior were included in the 

regression model as a fixed set of variables. These variables were: sex (0/1 = boy/girl), 

highest education level of either parent (0/1/2 = low (primary school, secondary school 

not finished)/middle (secondary school finished)/ high (high school finished, professional 

and university training)), parental verbal IQ, type of feeding during infancy (0/1 = BF/

FF), duration of breast-feeding (0 for FF children), HOME score, and assessment age. 

Additionally, confounding variables, i.e. variables that correlated (p<0.2), adjusted for the 

fixed set of variables, with one of the exposure variables and with scores on one of the three 

play behavior scales were included in the final regression model. Candidate confounders 

were alcohol use (0/1 = no/yes) and smoking (0/1 = no/yes) during pregnancy, duration of 

gestation, birth weight, maternal age at birth, and parity (0/1 = 1st/2nd born). This procedure 

resulted in the following regression model: sex, parental education level, parental verbal 

IQ, feeding type, duration of breast-feeding, HOME score, age at assessment, and parity. 

We studied sex differences in the effects of exposure to PCBs and dioxins by including 

an interaction term, the product of sex and exposure (‘sex*exposure’), in the regression 

model. The effect of exposure on the outcome variables in boys and in girls, and the 

difference between these effects (girls minus boys) are estimated through the interaction 

term sex*exposure in essentially the same regression model by reparameterizing the sex 

effect. Results were considered significant if p≤0.05.

Results

In the follow-up assessment at school age, 189 of the 207 children in the original cohort 

were re-examined and 160 of these parents returned the PSAI questionnaire (84 % were 

filled out by mothers, 6 % by fathers, and 10 % by both parents). Two children were 

excluded from data analyses due to circumstances other than PCB and dioxin exposure 
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that are likely to influence play behavior: a girl with Turner syndrome and a boy with a 

pervasive developmental disorder. Four questionnaires had missing data and were therefore 

excluded from data analyses.

Table 5.1   Characteristics of the total study population and BF and FF boys and girls separately.

 

 

 

 
Table 5.1    
Characteristics Total Breast-fed Formula-fed 
  

(n=158) 
Boys  

(n=53) 
Girls  

(n=32) 
Boys  

(n=35) 
Girls  

(n=38) 
Duration of  
breast-feeding (wk) 

17 (6-72) 16 (6-72) 19 (6-54)   

Number of 1st born 80 (51 %) 28 (53 %) 17 (53 %) 15 (43 %) 20 (53 %) 
Parental education      
   Low 15 (10 %) 2 (4 %) 4 (13 %) 6 (17 %) 3 (8 %) 
   Medium 52 (33 %) 17 (32 %) 6 (19 %) 12 (34 %) 17 (45 %) 
   High 91 (58 %) 34 (64 %) 22 (69 %) 17 (49 %) 18 (47 %) 
Parental verbal IQ 123.6 

(+ 14.9) 
125.6 

(+ 13.2) 
129.1 

(+ 11.2)# 
122.4 

(+ 14.5) 
117.2  

(+ 18.1)# 
HOME 48.3  

(+ 3.0) 
48.1  

(+ 3.1)* 
49.6  

(+ 2.7)*# 
47.8  

(+ 2.8) 
48.1  

(+ 3.1)# 
Age at assessment 7.5 (+ 0.4) 7.6 (+ 0.4) 7.5 (+ 0.3) 7.5 (+ 0.4) 7.5 (+ 0.4) 
Exposure variables      
ΣPCBmaternal   

(µg/L) 
2.06 

(0.73-5.08) 
2 .16 

(0.73-4.21) 
2.09 

(0.87-4.87) 
2.04 

(0.88-5.08) 
1.86 

(0.80-4.71) 
ΣPCBcord   

(µg/L) 
0.42 

(0.08-1.99) 
0.44 

(0.11-1.72) 
0.40 

(0.08-1.99) 
0.38 

(0.09-1.21) 
0.40 

(0.08-1.98) 
ΣPCBmilk   

(µg/kg fat) 
390 

(174-805) 
422 

(200-805) 
350 

(174-796) 
  

TEQdioxin  

(ng/kg fat) 
36.3 

(10.2-66.6) 
36.6 

(16.6-66.6) 
36.0 

(10.2-58.8) 
  

TEQplanarPCB  

(ng/kg fat) 
15.3 

(4.4-45.7) 
14.4 

(4.4-45.7) 
16.4 

(5.3-30.0) 
  

TEQmonoPCB  

(ng/kg fat) 
13.9 

(3.2-25.8) 
14.4 

(6.4-25.8) 
12.4 

(3.2-24.8) 
  

Total TEQPCB+dioxin  

(ng/kg fat) 
68.1 

(27.7-135.2) 
68.1 

(27.7-135.2) 
67.1 

(28.1-108.9) 
  

ΣPCB20 nondioxin-like  

(µg/kg fat) 
438 

(203-890) 
456 

(203-890) 
370 

(206-846) 
  

 Values are numbers (percentages), means (± standard deviations) or medians (range).
Parental education: low = primary school, secondary school not finished, middle = secondary school finished, high = high school finished, 
professional and university training; Parental verbal IQ: score on two subtests of the Wechsler Adult Intelligence Scale, Information and 
Vocabulary, assessed from one of the parents; HOME: Home Observation for the Measurement of the Environment at school age; 
ΣPCBmaternal, cord, milk: sum of PCB congeners IUPAC nos. 118, 138, 153, 180 in respectively maternal plasma, cord plasma, breast milk; TEQ: toxic 
equivalents according to the 1997 WHO TEF values for mono-ortho PCBs: UIPAC nos. 105, 118, 156, planar PCBs: IUPAC nos. 77, 126, 169, and 17 
dioxins (PCDDs and PCDFs); ΣPCB20 nondioxin-like: sum of 20 nondioxin-like PCBs in breast milk. 
* = P<0.05 comparing sexes within feeding groups. # = p< 0.05 comparing feeding groups within sexes.
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Compared to the nonparticipating children (including both children who did not 

participate in the follow-up at school-age and children whose questionnaires were not 

returned), prenatal PCB and dioxin exposure levels were comparable with the levels in 

children whose parents returned the questionnaire. Moreover, the distribution of children 

over the feeding groups in the participating group was not statistically different from that 

of the nonparticipating group (n
BF

=20; n
FF

=22). In regard to the other variables used in the 

regression model, these groups were also generally comparable except for the parental 

education levels (p=0.011), parental verbal IQs (p=0.009), and HOME scores (p=0.021), 

which were higher in the participating group.

Table 5.2a   Results of multiple regression analyses in the total population. Effects of prenatal exposure to PCBs on scores on the PSAI scales: the 
Composite, Masculine, and Feminine scale.

 

 

Table 5.2a    
 Sex*Exposurea Boysb Girlsc 
 Regr.  
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Feminine  -1.15 3.18 0.720 4.00 2.42 0.103 2.86 2.22 0.203 3.38 1.67 0.048 

Table 5.2b   Results of multiple regression analyses in the BF group. Effects of prenatal exposure to PCBs and dioxins on scores on the PSAI 
scales: the Composite, Masculine, and Feminine scale.
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Adjusted for: duration of breast-feeding, parity, parental education level, parental verbal IQ, HOME score, age at examination and in total subgroup (Table 
5.2a) also for type of feeding. The effect of exposure on the PSAI scores in boys and in girls, and the difference between these effects (girls minus boys) are 
estimated through the interaction term ‘sex*exposure’ in essentially the same regression model by reparameterizing the sex effect. 
a Regression coefficient, standard error, and p-value of the interaction variable ‘sex*Exposure’ (lnΣPCBmaternal or lnΣPCBcord or lnΣPCBmilk or LnDioxinTEQ) on 
the outcome variable when in the regression model boy is coded 0, and girl=1; p<0.05 indicates a significantly different effect of prenatal exposure on 
PSAI scores between boys and girls. b,c Regression coefficient of exposure, standard error, and p-value, on PSAI scores in boys and girls, respectively. 
d Regression coefficient of exposure, standard error, and p-value, on PSAI scores in the total BF group not including the ‘sex*exposure’ interaction term in 
the regression model. 
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The mean age of the children at assessment was 7.5 (± 0.4) years old. The descriptives for 

the total study group, and for BF and FF boys and girls separately, are presented in Table 

5.1. The characteristics of all boys and girls were not significantly different. Comparing 

characteristics of boys and girls within feeding groups, the HOME score was significantly 

higher in BF girls than in BF boys. The HOME score and the parental education level were 

significantly higher in BF girls than in FF girls.

Figure 5.1   Relation in boys (A) and in girls (B) between scores on the Masculine scale and levels of LnΣPCBcord, adjusted for confounding 
variables; partial regression plot.

Boys and girls scored significantly different on the three PSAI scales (Mean (SD) 

Composite scale: boys -14.6 (5.8), girls 14.0 (5.3); Masculine scale: boys 24.2 (5.3), girls 

12.6 (4.5); Feminine scale: boys 9.6 (3.3), girls 26.4 (6.2); all p-values < 0.001).

Table 5.2a presents effects of PCBs and dioxins on the PSAI scales for boys and girls 

including the sex difference in effect, adjusted for all other variables. Effects of prenatal 

exposure to PCBs on the scores on the Composite scale and Masculine scale were 

significantly different for boys and girls. In boys, higher prenatal PCB exposure was related 

with higher scores on the Composite scale and lower scores on the Masculine scale, both 

indicating less masculine play behavior. In girls, effects of prenatal PCB exposure moved 

in opposite directions on the Composite and Masculine scales; however, relations were 

not significant. We saw no sex-specific effects of prenatal PCB exposure on scores on the 

Feminine scale. As an example of the relation between prenatal PCB exposure and play 

behavior in both sexes, adjusted for confounding variables, the relation between lnΣPCB
cord

 

and scores on the Masculine scale are visualized in a partial regression plot (Figure 5.1). 

In the BF group (see Table 5.2b), effects of ΣPCB
milk

 on the scores on the Composite 

scale were also significantly different for boys and girls (p=0.020). In girls, higher exposure 

to these compounds was related to lower scores (p=0.028), indicating more masculine 

play behavior, whereas in boys the relation was in the opposite direction, although 
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not significant (p=0.369). We saw no sex-specific effects of ΣPCB
milk

 on scores on the 

Masculine and Feminine scale. Effects of prenatal exposure to dioxins, planar and mono-

ortho TEQs, total TEQ, and the sum of the 20 nondioxin-like PCBs on play behavior were 

not significantly different for boys and girls. Prenatal dioxin TEQ levels were significantly 

related with higher scores on the Feminine scale in the total group of boys and girls 

(p=0.048), indicating more feminized play behavior in both sexes.

Postnatal exposure, through lactation, to ΣPCB
milk

, dioxin, planar and mono-ortho TEQs, 

total TEQ, and ΣPCB
20 nondioxin-like

 was not related to play behavior in the total BF group nor 

in boys and girls separately. 

Discussion

In this study we described sex-specific effects of prenatal exposure to PCBs on play 

behavior in healthy Dutch children at school age. Higher prenatal exposure to PCBs was 

associated with less masculinized play behavior in boys and with more masculinized play 

behavior in girls. Effects of prenatal exposure to dioxins were seen on feminine play 

behavior. In boys as well as in girls, higher prenatal dioxin levels were associated with 

more feminized play behavior. Childhood play behavior shows marked sex differences 

and is likely to be influenced by the prenatal steroid hormone environment. We therefore 

suggest that these results may indicate behavioral effects of steroid hormone imbalances 

early in development related to prenatal exposure to PCBs and dioxins, their metabolites 

and/or related compounds. 

In the Yu Cheng cohort, researchers observed sex-specific effects of prenatal exposure to 

high levels of PCBs and PCDFs on the scores on the Raven’s Colored Progressive Matrices 

(CPM) and Standardized Progressive Matrices (SPM) (11). These tests are considered to 

be tests for general cognitive development that appeal more on spatial rather than verbal 

capabilities. Spatial abilities form another domain of nonreproductive sex-specific behaviors 

that provide evidence for prenatal steroid hormone involvement. In the Yu Cheng cohort, 

prenatally exposed boys were affected in their scores on the CPM and SPM tests, whereas 

in exposed girls no effect was seen. Because boys typically develop better spatial abilities 

than girls (26, 27), these results were interpreted as demasculinizing or feminizing effects 

caused by disturbances in steroid hormones by prenatal exposure to PCBs/PCDFs (11). 

On the basis of results of play behavior studies in several groups of children that were 

prenatally exposed to abnormal levels of endogenous or exogenous steroid hormones, 

it has been hypothesized that there is evidence for prenatal androgen influences on 

sexual differentiation of childhood play (16). Masculinized or defeminized childhood play 

behavior was reported in genetic females who were exposed to elevated androgens (28, 

29), whereas demasculinized or feminized play behavior was associated with prenatal 
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exposure to progestrogenic compounds that are assumed to interfere with androgen action 

in genetic females and, more subtly, in genetic males (30). 

In adults prenatally exposed to diethylstilbestrol (DES), a group that might be seen as a 

model group in studying potential estrogenic effects of prenatal PCB and dioxin exposure, 

childhood play behavior has been studied retrospectively. Males prenatally exposed to 

DES recalled slightly more masculinized play behavior than nonexposed controls, assessed 

by an interview covering childhood play behavior (31). In DES females no difference in 

childhood play, retrospectively assessed by questionnaires filled out by the DES subjects 

and their mothers, has been reported (32, 33). The effects of prenatal exposure to PCBs 

and dioxins on childhood play behavior we reported in this study are opposite of the 

results of these DES studies. This difference in effect can be related to the retrospective 

nature of these DES studies, and to differences in timing and duration of exposure to these 

chemicals in these groups. Moreover, differences in behavioral effects can be related to the 

level of exposure, which is likely to be higher in DES-exposed children. Many studies have 

reported that effects of exposure to hormones and hormone-mimicking chemicals show 

nonmonotonic dose-response curves, such as U-shaped or inverted U-shaped (34-38). 

The current knowledge on the mechanisms of action of PCBs and dioxins and 

metabolites, such as hydroxylated PCBs, on prenatal steroid hormone metabolism is 

still limited. Complex interactions with various steroid hormone systems are suggested, 

including estrogen and androgen hormone systems (3). These systems can be affected 

on various levels and estrogenic (39, 40), anti-estrogenic (8, 41-43), and anti-androgen (7) 

effects have been described in in vivo and in vitro studies, possibly depending on congener 

type or metabolites. In this study we lack information on prenatal steroid hormone levels 

and although play behavior studies suggest that childhood play behavior is mediated 

predominantly by prenatal androgen action, our data are insufficient to exclude multiple 

endocrine effects to be involved in the mechanism of action of prenatal exposure to PCBs 

and dioxins. 

In the environment, PCBs and dioxins are present as complex mixtures of various 

congeners that may vary in metabolism, toxicity, and endocrine-disrupting properties. In 

this study we measured PCBs 118, 138, 153, and 180 in maternal and cord plasma samples. 

The sum of these four most abundant congeners constitutes 46% of the total PCBs (44). In 

the BF group various PCB and dioxin congeners were measured in breast milk. Prenatal 

levels of ΣPCB
milk

 were associated with masculine play behavior, similar to what was seen 

using maternal and cord ΣPCB levels as prenatal exposure levels. Dioxin exposure was 

related with more feminine play behavior. Nondioxin-like PCB levels and dioxin-like PCB 

and total TEQ levels were not significantly associated with play behavior. Whether these 

results reflect effects that are specific to PCB or dioxin congeners or the limited power of 

analyses in this subgroup of BF children cannot be concluded from these results. Moreover, 
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total TEQ levels, the sum of the nondioxin-like PCBs, and the four PCBs in breast milk and 

maternal and cord plasma correlated highly with each other (20). 

Play behavior in our study was not associated with postnatal exposure to PCBs and 

dioxins through breast-feeding. We therefore suggest that childhood play behavior is 

sensitive to endocrine-disrupting behavioral effects of exposure to PCBs and dioxins early 

in development, as is supported in females with congenital adrenal hyperplasia (29) and by 

studies in other mammalians (45, 46). 

In conclusion, this is the first behavioral study in humans to show effects of prenatal 

exposure to environmental levels of PCBs and dioxins on behavior that shows marked 

sex differences. Moreover, sex-specific effects of background prenatal exposure to PCBs 

have not been previously reported in human PCB studies. The results of this exploratory 

study give evidence for steroid hormone involvement in the neurotoxic mechanism of 

action of prenatal exposure to environmental levels of PCBs, dioxins and other related 

organochlorine compounds. Evaluation of the relation between prenatal steroid hormone 

status and PCB and dioxin exposure is needed to further confirm these findings; in addition, 

follow-up of this cohort will be necessary to assess potential implications of these results 

on later development. 
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Appendix 

Pre-School Activity Inventory 

© Susan Golombok and John Rust (22)

Name: Age: Sex: M/F (delete as appropriate)

Instructions

This inventory is about everyday activities of preschool children. It is in three sections: 

toy preferences, activities, and characteristics. Each question asks how frequently the child 

plays with particular toys, engages in particular activities or shows particular characteristics. 

There are five possible answers: (N) Never, (HE) Hardly ever, (S) Sometimes, (O) Often, or 

(VO) Very Often. Answer each question by circling the response which best describes the 

child, e.g. N HE S O VO 

Please answer all of the questions. If you are unsure about which response best describes 

the child for any of the questions then please answer according to the response which 

seems most appropriate. 

PART 1: TOYS: Please answer the questions according to how often the child played with the following toys during 
the past months.

1. Guns (or used objects as guns) N HE S O VO

2. Jewelry N HE S O VO

3. Tool set N HE S O VO

4. Dolls, doll’s clothes or doll’s carriages N HE S O VO

5. Trains, cars or airplanes N HE S O VO

6. Swords (or used objects as swords) N HE S O VO

7. Tea set N HE S O VO

PART 2: ACTIVITIES: Please answer these questions according to how often the child engaged in the following 
activities during the past month.

1. Playing house (e.g. cleaning, cooking) N HE S O VO

2. Playing with girls N HE S O VO

3. Pretending to be a female character (e.g. princess) N HE S O VO

4. Playing at having a male occupation (e.g. soldier) N HE S O VO

5. Fighting N HE S O VO

6. Pretending to be a family character N HE S O VO

7. Sports and ball games N HE S O VO
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8. Climbing (e.g. fences, trees, gym equipment) N HE S O VO

9. Playing at taking care of babies N HE S O VO

10. Showing all interest in real cars, trains and equipment N HE S O VO

11. Dressing up in girlish clothes N HE S O VO

PART 3: CHARACTERISTICS: Please answer questions according to how often the child shows the following 
characteristics.

