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Red Nucleus: anatomical aspects 

Structure of the· nucleus 

The red nucleus is located centrally in the mesencephalic tegmentu~ 

In the human brain the most conspicious gross feature of the red 

nucleus is its pinkish-red color in fresh sections. This is due to 

the high vascularity of the nucleus (Hough and Wolff, 1939) which 

distinguishes it from the surrounding structures. Its 11 capsule" is 

formed by fibers of the superior cerebellar peduncle, which sur

round and traverse the nucleus and by the oculomotor nerve which 

runs along the medial aspect of the nucleus (Carpenter, 1956). 

Using the Golgi and Nissl techniques, Cajal (1952) described three 

types of neurons in the red nucleus based on their size: large 

neurons, medium sized neurons and small neurons. Hatschek was the 

first who recognized that the red nucleus was divided in a magna

and parvicellular part (Hatschek, 1907). In humans the red nucleus 

is mainly composed of small neurons with only relatively few magna

cellular neurons, the latter of which are located at the caudal 

pole of the nucleus (Ariens-Kappers et al., 1960; de Lange, 1912; 

Ten Donkelaar, 1976a; Masion, 1967). In monkey the red nucleus can 

readily be subdivided into a caudal magnocellular portion and a 

rostral parvicellular portion. At the meso-diencephalic junction 

the latter is located lateral to the fasciculus retroflexus. How

ever, in lower mammals no such a strict distinction between a magna

cellular and a parvicellular portion can be made, although also in 

these species large neurons are more numerous in the caudal parts 

of the nucleus and small neurons predominate in its rostral parts. 

In birds and reptiles the red nucleus consists of large cells only. 

Rats, cats, monkeys, apes and humans have a magna- and parvicellu

lar part. From rat to cat, from cat to monkey and from monkey to 

human the relative size of the magnocellular part decreases, and 

the relative size of the parvicellular part increases. 

These t'vo principal subdivisions of the red nucleus have their 

own efferent pathways. Thus the caudal magnocellular part gives 

rise to projections to the cerebellum, the lower brainstem and the 

spinal cord, while the rostral parvicellular part projects to the 

inferior olive and possibly the thalamus. However, the segregation 

in a caudal red nucleus projecting to the cerebellum, the lower 
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I.l.b. 

I.l.c. 

brainstem and the spinal cord and a rostral red nucleus projecting 

to the inferior olive is a relative one, such that for the rubro

spinal and rubrocerebellar neurons only a rostrocaudal gradient 

exists. This was shown by the fact that in cat rubrospinal and 

rubrocerebellar neurons are located throughout the rostrocaudal 

extent of the nucleus but that they are concentrated in the caudal 

half (Brodal and Gogstad, 1954; Pompeiano and Brodal, 1957), and 

that both sets of neurons comprise large as well as medium and 

small sized cells. 

cytoarchitecture in rat 

In cross-sections the caudal half of the nucleus is egg shaped and 

consists of large (soma diameter 40 ym, giant neurons) and medium 

sized (soma diameter 25-40 ym) neurons. The medium sized neurons 

are most numerous, but a considerable number of large neurons is 

also present, particularly in the caudal pole of the nucleus, where 

they are more numerous than in any other part (Reid et al., 1975). 

The rostral half of the nucleus is composed of predominantly small 

neurons (soma diameter 25 ym) with a scattering of medium sized 

ones and caudally in this rostral part also some large ones. In the 

most caudal part of this rostral half a population of neurons, 

designated the lateral horn (Reid et al., 1975) extends from the 

ventral surface of the nucleus dorsally along its lateral aspect. 

This subgroup contains predominantly small and medium sized neurons, 

but also some large ones. This lateral horn in rat is not analogous 

to the nucleus minimus of Von Monakow (1910) in cat, which sub

nucleus is located dorsolateral to the red nucleus and consists of 

very small neurons (soma diameter 6-8 ym) (Massion, 1967). The 

portion of the red nucleus which contains large neurons and there

fore is designated the magnocellular portion, occupies the caudal 

three fourth of the nucleus. The rostral pole of the nucleus in rat 

blends imperceptively with the prerubral field and this part of the 

nucleus is cytoarchitectonically difficult to demarcate (Reid et al., 

1975). 

cytoarchitecture in cat and monkey 

In cat the caudal magnocellular part of the red nucleus occupies the 

caudal two thirds of the nucleus but ln monkey it seems relatively 

smaller and occupies only the caudal half. In both species the 
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caudal portion of the magnocellular part of the red nucleus is round 

in cross-section and contains large neurons which are dispersed 

between the tegmental fiber bundles. The rostral portion of the 

magnocellular red nucleus in monkey is also round in cross-section 

but contains mainly medium sized neurons. In cat this rostral 

portion of the magnocellular part as seen Ln cross-section has the 

shape of a flattened disc and contains both large and small neurons. 

