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they solve the so-called deontic paradoxes caused by CTD obligations [Chi63, For84]. It isknown from the area of knowledge representation (see e.g. [JS92]) that deontic logic is a usefulknowledge representation language when the modeler wants to represent sub-ideal states andCTD obligations. It is important that violations of obligations, i.e. sub-ideal states, are rep-resented explicitly in the modeling of procedures, because in most procedures it is describedexplicitly what is considered as ill-behavior, and how this will be punished (the correspondingsanction). Since this violation behavior is described explicitly, it should also be representedexplicitly in the Petri net. Representing sub-ideal behavior does not make sense if there isno way to represent ideal behavior in the Petri net, just as the notion of slave does not havea meaning without there being a master. Hence, both ideal and sub-ideal behaviors must berepresented and distinguished from each other in Petri nets for modeling procedures.The layout of this article is as follows. Section 2 introduces the Petri net formalism anda running example from the well-known library domain. Section 3 extends the Petri netformalism with preferences in such a way that normative behavior can be modeled. Section 4links the introduced preferences to deontic notions like obligations and permissions. Section 5draws some conclusions and mentions several future research directions.2 The Petri net formalismA Petri net is a directed graph which consists of two disjunct sets of nodes. These nodesare called places (represented as circles) and transitions (represented as bars). Places andtransitions are connected by arcs. It is not allowed to connect two places or two transitions.Arcs can have a value which indicates how many tokens are required to �re a transition.However, in the examples in this paper we only consider arcs that require exactly one token.The dynamic behavior of the modeled system is represented by tokens 
owing through thenet. A token is represented by a dot. Each place may contain several tokens (the so-calledmarking of the place). A transition is enabled if all its input places (for which there exists anarc from the place to the transition) contain the speci�ed number of tokens, which correspondsto the value of the arc. A transition may �re whenever it is enabled. Whenever a transitionis �red, it has the e�ect that the speci�ed number of tokens of its input places is removedand at the same time the speci�ed number of tokens is added to its output places. Note thatwe say that an enabled transition `may' �re, because when two transitions are enabled atthe same marking, we have the choice to �re one of the two. The second transition will notnecessarily still be enabled in the marking which results from �ring the �rst transition. Inthis way, choice is modeled in Petri nets.We �rst start with the basic de�nitions of the Petri net formalism, see [Pet81, Gen86,vdA92] for the details. A Petri net is a directed labeled graph, in which the places areconnected by transitions.De�nition 1 (Petri net) A Petri net (structure) N = (P; T; Pre; Post) consists of twodisjunct non-empty �nite sets of places P and transitions T , and two functions Pre : P�T !IN and Post : P � T ! IN , where IN stands for the set of positive integer numbers.The state of the graph is called a marking.De�nition 2 (Marking) Let N = (P; T; Pre; Post) be a Petri net. A marking M : P ! INis an assignment of tokens to the places of a Petri net. The marking M can also be written2



as a vector M = hM1;M2; :::;Mni where n =j P j and each Mi 2 IN , i = 1; :::; n. We writehN;Mi for a Petri net N with marking M .The marking of a graph determines which transitions are enabled.De�nition 3 (Enabled transition) Let N = (P; T; Pre; Post) be a Petri net with markingM , M(p) the number of tokens contained in p 2 P and t 2 T a transition. The transition tis enabled in hN;Mi if and only if (i�) 8p 2 P : M(p) � Pre(p; t).The dynamic behavior of a Petri net is expressed by changing markings. A markingchanges when a transition �res, and a transition may �re when it is enabled.De�nition 4 (Firing a transition) Let N = (P; T; Pre; Post) be a Petri net with markingM1, M1(p) the number of tokens contained in p 2 P and t 2 T an enabled transition. Firingthe transition t in hN;M1i results in a new marking M2, written as M1 !t M2, given byM2(pi) = M1(pi) � Pre(pi; t) + Post(pi; t). Hence, Pre(pi; t) denotes the number of tokensneeded in pi for the �ring of transition t and Post(pi; t) denotes the number of tokens addedto place pi when transition t has �red.The procedural semantics of a marked Petri net is given by the set of its possible execu-tions (sequences of transitions)1 between two markings. We give a recursive de�nition of anexecution.De�nition 5 (Execution) Let N = (P; T; Pre; Post) be a Petri net with marking M , s =hs1; s2; :::; sni with si 2 T a �nite sequence of transitions of T , and T � the set of all �nitesequences that can be composed from transitions of T . The sequence s is an execution of themarked net hN;M1i i� it is �rable in the marked net hN;M1i, resulting in some marking M2,written as M1 !s M2. M1 !s M2 i�:1. either s = � (the empty sequence), then M2 = M1,2. or s = s0t, with s0 2 T � and t 2 T , and there is an M3 such that and M1 !s0 M3 andM3 !t M2.We write E(N;M1;M2) = fs 2 T � jM1 !s M2g for the set of possible executions of a Petrinet N from M1 to M2.The expressiveness of Petri nets can be enhanced by adding so-called colors to the tokens.Such Petri nets are called colored Petri nets, see e.g. [vdA92]. A colored Petri net associateswith every token a color. The enabling of a transition can depend upon the colors of thetokens subsumed. In this paper, we do not use coloring for this purpose.De�nition 6 (Colored Petri net with Marking) A colored Petri net (structure) CN =(P; T; Pre; Post; C; F ) consists of a Petri net structure N = (P; T; Pre; Post), a set of colorsC, and a transition function F . A colored marking M : P � C ! IN is an assignment of1This de�nition of execution is known as trace semantics. Trace semantics do not model true concurrency,in which an execution is de�ned as a sequence of markings (for a discussion on this issue, see [MP92]). Withsuch a more complicated de�nition of execution, the ideas in this paper still apply.3



colored tokens to the places of a Petri net. The transition function F : M � T ! M relatesthe colors of the markings when a transition �res.2The colored marking M can also be written as a vector M = hM1;M2; :::;Mni wheren =j P j and each Mi = hMi;1;Mi;2; : : : ;Mi;mi, i = 1; :::; n, m =j C j and Mi;j 2 IN . Whenwe do not care about the colors of the tokens, we denote the colored marking with a standardmarking such that Mi =Pj2CMi;j .The de�nition of an enabled transition remains the same, �ring a transition changes in thesense that the transition function F determines the new colors when a transition has �red.The Petri net in Figure 1 illustrates the de�nitions.