1. Likes to explore new surroundings N HE S O VO

2. Enjoys rough and tumble play N HE S O VO

3. Shows interest in snakes, spiders or insects N HE S O VO

4. Avoids getting dirty N HE S O VO

5. Likes pretty things N HE S O VO

6. Avoids taking risks N HE S O VO

NOW PLEASE CHECK THAT YOU HAVE ANSWERED ALL THE QUESTIONS
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Abstract

In this study, the effects of perinatal exposure to environmental levels of PCBs and dioxins 

on different neuropsychological functions were studied. The 26 lowest and 26 highest 

prenatally PCB exposed children in the breast-fed (BF) and the formula-fed (FF) group 

(n=104) of the Rotterdam PCB/dioxin cohort, were invited at 9 years of age to participate 

in a neuropsychological assessment. The assessment included the Rey Complex Figure, 

Auditory-Verbal Learning Test, Simple Reaction Time Task, Tower of London (TOL). Higher 

prenatal PCB levels were associated with longer reaction times (RT), more variation in RTs, 

and lower TOL scores. A longer breast-feeding duration was associated with lower TOL 

scores and with better spatial organizational strategy skills. 

Conclusion: These results are suggestive of multi-focal neurotoxic effects of prenatal 

exposure to PCBs. The evaluation of effects of breast-feeding is complex since it contains 

contaminants and brain stimulating substances. In the suggested effects of lactational 

exposure to PCBs on the TOL scores, processes related to the prefrontal cortex may be 

involved in the neurotoxic mechanism. A complex task as the TOL may also serve as 

a sensitive outcome to assess neurodevelopmental risks of early exposure to PCBs and 

related compounds.
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Introduction

In the past decades, evidence for neurotoxic effects of perinatal exposure to environmental 

levels of PCBs and dioxins in humans has accumulated. Effects of predominantly prenatal 

exposure to environmental levels of PCBs on neurodevelopmental outcome have been 

described in healthy infants (1-9) as well as delayed effects have been described on general 

cognitive development in older children (10-13). 

Functional behavioral tests in perinatally PCB exposed monkeys have shown spatial 

learning delays (21-24) and deficits on discrimination reversal tasks (22, 23, 25, 26). Because 

of the resemblance of these PCB induced behavioral deficits and deficits in monkeys with 

lesions in the dorsolateral area of the prefrontal cortex, it has been suggested that perinatal 

exposure to PCBs may alter performance on tasks that require normal functioning of the 

dorsolateral area of the prefrontal cortex, or of one of the input or output pathways. 

Moreover, these behavioral deficits have been suggested to involve chemical alterations of 

the dopamine input to the dorsolateral prefrontal cortex (27). 

In epidemiological studies, specific neuropsychological functions have been marginally 

addressed in the evaluation of neurotoxic effects of perinatal exposure to environmental 

levels of PCBs. From the functional domains that were studied, reaction time and attention 

(10, 28, 29), memory (30), and verbal comprehension (10, 11) were related to prenatal 

exposure to environmental levels of PCBs. In the Yu-Cheng cohort, spatial reasoning 

skills were lower in boys exposed to high levels of PCBs and PCDFs, due to accidental 

contamination of rice oil with these compounds, compared to control children (31). 

In The Netherlands, effects of perinatal exposure to PCBs and dioxins were prospectively 

examined in a cohort of healthy born children from birth to school age. Since one of the 

aims of this study was to evaluate the merits of breast-feeding considering the relatively 

high lactational exposure to PCBs and dioxins, half of the group was breast-fed and the 

other half formula-fed during infancy. At 9 years of age, half of the Rotterdam population 

(the lowest and highest exposed quartiles per feeding group) was invited to participate in 

a neuropsychological assessment. Functions that were addressed were spatial perceptional 

organization, processing speed and sustained attention, memory functions, and executive 

functions, selected based on behavioral deficits described in animal and human PCB 

studies. The aim of this study was to gain more insight in neurotoxic effects of perinatal 

exposure to PCBs and dioxins by exploring effects of perinatal exposure to PCBs on these 

neuropsychological functions. 
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Methods

Subjects and study design

The original study population consisted of 207 healthy Caucasian mother-infant pairs 

who were recruited from June 1990 to February 1992 in the area of Rotterdam, a highly 

industrialized and densely populated area in The Netherlands. The study design and 

recruitment process, chemical analysis and PCBs and dioxin concentrations have been 

described in detail elsewhere (32). Pregnancy and delivery were uncomplicated. Only 

first or second, at term, born healthy children were included. One hundred and five 

children were breast-fed (BF) for at least six weeks and 102 children were formula-fed 

(FF) during infancy. All FF infants received formula from a single batch (Almiron M2, 

Nutricia NV, Zoetermeer, The Netherlands) from birth until 7 months of age. In this 

formula, concentrations of PCBs and dioxins were not detectable. During the last months of 

pregnancy, plasma samples were collected from the mothers. These samples were analyzed 

for four PCB congeners (International Union for Pure and Applied Chemistry (IUPAC) 

numbers 118, 138, 153 and 180). Prenatal exposure to PCBs was defined as the sum of 

these PCB congeners in maternal plasma samples.

At 9 years of age, we invited the 26 lowest and 26 highest prenatally exposed children 

from the BF group as well as from the FF group of children to participate in a follow-up 

assessment in the Sophia Children’s Hospital in Rotterdam. Children were not eligible for 

selection when they had not participated in the follow-up at 42 or 84 months of age or 

when they had moved from the Rotterdam area, since families had to visit the hospital for 

the assessment. The medical ethics committee of the University Hospital Rotterdam/ Sophia 

Children’s Hospital approved the study design and the parents gave informed consent. 

Assessment of neuropsychological outcome variables

The neuropsychological assessment was done as part of an extended assessment of 

two hours in the Sophia Children’s Hospital in Rotterdam by one psychologist (HV), 

who was unaware of the PCB and dioxin levels and type of feeding during infancy. The 

neuropsychological assessment consisted of the following tests, in following order:

Rey-Osterrieth Complex Figure Test (33, 34): This test consists of two tasks. In the 1st 

task, the copy task, a complex figure is presented to the child and the child is instructed 

to copy it. In the 2nd task, the recall task (presented after the Simple Reaction Time Test), 

the child is requested to draw the figure again from memory; the child was not notified of 

this when copying the figure. The drawings were scored according to Osterrieth’s scoring 

criteria (34, 35) (range of raw score for both tasks: 0-36). These scores are used to assess 

visual perceptional organization (1st task) and visual-spatial memory (2nd task). Additionally 

the strategy of the configuration of the design was scored for the copy task, according to 
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Osterrieth’s procedural types (described in (35)), running from 1 (= subject begins drawing 

the large rectangle and adds details later) to 7 (= the drawing is an unrecognizable scrawl). 

Simple Reaction Time Test (SRTT) (36): In the six minutes, age-appropriate, version of 

the SRRT, the child is asked to press a button as quickly as possible after a red square 

(2.5*2.5 cm) appears on the computer screen. The inter-trial interval (2.5-5.0 sec.) is varied 

randomly to reduce effects of stimulus anticipation. Maximum response interval is 1 sec. 

Response latencies of all trials are recorded. The first 16 trials serve as practice; performance 

is measured over the next 80 trials. A minimum of 40 correct trials (i.e. 100<RT<1000 ms) 

is required. The two outcome variables of the SRTT that were used in this study were the 

mean reaction time (RT) and the variation in RT (SD). RT is a measurement of processing 

speed and sustained attention. SD assesses mainly sustained attention. 

Auditory-Verbal Learning Test (Dutch version) (AVLT) (37): In this test, a list of 15 words 

is orally presented to the child five times. Immediately after each presentation, the child is 

asked to repeat these words. The sum of the words that were recalled over the five sessions 

was used as the short-term verbal memory score. A long-term memory score was derived 

by asking to recall the words after the assessment of the Tower of London task. 

Tower of London (TOL) (38): In this test, subjects must look ahead to determine the order 

of moves necessary to rearrange three colored balls from their initial position in two upright 

sticks to match a target configuration on one or more sticks. The child is instructed to solve 

the problem in a certain number of moves, and has to succeed in maximal 3 attempts. The 

test consist of 12 items with increasing difficulty scored 3, 2, 1, or 0, depending on the 

number of attempts (respectively 1, 2, 3 or more) needed to solve the problem (range of 

score 0-36). This test requires planning, an executive function. 

Assessment of confounding variables

Variables that may influence child neurodevelopment have been assessed and included birth 

weight, duration of gestation, fetal exposure to alcohol and cigarette smoking, parity, type of 

feeding during infancy, duration of breast-feeding, sex, maternal age and parental education 

level. The child’s home environment was assessed by the Home Observation for Measurement 

of the Environment (HOME) (39) at 7 years of age. The verbal IQ of the parent that spends 

the most time with the child (usually the mother) was assessed by two subtests, Information 

and Vocabulary from the Dutch version of the Wechsler Adult Intelligence Scale (40).

Data analysis

In the present study, the outcome of children that were exposed prenatally to low levels 

of PCBs, as assessed from maternal plasma, was compared with the outcome of a high 

prenatally exposed group. 
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To compare groups for a single variable we used the Student’s t-test, and the χ2 test. 

The difference in neuropsychological outcome between the low and high prenatally 

exposed groups was studied by means of multiple regression analyses. To prevent that 

too many variables would be included in the regression model simultaneously, the model 

building procedure was hierarchical in a sense that variables that were likely to affect 

the neuropsychological outcome were included in the regression model as a fixed set of 

variables first. These variables were: sex (0/1=boy/girl), highest education level of either 

parent (0/1/2 = primary school, secondary school not finished/ secondary school finished/ 

high school finished, professional and university training), type of feeding and duration of 

breast-feeding (captured in two dummy variables for FF, BF
short

=6-17 weeks of breast-feeding, 

and BF
long

=≥ 17 weeks of breast-feeding) and age at examination. These variables were a 

priori included in the model along with the exposure variable (ΣPCB
low/high

). Thereafter, 

remaining candidate confounding variables were tested one by one for adding to the model, 

by means of evaluating their correlation with both one of the outcome variables as well as 

the exposure variable, adjusted for the fixed set of variables already in the model. Candidate 

confounders were alcohol use (0/1=no/yes) and smoking during pregnancy (0/1=no/yes), 

duration of gestation, birth weight, and parity (0/1=1st/2nd born), parental verbal IQ, and 

HOME score. The selection procedure was based on a correlation (p<0.2) with the exposure 

variable (ΣPCB
low/high

) and with the scores on at least one of the neuropsychological outcome 

variable, adjusted for the above mentioned fixed set of variables. This procedure resulted in 

the following additional set of confounders: alcohol use during pregnancy, gestational age, 

parity, and parental verbal IQ. Results were considered significant if p≤0.05.

Results

From the invited children (n=104), 83 (80%) were willing to participate (mean±SD age 9.2±0.2). 

The parents of 21 children were not motivated to participate in this follow-up. Exposure levels 

of participating and nonparticipating children were comparable. The characteristics of the 

low and high exposed children are presented in Table 6.1. In the high exposed group, more 

children were exposed to alcohol during pregnancy and the mean gestational age was shorter. 

Parental education level and verbal IQ was higher in the high exposed group compared to the 

low exposed group of children. All prenatal exposure measurements of PCBs and dioxins were 

significantly higher in the high exposure group, as can be expected from the study design. 

In Table 6.2, the mean scores on the neuropsychological tests are presented. All children 

were able to complete the tests. However, one SSRT assessment was missing due to technical 

problems and in three cases the strategy of the Rey Complex Figure Test could not be 

recorded. Univariate analysis showed no statistical differences between the exposure groups 

on the neuropsychological outcome variables. 
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Table 6.1   Characteristics of the low and high prenatal PCB exposure groups.

 

 

 
Table 6.1  

Characteristics ΣΣΣΣPCBlow  
(n=42) 

ΣΣΣΣPCBhigh  

(n=41) 
Smoking during pregnancy, yes 10 (24 %) 11 (27 %) 
Alcohol use during pregnancy, yes* 2 (5 %) 10 (24 %) 
Birth weight (gr) 3469 (+ 459) 3377 (+ 504) 
Gestational age (wk) * 40.3 (+ 1.1) 39.7 (+ 1.4) 
Number of BF 21 (50 %) 23 (56 %) 
Duration of breast-feeding (wk) 16 (6-62) 17 (6-54) 
Number of boys 20 (48 %) 24 (59 %) 
Number of 1st born 23 (55 %) 18 (44 %) 
Parental education level  **   
        Low 10 (24 %) 1 (2 %) 
        Medium 19 (45 %) 16 (39 %) 
        High 13 (31 %) 24 (59 %) 
Parental verbal IQ  ** 116.3 (+ 16.0) 130.0 (+ 13.8) 
HOME score at 7 years 48.1 (+ 2.6) 48.5 (+ 2.7) 
Age at assessment (yr) 9.1 (+ 0.2) 9.2 (+ 0.2) 
Exposure variables   
ΣPCBmaternal  (µg/L)  ** 1.40 (0.59-1.93) 3.22 (2.51-5.08) 
ΣPCBcord  (µg/L)  ** 0.29 (0.08-0.63) 0.56 (0.25-1.98) 
ΣPCBmilk  (µg/kg fat)  ** 275.7 (173.7-566.1) 572.4 (333.6-804.5) 
ΣPCB20 nondioxin-like  (µg/kg fat)  ** 297.4 (204.6-578.6) 608.5 (347.2-890.5) 
Total TEQPCB+dioxin (ng/kg fat)** 46.24 (28.06-88.20) 84.05 (58.00-111.41) 

 Values are means ( ± standard deviations), medians (range), and numbers (percentages). 
* p<0.05; **p<0.01 (Students t-test or χ2 test).
Parental education level: low = primary school, secondary school not finished, middle = secondary school finished, high = high school 
finished, professional and university training; Parental verbal IQ: score on two subtests of the Wechsler Adult Intelligence Scale, Information and 
Vocabulary, assessed from one of the parents; HOME: Home Observation for the Measurement of the Environment at school age; 
ΣPCBmaternal, cord, milk: sum of PCB congeners IUPAC nos. 118, 138, 153, 180 in maternal and cord plasma, and breast milk; ΣPCB20 nondioxin-like: sum of 20 
nondioxin-like PCBs in breast milk; Total TEQ: sum of the toxic equivalents according to the 1997 WHO TEF values for mono-ortho PCBs, UIPAC nos. 
105, 118, 156, planar PCBs, IUPAC nos. 77, 126, 169, and 17 dioxins (PCDDs and PCDFs). 

Table 6.2   Mean scores of the low and high prenatal PCB exposure groups on the neuropsychological tests.

 

 

Table 6.2  

Test ΣΣΣΣPCBlow ΣΣΣΣPCBhigh 
Rey copy (n=83)a 28.3 (+ 5.9) 29.0 (+ 4.6) 
Rey recall (n=83)a 15.7 (+ 5.8) 15.7 (+ 5.9) 
Rey copy strategy (n=80) a  3.8 (+ 0.5) 3.8 (+ 0.4) 
SRTT RT (n=82) b 343.3 (+ 47.5) 354.0 (+ 52.7) 
SRTT SD (n=82) b 79.3 (+ 25.3) 90.2 (+ 32.4) 
AVLT short (n=83) c 46.1 (+ 8.7) 45.8 (+ 8.1) 
AVLT long (n=83) c 10.0 (+ 2.5) 10.0 (+ 2.4) 
TOL (n=83) d 29.9 (+ 2.7) 29.8 (+ 3.2) 

 Values are means (± standard deviations).
a Rey Complex Figure Test; b Simple Reaction Time Task, RT = reaction time, SD = variation in reaction time; c Auditory-Verbal Learning Test; 
d Tower of London.



  Table 6.3  

 
ΣΣΣ ΣPCB

high  versus 
ΣΣΣ ΣPCB

low  (=0) 
BF

short  versus 
FF (=0) 

BF
long  versus 
FF (=0) 

BF
long  versus 

BF
short  (=0) 

 

 
Regr. 
coef. 

SE 
p 

Regr. 
coef. 

SE 
p 

Regr. 
coef. 

SE 
p 

Regr. 
coef. 

SE 
p 

Adj. R
2 

Rey copy 
-0.95 

1.34 
0.479 

-0.26 
1.45 

0.858 
0.20 

1.45 
0.894 

0.46 
1.65 

0.784 
.03 

Rey recall 
-0.97 

1.51 
0.524 

1.53 
1.64 

0.355 
1.77 

1.64 
0.285 

0.25 
1.87 

0.896 
.01 

Rey copy strategy 
0.09 

0.11 
0.432 

-0.27 
0.12 

0.028 
-0.25 

0.12 
0.038 

0.01 
0.14 

0.927 
.08 

SRTT RT 
26.58 

12.76 
0.041 

18.88 
13.79 

0.175 
20.42 

14.03 
0.150 

1.53 
15.70 

0.922 
.04 

SRTT SD 
22.04 

6.77 
0.002 

2.48 
7.31 

0.735 
-6.95 

7.44 
0.354 

-9.44 
8.33 

0.261 
.23 

AVLT short 
-1.35 

2.17 
0.536 

-2.02 
2.35 

0.395 
-1.05 

2.36 
0.657 

0.96 
2.68 

0.721 
.02 

AVLT long 
0.06 

0.61 
0.925 

-0.89 
0.66 

0.184 
0.17 

0.66 
0.797 

1.06 
0.76 

0.164 
.17 

TOL 
-1.85 

0.67 
0.007 

-0.39 
0.72 

0.593 
-1.81 

0.73 
0.015 

-1.42 
0.82 

0.089 
.23 

Table 6.3 Results of m
ultiple regression analysis on neuropsychological outcom

e variables.

Additional variables in the regression m
odels: alcohol use during pregnancy, gestational age, sex, parity, parental education level, parental verbal IQ, age at assessm

ent. Regression coefficients were estim
ated in essentially the 

sam
e regression m

odel by reparam
eterizing the effects of the three categories for duration of breast-feeding (FF; 6-17 w

eeks; ≥ 17 w
eeks). FF: form

ula-fed; BF
short : 6-17 w

eeks of breast-feeding; BF
long : ≥ 17 w

eeks of breast-
feeding; Rey: Rey Com

plex Figure Test; SRTT: Sim
ple Reaction Tim

e Task, RT = reaction tim
e, SD

 = variation in reaction tim
e; AVLT:  Auditory-Verbal Learning Test; TO

L: Tow
er of London. 
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The results of multiple linear regression analyses on the neuropsychological outcome 

variables are presented in Table 6.3 for level of exposure and type of feeding and duration 

of breast-feeding, adjusted for confounding variables. Compared to the low exposed 

children, children in the high exposure group had significantly longer RTs and more 

variation in RT (larger SDs) on the SRTT. High exposed children scored also significantly 

lower on the TOL. BF children (BF
short

 and BF
long

) scored significantly lower, indicating 

better performance, on the strategy score of the Rey Complex Figure test compared to FF 

children.