According to earlier retrograde degeneration findings these various 

types of neurons in the magnocellular part of the red nucleus in 

cat and monkey all give rise to rubrospinal fibers (Kuypers and 

Lawrence, 1967; Poirier and Bouvier, 1966; Pompeiano and Brodal, 

1957). 

The rostral part of the red nucleus in monkey is better delinea

ted against the surrounding reticular formation than in rat and cat. 

This part consists of relatively small neurons and therefore, as in 

other higher primates LS called the parvicellular part. Rostrally 

this part of the nucleus is located lateral to the fasciculus retro

flexus. In the ventral portion of the parvicellular part the cells 

are rather densely packed, while in its dorsal portion the cells 

form a loose network.x According to Fuse (1937) and Fukuyama 

(1940) the rostral red nucleus also comprises the subnucleus 

dorsomedialis (referred to as 11Augenanteil des Roten Kerns") which 

extends dorsomedially from the red nucleus to the 11Nebenokulo

motorius Kerne" i.e. the medial accessory nucleus of Bechteretv and 

nucleus of Darkschewitsch (Carpenter, 1956; Leichnetz, 1982). In 

monkey the parvicellular part extends rostrally close to the meso

diencephalic junction i.e. just beyond the level where the 

x This dorsal portion of the parvicellular red nucleus in monkey is 
also called the rostral interstitial nucleus of Cajal or the 
rostral interstitial nucleus of the MLF (Buttner-Ennever and 
Buttner, 1978; Fukuyama, 1940; Leichnetz, 1982). However, it is 
of importance to emphasize, that these nuclei are distinct from 
the interstitial nucleus of Cajal, which projects to the spinal 
cord (Crutcher et al., 1978; Kuypers and Maisky, 1975, 1977; 
Peterson and Coulter, 1977; Vasilenko and Kostyukov, 1976). 
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I.l.d. 

fasciculus retroflexus (FR) traverses in full length the mesen

cephalic tegmentum. At these levellithe parvicellular part is mainly 

located lateral to the FR. In monkey a small group of medium sized 

multipolar neurons extends from the caudal magnocellular part of 

the nucleus rostrally over a short distance along the lateral 

aspect of the parvicellular part, up to the level where the cross

section through the FR is located immediately ventral to the red 

nucleus. 

In cat the most rostral part of the red nucleus is also situated 

lateral to the FR. However, in this animal this part of the nucleus 

is not truly parvicellular as in monkey, but consists of a loose 

network of small multipolar neurons which is difficult to delinate 

against the surrounding reticular formation. Yet, it seems reason

able to regard this portion of the red nucleus in cat as the coun

terpart of the parvicellular part in monkey since both structures 

give rise to the ipsilaterally descending rubro-olivary fibers 

(Conde and Conde, 1982; Courville and Otabe, 1974; Edwards, 1972; 

Strominger et al., 1979; Walberg, 1956). 

efferents of red nuc~eus 

Rubrobu~bar and rubrospinal tract 

This tract, is also called the bundle of Von Monakow after its 

discoverer Von Monakow (1883). It undergoes a complete decussation 

in the mesencephalic ventral tegmental decussation of Forel. After 

this decussation the bundle descends through the ventrolateral 

pontine tegmentum into the medulla oblongata, where it is located 

ventromedial to the spinal V complex and ventrolateral to the facial 

nucleus. 

At the level of the pontine trigeminal nuclei, some fibers leave 

the rubro-bulbar and -spinal tracts and proceed dorsally to join the 

fibers of the superior cerebellar peduncle with which they ascend 

upstream into the cerebellum (Courville and Brodal, 1966; Hinman 

and Carpenter, 1959; Martinet al., 1974). These rubrocerebellar 

fibres terminate in the nucleus interpositus anterior (Courville 

and Brodal, 1966). In rat the cells of origin of this rubrocere

bellar connection are located throughout the rostrocaudal extent of 

the red nucleus (Flumerfelt and Gwyn, 1974), whereas in cat they are 

located in its caudal two thirds (Brodal and Gogstad, 1954). In 

other words in both rat and cat rubrocerebellar fibers originate 
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from cells which are located in the same portion of the nucleus in which rubro

spinal neurons are found (Conde and Conde, 1980; Murray and Gurule, 1979; 