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Figure 1: Borrowing books. Places: p1: borrowed book; p2: damaged book; p3: returnedbook. Transitions: t1: to damage the book; t2: to repair the book; t3, t4: 1 week too late; t5,t6: to return the book.The Petri net models the possible behaviors of a person who borrows books from a library.The token in place p1 represents a book and moving a token from one place via a transition toanother place represents behavior of the borrower. In the �gure, the borrower has the choicebetween returning the book, keeping the book in her possession until a dead-line (of a week)has passed and damaging the book. If she decides to keep the book until the dead-line haspassed, then she has again the same choices. Hence, by moving the token from place p1 viat3 back to p1, the same situation arises. If she damages the book, then she has the choicebetween repairing it before returning, returning it damaged, and keeping it in her possessionuntil another dead-line has passed. In this paper we analyze executions of this Petri net whichstart in marking with a single token in place p1 and result in marking with a single token inplace p3, which represents that the book is returned. First, assume this net is a standard Petrinet. In that case the structure is given by N = hfp1; p2; p3g; ft1; t2; t3; t4; t5; t6g; Pre; Postiand a marking for this net is denoted by a tuple hn1; n2; n3i where ni indicates the numberof tokens at place pi. The dot in place p1 represents a token at place p1. Hence, the initialmarking in Figure 1 is given by h1; 0; 0i. In marking M1 = h1; 0; 0i, the transitions t1, t3 andt5 are enabled. On the other hand, the transitions t2, t4 and t6 are not enabled, becausePre(t2; p2) = Pre(t4; p2) = Pre(t6; p2) = 1 and M1(p2) = 0. Firing the transition t1 in2For a complete de�nition of the result of �ring a transition, we have to specify the transition function inmore detail. In particular, we have to explicitly represent the `Pre' arcs of a transition and de�ne the colors ofthe `Post' arcs as a function of the `Pre' arcs and the colors of the subsumed tokens. We do not further specifythe transition function, because in this article we do not refer to the transition function in the remainder ofthe de�nitions. 4



marking M1 changes the marking of the net in h0; 1; 0i. In the latter marking, the executions = ht2; t5i can be performed, because h0; 1; 0i!t2 h1; 0; 0i and h1; 0; 0i !t5 h0; 0; 1i.The problem with this Petri net is that, for example, the di�erence between a book beingon time or too late by a number of weeks is not represented in the markings of this net. Eachtime we apply transition t3 to the initial state h1; 0; 0i, we end up in exactly the same markingh1; 0; 0i. If we want to have di�erent markings for these time states, then we can add colors toexpress this di�erence in the markings in the following way. Let CN = hP; T; Pre; Post; C; F ibe the colored Petri net such that P , T , Pre, Post are as before, the set of colors C is theset of natural numbers and the transition function F is such that the color of a token isincreased by one when transition t3 or t4 is �red. Moreover, the initial marking is given by asingle token in place p1 with color 0. Now the coloring of the token distinguishes exactly thedi�erent markings representing the states of any number of weeks too late. Another solutionto represent this distinction in the markings could have been to introduce n extra places, onefor every n-weeks too late. So, p1 represents that the book is on time and t3a would bringthe token to another place p1a that represents that the book is one week too late. From thist3b would bring the token to another place p3b that represents that the book is two weeks toolate etc. This solution, however, has two obvious disadvantages. First, that the net explodes.Secondly, since you do not now beforehand what the maximum number of weeks too late willbe, you do not know how large to choose this n beforehand.In the introduction, we already mentioned that it is useful to model deontic aspects if themodeler wants to represent sub-ideal states and so-called contrary-to-duty (CTD) obligations.To illustrate these notions, consider two obligations that might hold for a library domain:(1) borrowed books should not be damaged and (2) if a book is damaged, then it should berepaired. The state in which the book is damaged is a sub-ideal state because a violationhas occurred, and the second obligation is a CTD obligation, because it is conditional on aviolation. Hence, the explicit representation of deontic aspects of this bureaucratic procedureis useful when the modeler wants to discriminate between ideal behavior and the sub-idealbehavior of damaging books, and he wants to represent the CTD obligation to repair thebook. When executing this Petri net, there is the choice between performing ideal and sub-ideal behaviors. For example, if the borrower returns the book in time and not damaged, wecan say that she performs ideal behavior. On the other hand, if she returns the book oneweek too late, then she does not perform ideal behavior. The distinction between ideal andsub-ideal cannot be represented in standard Petri nets as Figure 1. One can model the choice,but nothing in the Petri net formalism indicates that an execution is better than another.What is represented in Figure 1 is actually, one could say, only one half of the representationof sub-ideal states. Sub-ideality is partially represented in this �gure to the extent that thetransition t3 can be used to generate