Children that were BF for a long period scored significantly lower on the TOL than their 

FF counterparts. To explore whether this effect was related to lactational exposure to PCBs, 

the total population was divided in six groups based on prenatal exposure level (ΣPCB
low 

and ΣPCB
high

), feeding type and duration of breast-feeding (FF, BF
short

 (6-17 weeks) and 

BF
long 

(≥ 17 weeks)). 

In Figure 6.1, the adjusted mean scores on the TOL are presented for these groups. 

Compared to low exposed FF children (a), high exposed FF children (a
1
,
 
p=0.031), and high 

exposed BF, for short (a
2
, p=0.018) or long periods (a

4
, p=0.003), scored lower on the TOL. 

Low exposed children BF for long periods scored also lower on the TOL (b
1
,
 
p=0.021) than 

high exposed children that were BF for short periods. Moreover, low exposed children that 

were BF for a long period scored lower on the TOL (a
3
,
 
p=0.026) than their low exposed 

FF counterparts. 

Figure 6.1 Adjusted mean (SD) scores on the Tower of London.

Adjusted for fetal alcohol exposure, gestational age, sex, parental education level, parental verbal IQ, age at assessment.  
a1, a2, a3, and a4 = adjusted mean scores are significantly different from a
b1 = adjusted mean score is significantly different from b
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Discussion

The results of this study suggest that prenatal exposure to environmental levels of PCBs 

may affect reaction times and the variation in reaction times as well as the scores on the 

TOL. Moreover, some evidence of negative effects of lactational exposure to PCBs on the 

scores on the TOL is found. 

Reaction time and its variation mainly reflect processing speed as well as the ability to 

sustain attention. Impaired attention and concentration are amongst the most common 

mental problems associated with brain damage (41) and indeed attentional deficits have 

been linked to prenatal exposure to several other neurotoxic agents (such as alcohol (42), 

and cocaine (43)). Higher prenatal PCB levels were also related to slower processing speed 

and lower attention skills in the Lake Michigan cohort in 4-year-old children (28) and with 

less concentration skills in 11-year-old children (10). In a Faeroes cohort, at 7 years of 

age (29), longer reaction time was also associated with higher prenatal exposure to PCBs, 

however this relation appeared to be mainly attributable to prenatal exposure to another 

neurotoxic agent, methyl-mercury. 

The TOL is an executive function task. Generally these tasks are complex multi-factorial 

tasks and performance may reflect frontal lobe functions as well as more posterior related 

functions. For example, performance on the TOL requires functions such as planning, 

spatial working memory, attention and response inhibition, the ability to relate and integrate 

isolated details into a coherent whole, as well as spatial and motor abilities. Affected TOL 

performance may therefore suggest impairment in either one of these functions. Functional 

brain imaging studies in adults, and neuropsychological studies in patients with frontal lobe 

damage (44) have provided evidence that performance on the TOL requires processes that 

are linked to the prefrontal area of the brain (45-47). Moreover, functional brain imaging 

studies in adults showed activation during performance on the TOL in other brain areas 

including the premotor cortex, parietal cortex, anterior cingulate cortex, prestriate cortex 

and midline cerebellum (45, 48-50). 

The authors of behavioral PCB studies in animals have hypothesized that the behavioral 

deficits suggested that processes related to the prefrontal cortex were involved in the 

neurotoxic effects of prenatal exposure to PCBs as well as lactational exposure to low 

levels of PCBs. These deficits included impairment of learning a delayed spatial alteration 

task (21, 22), impaired performance on discrimination-reversal tasks, more perseverative 

responding (22, 51), and an inability to inhibit inappropriate responding (21). The PCB-

induced dopaminergic alterations that were described in animals studies (16, 52) were 

suggested to support this hypothesis since the mesocortical dopaminergic system is 

considered to be one of the most prominent innervating systems of the prefrontal cortex 

(53). The results of the present study may therefore suggest that the effects of prenatal 
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exposure to PCBs are diffuse or multi-focal; a spectrum of effects in which processes of the 

prefrontal cortex may be involved.

The TOL scores were negatively associated with the duration of breast-feeding. Breast 

milk contains several substances (such as long chain polyunsaturated fatty acids) that may 

positively affect brain development. In fact, a positive effect of breast-feeding is seen in this 

study on the strategies used to copy a figure, a complex executive function. The finding 

of a negative effect of a longer duration of breast-feeding on the TOL scores, therefore, 

may suggest adverse effects of neurotoxic compounds that breast milk is contaminated 

by. The duration of breast-feeding in combination with the exposure level is generally 

used to estimate lactational exposure to PCBs. Since the levels of PCBs measured in 

breast milk samples that were obtained shortly after birth correlated strongly with PCB 

levels in maternal plasma (54), we used maternal plasma PCB levels in combination with 

the duration of breast-feeding to estimate lactational exposure. The results of this study 

provided some evidence of adverse effects of lactational exposure to PCBs since low 

exposed children that were BF for a long period scored lower on the TOL than their FF 

low exposed counterparts. 

Apart from the scores on the TOL there was no evidence that the other outcomes that 

were addressed in this study were negatively affected by a longer duration of breast-feeding. 

Postnatally, brain development consists mainly of synaptic pruning, elaboration of dendritic 

arborization and myelination (55-58); the formation and refinement of neuronal networks. 

The frontal cortex shows delayed myelination and synaptogenesis compared to other brain 

regions and structural maturation continuous until adolescence or early adulthood (59-61). 

Since developing brain processes are considered to be especially vulnerable to exposure 

to neurotoxicants, structure related effects of lactational exposure can be hypothesized. 

Therefore, in the suggested neurotoxic effects of lactational exposure on the TOL scores, 

processes that are related to the prefrontal cortex may be involved. It could also be argued 

that the effects of lactational exposure seen on performance on the TOL are related to a 

simultaneous appeal on several frontal functions. It may reflect subtle effects of lactational 

exposure on the neuronal networks supporting the integration of these complex frontal 

functions, whereas an appeal on one of these functions, such as attention, may not be 

affected by lactational exposure to PCBs or related compounds. However, these results 

are not conclusive to exclude neurotoxic effects on other functions that are required in 

performance on the TOL. Due to the multi-factorial nature of this task, the TOL may serve 

as a sensitive outcome to measure diffuse effects of exposure to PCBs. 

Although BF infants are exposed to relatively large amounts of PCBs and related 

compounds, neurodevelopmental effects of lactational exposure to PCBs were scarcely 

detected (8, 12) and currently, prenatal CNS development is considered to be more 

vulnerable to these neurotoxic agents. However, as described earlier, recent animal 

behavioral studies do give evidence of negative effects of lactational exposure to low levels 
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of PCBs (21, 22, 51). The evaluation of the effects of breast-feeding, consisting of both 

neurotoxic and brain stimulating substances, on the developing brain is very complex. For 

example, apart from the positive effect of a longer duration of breast-feeding described 

in this study on spatial organizational skills, neurophysiological assessment in this cohort 

during the same follow-up session showed a positive effect of a longer duration of breast-

feeding on the latency of the cognitive event related potential peak, the P300, whereas 

prenatal exposure to PCBs affected the latency of this peak negatively (62). Further detailed 

neuropsychological studies are needed to differentiate these effects more thoroughly.

In this study, no significant effects of perinatal exposure of PCBs on memory and visual 

perceptional skills were seen. Nonsignificance does not imply that there is no effect, 

considering the large SE’s of the estimated effects and corresponding wide confidence 

intervals for the true effects in our study. So there is some risk of an effect remaining 

undetected (type II error). However, these results are in agreement with a study in a Faeroes 

cohort at 7 years of age in which the scores on the Bender Visual Motor Gestalt Test and the 

California Verbal Learning Test were not related with prenatal exposure to PCBs (29). In the 

Lake Michigan cohort, however, at 4 years of age negative effects of prenatal PCB exposure 

on memory skills have been reported (30). Memory is a complex function, consisting 

of various different aspects, such as storage, encoding and retrieval of information (63), 

memory strategies, and attention, in which different brain systems or circuits are suggested 

to be involved (64). This may explain some of the differences in measured effects of 

prenatal PCB exposure on memory. For example, the use of strategies in memorizing can 

be trained to some extent, and may be more susceptible to environmental influences. In 

our cohort at 7 years of age, effects of prenatal PCB exposure on memory skills were not 

detectable in children raised in more optimal parental and home environmental conditions, 

whereas a negative effect of prenatal PCB exposure on memory skills was seen in children 

raised in less advantaged families (13). 

In the present study, we compared a group of low and high prenatally exposed children, 

based on maternal ΣPCB levels. For this cohort additional exposure measurements were 

available, including the sum of the four PCBs, IUPAC numbers 118, 138, 153 and 180, 

measured in cord blood and in breast milk as well as additional measurements of PCB 

congeners and also dioxins in breast milk. Since relations between prenatal exposure to 

PCBs and neurodevelopmental aspects were most pronounced in the Dutch PCB/dioxin 

cohort using maternal PCB levels, we have used this exposure measurement to distinguish 

the low and high prenatally exposed groups. The levels of dioxin toxic equivalent factors 

and nondioxin-like PCBs were also significantly different in these exposure groups. In the 

environment, PCBs, their metabolites and related compounds, such as dioxins, are present 

as complex mixtures of various congeners that may vary in metabolism and toxicity. 

Moreover, levels of PCBs and dioxins are interrelated (54) and consequently specific effects 

of either group of compounds are methodological difficult to detect. We therefore believe 
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that the difference in outcome between the low and high exposure group could also be 

related to differences in exposure levels of other PCB congeners, dioxins, and related 

compounds. 

Human PCB studies are of correlational nature which underscores aspects of confounding 

by, for example, other related neurotoxic compounds. In the Lake Michigan cohort, 

mothers were selected based on their diet history on Lake Michigan PCB contaminated fish. 

Fish and other aquatic species form often the source of exposure to PCBs as well as other 

neurotoxic compounds, such as methyl-mercury. The relations between neurodevelopment 

and prenatal PCB exposure as described in the Lake Michigan studies, therefore, may have 

been confounded by exposure to this compound. However, based on the congruence 

between the results of animal studies and several human cohort studies, it has been 

suggested that the deficits observed in the Lake Michigan studies result at least in part from 

PCB exposure (65). In contrast to the Lake Michigan study, the Dutch PCB/dioxin cohort is 

drawn from the general population. In the Netherlands, PCB and dioxin exposure occurs 

mainly through dietary intake of predominantly dairy products, as well as processed foods 

and meat and fish products (66). In this population, lead and cadmium levels in blood 

samples drawn from 18-months-old children (n=151) were relatively low (67) and not 

related to cognitive outcome (11).

A point of importance in the interpretation of the results of this study is the question of 

the magnitude of the observed effects. For example, the difference between the low and 

high exposure groups observed in the RT is approximately 25 ms, and for the TOL scores 

less than 2 points. These differences in performance, although identifiable with sensitive 

neuropsychological tests, may not be of clinical significance but do indicate that exposure 

at this level may not be sufficiently low to avoid all effects on psychometric performance. 

Further, it is recognized that multiple testing does run the risk of statistical significance by 

chance. Nevertheless, the attentional effects described in this study and by others (10, 28, 

29) show consistency in that reduced performance was observed in tests concerned with 

attention/vigilance as was the effect on the TOL in support of behavioral animal studies 

(22-24, 26). Moreover, the probability of finding at least six significant effects just by chance 

amongst 24 independent tests is very small, given a test-wise error of 0.05.

In conclusion, the results of this study are suggestive of negative effects of prenatal 

exposure to PCBs and related compounds on reaction times, the variation in reaction time, 

and on scores on the TOL. Moreover, these results provide some evidence of negative 

effects of lactational exposure on performance on the TOL. The evaluation of the effects 

of breast-feeding, consisting of both neurotoxic and brain stimulating substances, on the 

developing brain is very complex and a positive effect of a longer duration of breast-

feeding was found in this study on spatial organizational strategy skills. Neurotoxic effects 

of prenatal exposure to PCBs are likely to be multi-focal or diffuse. Postnatally, maturation 

rates are different for different brain structures and developing brain structures are likely to 
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be more vulnerable to exposure to PCBs and dioxins. The frontal cortex shows a delayed 

maturation rate compared to other brain regions. These results may therefore suggest that 

processes related to the prefrontal cortex are involved in the neurotoxic mechanisms of 

action of lactational exposure to PCBs and related compounds. It can also be hypothesized 

that an executive function and therefore complex task as the TOL is a more sensitive 

outcome to assess neurodevelopmental risks of perinatal exposure to PCBs and related 

compounds. Although these results are important since they are in support of human 

and behavioral animal studies addressing perinatal effects of PCB exposure, they require 

replication in a larger study population. Moreover, this study proved neuropsychological 

assessment to be an important and sensitive tool. This approach, in combination with 

behavioral animal studies and in vivo and in vitro neurochemical studies, will increase our 

knowledge in neurotoxic mechanisms of effects of perinatal exposure to PCBs and related 

compounds. 
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Abstract

Effects of perinatal PCB exposure on the auditory P300 were evaluated in the prenatally 

lowest and highest exposed children from the Rotterdam cohort. The 26 lowest and 26 

highest prenatally PCB exposed children in the breast-fed (BF) and the formula-fed (FF) 

group (n=104), were invited at 9 years of age for a P300 assessment, using an auditory 

simple odd-ball paradigm. In the 83 participating children, 60 assessments satisfied the 

measurement criteria and were included in the data analyses. Prenatally high exposed 

children had longer P300 latencies than prenatally low exposed children. Lactational PCB 

exposure was not related to P300 latencies. Moreover, P300 latencies were shorter in 

children that were BF for ≥16 weeks compared to children that were BF for 6-16 weeks 

and to FF children. 

Conclusion: These results suggest that prenatal exposure to environmental levels of 

PCBs and related compounds delays central nervous system mechanisms that evaluate 

and process relevant stimuli at school age, whereas breast-feeding accelerates these 

mechanisms. 
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Introduction

Polychlorinated biphenyls (PCBs) and dioxins are toxic compounds that are detectable in 

human milk and tissues due to background exposure to these environmental pollutants. 

The fetus is exposed to maternal levels of these compounds through placental transport. 

Additionally, a breast-fed infant is exposed to relatively large amounts of PCBs and dioxins 

in breast milk (1). These compounds are well known for their neurotoxic properties, 

although the neurotoxic mechanisms of PCBs and dioxins remain largely unknown. Many 

systems and levels of the developing central nervous system (CNS) were reported to be 

involved in the complex mechanism of neurotoxic action of PCBs and dioxins (2, 3). These 

include neuronal and glial cells (4, 5), brain neurotransmitters (6-8), and several hormone 

systems (9, 10), depending on the type of congener and its metabolites. 

Human epidemiological studies have provided accumulating evidence for neurotoxic 

effects of predominantly prenatal exposure to PCBs by showing relations between 

exposure levels and neurodevelopmental outcome. In these cohort studies, delayed effects 

of prenatal exposure to PCBs were suggested on general cognitive and motor development 

(11-16), processing speed and attention (11, 17, 18), memory (12) verbal comprehension 

(11, 14) and on planning skills (17). 

Neurophysiological techniques may provide a more direct evaluation of CNS function 

than neurodevelopmental tests. Moreover, the measurement of event-related brain potentials 

(ERPs) and especially its cognitive P300 component is a useful tool for investigating 

cognitive function (19-21). ERPs result from intracortical currents induced by excitatory 

and inhibitory postsynaptic potentials that are triggered by the release of neurotransmitters. 

The P300 component is a positive ERP that occurs with a latency of about 300 milliseconds 

when a person is actively processing (‘attending to’) incoming stimuli (22). The latency of 

the P300 is considered to be an indicator of the neural activity underlying the processes of 

attention allocation and immediate memory (19) and a measure of stimulus classification 

speed (23, 24). The amplitude of the P300 is assumed to reflect the quality with which 

incoming information is processed when it is incorporated into its memory representations 

and the context in which the stimulus occurs (19). 

In adults, the amplitude and latency of the P300 can discriminate brain pathology from 

control conditions, including occupationally exposure to neurotoxic chemicals such as organic 

solvents (25-27), specific neuropathologic states such as Alzheimer’s disease (28), or closed 

head injury (29, 30), and psychiatric disorders, such as schizophrenia (31, 32) and depression 

(33, 34). 

In children P300 abnormalities have been associated with several pathologies including 

cognitive dysfunction (35, 36), attention deficit disorders (37, 38) and dyslexia (39). 

Moreover, the latency and amplitude of the P300 are respectively decreasing and increasing 

with age until adolescence, reflecting CNS maturation processes (40-42). 
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Effects of prenatal exposure to PCBs and dioxins on the P300 have been addressed in the 

Yu Cheng cohort, consisting of children born to mothers that were accidentally exposed to 

high levels of PCBs and polychlorinated dibenzofurans (PCDFs). In the prenatally exposed 

children, auditory P300 latencies were prolonged, and amplitudes were lower compared to 

nonexposed matched controls (43). In that study, visual and short-latency somatosensory 

evoked potentials were not different for the groups. 

In The Netherlands, a prospective study into effects of perinatal exposure to PCBs and 

dioxins on neurodevelopment was launched in 1989. Half of this population of children 

was breast-fed during infancy and the other half formula-fed. In this cohort, neurotoxic 

effects of perinatal exposure to environmental levels of PCBs and dioxins have been 

addressed from birth to school age. 

The aim of the present study in the Rotterdam cohort of the Dutch PCB/dioxin study was 

to gain more insight in the neurotoxic mechanism of perinatal exposure to PCBs by means 

of exploring effects on a more direct measurement of CNS functioning, the P300 ERP. 

Method

Subjects and Study design

The original study population consisted of 207 healthy Caucasian mother-infant pairs 

who were recruited from June 1990 to February 1992 in the area of Rotterdam, a highly 

industrialized and densely populated area in The Netherlands. The study design and 

recruitment process, chemical analysis and PCB and dioxin concentrations have been 

described in detail elsewhere (44). Pregnancy and delivery were uncomplicated. Only first 

or second, at term, born healthy children were included. One hundred and five children 

were breast-fed (BF) for at least six weeks and 102 children were formula-fed (FF) during 

infancy. All formula-fed infants received formula from a single batch (Almiron M2, Nutricia 

NV, Zoetermeer, The Netherlands) from birth until 7 months of age. In this formula, 

concentrations of PCBs and dioxins were not detectable. 

At 9 years of age, we invited 104 children of the Rotterdam cohort, the 26 lowest and 

26 highest prenatally exposed children (based on ΣPCB
maternal

) from both feeding groups, 

to participate in a follow-up assessment in the Sophia Children’s Hospital in Rotterdam. 

Children were not eligible for selection when they had not participated in the follow-up at 

42 or 84 months of age or when they were moved from the Rotterdam area, since families 

had to visit the hospital for the assessment. 