Pompeiano and Brodal, 1957). In the lower pons and in the medullaoblongata 

fibers are distributed from the laterally descending rubral tract to the 

lateral part of the lateral tegmental field, to the lateral part of the 

cranial VII nucleus and to the supraspinal portion of the lateral reticular 

nucleus (i.e. to the part of the nucleus not in receipt of fibers from the 

spinal cord)(Bandler, 1978; Busch, 1961; Courville, 1966a; Edwards, 1972; 

Flumerfelt and Gwyn, 1974; Hinman and Carpenter, 1959; Kuypers, 1964, 1981; 

Martin, 1970b; Miller and Strominger, 1973; Waldron and G1;Jyn, 1971; Walberg, 

1958). Further, the rubrospinal tract also distributes fibers to the principal 

nucleus V, some portions of the spinal V complex, the descending vestibular 

nucleus, the dorsal column nuclei cuneatus and gracilis and to cell groups x 

and z (Bandler, 1978; Edwards, 1972; Kuypers, 1964, 1981; Martin and Dom, 1970). 

The rubrospinal tract in pigeon, opossum, rat, cat and monkey descends 

throughout the spinal cord in the dorsolateral funiculus and terminates in the 

dorsolateral part of the intermediate zone i.e. in the lateral part of Rexed's 

layers V and VI and in the dorsolateral part of layer VII (Brown, 1974a; 

Edwards, 1972; Kuypers, 1964, 1981; Martin and Dom, 1970a; Martinet al., 1974; 

Miller and Strominger, 1973; Nyberg-Hansen and Brodal, 1964; Petras, 1967; 

Rexed, 1952; Staal, 1961; Waldron and Gwyn, 1971; Wild, 1979). A crossed 

rubrospinal tract has also been demonstrated in the reptiles: turtle and lizard 

but not in the snake (ten Donkelaar, 1976a+b; 1978). In this respect it is of 

interest to note that the snake has no limbs. The frog ~n its tadpole stage 

also lacks extremities and in this stage (up to stage 57) likewise does not 

posses a rubrospinal tract. In this species rubrospinal neurons appear, simul

taneously with the development of the limbs (ten Donkelaar, 1982). 

In rat the cells of origin of the rubrospinal tract are located ~n the 

caudal three fourths of the nucleus (Murray and Gurule, 1979), while in cat 

and monkey they are located in the caudal two thirds of the nucleus (Conde and 

Conde, 1980; Kneisley, 1978; Pompeiano and Brodal, 1957). This interspecies 

difference may be a reflection of the difference in delineation of the rostral 

border of the red nucleus. Thus in rat,the population of neurons ventral and 

lateral to the fasciculus retroflexus (FR) at the meso-diencephalic junction, 

which neurons project to the inferior olive is normally not regarded as a part 

of the parvicellular red nucleus (Carlton et al.. in press a+b; Cintas et al., 

1980; Brown et al., 1977; Senba et al., 1981). On the other hand, in cat and 

monkey this population of neurons is regarded as part of the parvicellular 

red nucleus, and as in rat projects ipsilaterally to the inferior olive 
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(Conde and Conde, 1982; Courville and Otabe, 1974; Edwards, 1972; Strominger et 

al.,1979; Walberg, 1956). 

The rubrospinal projection in rat, cat and monkey is somatotopically orga

nized, such that the dorsomedial part of the red nucleus projects to the cer

vical enlargement, while its ventrolateral part projects to the lumbosacral 

enlargement (Flumerfelt and Gwyn, 1974; Gwyn, 1971; Hayes and Rustioni, 1981; 

Kneisley, 1978; ~iurray and Gurule, 1979; Pompeiano and Brodal, 1957b; Tsuka

hara, 1967). However, this somatotopic organization becomes less pronounced in 

lower animals. Thus, in opossum the rubrospinal tract displays a much less 

rigid somatotopic organization than in rat (Martin et al., 1974, 1981b) and ln 

pigeon and reptiles no somatotopic organization is present at all (ten Donke

laar and de Boer-van Huizen, 1978; Wild, 1979),while in snakes the tract it

self seems to be lacking (ten Donkelaar, 1976a+b). 