the state in which the book is too late, but nothing in thisPetri net represents that this state should not have occurred. One might think that a simplesolution to add this extra deontic aspect to the standard Petri nets is to add constraints tothe transitions. If being too late is undesirable, then why not simply impose a constraint ont3 saying that this transition can only �re if there is no alternative better transition. In thiscase the Petri net directly �res transition t5 from the initial state. But in this way one forcesthe Petri net to behave ideally, whereas what we want to model is both ideal and sub-idealbehaviors of agents, and that is quite another thing. Therefore, we propose another solutionin this paper.In this paper we show how Petri net structures can be extended with a preference relation.In the set of all possible executions of a system, intuitively, the preferred ones are those which5



contain a minimum of sub-ideal behavior. In other words, those executions should be preferredthat contain as few sub-ideal transitions as possible. Notice that the set of possible executionsof a colored Petri net is equivalent to the set of possible executions of the standard Petri netwith the marking given by Mi = Pj2C Mi;j . This is a direct consequence of the fact thatwe do not refer to the colors of tokens to determine whether a transition is enabled. Hence,instead of analyzing executions of a colored Petri net we can equivalently analyze executionsof the standard Petri net. For convenient representation, we do not use colored Petri nets inthe remainder of this paper, but we use standard Petri nets instead.3 The extended Petri net formalismIn this section we discuss several ways to extend Petri nets with a preference ordering tomodel normative behavior. First, we discuss preference orderings on places and show whythis extension is not su�cient. Then we discuss preference orderings on transitions. Finally,we discuss as a third option to have preference orderings on executions, and we argue whythis is the most appropriate choice.3.1 Preferred placesOne way to introduce preferences in Petri nets is to introduce a preference ordering on places.De�nition 7 (`Preferred places' Petri net) A `preferred places' Petri net structure N =(P; T; Pre; Post;�P ) consists of a Petri net structure N = (P; T; Pre; Post) with a partialpre-ordering �P (i.e. re
exive and transitive) on the elements of P such that p1 �P p2 i�place p1 is preferred to (or equivalent to) p2. We write p1 >P p2 i� p1 �P p2 and notp2 �P p1, and we write p1 �P p2 i� p1 �P p2 and p2 �P p1.The preferences on places can be compared with preferences on states.3 However, thefollowing example illustrates that this solution is not satisfactory for Petri nets.Example 1 (Money) Consider the Petri net in Figure 2. The Petri net represents twoways to get hold of an amount of money. The token in p1 can move to place p2 via transitiont1 (selling some property) or via transition t2 (stealing the money). In this Petri net, apreference ordering on places cannot distinguish between these two behaviors.The previous example shows that a preference ordering on places is sometimes not expres-sive enough. The place p2 in the money example represents the physical state in which themoney is in your possession, which can represent two di�erent deontic states. The deonticstate does not depend on the physical state, but how the state was reached. Note that asimilar problem appears in the Petri net in Figure 1. The ordering on places p1 �P p3 >P p2could represent that damaging a book is sub-ideal; hence, it represents that books should notbe damaged. However, it is not possible to de�ne an ordering on places such that returningbooks on time is ideal and returning books too late is sub-ideal (and much too late even moresub-ideal).3Preferences on states are well-known from deontic logic, because several deontic logics have a preferentialsemantics, for example [Han71, PS94, TvdT96]. Kripke style possible worlds models of these semantics arebased on a preference ordering on worlds, and these worlds are usually interpreted as states.6
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p2Figure 2: Money example. Places: p1: not having money; p2: having money. Transitions: t1:selling some property; t2: stealing money.An alternative way of modeling the Petri net in Example 1 is that we distinguish placep2 in two di�erent places, say p2a and p2b. Place p2a then represents the state the money isin after being obtained by selling a property via transition t1, and p2b represents the statethe money is in after being obtained by stealing via transition t2. We did not take thisapproach, because we consider it counterintuitive to represent the very same physical statein two di�erent places only because it can be reached by two di�erent transitions from thesame place.3.2 Preferred transitionsPreferences are modeled in Petri nets with priorities [Hac75]. In such a Petri net, a priorityis associated with each transition and these priorities can be represented by a partial pre-ordering on transitions.De�nition 8 (`Preferred transitions' Petri net) A `preferred transitions' Petri net struc-ture N = (P; T; Pre; Post;�T) consists of a Petri net structure N = (P; T; Pre; Post) with apartial pre-ordering �T (i.e. re