The medical ethics committee of the University Hospital Rotterdam/ Sophia Children’s 

Hospital approved the study design and the parents gave informed consent. 
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Auditory Event-Related Potentials 

An auditory simple odd-ball paradigm was used to elicit the P300 component. Two different 

sinusoidal tone bursts of two frequencies (1.0 kHz tone; 70 dB nHL, 50 ms duration, 5 

ms rise/fall time or 1.5 kHz tone, 66.7 ms duration, 6.7 rise/fall), using a fixed 1.25 s 

interstimulus interval, were presented binaurally via earphones in pseudo-randomized 

order. 20% Of these tones were targets (1.5 kHz) and 80% were non-targets (1.0 kHz) 

(Software package Nicolet Viking, version 4.7.1b). Children were required to lay down on a 

bed and press a hand held button as quickly as possible in response to target stimuli. ERPs 

were recorded using Ag/AgCl electrodes placed over the midline frontal, central, parietal 

(Fz, Cz, and Pz) position referred to linked ears, with forehead ground. Eye movements 

and blink artefacts were differentially recorded by two electrodes, one lateral inferior to the 

right eye and another superior to the left eye. Raw potentials were filtered, band pass set 

at 0.5-30 Hz. Artefact rejection at 9μV was used.

Averaging proceeded until 48 (target) and 192 (non-target) stimuli were accepted. 

Children were presented two series of 48 successfully averaged target stimuli, and 192 non-

target stimuli. Due to artefact rejection (caused by restlessness or tension) in 23 children the 

assessment took too long to complete averaging, these measurements were not included 

in the data analysis.

ERP-waveform analysis

The ERP-waveforms were labeled conventionally. For the purpose of this study, the P300 

peak was identified in the individual recordings, generally in the first ERP assessment, by 

two raters who were unaware of the child’s exposure levels and type of feeding during 

infancy. The P300 was identified as the largest positive peak in the area of 250-450 ms 

(e.g. Figure 7.1). The latency and amplitude of the P300 peak at Fz, Cz and Pz, position 

were used as outcome variables. For each exposure group, separate grand average ERP 

waveforms were calculated for the three electrode recordings (Fz, Cz and Pz).

Figure 7.1 ERP waveforms (two assessments) recorded at Pz and P300 peak identification.
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Assessment of exposure variables

Plasma samples were collected from the mothers during the last month of pregnancy and 

cord plasma samples were collected directly after birth. These samples were analyzed for 

four PCB congeners, International Union for Pure and Applied Chemistry (IUPAC) numbers 

118, 138, 153 and 180. Two weeks after delivery a 24-hour representative breast milk 

sample was collected from the mothers who were breast-feeding their children. Breast milk 

samples were analyzed for 17 dioxins (PCDDs and PCDFs), 6 dioxin-like PCBs (IUPAC 

numbers 77, 105, 118, 126, 156, 169) and 20 nondioxin-like PCBs (IUPAC numbers 28, 52, 

66, 70, 99, 101, 128, 137, 138, 141, 151, 153, 170, 177, 180, 183, 187, 194, 195, and 202). 

Toxic potency of the mixture of dioxins and dioxin-like PCBs was expressed by using the 

toxic equivalent factor (TEQ) approach (45). 

In the present study, we compared the outcome of a low exposed group with a high 

exposed group, based on the sum of the four PCB congeners measured in maternal 

plasma. 

Assessment of confounding variables

Variables that may influence child neurodevelopment have been assessed and included 

birth weight, duration of gestation, fetal exposure to alcohol and cigarette smoking, parity, 

type of feeding during infancy, duration of breast-feeding, sex, maternal age and parental 

education level. The child’s home environment was assessed by the Home Observation for 

Measurement of the Environment (HOME) (46) during the home visit for the follow-up at 7 

years of age. The verbal IQ of the parent that spends the most time with the child (usually 

the mother) was assessed by two subtests, Information and Vocabulary from the Dutch 

version of the Wechsler Adult Intelligence Scale (47).

Data analysis

To compare groups for a single variable we used either the Student’s t-test or the χ2 test. The 

difference in outcome between the prenatally low and high exposed groups was studied by 

means of multiple linear regression analyses (SPSS, version 10). Variables that were likely 

to affect P300 outcome (latency or amplitude) were included in the regression model as 

a fixed set of variables. These variables were: sex (0/1=boy/girl), highest education level 

of either parent (0/1/2=primary school, secondary school not finished/ secondary school 

finished/ high school finished, professional and university training), type of feeding and 

duration of breast-feeding (captured in two dummy variables for FF, BF
short

=6-16 weeks 

of breast-feeding, and BF
long 

=≥16 weeks of breast-feeding) and age at examination. 

Additionally, confounding variables, i.e. variables that correlated (p<0.2), adjusted for the 

fixed set of variables, with the exposure variable (ΣPCB
low/high

) and with one of the outcome 
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variables, were added to the regression model. Candidate confounders were alcohol use 

(0/1=no/yes) and smoking during pregnancy (0/1=no/yes), duration of gestation, birth 

weight, and parity (0/1=1st/2nd born), parental verbal IQ, and HOME score. This procedure 

resulted in the following set of explanatory variables included in the regression model for 

P300 outcome variables: ΣPCB
low/high

, alcohol use during pregnancy, sex, type of feeding 

and duration of breast-feeding, parental education level, and age at assessment. Results 

were considered significant if p≤0.05.

Results

From the invited children (n=104), 83 (80%) were willing to participate (age: 8.7-9.6 

years; mean±SD 9.2±0.2). The parents of 21 children were not motivated to participate 

in this follow-up for which they had to visit the hospital. Exposure levels in participating 

and nonparticipating children were comparable. From the 83 children in whom ERP 

assessments were done, 60 measurements were complete (i.e. 48 accepted target stimuli) 

and were included in the data analyses. In Table 7.1 prenatal exposure levels, the number 

of low and high exposed children, and the type of feeding are presented for the included 

and excluded children as well as the children that were not willing to participate in this 

study. The three groups did not show statistical differences in these variables. 

Table 7.1 Characteristics of children with complete ERP assessments, incomplete assessments, and of the nonparticipants. 

 

 

 
Table 7.1  

 ERP complete 
(n = 60) 

ERP incomplete 
(n=23) 

Nonparticipants  
(n=21) 

ΣPCBmaternal µg/L 2.54 (0.59-4.71) 1.71 (0.80-5.08) 2.63 (0.73-7.35) 
Number of ΣPCBlow (%) 28 (46.7 %) 14 (60.9 %) 10 (57.1 %) 
Number of BF (%) 32 (53.3 %) 12 (52.2 %) 9 (42.9 %) 

 
 
 
 
Table 7.2 

Characteristics ΣPCBlow (n=28) ΣPCBhigh (n=32) 
Smoking during pregnancy, yes 7 (25 %) 8 (25 %) 
Alcohol use during pregnancy, yes* 2 (7 %) 9 (28 %) 
Birth weight (kg) 3406 (+ 404) 3344 (+ 535) 
Gestational age (wk) 40.2 (+ 1.1) 39.7 (+ 1.3) 
Number of BF 13 (46 %) 19 (59 %) 
Duration of breast-feeding (wk) 16 (6-40) 16 (6-62) 
Number of boys 13 (46 %) 19 (59 %) 
Number of 1st born 15 (54 %) 16 (50 %) 
Parental education level  **   
      Low 8  (29 %) 1 (3 %) 
      Medium 12 (43 %) 13 (41 %) 
      High 8  (29 %) 18 (56 %) 
Parental verbal IQ   ** 117.0 (+ 16.6) 127.2 (+ 14.8) 
HOME score at 7 years 47.8 (+ 2.6) 48.5 (+ 2.8) 
Age at assessment (yr) 9.2 (+ 0.2) 9.2 (+ 0.2) 
Exposure variables   
ΣPCBmaternal  µg/L** 1.40 (0.59-1.93) 3.24 (2.51-4.71) 
ΣPCBcord   µg/L** 0.31 (0.08-0.63) 0.58 (0.29-1.98) 
ΣPCBmilk  µg/kg fat** 242.5 (173.7-371.1) 572.4 (333.6-804.5) 
ΣPCB20 nondioxin-like  µg/kg fat ** 255.2 (204.6-466.1) 608.5 (347.2-858.1) 
Total TEQ ng/kg fat ** 43.82 (28.06-88.20) 84.05 (58.00-111.41) 

 

Values are numbers (percentages) or medians (range).
ΣPCBmaternal = sum of PCB congeners IUPAC nos. 118, 138, 153, 180 in maternal plasma. 

The characteristics of the low and high exposed children whose ERP measurements 

were included in the data analyses are presented in Table 7.2. As described in more detail 

previously (15), parental education level and verbal IQ were significantly higher in the high 

exposed group compared to the low exposed group of children. All prenatal exposure 

measurements of PCBs and dioxins were significantly higher in the high exposure group, 

which is inherent to the study design. In Table 7.3, the mean latency and amplitude of the 

P300 are presented. 
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Table 7.2 Characteristics of low and high prenatal PCB groups with complete ERP assessment.
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Number of BF 13 (46 %) 19 (59 %) 
Duration of breast-feeding (wk) 16 (6-40) 16 (6-62) 
Number of boys 13 (46 %) 19 (59 %) 
Number of 1st born 15 (54 %) 16 (50 %) 
Parental education level  **   
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      Medium 12 (43 %) 13 (41 %) 
      High 8  (29 %) 18 (56 %) 
Parental verbal IQ   ** 117.0 (+ 16.6) 127.2 (+ 14.8) 
HOME score at 7 years 47.8 (+ 2.6) 48.5 (+ 2.8) 
Age at assessment (yr) 9.2 (+ 0.2) 9.2 (+ 0.2) 
Exposure variables   
ΣPCBmaternal  µg/L** 1.40 (0.59-1.93) 3.24 (2.51-4.71) 
ΣPCBcord   µg/L** 0.31 (0.08-0.63) 0.58 (0.29-1.98) 
ΣPCBmilk  µg/kg fat** 242.5 (173.7-371.1) 572.4 (333.6-804.5) 
ΣPCB20 nondioxin-like  µg/kg fat ** 255.2 (204.6-466.1) 608.5 (347.2-858.1) 
Total TEQ ng/kg fat ** 43.82 (28.06-88.20) 84.05 (58.00-111.41) 

 Values are numbers (percentages), means (± standard deviations) or medians (range).
* p<0.05, ** p<0.01 (Students t-test or χ2 test)
Parental education level: low = primary school, secondary school not finished, middle = secondary school finished, high = high school 
finished, professional and university training; Parental verbal IQ: score on two subtests of the Wechsler Adult Intelligence Scale, Information and 
Vocabulary, assessed from one of the parents; HOME: Home Observation for the Measurement of the Environment at school age; 
ΣPCBmaternal, cord, milk: sum of PCB congeners IUPAC nos. 118, 138, 153, 180 in maternal and cord plasma, and breast milk; ΣPCB20 nondioxin-like: sum of 20 
nondioxin-like PCBs in breast milk. Total TEQ: sum of toxic equivalents according to the 1997 WHO TEF values for mono-ortho PCBs (UIPAC nos. 
105, 118, 156), planar PCBs (IUPAC nos. 77, 126, 169) and 17 dioxins (PCDDs and PCDFs). 

Table 7.3 Descriptives of P300 latencies and amplitudes.

 

 

Table 7.3  

P300 Latency (ms) Amplitude  (µµµµV) 
Frontal (n=60)                  336 (+ 35) (273; 437) 6 (+ 4) (-3; 15) 
Central (n=60)                  334 (+ 36) (255; 429) 7 (+ 4) (-3; 19) 
Parietal (n=60)               333 (+ 35) (254; 424) 8 (+ 4) (0.2; 20) 

 
Table 7.4  

 ΣPCBhigh vs  
ΣPCBlow 

BFshort vs 
FF 

BFlong vs 
FF 

BFlong vs 
BFshort 

 Regr. 
coef. 

SE p Regr. 
coef. 

SE p Regr. 
coef. 

SE p Regr. 
coef. 

SE p 

P300fz 14.3 9.5 0.140 15.0 10.5 0.160 -19.8 10.8 0.073 -34.7 12.1 0.006 
P300cz 25.6 9.6 0.011 13.0 10.6 0.229 -20.2 10.9 0.070 -33.2 12.2 0.009 
P300pz 22.0 9.4 0.023 12.0 10.3 0.251 -22.5 10.6 0.039 -34.5 11.9 0.005 

 
 
 
 

 
 
Figure 7.1 

 
Non-target 
 
 
 
Target 

Values are means (±SD) and (minimum; maximum). 

The grand averages of the ERP waveforms are presented for the two exposure groups, 

not adjusted for confounding differences between the exposure groups in Figure 7.2. The 

grand average waveform for the low exposed group showed a better peak pronunciation 

compared to the grand average waveform for the high exposed group, especially for the 



Perinatal exposure to PCBs and neurophysiological outcome 135

parietal as well as for the central (data not shown) recordings. The P300 latency of high 

exposed children was prolonged compared to the P300 latency of low exposed children.

The results of multiple regression analyses on the P300 peak latencies are presented in 

Table 7.4. Especially for the central as well as the parietal recordings, the P300 latencies 

were significantly longer in prenatally high exposed compared to low exposed children, 

adjusted for confounding variables. Moreover, for frontal, central as well as the parietal 

recordings, children that were BF for a long period (BF
long

) had significantly shorter P300 

latencies than children that were BF for a short period (BF
short

). For the parietal recording, 

BF
long

 children had also a shorter P300 latency compared to FF children. P300 amplitudes 

were not statistically different for low and high exposed children, nor for the three feeding 

groups, when adjusted for confounding variables.

Table 7.4 Results of multiple regression analysis on the P300 latencies (ms) measured at Fz, Cz, Pz. 
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Non-target 
 
 
 
Target 

Additional variables in the regression models: fetal exposure to alcohol, sex, parental education level, age at assessment. Regression coefficients 
were estimated in essentially the same regression model by reparameterizing the effects of the three categories for duration of breast-feeding 
(FF; 6-16 weeks; ≥ 16 weeks).

Figure 7.2 Grand average ERP at Pz for prenatally low and high PCB exposed children.

Arrows point to P300 for the prenatally low exposed group ( ) and for the prenatally high exposed group (                      ).
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To estimate effects of postnatal exposure through lactation, the group of BF children was 

divided in four groups based on prenatal exposure levels and duration of breast-feeding 

(BF
short

: <16 weeks; BF
long

: ≥16 weeks). In Figure 7.3 the mean adjusted latencies measured 

on Pz are presented for these four groups and the low and high exposed FF groups. In the 

figure, the significant differences in mean adjusted latencies between the six feeding groups 

are indicated. Low exposed BF
long

 children (E) had significantly shorter P300 latencies than 

their high (p
fz
= 0.013; p

cz
= 0.002; p

pz
=0.005) (E’) and low (p

fz
= 0.040; p

cz
= 0.046; p

pz
=0.114) 

exposed BF
short 

counterparts. In the high exposed BF
long

 group (F), latencies were also 

generally shorter than in high exposed BF
short

 children (p
fz
= 0.061; p

cz
= 0.086; p

pz
= 0.021) 

(F’). 

Figure 7.3 Adjusted mean and SE of the P300 latencies (ms) at Pz.

A’ = significantly different (p<0.05) from A
E’ = significantly different (p<0.05) from E
F’ = significantly different (p<0.05) from F

Discussion

In this study, prenatally high PCB exposed children showed prolonged P300 latencies 

compared to low PCB exposed children. Moreover, a longer breast-feeding duration was 

related to shorter P300 latencies compared to a shorter duration of breast-feeding, and 

the FF condition. The P300 amplitudes were not statistically different for the high and low 

exposure groups nor for the three feeding groups. These results suggest that prenatal PCB 

exposure is related with slower CNS mechanisms that evaluate and process relevant stimuli, 

whereas a long duration of breast-feeding accelerates these mechanisms. 

In the Yu Cheng cohort, delayed P300 latencies have been reported in 7 to 12-year-

old children that were accidentally exposed to relatively high prenatal levels of PCBs 

and PCDFs. Although the exposure levels we describe are expected to be much lower 
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than in the Yu Cheng study, the difference in P300 latency between the exposed group 

and the control group in the Yu Cheng study (Cz = 26.7ms; Pz = 25.2ms) (43) and in the 

present study between PCB
high

 and PCB
low

 (Cz = 25.6ms; Pz = 22.0ms) are equal within 

the measurement error. In the Lake Michigan cohort at 11 years of age (11), an American 

cohort in which neurodevelopmental effects of perinatal exposure to environmental levels 

of PCBs are addressed, the magnitude of effects of prenatal exposure to PCBs on IQ was 

also comparable to the difference seen in exposed and nonexposed children in the Yu 

Cheng study. 

In contrast to the Yu Cheng study, in the present study, the P300 amplitude was not 

statistically different for the two exposure groups. The latency of the P300 is considered 

to be an indicator of the neural activity underlying the processes of attention allocation 

and immediate memory (19) and a measure of stimulus classification speed (23, 24). The 

amplitude of the P300 is assumed to reflect the quality with which incoming information is 

processed when it is incorporated into its memory representations and the context in which 

the stimulus occurs (19). The amplitude is, amongst others, considered to be related to the 

discrepancy between the expected and actual stimulus properties, whereas the latency 

reflects the duration of the stimulus-evaluation process. Specific neuropathological states 

and their cognitive deficits seem to be more often related to prolonged latency of P300 

(26, 28, 48-50), whereas decrements in P300 amplitude are more often associated with the 

presence of psychiatric disorders such as, schizophrenia (51, 52), and depression (34, 53, 

54). We hypothesize that the difference in the observed effects of prenatal exposure to 

PCBs on the P300 amplitude in the Yu Cheng cohort and in the Dutch PCB/dioxin may 

reflect differences in exposure levels and mixture content or subtle differences in the 

assessment of the P300. 

Correlation analysis of the P300 outcome variables and neuropsychological outcome 

variables that were assessed during the same follow-up session (i.e. the Rey Complex 

Figure Task, the Auditory-Verbal Learning Test, Simple Reaction Time Task, and the Tower 

of London (personal communication)), showed no statistical significant interrelationships. 

ERPs however, are believed to measure only a fraction of the neural activity associated 

with stimulus processing and do not measure the more elaborated neuronal processes of 

cognitive processes (55). 

The effect of a longer duration of BF on the P300 latency may suggest positive 

effects of brain development stimulating substances in breast milk, such as long-chain 

polyunsaturated fatty acids. The brain is 60 % structural lipid and uses arachidonic acid 

and docosahexaedonic acid, which are deposited in the nonmyelin membranes of the 

developing nervous system and are believed to be essential for CNS growth, function and 

integrity (56, 57). These acids were not available for FF children, and children who were 

BF for a shorter period may have received smaller amounts of these compounds than 

children that were BF for a longer period. These results do illustrate the complexity of 
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risk assessment of exposure to environmental persistent compounds, especially in regard 

to breast-feeding. Assessment of more specific cognitive functions may help to refine our 

knowledge into neurotoxic effects of exposure to PCBs and dioxins on different stages in 

development. 