Rubro-olivary tract 

This uncrossed tract, which is well established in cat and monkey, descends 

along the lateral border of the trapezoid body in the central tegmental tract 

and terminates in the dorsal lamella of the principal inferior olive (Edwards, 

1972; Miller and Strominger, 1973; Saint-Cyr and Courville, 1980, 1981; 

Walberg, 1956; Walberg and Nordby, 1981). Other meso-diencephalic nuclei, which 

also project to the inferior olive, are the interstitial nucleus of Cajal and 

the nucleus of Darkschewitsch, which nuclei project mainly by way of the medial 

tegmental tract (Busch, 1961; Ogawa, 1939; Walberg, 1974). In macaque including 

rhesus monkey a topographical arrangement between the rostral red nucleus and 

the inferior olive is described, such that the dorsal and medial parts of the 

rostral red nucleus project to dorsal regions of the principal olive, while 

the ventral and lateral parts project to ventral regions of principal olive 

(Courville and Otabe, 1974; Strominger et al., 1979). However, more recently, 

anterograde transport studies in cat (Edwards, 1972) indicate that rubro

olivary fibers terminate only in the dorsal lamella of the principal olive. In 

these studies the injection areas did not involve nuclei,which surround the 

parvicellular red nucleus, as the interstitial nucleus of Cajal and the nucleus 

of Darkschewitsch (c.f. Walberg and Nordby, 1981). 

In cat retrograde HRP transport studies showed that the rubro-olivary 

neurons are located in the rostral one third of the red nucleus just lateral 

to the fasciculus retroflexus where they are continuous with the olivary 

projecting neurons located in the region of the interstitial nucleus of Cajal 

i.e. just dorsomedial to the red nucleus (Conde and Conde~ 1982; Saint-Cyr and 

Courville, 1980, 1981; Walberg and Nordby, 1981). The neurons projecting to 
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the inferior olive, in the rostral red nucleus, the interstitial nucleus of 

Cajal, the nucleus of Darkschewitsch and in the ventral portion of the thala

mic parafascicular nucleus fom a continuous population (Saint-Cyr and Cour

ville, 1980). Anatomical and physiological studies demonstrate only a very 

limited rostra-caudal overlap between the population of rubro-olivary neurons 

and that of rubrospinal neurons, the latter being located in the caudal two 

thirds of the red nucleus (Anderson, 1971; Conde and Conde, 1982). 

The existence of a rubro-olivary tract in opossum and rat has been subject 

of discussion. Thus, retrograde transport studies in opossum and rat demon

strate only a limited population of rubro-olivary neurons ~n the dorsomedial 

rostral red nucleus (Brown et al., 1977; Carlton et al., in press a; Cintas et 

al., 1980; Henkel et al. 1975; Senba et al., 1981). On the other hand, in these 

animals many neurons were present in the area lateral to the fasciculus retro

flexus, which area in cat and monkey is considered to be a part of the rostral 

red nucleus containing the cells of origin of the rubro-olivary tract (Conde 

and Conde, 1982; Kuypers and Lawrence, 1967). Based on these data one may 

suggest that the different delineation of the rostral part of the red nucleus 

in opossum, rat, cat and monkey underlies the difference in opinions about 

the existence of a rubro-olivary pathway as demonstrated by means of retro

grade transport techniques. However, anterograde transport studies in opossum 

establish clearly the existence of a rubro-olivary tract to the principal 

olive (Martinet al., 1980). 

Ruhrothalamic pathway 

Many conflicting data are available about the existence of an ascending 

rubrothalamic connection. Retrograde degeneration studies suggested the exi

stence of ascending fibers originating from the red nucleus (Pompeiano and 

Brodal, 1957b). However, lesions placed in the red nucleus unavoidably inter

rupt cerebellothalamic fibers making it impossible to detemine the precise 

origin of the resulting degeneration in the thalamus. One way of overcoming 

the problem is to interrupt these fibers and allow them to degenerate before 

making lesions or recordings in the red nucleus. From such an anatomical 

study it was concluded that in monkey no rubrothalamic projection exists 

(Hopkins and Lawrence, 1975). On the other hand, retrograde degeneration 

studies support the existence of an ascending rubral projection (Kuypers and 

Lawrence, 1967). In these studies it was found that many neurons in the 

rostral red nucleus ipsilaterally to the diencephalic lesion tended to be 

smaller than their contralateral counterparts and that some displayed acute 

retrograde changes. However, a direct effect of the lesion, which is very 
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close to the rostral red nucleus could be suspected (Kuypers and 

Lawrence, 1967). Electrophysiologically it was shown that stimu

lation of the thalamus produced excitation of red nucleus neurons. 