exive and transitive) on the elements of T such that t1 �T t2i� the priority of t1 is at least as high as the priority of t2. We write t1 >T t2 i� t1 �T t2and not t2 �T t1, and we write t1 �T t2 i� t1 �T t2 and t2 �T t1.In Petri nets with priorities, the �ring rule is changed such that if several transitions can�re, then always one of the most preferred transitions �res.De�nition 9 (Preferred enabled transition) Let N = (P; T; Pre; Post;�T) be a Petrinet with marking M . A preferred enabled transition is a transition t 2 T such that t isenabled in hN;Mi and for all other enabled transitions t0 2 T , we have t �T t0.The following example illustrates that this representation is not satisfactory to modelnormative behavior in Petri nets, because the notion of choice is not modeled.Example 2 Consider the `preferred transitions' Petri net N = (P; T; Pre; Post;�T) thatconsists of the Petri net structure N = (P; T; Pre; Post) of Figure 1, and the ordering t2 �Tt5 �T t6 >T t3 �T t4 >T t1. The ordering represents that the enabled transitions t1 and t3are sub-ideal. It can easily be shown that in this Petri net the token in place p1 never reachesplace p2, because transition t5 is the only preferred enabled transition.7



This notion of preferred transitions makes that the Petri net can only model ideal be-haviors, i.e. all executions of the net are ideal. But modeling deontic aspects also means tobe able to model sub-ideal behavior, otherwise the notion of the violation of an obligationcannot be modeled in the net. Moreover, when it is impossible to violate a rule it does notmake sense to consider such a rule as an obligation, for the same reason physical laws are notconsidered to be obligations. Hence, the Petri net must have executions that represent eventhe deontically least desirable behaviors. But such sub-ideal executions are ruled out by thetechnique of preferred transitions.Moreover, this solution lacks in expressiveness because it only optimizes local behavior.For example, suppose that an ideal transition forces you to �re a very sub-ideal transitionlater to reach some goal place, whereas a sub-ideal transition now will prevent this very sub-ideal transition later. A strategy which selects the preferred transition (like De�nition 9) isnot able to select the latter execution. Hence, it cannot model that a little lie should be toldat this moment to prevent some disaster in the future. In order to avoid the problem of localoptimization, it is much more appropriate to de�ne the preference ordering on executions, asis illustrated in the following section.3.3 Preferred executionsWe can derive a preference ordering on executions by partitioning the set of transitions of aPetri net into two subsets, that represent ideal and sub-ideal transitions respectively.4De�nition 10 (`Two transitions' Petri net) A `two transitions' Petri net structure N =(P; T; Pre; Post; S) consists of a Petri net structure N = (P; T; Pre; Post) and a set S � T .Intuitively, the set S of a `two transitions' Petri net contains sub-ideal transitions of T .Given this partition in ideal and sub-ideal transitions, we can de�ne a preference ordering onexecutions of a net that compares sub-ideal transitions of the executions.De�nition 11 (�p1) Let N = (P; T; Pre; Post; S) be a `two transitions' Petri net, M1 andM2 two markings, and s and s0 two executions between M1 and M2. Execution s is preferredto execution s0, written as s �p1 s0, i� no sub-ideal transition t occurs more often in s thanin s0.The following example illustrates this preference ordering on executions.Example 3 Let N = (P; T; Pre; Post; S) be a `two transitions' Petri net, such that P , T ,Pre and Post are given by the Petri net in Figure 1 and the set S = ft1; t3; t4g. Consider themarkings M1 = h1; 0; 0i and M2 = h0; 0; 1i. We have ht3; t5i �p1 ht3; t1; t6i, because the �rstexecution contains less sub-ideal behaviors than the second one. This is intuitively correct,we prefer an execution in which one returns a book one week too late but undamaged to anexecution in which one returns the book too late and damaged.However, the executions ht3; t5i and ht1; t6i are incomparable for �p1 . This is unintuitive,because one prefers that a book is returned too late to a book that is returned in time withdamages (a preference that is usually expressed by a di�erence in the sanctions associatedwith the violations). The order relation �p1 does not take the di�erences into account which4Such a binary distinction exists in the semantics of several deontic logics, most notably in so-called `stan-dard' deontic logic (SDL). 8



can exist between sub-ideal behaviors, because it takes only the number of sub-ideal behaviorsinto account. However, violations do not have the same seriousness.Di�erences between sub-ideal behaviors can be taken into account by the ordering relation`�T ' given in De�nition 8, which expresses the deontic notion of ideal and varying sub-ideal.We now consider De�nition 8 in the context of the usual Petri net �ring rule (both ideal andsub-ideal may �re). Given the distinction between ideal and varying sub-ideal transitions,the new problem is how to compare executions. The following de�nition is an example of apartial pre-ordering on executions derived from the ordering `�T ' on transitions.De�nition 12 (�p2) Let N be a `preferred transitions' Petri net N = (P; T; Pre; Post;�T)as de�ned in De�nition 8, S = ft j 9t0 2 T : t0 >T tg the set of sub-ideal transitions of N ,and s and s0 two executions between hN;M1i and hN;M2i. s is preferred to s0 with respectto �T , written as s �p2 s0, i� there exists a function f from the sub-ideal elements of s, i.e.dom(f) = fsi j si 2 Sg, to elements of s0 such that:1. if f(si) = s0j then (si �T s0j).2. 