In the present study, we compared groups of low and high prenatally exposed children, 

based on maternal ΣPCB levels. The levels of both dioxin TEQs and nondioxin-like PCBs are 

highly correlated with maternal ΣPCB levels (58) and were consequently also significantly 

different in these exposure groups. In the environment, PCBs, their metabolites and related 

compounds such as dioxins are present as complex mixtures of various congeners that 

may vary in metabolism and toxicity. Hence, specific effects of either group of compounds 

are methodological difficult to detect. We, therefore, believe that the difference in outcome 

between the low and high exposure group could be related to differences in exposure 

levels of other PCB congeners, dioxins, and related compounds and their metabolites. 

The results of this study suggest a negative effect of prenatal exposure to environmental 

levels of PCBs and dioxins on the P300 latency in a cohort of normal 9-year-old children. 

Prenatal exposure to PCBs and dioxins are suggested to slow down CNS mechanisms that 

evaluate and process relevant stimuli. No evidence for effects of postnatal exposure to PCBs 

and dioxins through lactation on the P300 was seen. Moreover, an accelerating effect of a 

longer duration of breast-feeding on P300 latencies was found. These results may indicate 

that at the time of this study, the Dutch PCB and dioxin levels in pregnant women were 

high enough to make neurophysiological effects noticeable in their children at school age. 

Breast-feeding for a long duration has a positive effect on the P300 and should therefore 

not be discouraged considering the Dutch PCB and dioxin levels in breast milk.
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8.1 Summary

PCBs and dioxins are lipophilic and bioaccumulating environmental pollutants. These 

compounds are able to cross the placenta and are excreted into mother’s milk. Animal 

studies have shown complex neurotoxic properties of PCBs and dioxins, particularly in 

regard to the developing brain. In humans, prenatal exposure to high levels of PCBs and 

PCDFs has been associated with neurodevelopmental delays in children born after the 

Yu Cheng accident (1-3). In the past two decades several cohort studies have studied 

whether perinatal exposure to environmental levels to PCBs and dioxins may cause 

neurodevelopmental decrements (4-11). The results of these epidemiological studies are 

not conclusive and only a few cohort studies have addressed effects of perinatal exposure 

to PCBs on later and more specific neurodevelopmental aspects. 

In this thesis, relations are described between perinatal exposure to environmental levels 

of PCBs and dioxins and several neurodevelopmental outcomes in school age children 

that are enrolled in the Dutch PCB/dioxin study. This study was performed in the scope 

of the Dutch PCB/dioxin study that was initiated in 1989. Healthy mother-infant pairs were 

recruited by two study centers, Rotterdam (n=207) and Groningen (n=211). At school age 

(6/7 years of age), all children enrolled in the Dutch PCB/dioxin study were invited to 

participate in a follow-up study, in which (general) cognitive and motor abilities were 

assessed. Moreover, in the Rotterdam cohort, play behavior was assessed as part of the 

school age follow-up and at 9 years of age, neuropsychological and neurophysiological 

outcomes were assessed in half of the Rotterdam cohort. 

In Chapter 1 a general introduction on PCBs and dioxins and their neurotoxic properties 

is presented as well as an overview of the results of the main epidemiological studies 

that address neurodevelopmental effects of perinatal exposure to environmental levels of 

PCBs and dioxins, including the Dutch PCB/dioxin study. In the Dutch PCB/dioxin cohort, 

studied from birth up to 42 months of age, prenatal PCB exposure was related to poorer 

neurological condition at birth and 18 months (12, 13), lower psychomotor abilities at 3 

months (8), lower general cognitive abilities and verbal comprehension skills and lower 

attention abilities at 42 months of age (14). At 42 months of age, negative effects of prenatal 

PCB exposure on cognitive abilities were more pronounced in the formula-fed (FF) group 

of children compared to the breast-fed (BF) group. Compared to FF children, BF children 

in the Dutch PCB/dioxin cohort had older mothers, higher educated parents with higher 

verbal IQs and higher scores on the HOME environment questionnaire. Postnatal exposure 

to PCBs and dioxins, through lactation, was related to lower psychomotor abilities at 7 

months of age (8). 

Additionally in Chapter 1 the aims of the studies in this thesis are presented. The general 

aim was to evaluate neurodevelopmental effects of perinatal exposure to environmental 

levels of PCBs and dioxins in normal Dutch children at school age. In addition, the 
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goal was to gain more insight into potential compensating effects of parental and home 

environmental conditions and breast-feeding as well as into neurotoxic mechanisms of 

action of perinatal exposure to these compounds on the developing central nervous system 

(CNS). Finally, the design of the Dutch PCB/dioxin study is described in Chapter 1. 

In the studies in the first part of the thesis (Chapter 2, 3, and 4), relations between 

perinatal exposure to environmental levels of PCBs and dioxins and cognitive and motor 

abilities at school age, and the development of these abilities from 3 to 84 months of age, 

are described. Moreover, modification of neurodevelopmental effects of perinatal exposure 

to PCBs and dioxins by parental and home environmental conditions are explored.

Whether the negative effects of exposure to environmental levels of PCBs and dioxins on 

cognitive abilities persisted until school age was addressed in Chapter 2. Moreover, in this 

study, potential differences of these effects in FF and BF children were explored as well as 

whether these effects were related to differences between these feeding groups in parental 

and home environmental characteristics (i.e. maternal age at birth, parental education level 

and verbal IQ and HOME score). At school age, the Dutch version of the McCarthy Scales 

of Children’s Abilities was used to assess the general cognitive abilities (General Cognitive 

Index), and memory and motor skills in children of the Rotterdam and Groningen cohort 

(n=418). From the original cohort, 90 % (n=376) was willing to participate in this follow-

up (mean age 6.7 years ± 0.3). The data of four children were excluded from the data 

analysis because of potential confounding pathology. Prenatal PCB and dioxin levels were 

comparable for the nonparticipating and participating children. Multiple linear regression 

analysis showed that, adjusted for confounding variables, prenatal exposure to PCBs and 

dioxins was not significantly related to cognitive and motor development at school age. 

Moreover, effects of prenatal exposure on cognitive and motor abilities were not statistically 

different for the two feeding groups. However, it appeared that effects of prenatal exposure 

to PCBs and dioxins on cognitive and motor abilities were modified by parental and home 

environmental conditions (i.e. maternal age, parental education level and verbal IQ, and 

HOME score). In the Dutch cohort, these parental and home environmental conditions 

are strongly related to each other. Older maternal age is related to a higher parental 

education level and verbal IQ and higher scores on the HOME questionnaire, conditions 

that are considered to be relatively more favorable to child development. The impact 

of negative effects of prenatal exposure to PCBs and dioxins on cognitive and motor 

abilities was suggested to increase as parental and home environmental conditions were 

lower. In children raised in relatively more favorable parental and home environmental 

conditions, subtle effects of prenatal exposure to PCBs and dioxins were not detectable. 

Effect modifications of PCB and dioxin exposure by maternal age, parental education level 

and verbal IQ, and HOME scores could not be explored simultaneously in one regression 

analysis due to the problem of multicollinearity. The results did not show evidence of 

negative effects of lactational exposure to PCBs and dioxins on cognitive and motor 
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outcome, neither of effect modification of lactational exposure by parental and home 

environmental characteristics. We concluded that neurotoxic effects of prenatal exposure 

to environmental levels of PCBs and dioxins may persist into school age and may result 

in subtle cognitive and motor delays. The results of this study suggest that parental and 

home environmental conditions influence the consequences of the neurotoxic effects on 

cognitive and motor development.

A disadvantage of studying relations between perinatal exposure to PCBs and dioxins 

and cognitive and motor abilities at a certain age is that the developmental course of 

these abilities is not captured. Therefore, in Chapter 3 effects of perinatal exposure to 

PCBs, measured in maternal plasma, on the development of cognitive and motor abilities, 

as assessed in the Rotterdam cohort at 3, 7, 18, 42 and 84 months of age, are described 

using the method of random regression modeling (RRM). Moreover, important predictors 

of general cognitive and motor development from 3 to 84 months of age were identified in 

this study. Data on cognitive and motor abilities were available for all analyzable children 

(excluding children with potential confounding pathology, n=3). In the initial RRM models, 

all selected variables of potential relevance to cognitive and motor development were 

included. In these models, higher levels of prenatal PCB exposure were significantly related 

to a lower level of lower cognitive and motor development from 3 to 84 months of age. In 

this study, the problem of multicollinearity, when including the four previously described 

interaction variables of prenatal PCB exposure and parental and home environmental 

variables simultaneously in the regression model, was solved by centering these variables 

as well as their main terms. Simultaneous inclusion of these variables showed that effects 

of prenatal exposure to PCBs on the level of cognitive development were significantly 

modified by maternal age, overruling effect modification by the other parental and 

home environmental conditions. In children born to younger mothers, effects of prenatal 

exposure to PCBs on cognitive development were suggested to be more pronounced 

than in children born to older mothers, a condition that is likely to reflect more favorable 

parental and home environmental conditions for child development. Prenatal PCB levels, 

and its modification by maternal age, along with parental education level and verbal IQ and 

HOME scores were important determinants of the level of cognitive development. Motor 

development was efficiently estimated by prenatal PCB levels including its modification 

by HOME scores along with parental education levels. Effects of prenatal PCB exposure 

on motor development were more pronounced when the HOME scores were lower. 

The results provided no evidence of negative effects of lactational exposure to PCBs on 

cognitive or motor development and neither were maternal (i.e. prenatal) thyroid hormone 

levels related to these outcomes. 

These results provided evidence of negative effects of prenatal exposure to PCBs on the 

level of cognitive and motor development, effects that may be modified by conditions that 

are important to child development. Compared to the large positive effects of more optimal 
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parental and home environmental conditions, the negative effects of prenatal PCB exposure 

on cognitive development from 3 to 84 months of age were relatively small. Effects of 

prenatal exposure were more pronounced for motor than for cognitive development. Motor 

development may therefore be a more sensitive outcome to detect effects of prenatal 

exposure to PCBs and related compounds than cognitive development. 

Due to the low secretion rate of PCBs and dioxins and their accumulation in human 

tissues, prenatal PCB and dioxin levels are strongly related to maternal age at birth. This 

feature makes maternal age a very complex variable when studying neurodevelopmental 

effects of prenatal PCB and dioxin exposure since, as is described previously, it is also 

positively related with parental education levels and verbal IQs as well as with HOME 

scores. In an effort to disentangle these interrelationships of prenatal exposure levels, 

parental and home environmental conditions and cognitive and motor development, we 

applied the method of structural equation modeling (SEM). This method enables more 

proper modeling of these variables and the use of multiple outcome variables. In Chapter 

4, the results of SEM on the Rotterdam data are described. First, the interrelationships 

of parental education level and verbal IQ and HOME scores and cognitive and motor 

development were identified. Subsequently, four groups were composed by dichotomizing 

the population at the median of maternal ΣPCB levels (2.04 μg/L) and at the median of 

maternal age (29 years of age) (PCB
low

/M
young

; PCB
low

/M
old

; PCB
high

/M
young

; PCB
low

/M
old

). 

These groups were compared on both the level and interrelationships of the outcome and 

the determinants. The four groups were significantly different in the level of both cognitive/

motor outcome and determinants, as well as in the relations between determinants and 

cognitive outcome (and indirectly motor outcome). Prenatal PCB exposure was suggested 

to be related with larger decrements in cognitive and motor abilities in children raised in 

relatively low parental and home environmental conditions compared to children in which 

these conditions were more favorable. For early cognitive and motor development (from 3 

to 18 months of age), this difference in effect of prenatal PCB exposure was suggested to be 

more pronounced in children born to older mothers, whereas for later cognitive and motor 

development (42 to 84 months of age) the difference was more pronounced in children 

born to younger mothers. This study provides evidence of complex effects of maternal age 

and other parental and home environmental conditions on the neurotoxic mechanism of 

PCBs and related neurotoxic compounds and serves as an initial effort to disentangle these 

mechanisms to increase the knowledge in risk assessment of prenatal exposure to PCBs 

and dioxins. 

In the second part of the thesis, effects of perinatal exposure on more specific 

neurodevelopmental aspects are described. PCBs and dioxins are known to have sex 

steroid hormone modulating properties. Steroid hormones play a mediating role in brain 

development and may influence not only reproductive but also nonreproductive behaviors 

that show sex differences, such as childhood play behavior. In Chapter 5, (sex-specific) 
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effects of perinatal exposure to PCBs and dioxins on child play behavior are described. 

As part of the first follow-up study at school age, play behavior was assessed by means 

of the Pre-School Activity Inventory (PSAI) in the Rotterdam cohort. The PSAI assesses 

masculine and feminine play behavior scored on three subscales: Masculine, Feminine, and 

Composite. One hundred and sixty PSAI questionnaires were returned (mean age ± SD: 7.5 

years ±0.4). Higher prenatal PCB levels were related with less masculinized play behavior 

in boys and with more masculinized play behavior in girls. Higher prenatal dioxin levels, 

available for BF children, were associated with more feminized play in boys as well as in 

girls, assessed by the Feminine scale. There was no evidence that lactational exposure to 

PCBs and dioxins was related to play behavior in the total BF group and neither in boys 

and girls separately. The results are suggestive of steroid hormone involvement in the 

neurotoxic mechanism of action of prenatal exposure to environmental levels of PCBs and 

dioxins.

Half of the Rotterdam cohort, the lowest prenatally exposed (p25; n=26) and the 

highest prenatally exposed children (p75; n=26) of both feeding groups (total n=104) 

were invited to participate in neuropsychological (see Chapter 6) and neurophysiological 

(see Chapter 7) assessments at 9 years of age. From the invited children 80% (n=83) was 

willing to participate in this follow-up study (mean age±SD: 9.2±0.2). Exposure levels of the 

participating and nonparticipating children were comparable.

Chapter 6 describes relations between perinatal exposure of PCBs and dioxins and 

several neuropsychological functions. The assessment included the Rey Complex Figure 

Task, the Auditory-Verbal Learning Test, the Simple Reaction Time Task, and the Tower 

of London. Prenatally high exposed children had, adjusted for confounding variables, 

longer reaction times and more variation in their reaction times, and lower scores on the 

Tower of London (TOL) than prenatally low exposed children. On the latter task, assessing 

predominantly executive or planning functions, in contrast to the other tasks, children that 

were BF for a long period (≥17 weeks) scored significantly lower than FF children. The 

results of this study are suggestive of multi-focal or diffuse neurotoxic effects of prenatal 

exposure to PCBs and related compounds. For lactational exposure, the negative effect on 

the TOL scores may suggest that processes related to the prefrontal cortex are involved 

in the neurotoxic mechanism of exposure to PCBs and related compounds. This can be 

hypothesized since the frontal cortex shows a delayed maturation rate compared to other 

brain regions and developing brain structures are more vulnerable to exposure to PCBs 

and dioxins. A complex task as the TOL may also serve as a sensitive outcome parameter 

to assess neurotoxic effects of early exposure to PCBs and related compounds. 

Chapter 7 describes relations between perinatal exposure to PCBs and dioxins and a 

neurophysiological measurement, the auditory P300 latency and amplitude. The P300 is 

considered to be a cognitive component of event-related brain potentials and occurs with 

a latency of about 300 milliseconds when a person is actively processing (‘attending to’) 
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incoming stimuli. Prenatally high exposed children had significantly longer P300 latencies 

than prenatally low exposed children, adjusted for confounding variables. The results 

gave no evidence of differences in P300 latencies related to lactational exposure to PCBs 

and dioxins. In stead, a longer duration of breast-feeding (≥16 weeks) was associated 

with shorter P300 latencies compared to children that were BF for 6-16 weeks as well as 

compared to FF children. No differences in P300 amplitudes were seen relative to prenatal 

or postnatal exposure to PCBs and dioxins, or to the duration of breast-feeding. These 

results suggest that prenatal exposure to PCBs and dioxins delays CNS mechanisms that 

evaluate and process relevant stimuli at school age, whereas breast-feeding accelerates 

these mechanisms.

8.2 General discussion

8.2.1 Neurotoxic mechanisms of neurodevelopmental effects of perinatal exposure to PCBs and dioxins 

Prenatal exposure to PCBs and dioxins can be regarded as chronic exposure of the 

developing CNS and many processes of the CNS are likely to be sensitive to exposure to 

PCBs and dioxins, including neuronal and glial cells, neurotransmitters, and endocrine 

systems (15-18). Consequently, effects of prenatal exposure to PCBs and dioxins are 

likely to be of multi-focal or diffuse nature. The results the Dutch PCB/dioxin study and 

other prospective human PCB studies suggest effects of prenatal exposure to PCBs on 

several neurodevelopmental outcome variables, including general cognitive and motor 

development (5-8, 11, 19-21), verbal comprehension skills (5, 6), processing speed (4, 

22), attention and concentration (5, 14, 22), memory skills (19, 23), planning or executive 

functions (22), and on a neurophysiological endpoint that assesses processing and 

evaluation of auditory stimuli (24). In the neuropsychological study described in this thesis, 

scores on some tests were not related to perinatal exposure to PCBs and dioxins. This may 

reflect differences in sensitivity of neuropsychological tests to measure subtle neurotoxic 

effects of perinatal exposure to neurotoxic compounds. The difference in sensitivity in a 

relatively small cohort may affect the power to detect effects and may, therefore, result in 

missing effects of perinatal exposure to PCBs and dioxins (increasing Type II errors). 

Postnatally, maturation of different areas in the brain occurs at different rates. The frontal 

cortex shows the slowest maturation rate. Since developing CNS structures are known to be 

especially vulnerable to adverse effects of exposure to PCBs and dioxins, structure related 

effects of lactational exposure can be hypothesized. Some evidence in support of this 

hypothesis can be found in the finding that performance on the TOL was the only outcome 

that was suggested to be related to lactational exposure to PCBs. In planning or executive 

functions, processes of the prefrontal cortex are especially involved, in which higher 

cortical functions from several areas of the brains are integrated. In monkeys that were only 
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exposed to PCBs through lactation, PCB-induced behavioral deficits were also suggestive 

of prefrontal cortex involvement (25). Moreover, brain dopaminergic systems have been 

shown to be affected (26, 27) by exposure to PCBs and some major dopaminergic pathways 

are known to serve the prefrontal cortex (28). 

Another important aspect of neurotoxic effects of prenatal exposure to PCBs and dioxins 

described in this thesis is that the neurodevelopmental consequences of neurotoxic actions 

of prenatal exposure to environmental levels of PCBs and dioxins may be influenced by 

parental and home environmental conditions. In these studies, the neurodevelopmental 

outcomes were global measurements of cognitive and motor abilities that are relatively 

strongly related to parental and home environmental conditions. The results are suggestive 

of compensation of negative effects of perinatal exposure on cognitive and motor 

development in children raised in more favorable parental and home environmental 

conditions or of cumulative deficits in children raised in less favorable conditions. These 

results may be in line with animal studies that show a positive impact of an enriched 

environment on the effects of brain lesions (29-31) and with some human studies addressing 

effects of perinatal exposure to lead and methyl mercury (32, 33) and the outcome in very 

low birth weight children (34-36). 

Neurotoxic effects of perinatal exposure to PCBs and dioxins may be mediated by 

hormone-disrupting properties of PCBs and dioxins, for example in regard to steroid and 

thyroid hormone systems. The (sex-specific) effects of perinatal exposure to PCBs and 

dioxins on childhood play behavior suggest mediation of behavioral effects of prenatal 

PCB and dioxin exposure by the sex-steroid hormone system. However, evaluation of the 

relation between prenatal steroid hormone status and PCB and dioxin exposure is needed 

to further confirm these findings. In this cohort, maternal and infant thyroid hormone levels 

were related to maternal levels of PCBs and dioxins. Prenatal alterations in prenatal thyroid 

hormone levels may cause long-lasting neurodevelopmental deficits (37, 38). However, 

in this study, maternal thyroid hormone status was not statistically related to the level of 

cognitive and motor development from 3 to 84 month of age. The presently used analyses, 

therefore, do not provide evidence that prenatal thyroid hormone status is the one of the 

key mechanisms in the neurotoxic effects of prenatal exposure to PCBs and dioxins on 

general cognitive and motor development. 

Animal studies show differences in neurotoxic effects of nonplanar PCBs and dioxins 

and dioxin-like PCBs (18, 39). Humans are exposed to complex mixtures of PCBs and 

dioxins and their related compounds such as hydroxilated PCBs. Not finding associations 

between outcome variables and dioxin toxic equivalents (TEQs) or total TEQs may suggest 

that neurotoxic effects of PCBs and dioxins were not mediated by the Ah receptor, as is 

in line with animal studies that report more pronounced neurotoxic actions of nonortho 

substituted PCB congeners than of dioxins and dioxin-like PCBs. The studies presented in 

this thesis, show more pronounced effects on general cognitive and motor abilities of the 
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four nonplanar PCBs (IUPAC nos. 118, 138, 153, and 180) as assessed in plasma compared 

to the dioxin TEQs and total TEQs assessed in breast milk. However, based on these results 

we believe that we cannot differentiate effects of different types of congeners, since the 

levels of different types of congeners were strongly related (40). Moreover, dioxins as 

well as a more elaborate number of PCB congeners were assessed in breast milk that was 

available for only half of the cohort. Analyses in this subpopulation may have increased the 

risk of Type II errors, which may consequently increase the risk of missing associations. 

However, in regard to play behavior some evidence of different neurotoxic effects of PCBs 

and dioxins can be hypothesized. Prenatal exposure to the sum of the four nonplanar 

PCBs was suggested to be related with opposite effects in boys and girls on masculine play 

behavior, whereas higher levels of prenatal exposure to dioxins, expressed in TEQs, were 

related to more feminized play behavior in both boys and girls.

In conclusion, the mechanisms of neurotoxic effects of prenatal exposure to PCBs 

and dioxins may include multi-focal, or diffuse, neurodevelopmental impairments. Due 

to differences in the maturation of the CNS, lactational exposure may be related to more 

focal effects, in which processes related to the prefrontal cortex are suggested to be 

involved. Neurotoxic effects on neurodevelopmental outcome that is more strongly related 

to parental and home environmental conditions may be modified by these conditions. 

Moreover, steroid hormones are suggested to be involved in the neurotoxic mechanism of 

effects of prenatal exposure to PCBs on a sex-specific nonreproductive behavior. 

8.2.2 Is breast-feeding still safe in the Netherlands?

Although BF children are exposed to relatively large amounts of PCBs and dioxins, negative 

effects of lactational exposure to PCB and dioxins are only suggested on the scores on the 

TOL. The results of this study, therefore, may indicate that effects of prenatal exposure 

to PCBs and dioxins are more pronounced than effects of exposure to PCBs and dioxins 

through lactation. This is in agreement with most of the human studies that address perinatal 

exposure to environmental levels of PCBs and dioxins (5, 20, 21, 23). Only two studies have 

described negative effects of lactational exposure on scores on these developmental tests. 

Lactational exposure to PCBs and dioxins was related to lower psychomotor abilities at 7 

months of age (8) in the Dutch study and to lower general cognitive abilities at 42 months 

of age in the German cohort (7). 

However, there are some methodological aspects that should be considered in risk 

assessment studies that address neurodevelopmental effects of lactational exposure to 

PCBs and dioxins, especially in Western societies. Based on the studies described in this 

thesis it can be hypothesized that negative effects of lactational exposure may, similarly 

to effects of prenatal exposure, be counteracted or masked by optimal parental and home 

environmental conditions. In The Netherlands, comparable to most Western societies, 
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the parents’ choice for breast-feeding their child generally reflects also differences in 

for example levels of parental and home environmental conditions. Studies that explore 

subtle negative effects of lactational exposure to PCBs and dioxins may therefore benefit 

from more advanced modeling techniques in which the interrelationships of these 

neurodevelopmental determinants and exposure can be more properly modeled. 

Moreover, more insight is needed into potential positive effects of breast-feeding, such 

as the effects of brain stimulating substances that are provided by breast milk and not by 

formula milk. The design and aims of the studies described in this thesis are not adequate to 

address this aspect of breast-feeding. However, the results of the neurophysiological study 

presented in this thesis may suggest positive effects of a longer duration of breast-feeding 

in which potentially brain stimulating effects of substances in breast milk are involved.

Animal studies show evidence of profound neurodevelopmental effects in monkeys that 

were only exposed to low levels of PCBs and dioxins through lactation (25, 41-43). These 

results indicate the potential for neurodevelopmental effects of lactational exposure to PCBs 

and dioxins in humans. Moreover, these behavioral deficits in animals were suggestive of 

prefrontal cortex involvement. Since structure related effects of lactational exposure can be 

hypothesized considering maturation differences of brain structures, risk assessment studies 

that address lactational exposure should include a more elaborate neuropsychologal test 

battery and larger study populations in which children were breast-fed for longer durations 

than in the Dutch cohort (median of breast-feeding duration 17 weeks) than in the 

neuropsychological study that is described in this thesis. This may increase the knowledge 

of neurotoxic effects of lactational exposure as well as help to differentiate effects of 

prenatal and lactational exposure to PCBs and dioxins.

 In conclusion, although infants are exposed to relatively large amounts of PCBs 

and dioxins through lactation, neurodevelopmental effects of prenatal exposure to 

environmental levels of PCBs and dioxins were generally more pronounced. However, 

subtle effects of postnatal exposure to PCBs and dioxins were suggested on one of the 

neurodevelopmental outcome variables that were explored in this study. On the other 

hand, the results of the neurophysiological study presented in this thesis may suggest 

positive effects of a longer duration of breast-feeding in which potentially brain stimulating 

effects of substances in breast milk are involved. These results do not warrant restrictions 

on breast-feeding or reductions of the period of breast-feeding in the Western societies. 

Neurodevelopmental effects of lactational exposure to PCBs and dioxins and effects 

of breast milk brain stimulating substances should be studied more thoroughly, using 

advanced modeling techniques in addition to addressing specific cognitive domains in 

larger cohorts as well as animal research.
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8.2.3 Magnitude of estimated neurodevelopmental effects

The magnitude of neurodevelopmental effects that were associated with PCBs and dioxin 

exposure is relatively small in the Dutch cohort, and is not likely to be clinically relevant 

to the individual child. The level of cognitive development from 3 to 84 months of age, for 

example in children born to younger mothers, was approximately 3 points lower in high 

prenatally exposed children (75 % equivalent) compared to their low exposed counterparts 

(25 % equivalent). 

The results presented in this thesis suggest that under less favorable parental and home 

environmental conditions the magnitude of cognitive and motor decrements may be larger. 

The Dutch cohort consists of families that were willing to participate for at least 7 years 

in this study, at a voluntary basis. Parental and home environmental characteristics of this 

group are therefore likely to be more advantaged than in the average Dutch population or 

in populations in which educational possibilities or potential for cognitive stimulation are 

limited. 

When considering these subtle effects in a large population, a lower average IQ shifts the 

distribution and increases the number of individuals who can be classified as retarded (IQ 

<85). Additionally, it decreases the number of gifted and exceptionally gifted individuals 

(IQ >130). For example, if the average IQ is shifted by 5 points (in a normal distribution 

with a mean of 100 and a standard deviation of 15) the number of children that score below 

70 increases by a factor 2 (44). 

Concluding, neurodevelopmental effects of perinatal exposure to PCBs and dioxins 

are detectable in a cohort of normal children. The magnitude of the effects is relatively 

small and not likely to be clinically relevant to the individual child. The magnitude of 

neurodevelopmental effects may be somewhat larger in populations in which conditions 

for child development are less favorable. For the whole society, however, these subtle 

decrements may have long-term consequences.

8.3 Future perspectives

The studies in this thesis as well as the results of other epidemiologic PCB studies draw 

attention to a number of important aspects that should be considered in this type of 

prospective follow-up risk assessment studies that address effects of perinatal exposure to 

PCBs and dioxins on neurodevelopmental outcome.

First, the results of these studies may illustrate the importance of paying attention to 

nonrandom attrition of the subjects of the original cohort. In the follow-up at school age, 

10 % of the original cohort was lost to follow-up. Although exposure levels were not 

statistically different between participating and nonparticipating children, the latter group 

was significantly more FF, BF for shorter periods, and maternal age, parental education 
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levels and verbal IQ’s were significantly lower in this lost to follow-up group. Since effects 

of prenatal exposure to PCBs and dioxins were suggested to be modified by parental and 

home environmental conditions, this is an important change in the study population. At 

preschool age, negative effects of prenatal PCB exposure on cognitive development were 

seen in the total cohort, whereas at school age significant negative effects were only seen 

when parental and home characteristics were less optimal. The higher mean levels of 

these background variables in the population at school age might explain that no effect 

of prenatal PCB exposure is seen in the total cohort, adjusting for the mean population 

levels of the confounders. Therefore, changes in the distribution of these variables in 

a cohort are a point of great attention in prospective follow-up studies that address 

neurodevelopmental risks of perinatal exposure to PCBs and dioxins, since it may cause 

missing neurodevelopmental effects in older children. 

Secondly, the choice of neurodevelopmental outcomes to detect harmful effects of 

prenatal and lactational exposure to PCBs and dioxins should be dealt with great care 

in risk assessment studies. For example, general cognitive abilities, as measured with 

developmental tests, may not be the most sensitive outcome to detect neurotoxic effects 

of lactational exposure to PCBs and dioxins since this outcome is particularly sensitive to 

parental and home environmental conditions. The process of learning or more specific 

neuropsychological functions as well as motor development, developmental aspects 

that are to a smaller extent related to these conditions, may therefore be more sensitive 

outcomes in risk assessment studies addressing subtle effects of lactational exposure to 

neurotoxicants than the scores on developmental tests. Moreover, outcomes such as 

specific neuropsychological domains and neurophysiological assessments may be more 

sensitive to differentiate effects of prenatal and lactational exposure to PCBs and dioxins 

than more global measurements of cognitive functioning. 

Thirdly, due to the complex interrelationships of various neurodevelopmental 

determinants and maternal PCB and dioxin levels, risk assessment studies may benefit 

from using sophisticated statistical modeling techniques. Moreover, these analyses make it 

possible to address the developmental course of functions.

Forth, due to differences in eating habits or area differences in environmental PCB and 

dioxin mixtures, populations world wide are not exposed to similar mixtures of PCBs and 

dioxin. For example, one of the more recently recruited PCB cohorts (the Oswego Study) 

has reported that the cord blood of women that consumed Lake Ontario fish contained 

a significantly higher proportion of the most heavily chlorinated PCBs relative to nonfish 

eaters. Levels of PCBs of lighter chlorination as well as the total PCB levels were similar 

in these groups (45). Moreover, the cord blood levels of the highly chlorinated PCBs 

correlated more strongly with breast milk PCB levels than lower chlorinated PCBs. The 

results of the neurodevelopmental analyses in this cohort, in children from birth to 12 

months of age, showed some evidence of more pronounced neurodevelopmental effects 
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of exposure to the higher chlorinated PCBs (46). The initial findings of this study as well as 

the results of laboratory studies therefore suggest that risk assessment studies may benefit 

from addressing more thoroughly the effects of different types of congeners that children 

are exposed to.

Figure 8.1 Temporal trends of levels of PCDD/PCDF in human milk (48).

Fifth, environmental levels of PCBs and dioxins are generally declining, due to worldwide 

control of sources, regulations of disposal practices, elimination of production, and natural 

attenuation. In The Netherlands, efforts to minimize dioxin emissions, as were performed 

from the late 1980s, clearly show decreasing levels of PCBs and dioxins in food in the past 

10 years (47). In breast milk, dioxin levels even decreased up to 50 % during the past decade 

(47, 48) (see Figure 8.1). Children, however, are perinatally exposed to a large number of 

other potentially neurotoxic persistent environmental pollutants such as heavy metals, 

pesticides and insecticides, flame retardants, cleansers. For example, although breast milk 

levels of PCBs and dioxins have decreased over the past years, an increase is seen in the 

levels of another group of persistent organic pollutants, polybrominated diphenyl ethers 

(PBDEs) (49). PBDEs are used as flame-retardants and are presently applied throughout the 

world. The chemical structure of the PBDEs resembles the structure of PCBs and dioxins 

and their neurotoxic properties have been recently recognized (50). Furthermore, of the 

over 80.000 chemicals that are used in commerce and industry, only a small proportion 

has undergone testing for developmental toxicity. PCBs and dioxins are among the few 

contaminants that underwent extensive research to explore their neurotoxic properties and 

neurodevelopmental consequences for humans exposed to environmental levels of these 

compounds. The subtle neurodevelopmental decrements described in the prospective 

follow-up studies in healthy born children that were perinatally exposed to relatively low 

levels of PCBs and dioxins may be illustrative for the potential risks of exposure to other 

man made neurotoxic compounds.
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8.4 Conclusions

The studies in this thesis suggest that prenatal exposure to environmental levels of PCBs 

and dioxins and related compounds can be related with negative neurodevelopmental 

effects in children at school age. Subtle effects of prenatal exposure to PCBs and dioxins 

were seen on general cognitive and motor development, memory skills, reaction time and 

variation in reaction time, TOL score, P300 latency and play behavior. The magnitude of 

the effects on general cognitive and motor development may be larger when parental 

and home environmental conditions are not optimal for child development. Negative 

neurodevelopmental effects of lactational exposure to PCBs and dioxins were less 

pronounced than effects of prenatal exposure to PCBs and dioxins. However, subtle 

negative effects of lactational exposure to PCBs were suggested on planning abilities or 

executive functioning. Given the results of the neurophysiological study presented in this 

thesis that suggest positive effects of a longer duration of breast-feeding in addition to the 

decline in contamination of breast milk with PCBs and dioxins, we conclude that the results 

of these studies do not warrant restrictions on breast-feeding or reductions in the period 

of breast-feeding in The Netherlands. Risk assessment studies may benefit from addressing 

the development of cognitive and motor abilities as well as from statistical techniques that 

allow more proper modeling of the predictors of neurodevelopmental outcome in studying 

effects of perinatal exposure to PCBs and dioxins. Additionally, specific neurodevelopmental 

outcomes may be particularly sensitive tools to detect neurotoxic effects of perinatal 

exposure to PCBs and dioxins and may increase the knowledge into neurotoxic effects 

of exposure as well as serve to differentiate effects of prenatal and lactational exposure 

to PCBs and dioxins. Generally, the results of this study emphasize efforts to reduce 

environmental levels of PCBs and dioxins and related compounds, to reduce maternal 

body burdens of PCBs and dioxins. The results of this study may be illustrative of potential 

neurodevelopmental risks of developmental exposure to various other neurotoxic agents. 

These environmental contaminants deserve serious consideration since ‘The ultimate 

pollution is the chemical contamination of the brain, mind and intelligence (51)’. 
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Samenvatting

Dit proefschrift beschrijft resultaten van het Nederlandse PCB/dioxine onderzoek. Het 

Nederlandse PCB/dioxine onderzoek is een prospectieve follow-up studie bij kinderen 

die borstvoeding hebben gekregen en bij kinderen die zijn flesgevoed. In dit onderzoek 

worden de mogelijke schadelijke effecten van prenatale blootstelling aan PCB’s en dioxinen 

en ook blootstelling aan deze stoffen door borstvoeding op de ontwikkeling van het kind 

geëvalueerd. 

PCB’s (polychloorbiphenylen) en dioxinen (PCDDs en PCDFs respectievelijk polychloor-

dibenzo-p-dioxinen en polychloor-dibenzo-furanen) zijn (neuro)toxische stoffen die 

wereldwijd in het milieu worden aangetroffen als gevolg van milieuverontreiniging. 

Doordat deze stoffen zich ophopen in het vetweefsel en slechts langzaam daaruit kunnen 

worden verwijderd, accumuleren zij in de voedselketen. De voornaamste blootstellingsbron 

(90 %) voor de mens is dan ook voedsel van dierlijke oorsprong zoals zuivelproducten, vis 

en vlees. PCB’s en dioxinen worden via de vetfractie van het bloed getransporteerd in het 

lichaam en daardoor kan ook de foetus blootgesteld worden aan deze stoffen. Bovendien 

worden deze stoffen uitgescheiden in moedermelk waardoor het jonge kind aan relatief 

hoge niveaus van PCB’s en dioxinen kan worden blootgesteld. 

Dieronderzoek heeft aangetoond dat blootstelling aan PCB’s en dioxinen kan resulteren 

in een complex scala aan neurotoxische effecten, vooral als het zich nog ontwikkelende 

centraal zenuwstelsel (CZS) wordt blootgesteld aan deze stoffen. Bij een groep kinderen, 

waarvan de moeders blootgesteld waren aan hoge concentraties van PCB’s en dioxinen, 

bleek dat prenatale blootstelling aan PCB’s en dioxinen ontwikkelingsachterstanden kan 

veroorzaken. De afgelopen 20 jaar is in een aantal cohorten onderzocht of perinatale 

blootstelling (prenatale blootstelling en blootstelling door borstvoeding) aan lagere niveaus 

van PCB’s en dioxinen zoals deze bij mensen in geïndustrialiseerde landen voorkomen 

(achtergrondniveaus) ook schadelijk kan zijn voor de ontwikkeling van een kind. Eén van 

deze cohort studies is het Nederlands PCB/dioxine onderzoek. In dit onderzoek worden de 

effecten van prenatale blootstelling aan PCB’s en dioxinen en blootstelling via moedermelk 

(postnatale blootstelling) op de groei, gezondheid, de neurologische, cognitieve, en 

motorische ontwikkeling en het gedrag van Nederlandse kinderen geëvalueerd om daarmee 

onder andere te onderzoeken of het geven van borstvoeding nog wel veilig is in Nederland. 