8si; sj 2 dom(f) : if si 6= sj then f(si) 6= f(sj)Two executions are called equivalent, written as s �p2 s0, if s �p2 s0 and s0 �p2 s. Twoexecutions are called incomparable if neither s �p2 s0 nor s0 �p2 s.The previous De�nition 12 says that an execution s is preferred to a second one s0 if forevery instance of a sub-ideal transition in s, there is a distinct instance of a transition in s0which is at least as sub-ideal. Restriction 1 on the function f ensures that each instance ofa sub-ideal transition in s is covered by an instance of a transition in s0 that is at least assub-ideal. Restriction 2 ensures that two instances of sub-ideal transitions in s are not coveredby the same instance in s0. The following example illustrates this ordering on executions.Example 4 Consider the `preferred transitions' Petri net N = (P; T; Pre; Post;�T) of Ex-ample 2 that consists of the Petri net given in Figure 1 and the preference ordering t2 �Tt5 �T t6 >T t3 �T t4 >T t1. The preference ordering represents that returning a book oneweek too late is preferred to damaging it. For example, the execution ht3; t5i is preferred to theexecution ht1; t6i for �T , because t3 in the �rst execution can be covered by t1 in the secondexecution.However, also with this de�nition problems subsist. For example, the executions ht1; t2; t5iand ht1; t6i are equivalent for �T . Intuitively this is incorrect, because we want to preferexecutions in which one repairs a damaged book to executions in which one does not repair it.A solution to the problem mentioned in the previous example without explicitly introduc-ing the notion of repair is illustrated in the following example.Example 5 Reconsider the previous example and let �T be such that that t3 �T t4 >T t1 andt2 >T t6. According to the qualitative de�nition ht1; t2; t5i is preferred to ht1; t6i. However,this solution does not seem very intuitive. For example, the executions ht1; t2i and ht1i areequivalent for �T , which seems counterintuitive because the former is preferred. Note that wecompare executions which result in a di�erent marking. In this sense, this counterintuitiveexample di�ers from previous examples.55Executions which result in di�erent markings are compared in Section 3.4.1, when we consider preferencerelations on markings derived from preference relations on executions.9



In the previous example, the preferences are related to the deontic notion of contrary-to-duty obligations, as discussed in Section 2. For example, the obligation to repair thedamaged book is a CTD obligation. The previous example suggests to treat transition t2as a particular one. We call it a repair transition of a sub-ideal behavior. A solution whichexplicitly introduces the notion of repair is given by the following de�nition. Repair transitionsare used to compare executions which are equivalent in the previously de�ned ordering �p2 .De�nition 13 (�p3) Let N = (P; T; Pre; Post;�T) be a `preferred transitions' Petri net,S = ft j 9t0 2 T : t0 <T tg and R � T disjoint sets of sub-ideal and repair transitions of Nrespectively, M1 and M2 two markings, and s and s0 two executions between M1 and M2. sis preferred to s0 with respect to �T and R, written as s �p3 s0, i�� either s >p2 s0� or s �p2 s0 and there exists a function g from the repair transitions of s0, i.e. dom(g) =fs0i j s0i 2 Rg such that :1. g(s0i) = sj ! s0i = sj2. 8s0i; s0j 2 dom(g) : s0i 6= s0j ! g(s0i) 6= g(s0j)Intuitively, if two executions are considered equivalent by ordering �p2 ,then De�nition 13further inspects if one contains more repairs than the other. Restriction 1 imposes that foreach repair in s0 there exists the same repair in s. Restriction 2 of De�nition 13 imposes thateach instance of a repair transition in s0 is mapped to a di�erent instance of transition in s. Ifsuch a function g exists then s0 contains at most the same repair transitions as s. Obviously, itis also possible to order the repair transitions similar to the ordering on sub-ideal transitions.The following example illustrates the de�nition of �p3 .Example 6 Reconsider the previous example and let t2 be a repair transition of the sub-idealtransition t1. We obtain the following intuitive result : ht1; t2i >p3 ht1i since ht1; t2i �p2 ht1iand the �rst execution contains the repair t2 whereas the second one does not. Moreover, weobtain for example that ht1; t2; t1; t2; t5i >p3 ht1; t2; t1; t6i.3.4 Preferred executions - quantitativeIn this section, we introduce the penalty function w, which expresses how good or bad atransition is. This penalty function associates a weight with every transition.6 Hence, theordering de�ned by the penalty function is total (for every two transitions t1 and t2, we havet1 � t2 or t2 � t1). A positive weight (i.e. a penalty) is assigned to sub-ideal transitionsof T . This weight will be great if the transition is very sub-ideal. Moreover, the penaltyfunction de�nes the set of repair transitions of sub-ideal behaviors, because the set containsall transitions with a negative weight. Intuitively, the negative penalties can be considered asrewards for good behavior. Intuitively, a repair transition is a transition that has a negativeweight in order to recover from a sub-ideal situation that was brought about by sub-idealbehavior. An extended Petri net is a Petri net with varying sub-ideal and repair transitions.6This de�nition of the penalty function is very abstract. In Section 4 we will discuss some constraints onthis function that make it more realistic from a deontic point of view.10



De�nition 14 (Extended Petri net) Let N = (P; T; Pre; Post) be a Petri net and ZZ theset of integers. An extended Petri net EN = (P; T; S; R; w; Pre; Post) is the extension of Nwith two disjunct sets S;R � T that represent sub-ideal and repairing behavior respectively,and a penalty function w : T ! ZZ, de�ned as follows :1. t 2 TnfS [Rg : w(t) = 02. t 2 S : w(t) � 03. t 2 R : w(t) � 0The penalty function is introduced to facilitate the derivation of preferences betweenexecutions from preferences on transitions. In the previous section it was illustrated that thisis a non-trivial problem. A simple solution with our penalty function w is that an executions is preferred to an execution s0 i� the sum of the weights of the transitions of s is less thanthat of the transitions of s0. Intuitively, the weights represent penalties for the violations andthe preference relation prefers a minimal total sum of penalties. Notice that this de�nitionmakes all executions comparable.7De�nition 15 (Preference ordering on executions) Let EN = (P; T; S; R;w;Pre; Post)be an extended Petri net, M1 and M2 two markings, �p: E(EN;M1;M2)�E(EN;M1;M2) apreference relation de�ned on the set E(EN;M1;M2) of the possible executions of EN fromthe marking M1 to the marking M2, s; s0 2 E(EN;M1;M2) two executions, and the functionlg(s) the length of the tuple s = hs1; :::; sni (here equal to n). s is preferred to s0, written ass �p s0 , i� Plg(s)i=1 w(si) �Plg(s0)j=1 w(s0j).The preference ordering can be used to determine the preferred executions. A preferredexecution is a global optimum, thus we do not have the drawbacks of local optimization (aswas observed at the end of Section 3.2).De�nition 16 (Preferred execution) Let EN = (P; T; S; R;w;Pre; Post) be an extendedPetri net, M1 and M2 two markings, and s 2 E(EN;M1;M2) an execution from M1 to M2.The execution s is a preferred execution from M1 to M2 i� 8s0 2 E(EN;M1;M2) we haves �p s0. We write EP (EN;M1;M2) for the set of preferred executions between M1 and M2.There is a problem with the previous de�nition of preferred execution. Consider a familyof executions of the form s = s1(s2)�s3, where s1; s2; s3 are sequences of transitions, M1 !sM2 and (s2)� stands for the repetition of sequence s2 an arbitrary number of times. IfPlg(s2)i=1 s2;i < 0 then there does not exist a preferred execution between M1 and M2, becausethe execution s1(s2)n+1s3 is preferred to s1(s2)ns3 (where n is any natural number). Thissituation corresponds to a cycle with negative weight in the reachability graph of the Petrinet. For the moment, we exclude this case, in the following section we will de�ne conditionsfor the penalty function w and the structure of an extended Petri net to ensure that no cyclein the reachability graph has a negative weight.In the following example we use some new graphical notations in addition to the usualnotations of the Petri net formalism. A place is represented in the usual way by a circle. If7This is an obvious drawback, but fortunately there are also some obvious re�nements of the de�nition.For example, we can de�ne several types of penalties.11



ti 2 TnfS [ Rg, it is represented in the usual way by a bar (the weight is not represented,because it is always equal to zero). A tj 2 S corresponds to a sub-ideal behavior and isrepresented by a black bar with a positive integer which represents the weight of the transition.A tk 2 R corresponds to a repair behavior and is represented by a greyed bar with a negativeinteger which represents the weight of the transition. The following example illustrates thenew graphical notation.
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Figure 3: Borrowing books (continued). Places: p1: borrowed book; p2: damaged book; p3:returned book. Transitions: t1: to damage the book; t2: to repair the book; t3: 1 week toolate; t4: 1 week too late; t5: to return the book; t6: to return the book. Penalty system:hw(t1) = 10; w(t2) = �5; w(t3) = 1; w(t4 = 1)iExample 7 Consider the extended Petri net in Figure 3. It can easily be shown that weobtain the intuitive result ht1; t2; t5i >p ht1; t6i. Furthermore, we have that ht5i >p ht1; t2; t5i.This states that we prefer that the borrower does not damage the book even if he repairs it.3.4.1 Preferred reachable statesThe preferences on transitions model what ought to be done. Besides these ought-to-doobligations also ought-to-be obligations can be de�ned, which are preferences on the markings(the states). Preferences on markings can be derived from preferences on transitions and viceversa. In this section we show how preferences on markings can be derived in our extendedPetri nets. The preference relation on markings is de�ned on all reachable markings.De�nition 17 (Reachable markings) Let EN = (P; T; S; R; w; Pre; Post) be an extendedPetri net with marking M , and T � the set of all sequences that can be composed from transi-tions of T . The set of reachable markings for the marked net hN;Mi is R(EN;M) = fM 0 j9s 2 T � :M !s M 0g.Given the initial marking M , a reachable marking M1 is preferred to marking M2, i� apreferred execution which leads fromM toM1, has a weight less than the weight of a preferredexecution which leads from M to M2.De�nition 18 (Preference ordering markings) Let EN = (P; T; S; R; w; Pre; Post) bean extended Petri net with marking M , �M : R(EN;M)� R(EN;M) a preference relationde�ned on the set of the reachable markings of EN , M1;M2 2 R(EN;M) two markings12