Tussen 1990 en 1992 werd daartoe een cohort van gezond geboren kinderen samengesteld 

door twee studiecentra, in Rotterdam (Sophia Kinderziekenhuis/Erasmus Universiteit te 

Rotterdam) en in Groningen (Rijksuniversiteit te Groningen). Deze klinische studie werd 

gestart in samenwerking met dierexperimentele onderzoekscentra (Landbouw Universiteit 

Wageningen en TNO te Rijswijk) en laboratoria (TNO in Zeist en RIKILT in Wageningen), 

waar de PCB’s en dioxinen in plasma en moedermelk werden geanalyseerd. 
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Het Nederlandse PCB/dioxine cohort bestaat uit 418 gezond geboren kinderen (207 

in Rotterdam, 211 in Groningen) waarvan in elk studiecentrum de helft van de groep 

borstvoeding (BV) heeft gekregen voor tenminste 6 weken en de andere helft werd 

gevoed met flesvoeding (FV) waarin geen meetbare niveaus van PCB’s en dioxinen 

werden aangetroffen. De FV groep vormt hiermee een groep die met name prenataal 

aan PCB’s en dioxinen is blootgesteld. Als maat voor prenatale blootstelling aan PCB’s 

werd de som genomen van de concentraties vier PCB’s (IUPAC nummers 118, 138, 153, 

en 180) die bepaald waren in het bloed van de moeder tijdens de zwangerschap en in het 

navelstrengbloed. In moedermelk, die twee weken na de geboorte werd verzameld, kon 

een groter aantal PCB’s en ook dioxinen worden bepaald. Doordat deze bepalingen in 

moedermelk gedaan zijn kort na de geboorte van het kind geven deze concentraties ook 

een indicatie van de prenatale blootstelling aan PCB’s en dioxinen. Postnatale blootstelling 

aan PCB’s en dioxinen, als gevolg van de borstvoeding, wordt geschat door de PCB en 

dioxine concentraties in moedermelk te vermenigvuldigen met het aantal weken dat een 

kind borstvoeding heeft gehad. 

In het kader van het PCB/dioxine onderzoek zijn verschillende ontwikkelingsparameters 

onderzocht bij kinderen op de leeftijd van 2 weken, 3, 7, 18 en 42 maanden. Ook zijn bij 

deze onderzoeken parameters bepaald die van belang zijn voor de ontwikkeling van het 

kind, zoals ouder- en opvoedingsklimaatfactoren. 

Omdat het CZS zich nog lang na de geboorte blijft ontwikkelen en daarmee meer 

specifieke cognitieve aspecten zich pas op latere leeftijd ontwikkelen, is het van belang om 

te onderzoeken of perinatale blootstelling aan PCB’s en dioxinen ook na de peuterleeftijd 

invloed heeft op de ontwikkeling van een kind. Daarom werden de kinderen van het hele 

Nederlandse PCB/dioxine cohort uitgenodigd om deel te nemen aan een onderzoek toen 

zij 6/7 jaar oud waren. Bovendien werd de helft van het Rotterdamse cohort benaderd om 

te participeren in een neuropsychologisch onderzoek op 9-jarige leeftijd. 

In dit proefschrift worden de resultaten van deze onderzoeken beschreven. De 

onderzoeken zijn met name gericht op de neurotoxische effecten van PCB’s en dioxinen 

die geëvalueerd werden door het bestuderen van potentiële relaties tussen perinatale 

blootstelling aan PCB’s en dioxinen en cognitieve, motorische en neurofysiologische 

uitkomstmaten en ook het speelgedrag. 

In Hoofdstuk 1 wordt een beschrijving gegeven van het brede scala van neurotoxische 

eigenschappen van PCB’s en dioxinen. Uit dieronderzoek blijkt dat PCB’s en dioxinen 

veranderingen kunnen aanbrengen in neuronen, gliacellen, neurotransmitters en ook 

hormoonsystemen. Ook worden in Hoofdstuk 1 de resultaten van de verschillende 

epidemiologische onderzoeken naar neurotoxische effecten van perinatale blootstelling 

aan PCB’s en dioxinen beschreven, inclusief de resultaten van het Nederlandse PCB/

dioxine onderzoek bij kinderen van 2 weken tot 42 maanden. In het Nederlandse PCB/
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dioxine cohort was een hogere prenatale blootstelling aan PCB’s gerelateerd aan een 

minder optimale neurologische conditie op de leeftijd van 2 weken en 18 maanden, aan 

lagere psychomotore vaardigheden op de leeftijd van 3 maanden, en aan lagere globale 

cognitieve vaardigheden en een lager verbaal begrip bij kinderen op de leeftijd van 42 

maanden. Bij het onderzoek op 42 maanden bleek dat bij FV kinderen de negatieve 

effecten van prenatale blootstelling aan PCB’s groter waren dan bij de BV kinderen. De BV 

groep verschilt in veel opzichten van de FV groep kinderen. In vergelijking tot de FV groep, 

heeft de BV groep van het Nederlandse cohort oudere moeders, hoger opgeleide ouders 

met een hoger verbaal IQ en ouders die hoger scoren op de HOME-vragenlijst. De HOME-

vragenlijst brengt de kwaliteit van het opvoedingsklimaat in kaart wat betreft de stimulering 

van de cognitieve en sociaal-emotionele ontwikkeling van het kind. Postnatale blootstelling 

aan PCB’s en dioxinen bleek een negatief effect te hebben op één uitkomstmaat, namelijk 

de psychomotore ontwikkeling op 7 maanden. 

Als laatste wordt in Hoofdstuk 1 de opzet van het Nederlands PCB/dioxine onderzoek 

gepresenteerd en worden de doelstellingen van de onderzoeken in dit proefschrift 

beschreven. Het algemene doel was om ontwikkelingseffecten van perinatale blootstelling 

aan achtergrondniveaus van PCB’s en dioxinen bij kinderen van de schoolleeftijd te 

evalueren. Daarnaast was het doel om meer inzicht te krijgen in mogelijke compenserende 

effecten van ouder- en opvoedingsklimaatfactoren en borstvoeding, en om meer inzicht te 

krijgen in neurotoxische mechanismen van effecten van perinatale blootstelling aan deze 

stoffen gedurende de ontwikkeling van het CZS. 

Het eerste deel van dit proefschrift (Hoofdstuk 2, 3 en 4) beschrijft onderzoeken die 

de relatie evalueren tussen perinatale blootstelling aan PCB’s en dioxinen en cognitieve en 

motorische vaardigheden bij kinderen op de schoolleeftijd en ook op de ontwikkeling van 

deze vaardigheden van 3 maanden tot de schoolleeftijd. Daarnaast werd onderzocht of de 

effecten van PCB’s en dioxinen op de ontwikkeling van het kind beïnvloed werden door 

ouder- en opvoedingsklimaatfactoren (leeftijd van de moeder, opleidingsniveau van de 

ouders, verbaal IQ van de ouders en de score op de HOME-vragenlijst). 

Hoofdstuk 2 beschrijft de relaties tussen perinatale blootstelling aan PCB’s en dioxinen 

en cognitieve en motorische vaardigheden van 6/7 jarige kinderen. De Nederlandse versie 

van de McCarthy Scales of Children’s Abilities werd gebruikt om de globale cognitieve 

ontwikkeling te bepalen (Globale Cognitieve Index, GCI), geheugen en motorische 

vaardigheden werden bepaald met twee andere subschalen van deze test. Van het originele 

cohort van 418 kinderen was 90% (n=376) bereid om mee te doen aan dit onderzoek 

(gemiddelde leeftijd 6.7 jaar ± 0.3 jaar). Multiple lineaire regressie analyses lieten zien 

dat, gecorrigeerd voor covariabelen, prenatale blootstelling aan PCB’s en dioxinen niet 

significant gerelateerd was aan de GCI scores, of aan de scores op de geheugen en 

motorische schalen. Het bleek echter dat de effecten van prenatale blootstelling aan 

PCB’s op deze cognitieve en motorische maten werden gemodificeerd door ouder- en   
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opvoedingsklimaatfactoren (leeftijd van de moeder, opleidingsniveau van de ouders, 

verbaal IQ van de ouders en de score op de HOME-vragenlijst). In het Nederlandse cohort 

zijn deze variabelen sterk aan elkaar gerelateerd. Een oudere leeftijd van de moeder bij 

de geboorte van haar kind is gerelateerd aan een hoger opleidingsniveau en een hoger 

verbaal IQ van de ouders en ook aan hogere scores op de HOME, condities die gezien 

worden als relatief gunstig voor de ontwikkeling van een kind. De impact van negatieve 

effecten van prenatale blootstelling aan PCB’s en dioxinen op de cognitieve en motorische 

variabelen bleek groter te worden naarmate deze ouder- en opvoedingsklimaatfactoren 

minder optimaal waren. Bij kinderen waarbij deze factoren meer optimaal waren, waren 

deze subtiele negatieve effecten niet meetbaar. De resultaten van dit onderzoek wezen niet 

op negatieve effecten van blootstelling door middel van borstvoeding. We concluderen dat 

de neurotoxische effecten van prenatale blootstelling aan achtergrondniveaus van PCB’s 

en dioxinen ook op schoolleeftijd kunnen resulteren in kleine cognitieve en motorische 

achterstanden, met name bij kinderen waarbij de ouder- en opvoedingsklimaatfactoren 

minder optimaal zijn voor hun ontwikkeling. 

Een nadeel van het onderzoeken van de relatie tussen perinatale blootstelling aan 

PCB’s en dioxinen en de cognitieve en motorische vaardigheden op een bepaalde leeftijd 

is dat het ontwikkelingsverloop van deze vaardigheden op verschillende leeftijden niet 

kan worden belicht. Daarom hebben we ook bestudeerd of perinatale blootstelling aan 

PCB’s gerelateerd was aan de ontwikkeling van de globale cognitieve en motorische 

vaardigheden, zoals gemeten in het Rotterdamse cohort op de leeftijd van 3, 7, 18, 42 

en 84 maanden. In Hoofdstuk 3 worden de resultaten van deze Random Regression 

Modeling (RRM) analyses beschreven. Een tweede doel van deze analyse bestond uit het 

identificeren van de belangrijkste voorspellers van de globale cognitieve en motorische 

ontwikkeling van 3 tot 84 maanden. Gegevens over de globale cognitieve en motorische 

scores waren beschikbaar voor alle kinderen van het Rotterdamse cohort. In de eerste 

fase van de analyse werden alle variabelen die mogelijk relevant zijn voor de cognitieve 

en motorische ontwikkeling in de RRM modellen opgenomen. In deze modellen was een 

hogere prenatale PCB-concentratie significant gerelateerd aan een lager niveau van globale 

cognitieve en motorische ontwikkeling van 3 tot 84 maanden. In de tweede fase werden 

de eerder beschreven 4 interactievariabelen van prenatale PCB-blootstelling en ouder- en 

opvoedingsklimaatfactoren tegelijk in het model opgenomen, hetgeen mogelijk was door 

deze interactievariabelen en hun hoofdtermen te centreren. Bij simultane inclusie van deze 

interactievariabelen bleek dat de effecten van prenatale blootstelling aan PCB’s op de 

cognitieve ontwikkeling significant werden gemodificeerd door de leeftijd van de moeder. 

De modificatie van het PCB effect door de leeftijd van de moeder bleek de effect modificatie 

van de andere ouder- en opvoedingsklimaatfactoren te overschaduwen. Bij kinderen met 

jongere moeders bleken de negatieve cognitieve effecten van prenatale blootstelling aan 

PCB’s groter te zijn dan bij kinderen met oudere moeders. Prenatale PCB-concentraties, en 
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de effect modificatie door de leeftijd van de moeder, samen met het opleidingsniveau en 

verbaal IQ van de ouders en de HOME-scores bleken de belangrijkste voorspellers van de 

cognitieve ontwikkeling te zijn. Voor de motorische ontwikkeling waren dat de prenatale 

PCB niveaus en de effect modificatie door de HOME-scores, en het opleidingsniveau van 

de ouders. Bij lagere HOME-scores werden meer uitgesproken negatieve effecten van 

prenatale PCB-blootstelling op de motorische ontwikkeling gevonden. In dit onderzoek 

werden geen negatieve effecten van postnatale blootstelling aan PCB’s en dioxinen door 

middel van borstvoeding op de ontwikkeling aangetoond. Prenatale schildklierhormoon

niveaus, gemeten tijdens de zwangerschap in het bloed van de moeder, waren ook niet 

gerelateerd aan deze ontwikkelingsmaten. 

De resultaten van dit onderzoek suggereren negatieve effecten van prenatale blootstelling 

aan PCB’s op het niveau van de globale cognitieve en motorische ontwikkeling. Deze 

negatieve effecten kunnen mogelijk worden beïnvloed door ouder- en opvoedingsklim

aatcondities die van invloed zijn op de ontwikkeling van het kind. Vergeleken met de 

grote, positieve effecten van meer optimale ouder –en opvoedingsklimaatcondities waren 

de negatieve effecten van prenatale PCB-blootstelling op de cognitieve ontwikkeling van 

3 tot 84 maanden relatief klein. De effecten van prenatale blootstelling aan PCB’s op 

de motorische ontwikkeling waren meer uitgesproken vergeleken met de effecten op 

de cognitieve ontwikkeling. De motorische ontwikkeling is daarom mogelijk een meer 

gevoelige uitkomstmaat om effecten van blootstelling aan PCB’s en gerelateerde stoffen te 

bepalen dan de globale cognitieve ontwikkelingsmaat.

Door de trage afbraaksnelheid van PCB’s en dioxinen accumuleren zij in menselijk 

weefsel, en zijn de prenatale PCB en dioxine concentraties sterk gerelateerd aan de 

leeftijd van de moeder tijdens de zwangerschap. Een oudere leeftijd van de moeder bij 

geboorte is dan ook geassocieerd met een hogere PCB-spiegel maar ook met een hoger 

opleidingsniveau en verbaal IQ van de ouders, en hogere HOME-scores. Dit aspect 

maakt de variabele ‘leeftijd van de moeder’ erg complex als effecten van PCB’s worden 

geëvalueerd op ontwikkelingsaspecten van het kind. In een poging om meer inzicht te 

krijgen in dit complexe netwerk van interrelaties van prenatale PCB niveaus, ouder- en  

opvoedingsklimaatfactoren en de cognitieve en motorische ontwikkeling van het 

kind hebben we de data van het Rotterdamse cohort geanalyseerd met de Structural 

Equation Modeling (SEM) methode. In Hoofdstuk 4 worden de resultaten van deze 

analyses beschreven. De analyse begon met het identificeren van de relaties tussen het 

opleidingsniveau van de ouders, het verbaal IQ van de ouders, de HOME-score en de 

cognitieve en motorische ontwikkeling van de kinderen van 3 tot 84 maanden. Vervolgens 

is de hele populatie verdeeld in 4 groepen op basis van de mediaan van de prenatale PCB-

concentraties (2.04 μg/L) en de mediaan van de leeftijd van de moeder (29 jaar) (PCB
laag

/

M
jong

; PCB
laag

/M
oud

; PCB
hoog

/M
jong

; PCB
hoog

/M
oud

). Het geïdentificeerde model werd daarop 

gebruikt om verschillen tussen deze 4 groepen te evalueren wat betreft het gemiddelde 



166

niveau van de variabelen in het model als ook de relaties tussen de ontwikkelingsvariabelen 

en hun determinanten (opleidingsniveau van de ouders, het verbaal IQ van de ouders, de 

HOME-score). De 4 groepen bleken significant verschillend te zijn zowel in het niveau 

van de cognitieve/motorische uitkomsten en hun determinanten, als ook in de relaties 

tussen de determinanten en de cognitieve ontwikkeling (en indirect ook de motorische 

ontwikkeling). De resultaten van dit onderzoek suggereerden dat effecten van prenatale 

blootstelling aan PCB’s meer uitgesproken waren bij kinderen die opgroeien met relatief 

minder optimale ouder –en opvoedingsklimaatcondities, dan bij kinderen waarbij deze 

factoren meer optimaal lijken. Voor de vroege cognitieve en motorische ontwikkeling 

(van 3 tot 18 maanden) werd dit verschil in de impact van prenatale blootstelling aan 

PCB’s met name gesuggereerd bij kinderen met oudere moeders, terwijl dit verschil bij 

de latere cognitieve en motorische ontwikkeling (van 42 tot 84 maanden) gezien werd 

bij de kinderen met jongere moeders. De resultaten van dit onderzoek suggereren dat er 

een complexe interactie bestaat tussen factoren zoals de leeftijd van de moeder en andere 

ouder- en opvoedingsklimaatfactoren en de neurotoxisch effecten van PCB’s en verwante 

neurotoxische stoffen. Dit onderzoek wordt beschouwd als eerste poging om meer inzicht 

te verkrijgen in deze interactie.

In het tweede deel van het proefschrift (Hoofdstuk 5, 6, 7) worden effecten van perinatale 

blootstelling aan PCB’s en dioxinen op meer specifieke ontwikkelingsmaten beschreven. 

PCB’s en dioxinen staan mede bekend om hun hormoonverstorende capaciteiten. In 

de ontwikkeling van de hersenen spelen hormonen ook een rol. Geslachtshormonen, 

bijvoorbeeld, beïnvloeden mogelijk ook gedrag dat sekseverschillen vertoont, zoals 

speelgedrag. In Hoofdstuk 5 worden (seksespecifieke) effecten beschreven van prenatale 

blootstelling aan PCB’s en dioxinen op het speelgedrag van kinderen. Speelgedrag werd in 

het Rotterdamse cohort gemeten door middel van de Pre-School Activity Inventory (PSAI). 

Deze vragenlijst, die door de ouders ingevuld dient te worden, meet sekseverschillen in 

speelgedrag. 160 PSAI vragenlijsten werden door de ouders geretourneerd (gemiddelde 

leeftijd van de kinderen ± SD: 7.5 ± 0.4 jaar). Hogere prenatale concentraties van PCB’s 

waren bij jongens gerelateerd aan minder mannelijk speelgedrag en bij meisjes aan 

meer mannelijk speelgedrag. Hogere prenatale concentraties van dioxinen, bepaald in 

moedermelk, waren gerelateerd aan meer vrouwelijk speelgedrag bij jongens en bij meisjes. 

Postnatale blootstelling door borstvoeding was niet gerelateerd aan speelgedrag en er waren 

ook geen sekseverschillen in de effecten van postnatale blootstelling aan PCB’s en dioxinen 

op speelgedrag. Deze resultaten suggereren betrokkenheid van geslachtshormonen in het 

neurotoxische mechanisme van prenatale blootstelling aan achtergrond niveaus van PCB’s 

en dioxinen.