and lg(s) the length of execution s. M1 is preferred to M2, written as M1 �M M2, i�Plg(s1)i=1 w(s1;i) �Plg(s2)j=1 w(s2;j), where s1 2 EP (EN;M;M1) and s2 2 EP (EN;M;M2).The following example illustrates the preference ordering on markings.Example 8 Consider our running example with the initial marking h1; 0; 0i. The markingh0; 0; 1i is preferred to the marking h0; 1; 0i, because the preferred execution from h1; 0; 0i toh0; 0; 1i is ht5i and its penalty weight is 0, whereas the preferred execution from h1; 0; 0i toh0; 1; 0i is t1 and its penalty weight is 10.3.5 Preferred markingsIn the previous Sections 3.3 and 3.4, we have argued that di�erent types of behavior shouldbe modeled by a preference ordering on executions, which can be derived from a preferenceordering on transitions. In particular, we have argued that such an ordering on executionsis preferred over a preference ordering on places (described in Section 3.1) or a preferenceordering on transitions (described in Section 3.2). When we use colored Petri nets, there isanother possibility which we discuss in this section: a preference ordering on colored markings.In this approach, the colors of the tokens represent the deontic status of the token. Thefollowing example illustrates such a preference ordering by formalizing penalties as colors oftokens.Example 9 Let CN = hP; T; Pre; Post; C;F i be a colored Petri net that consists of the Petrinet in Figure 1, the set of colors C is the set of natural numbers and the transition function Fis such that the color in increased by one by transitions t3 and t4, increased by 10 by transitiont1 and decreased by 5 by transition t2. We can compare the the color of the token with penaltiesof executions (sum of penalties of the transitions in the execution) of the extended Petri net inFigure 3. Obviously, given a single token in place p1 with color 0, the penalty of an executionis the color of the token at the end of the execution. In case of multiple tokens, the penalty ofan execution is the sum of the colors of the tokens after the execution.The previous example illustrates that the ideas de�ned in the previous Section 3.4 canbe rede�ned in terms of a preference ordering on colored markings of Petri nets. Similarly,the qualitative ordering used in Section 3.3 can be rede�ned in terms of a preference orderingon colored markings, when the color represents the whole trace of the token, instead of onlythe penalties.8 Whether we represent the deontic status of a procedure by preferences onexecutions or preferences on colored markings seems to be a modeling decision.4 Preferences and Deontic NotionsIn the previous section we have shown that deontic aspects can be modeled by preferences.However, not every preference relation represents deontic aspects. In this section we furtherdiscuss the relation between preferences and deontic aspects, and we give a few possibleconditions on the preference ordering. For simplicity we restrict ourselves to the quantitativeapproach of Section 3.4.8Note that an ordering on markings is slightly more expressive, because we can discriminate between thepenalties of individual tokens. For example, in Figure 1 with an initial marking of two tokens in place p1, wecan discriminate between one book being two weeks to late, and two books being each one week too late.13



4.1 Induced obligationsThe penalty system that is introduced in the extended Petri net induces obligations, permis-sions and prohibitions. An execution ful�lls the induced obligations when it is in the set ofpreferred executions.De�nition 19 (Ful�lled w-induced obligations) Let EN = (P; T; S; R; w;Pre; Post) bean extended Petri net, M1;M2 two markings, s an execution such that M1 !s M2. Theexecution s ful�lls the w-induced obligations i� s 2 EP (EN;M1;M2) (the set of preferredexecutions from M1 to M2 in EN).Given the previous de�nition of executions that ful�ll obligations, we de�ne obliged, per-mitted and prohibited transitions. In the following s0 denotes the �rst transition of theexecutions s.De�nition 20 (w-induced Obligation) Let EN = (P; T; S; R;w;Pre; Post) be an extendedPetri net, M1;M2 two markings such that 9s 2 T � :M1 !s M2, a transition t is a w-inducedobligation in M1 to reach M2 noted obliged(t; EN;M1;M2) i� 8s 2 E(EN;M1;M2) we haves0 = t.De�nition 21 (w-induced Permission) Let EN = (P; T; S; R;w;Pre; Post) be an ex-tended Petri net, M1;M2 two markings such that 9s 2 T � : M1 !s M2, a transitiont is a w-induced permission in M1 to reach M2 noted permitted(t; EN;M1;M2) i� 9s 2E(EN;M1;M2) such that s0 = t.De�nition 22 (w-induced Prohibition) Let EN = (P; T; S; R; w;Pre; Post) be an ex-tended Petri net, M1;M2 two markings such that 9s 2 T � : M1 !s M2, a transition tis a w-induced prohibition in M1 to reach M2 noted forbidden(t; EN;M1;M2) i� :9s 2E(EN;M1;M2) such that s0 = t.Note that when transition t is obliged or permitted in a marking M then t is enabled inthis marking. The following proposition gives the relation between the deontic notions.Proposition 1 The relation between obliged, permitted and forbidden is as follows.obliged(t; EN;M1;M2)) permitted(t; EN;M1;M2)permitted(t; EN;M1;M2), :forbidden(t; EN;M1;M2)The following example illustrates these de�nitions.Example 10 In marking h1; 0; 0i the only sequence to reach h0; 0; 1i which ful�lls the w-induced obligations is ht5i. In that marking we have obliged(t5; EN; h1; 0; 0i; h0; 0; 1i). In thesame marking, if the obligation to �re t5 is violated by �ring t1 (damaging the book), we obtainthe marking h0; 1; 0i where the transition t2 is w-obliged. This is sound as �ring the transitiont2 represents a CTD-obligation after �ring t1.14