De helft van het Rotterdamse cohort, de laagste groep prenataal belaste (p25; n=26) 

en hoogste groep prenataal belaste kinderen (p75; n=26) van de beide voedingsgroepen 

(n
totaal

=104), werden op 9-jarige leeftijd uitgenodigd om deel te nemen aan 
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neuropsychologisch (zie Hoofdstuk 6) en neurofysiologisch onderzoek (zie Hoofdstuk 7) 

in het Sophia Kinderziekenhuis. Van de benaderde kinderen was 80 % (n=83) bereid deel te 

nemen aan dit onderzoek (gemiddelde leeftijd ± SD: 9.2 ± 0.2 jaar). De blootstellingniveaus 

van de participerende en niet participerende groep kinderen waren vergelijkbaar.

Hoofdstuk 6 beschrijft de relaties tussen perinatale concentraties van PCB’s en dioxinen 

en de scores op verschillende neuropsychologische testen. Het neuropsychologisch 

onderzoek bestond uit de Rey Complex Figure Test, de 15 Woorden Taak, de Simple 

Reaction Time Task, en de Tower of London test (TOL). De prenataal hoog belaste 

kinderen hadden, gecorrigeerd voor verstorende variabelen, langere reactietijden met 

meer variatie in de reactietijd en lagere scores op de TOL in vergelijking met de laag 

belaste kinderen. Bovendien bleek dat de scores op de laatste test, een test die met name 

planningsfuncties of executieve functies meet, lager waren bij kinderen die voor een 

lange periode (≥ 17 weken) borstvoeding hadden gehad in vergelijking tot de TOL-scores 

van FV kinderen. De resultaten van dit onderzoek suggereren multi-focale of diffuse 

neurotoxische effecten van prenatale blootstelling aan PCB’s en verwante stoffen. Wat 

betreft de mogelijk negatieve effecten van blootstelling door borstvoeding suggereert het 

negatieve effect op de TOL-scores dat processen gerelateerd aan de prefrontale cortex 

betrokken zijn bij het neurotoxische mechanisme van effect van PCB’s en verwante 

stoffen, omdat de frontale cortex in vergelijking tot de overige hersenstructuren zich 

trager ontwikkelt en daarmee mogelijk kwetsbaarder is voor neurotoxische effecten van 

PCB’s en dioxinen. Een complexe taak als de TOL kan ook beschouwd worden als een 

gevoelige maat voor meer diffuse neurotoxische effecten van vroege blootstelling aan 

PCB’s en verwante stoffen. 

Hoofdstuk 7 beschrijft de relaties tussen perinatale blootstelling aan PCB’s en dioxinen 

en een neurofysiologische maat, de latentietijd en amplitude van de auditieve P300. De 

P300 wordt beschouwd als een cognitieve component van een event-related potential. Deze 

positieve piek treedt ongeveer 300 milliseconden nadat een stimulus wordt aangeboden op 

als een persoon de stimulus actief of bewust verwerkt. De latentietijd en de amplitude van 

de P300 werden gebruikt als uitkomstmaten in dit onderzoek.

De prenataal hoog belaste kinderen hadden een langere P300 latentietijd dan de prenataal 

laag belaste kinderen, na correctie voor covariaten. De resultaten van dit onderzoek wezen 

niet op effecten van postnatale blootstelling, door borstvoeding, op de P300 latentietijd. 

De P300 latentietijd bleek korter te zijn bij kinderen die voor een langere tijd borstvoeding 

hebben gehad (≥ 16 weken) dan bij kinderen die voor een kortere duur borstvoeding 

hebben gehad (6-16 weken). De P300 latentietijd van kinderen die voor een langere duur 

borstvoeding hadden gekregen was ook korter dan de P300 latentietijd van FV kinderen. 

Prenatale en postnatale blootstelling aan PCB’s en dioxinen, en de borstvoedingsduur 

waren niet gerelateerd aan de amplitude van de P300. Deze resultaten suggereren dat 

prenatale blootstelling aan PCB’s en dioxinen op de schoolleeftijd mogelijk een vertragend 
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effect heeft op CZS-mechanismen die relevante stimuli evalueren en verwerken, terwijl een 

langere periode van borstvoeding dit mechanisme mogelijk versnelt. 

In Hoofdstuk 8 wordt een samenvatting van de resultaten van deze onderzoeken 

gepresenteerd. Daarnaast worden in dit hoofdstuk de mogelijke neurotoxische 

mechanismen besproken die op grond van deze studie samen met de resultaten van 

andere onderzoeken mogelijk een rol spelen. Ook wordt in dit hoofdstuk de vraag belicht 

of het geven van borstvoeding nog wel veilig is in Nederland en wordt de grootte van de 

geobserveerde negatieve effecten in dit hoofdstuk geëvalueerd. Een aantal aandachtspunten 

voor onderzoek op dit gebied wordt ook in Hoofdstuk 8 gepresenteerd.

Conclusie

De resultaten van het Nederlandse PCB/dioxine onderzoek suggereren dat prenatale 

blootstelling aan achtergrondniveaus van PCB’s en dioxinen geassocieerd is met negatieve 

ontwikkelingseffecten bij kinderen op de schoolleeftijd. Relatief kleine negatieve effecten 

van prenatale blootstelling aan PCB’s en dioxinen werden gezien op de globale cognitieve 

en motorische ontwikkeling, het geheugen, de reactietijd en de variatie van de reactietijd, 

de scores op de TOL, de P300 latentietijd, en het speelgedrag. De negatieve effecten van 

prenatale blootstelling aan PCB’s op de globale cognitieve en motorische ontwikkeling 

waren groter als ouder- en opvoedingsklimaatcondities minder optimaal waren voor de 

ontwikkeling van kinderen.

De resultaten van dit onderzoek geven geen aanleiding om het geven van borstvoeding 

te ontraden, of om te adviseren om de duur van borstvoeding te verkorten. Ook al 

worden kinderen door borstvoeding aan relatief hoge concentraties van PCB’s en dioxinen 

blootgesteld, een negatief effect van postnatale blootstelling door borstvoeding wordt 

slechts gesuggereerd bij één van de uitkomstmaten, de scores op de TOL. Bovendien 

suggereren de resultaten van het neurofysiologisch onderzoek een positief effect van een 

langere borstvoedingsduur en neemt de contaminatie van borstvoeding met PCB’s en 

dioxinen in Nederland het laatste decennium af. 

De onderzoeken in dit proefschrift laten zien dat de evaluatie van potentiële neurotoxische 

effecten van stoffen als PCB’s en dioxinen baat kan hebben bij het gebruik van meer 

geavanceerde statische technieken waarmee de betrokken variabelen beter gemodelleerd 

kunnen worden en ook rekening gehouden kan worden met de ontwikkeling van een 

uitkomstvariabele. Uit de onderzoeken blijkt ook dat de keuze voor ontwikkelingsmaten om 

neurotoxische effecten van perinatale blootstelling aan PCB’s en dioxinen te evalueren van 

belang is voor de detectie van neurotoxische effecten. De globale cognitieve ontwikkeling, 

een uitkomstmaat die in de meeste epidemiologische PCB onderzoeken wordt gebruikt, 

is misschien niet de meest sensitieve uitkomstvariabele mede omdat het een globale 
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indicatie geeft van de cognitieve ontwikkeling en omdat deze variabele sterk gerelateerd 

is aan ouder- en opvoedingsklimaatfactoren. De motorische ontwikkeling en een aantal 

meer specifieke neuropsychologische en neurofysiologische maten, zoals de reactietijd 

en de variatie in reactietijd, de TOL, en de P300, lijken meer sensitief om neurotoxische 

effecten van vroege blootstelling aan PCB’s en dioxinen te evalueren. Deze meer specifieke 

uitkomstmaten kunnen mogelijk ook bijdragen aan het beter onderscheiden van effecten 

van prenatale en postnatale blootstelling aan PCB’s en dioxinen. 

De resultaten van deze onderzoeken wijzen op het belang van maatregelen om de 

achtergrondniveaus van PCB’s en dioxinen te doen afnemen. Bovendien kunnen zij een 

illustratie vormen voor het evalueren van mogelijke risico’s voor kinderen van blootstelling 

aan andere bioaccumulerende neurotoxische stoffen die in het milieu aanwezig zijn. 
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Dankwoord

Eindelijk kan ik eens iedereen bedanken die heeft bijgedragen aan de totstandkoming van 

dit proefschrift! 

Allereerst wil ik de kinderen en hun ouders bedanken die samen het Nederlandse PCB/

dioxine cohort vormen en al zoveel jaren hun medewerking verlenen aan dit onderzoek. 

Zonder hen was dit onderzoek zeker niet tot stand gekomen. Hartelijk dank allemaal!

Mijn copromotor, Nynke Weisglas-Kuperus, wil ik ook graag bedanken. Nynke, jouw 

inzet, enthousiasme en vertrouwen hebben voor mij en dit proefschrift veel betekend! Er 

was ook vaak wat te lachen, en de meest rare situaties hebben we samen doorstaan tijdens 

onze buitenlandse reisjes: In Athene zaten we vast in ons chique hotel waarvan de ramen in- 

en de elektriciteit uitgewaaid waren. Op de terugweg van ons schrijfverblijf in Zwitserland 

kwamen we in een heuse sneeuwstorm terecht waardoor we moesten slalommen tussen 

omgevallen bomen en vrachtwagens. Jij dacht dat ik een bijzondere aantrekkingskracht had 

voor stormen. Ik weet natuurlijk dat het nog veel erger was geweest als ik er niet bij was 

geweest en ga dan ook voortaan graag met je mee naar risicogevoelige congressen.

Prof. dr. H.A. Büller, wil ik graag bedanken voor het feit dat hij mij in een laat stadium als 

zijn promovendus wilde adopteren. Dank u voor de prettige begeleiding en ik heb het ook 

erg op prijs gesteld dat u elke keer mijn stukken zo snel heeft door genomen en voorzien 

heeft van nuttig commentaar! 

Vervolgens wil ik ook mijn voorgangsters, dr. Corine Koopman-Esseboom en dr. Svati 

Patandin bedanken. De ouders van de kinderen spraken vaak vol waardering over jullie 

en ik sluit me daar van harte bij aan. Corine, ik zou jou nog eens willen bedanken voor 

het samenstellen van het Rotterdamse PCB/dioxine cohort en het verzamelen van de PCB 

en dioxine data. Mijn directe voorgangster, Svati, wil ik vooral bedanken voor alle hulp 

waardoor ik snel aan de slag kon. Ook wil ik je voor de prettige en gezellige samenwerking 

die daar op volgde bedanken; gelukkig smeedt dit onderzoek een band voor het leven! 

Ook wil ik de Groningse tak van het onderzoek, prof. Rudy Boersma en dr. Caren 

Lanting, bedanken. Caren heeft tegelijk met mij ‘haar’ Groningse kinderen op 7-jarige 

leeftijd onderzocht, en dat nadat ze die hele groep ook op 42 maanden al had gezien. Beste 

Caren, bedankt voor de prettige samenwerking en het leuke contact tijdens congressen en 

andere PCB uitstapjes! 

I would like to express my gratitude to the German branche of this multicenter study as 

well, prof. dr. Gerhard Winneke, Jens Walkowiak, Andreas Wiener and Ulli Kramer. I had a 

wonderful time working with you all. Thanks you for the assistance and inspiration. One of 

the highlights of our cooperation was of course scientifically, although our skiing-meeting 

and snowball fights in our chalet in Switzerland are competing. 
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Dit proefschrift was niet tot stand gekomen zonder mijn statistische steunpilaren: dr. Paul 

Mulder en dr. Hugo Duivenvoorden. Vooral Hugo heeft heel veel tijd aan dit onderzoek en 

mijn statistische kennis besteed! Bedankt voor jullie hulp!

Het neurofysiologisch onderzoek had ik niet zonder de hulp van dr. G.A. van Zanten 

en M.P Brocaar kunnen realiseren. Bert en Michael, heel veel dank voor de prettige 

samenwerking en het feit dat jullie zoveel tijd wilden steken in dit experimentele 

experiment! Bij het uitvoeren van het neurofysiologische onderzoek en de verwerking van 

de gegevens heb ik veel hulp gehad van de afdeling Klinische Neurofysiologie waarvan 

ik met name Marijke de Waard, Ton Mus, en Lourens van Brienen wil bedanken voor de  

gastvrijheid en behulpzaamheid. 

De overige co-auteurs, dr. Froukje Slijper en dr. Harry Emmen, wil ik graag bedanken 

voor de prettige samenwerking en de hulp bij de totstandkoming van de onderzoeken en 

artikelen. Prof. dr. S.L.S. Drop, prof. dr. F.H. de Jong en prof. dr. A. Brouwer wil ik hartelijk 

bedanken voor hun kritische beoordeling van het artikel over speelgedrag. Prof. dr. J.M. 

Bouma en dr. P. Govaert wil ik graag bedanken voor hun kritische kanttekeningen bij het 

‘neuropsychologische’ artikel. Anke, ik heb je interesse in dit onderzoek erg op prijs gesteld 

en wil je ook bedanken voor je bereidheid om in de kleine promotiecommisie plaats te 

nemen, net als prof. dr. W.F.M Arts en prof. dr. F.C. Verhulst die ik hiervoor ook graag wil 

bedanken.

De studenten Christel Simonis, Anita Vermaas, Michèle Belder, en Daniëlle Schrijnemaekers 

wil ik ook graag hartelijk bedanken voor hun bijdrage aan de onderzoeken van dit 

proefschrift. Daarbij hebben ze ook het lot van een rijdende psycholoog erg verzacht! 

De benodigde dagelijkse gezelligheid heb ik vooral gevonden bij mijn kamergenoten, 

waarvan ik er wel drie heb versleten, Jan Erik, Saskia en Daphne. Samen hebben we een 

hoop beleefd, gelachen, en gekletst en soms draaiden we elkaar de rug toe om te werken. 

Saskia, je aanbod om je als para-paranimf te mogen gebruiken heb ik met beide handen 

aangenomen: dank je voor alle hulp! Verder waren natuurlijk alle andere onderzoekers 

in het Sophia een grote bron van gezelligheid: Anneke, Geert, Sophie, Hannerieke, Leon, 

Ester, Marja, Annemarie F., Annemarie van R., Boris, Edwin, Pieter, Clementien, Gwenda, 

Sander, Debbie, Hettie, Laurens, Ward, Karen, José, Nicolette, Venje, Inge, Yvonne, Dick, 

Theo, Ellen, Marije, Robert, Marieke, Dederieke, Barbara, Wendy, Margriet, Rianne, Sacha, 

Carola, Ezra, Floor, Jolt, Paul, Jochem, Jessie en Marieke den B. De Roparun, was één 

van de hoogtepunten, maar ook de AIO-weekenden en de bijeenkomsten in het Wester 

Paviljoen waren niet te versmaden! 

Van de afdeling Neonatologie wil ik graag eerst Magda de Ridder bedanken. Beste 

Magda, jouw belangstelling heb ik altijd hartverwarmend gevonden en ik zal onze 

gezellige kletspartijen dan ook erg missen. Ook de anderen van de afdeling Neonatologie 

wil ik bedanken voor de prettige werksfeer (en coulance bij de printer). Paul Govaert, 

jouw interesse in de neuropsychologie en je kritische beschouwingen heb ik altijd erg 



Dankwoord 173

gewaardeerd. Ik heb de ‘neo-neuro-uurtjes’ die door Nynke en jou werden georganiseerd 

als erg leerzaam ervaren; misschien is er in de toekomst toch een taak voor de 

neuropsycholoog bij de afdeling weggelegd?

De heer H. Bade wil ik graag hartelijk bedanken voor het lezen van mijn proefschrift om 

mijn engels in engels engels te veranderen. 

Mijn lieve ouders en mijn arsenaal van geweldige zussen, Jettie, Emke en Tjitske, en ook 

mijn ‘extended family’ van vrienden wil ik hier graag bedanken voor hun steun en zo veel 

meer! Tjitske, zonder jouw betrouwbare Polo had ik niet die huisbezoeken kunnen maken! 

Ook had ik het geluk een gepromoveerd psycholoog, Reinout Wiers, als zwager te krijgen. 

Reinout, dank je voor alle hulp! Anneke de Lind van Wijngaarden wil ik heel heel hartelijk 

danken voor het maken van de kaft. Het is gelukt en ook nog eens zo mooi!

Als laatste wil ik mijn paranimfen bedanken, Nicolette Arends en Daphne Janssen. Ze zijn 

niet alleen bereid mij bij te staan bij de verdediging maar hebben dat de afgelopen jaren 

ook altijd al gedaan. Als Charlie’s Angels hebben we al de nodige klussen geklaard en ik 

vertrouw erop dat we ook zo’n goed team zijn bij deze klus! 

Conclusie: Promoveren is helemaal niet zo’n kluizenaarsbestaan als het soms lijkt! 
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Abbreviations

Ah receptor Aryl hydrocardon receptor

β Regression coefficient

BF  Breast-fed

CFI  Comparative fit index 

CNS Central nervous system

C
z 

ERP recording at central position (midline)

ERP Event-related potential

FF Formula-fed

FT Feeding type (BF or FF)

FT
4
 Free thyroxine

F
z 

ERP recording at frontal position (midline)

GC-ECD Gas chromatography with electron capture detection

GC-HRMS Gas chromatography-high-resolution mass spectrometry

GCI General cognitive index

HOME Home observation for measurement of the environment

IUPAC International union of pure and applied chemistry

K-ABC Kaufman Assessment Battery for Children

MDI Mental developmental index (Bayley Scales of Infant Development)

NOS Neurological optimality score

PBDE Polybrominated diphenyl ether

PCB Polychlorinated biphenyl

PCDD Polychlorinated dibenzo-p-dioxin

PCDF Polychlorinated dibenzofuran

PDI Psychomotor developmental index (Bayley Scales of Infant Development)

PSAI Pre-school activity inventory

P
z 

ERP recording at parietal position (midline)

RMSEA  Root mean square error of approximation 

RRM Random regression modeling

RT Reaction time

SEM Structural equation modeling

SD Standard deviation

SRMR Standardized root mean square residual

SRTT Simple reaction time test

ΣPCB  Sum of PCBs IUPAC numbers 118, 138, 153, 180

TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin

TEF Toxic equivalent factor

TEQ Toxic equivalent

TLI Tucker-Lewis index 

TOL Tower of London

TSH Thyroid stimulating hormone

TT
3 

Total triiodothyronine

TT
4 

Total thyroxine

TTEQ Total TEQ: sum of the dioxin and dioxin-like PCB TEQs

WAIS Wechsler Adult Intelligence Scale (Dutch version)
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