4.2 Structure of the netThere is no formal relation between a sub-ideal transition and its repair transitions in theextended Petri nets. This may be a drawback, because it might be possible to repair sub-idealtransitions with unrelated repairs. For example, in a library example it might be possibleto repair the violation of being to late by repairing a book. Fortunately, this is not possiblein the Petri net given in Figure 1, because transition t2 (repairing a book) has to be pre-ceded by transition t1 (damaging a book). In general, the structure of the net will imposeseveral restrictions on behaviors which ensure that the preferences can be interpreted as aformalization of di�erent types of behavior.This observation raises the question which extra constraints can be imposed on the netsin order to get certain desirable properties that make the penalty function more realistic froma deontic point of view. For example, it seems reasonable that an extended Petri net shouldsatisfy the property that a repair transition should always be preceded in an execution bya sub-ideal transition. If we make the simpli�cation assumption that a sub-ideal transitionhas at most one repair transition associated, the following condition on the structure of anextended Petri net is an example of a su�cient condition to obtain the property.Condition 1 Let EN = (P; T; S; R; w; Pre; Post) be an extended Petri net, M0 the initialmarking of EN, and Rep : S �R a relation. For every s and r such that Rep(s; r), there is ap 2 P such that:1. M0(p) = 02. Post(p; s)� Pre(p; s) = 13. 8t 2 Tnfsg : Post(p; t)� Pre(p; t) � 04. Post(p; r)� Pre(p; r) = �1In this condition Rep(s; r) expresses that r is the repair transition of the sub-ideal tran-sition s, and we assume that some place p witnesses sub-ideal (and corresponding repair)transitions. Remember that we make the simpli�cation assumption that a sub-ideal transi-tion has at most one repair transition associated. Item 1 of Condition 1 imposes that the placep is empty initially. Item 2 expresses the fact that when the sub-ideal behavior s is performedthen a token is added to the place p. In item 3 it is expressed that the only transition thatcan add tokens to the place p is the sub-ideal transition s. Finally, item 4 says that �ring therepair transition r removes a token of the place p.Another example of a property is that it is better not to do a sub-ideal behavior than doingit �rst and repairing it afterwards. A simple way to obtain this property is to impose on thepenalty function the following constraint.Condition 2 Let EN = (P; T; S; R;w;Pre; Post) be an extended Petri net, Rep : S � R arelation such that Rep(s; r) expresses that r is the repair transition of the sub-ideal transitions then �w(r) < w(s).Example 11 In the extended Petri net of our running example (see Figure 3), we have thatRep(t1; t2) is true. The place p2 ful�lls the 4 requirements of Condition 1 and we have that�w(t2) = 5 and w(t1) = 10 which ful�lls Condition 2 since 5 < 10.15



The following proposition states that there always exists a preferred execution.Proposition 2 Let EN = (P; T; S; R; w;Pre; Post) be an extended Petri net which ful�llsCondition 1 and Condition 2, in that case, if a marking M2 is reachable from a marking M1then there always exists a preferred execution between these two markings.Obviously, there are several further conditions which can be de�ned on the preferencerelation. For example, in the penalty system we can de�ne a set of possible initial and goalmarkings, and then we can add the constraint that there has to be at least one executionfrom each initial marking to each goal marking with penalty 0. Such a condition expressesthat ideal (i.e. violation free) behavior is possible, a well-known principle accepted by manydeontic logics.5 ConclusionsIn this article we have shown how to represent ideal and sub-ideal deontic behavior in Petrinets by extending these nets with a preference relations. For example, a preference relationwas de�ned by introducing a penalty function on transitions of the Petri net, from whicha preference ordering on possible executions was derived (which represent its proceduralsemantics). We have also shown that by ordering the transitions of the net, we can de�nea preference relation on the reachable states of an extended marked Petri net. Algorithmsto compute the preference relation in Petri nets, based on graph-search-path techniques, aregiven in [Ras94].The Petri net formalism style is operative in contrast with the declaration style of logicformalisms. It has been shown [LR95] how the Petri net formalism can be extended (forexample with temporal logic) to be used as a description (speci�cation) language. In thatpaper, an operative solution is proposed to model deontic notions in Petri nets. An alternativeapproach is to de�ne a more declarative way to express deontic aspects. For example, a netcould be annotated with logic formulae such as : Fired(t1)) I(3(Fired(t2))), which wouldexpress on the Petri net of �gure 1 that `if one damages a book (�ring t1), idealy (I) oneshould repair it (�ring t2)'.6 AcknowledgementThanks to Patrick van der Laag for reading a previous version of this paper.References[BLWW95] R.W.H. Bons, R.M. Lee, R.W. Wagenaar, and C.D. Wrigley. Modeling inter-organizational trade procedures using documentary Petri nets. In Proceedings ofthe Hawaii International Conference on System Sciences (HICSS'95), 1995.[Chi63] R.M. Chisholm. Contrary-to-duty imperatives and deontic logic. Analysis, 24:33{36, 1963.[For84] J.W. Forester. Gentle murder, or the adverbial Samaritan. Journal of Philosophy,19:75{93, 1984. 16
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