However, it has been shown that this excitation does not occur due 

to antidromic activity of red nucleus neurons, but that it occurs 

transsynaptically via an axon reflex in brachium conjunctivum 

fibers which send collaterals to red nucleus and also project to 

the thalamus (Anderson, 1971; Tsukahara, 1967). Anterograde auto

radiographic transport studies also deny a rubrothalamic pathway 

(Edwards, 1972). However, more recent retrograde transport studies 

using HRP demonstrated the existence of a rubrothalamic projection 

in cat, originating from the rostral one third of the red nucleus 

(Conde and Conde, 1980). In this study it was shown that retro

grade transport of HRP between the thalamic injection site and red 

nucleus was obtained by intra-axonal transport and not by extra

cellular diffusion or by the bloodstream, since no labeled neurons 

occurred between the injection site and red nucleus (i.e. the hypo

thalamic and subthalamic neurons). In addition neurons were only 

labeled in its rostral part. Further electrophysiological 

studies would be of interest to confirm whether a direct rubro-

thalamic pathway exists in addition to the cerebellothalamic path

way which gives off collaterals to the red nucleus (Tsukahara, 1967). 

Afferents of red nucleus 

Cortical afferents 

The corticorubral connections are most extensively studied in 

monkey, in which corticorubral fibers to the parvi- and magnocellu

lar red nucleus clearly originate from different cortical areas. 

Corticorubral fibers to the parvicellular red nucleus originate from 

Brodmann's area 4 in the precentral gyrus, which largely corresponds 

to the primary motor cortex, and from the premotor areas (area 6 and 

the frontal eye field area 8 in the prearcuate gyrus) (Brodmann, 

1909; Kuypers and Lawrence, 1967). This projection is bilateral with 

an ipsilateral emphasis. The precentral projection to the parvi

cellular red nucleus is derived from the entire precentral gyrus 

including the ,face area" (c.f. Woolsey, 1958) and also to a limited 

degree from postcentral and parietal areas (Kuypers and Lawrence, 

1967). This projection is topically organized. Thus, the fibers from 

the upper one third of the precentral gyrus are distributed to the 
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ventrolateral portion of parvicellular red nucleus, those from the lower one 

third to the dorsomedial portion and those from the middle one third to the 

intermediate portion (Catsman-Berrevoets, 1~79; Hartmann-von Monakow, 1979; 

Kuypers and Lawrence, 1967). The premotor area (area 6 and area 8) projects to 

the dorsomedial part of the parvicellular red nucleus. The supplementary motor 

cortex projects both to the dorsomedial and ventrolateral parts of the parvi

cellular red nucleus (Hartmann-von Monakow, 1979; Kunzle, 1978; Kuypers and 

Lawrence, 1967). The terminal field of area 8 (prearcuate frontal cortex) in 

the subnucleus dorsomedialis of the parvicellular red nucleus (referred as 

11
Augenanteil des Roten Kerns") continues into the 11nebenokulomotorius Kerne" 

i.e. the medial accessory nucleus of Bechterew and the nucleus of Darksche

witsch (Carpenter, 1956; Fukuyama, 1940; Fuse, 1937; Kuypers and Lawrence, 

1967; Leichnetz, 1982). Corticorubral fibers to the magnocellular red nucleus 

originate only from the upper two thirds of the caudal precentral gyrus. This 

projection is exclusively ipsilateral (Hartmann-von Monakow, 1979; Kuypers and 

Lawrence, 1967). Thus, in the cortico-rubro-spinal pathway the somatotopy is 

preserved, such that the cortical "upper limb area" (c .f. Woolsey, 1958) pro

jects to the dorsomedial part of the red nucleus, which part in turn projects 

to the cervical cord. Moreover, the cortical "lower limb area" (c. f. Woolsey, 

1958) projects to the ventrolateral part of the nucleus, which part projects 

to the lumbosacral cord (Catsman-Berrevoets, 1979; Hartmann-von Monakow, 1979; 

Kuypers and Lawrence,1967; Petras,!969). No "face area"(c.f. Woolsey, 1958) pro

jection exists from area 4 (i.e. from the lower one third of the precentral 

gyrus) to the magnocellular red nucleus in contrast to the "face area" 4 pro

jection to the parvicellular red nucleus (Catsman-Berrevoets, 1979; Hartmann

von Monakow, 1979; Kuypers and Lawrence, 1967). 

The magna- and parvi-cellular parts of the red nucleus receive their inputs 

not only from different cortical areas, but the cortical cells of origin of 

these rubral afferents are also situated in different cortical layers. Thus, 

the cells projecting to the parvicellular red nucleus, which are located in 

areas 4 and 6 are situated in the upper part of layer V (Brodmann) i.e. in 

area 4 above the Betz cells (Betz, 1948), while those projecting to the magna

cellular red nucleus, which are located posteriorly in area 4, are situated 

deep in layer V i.e. at the level of the Betz cells (Catsman-Berrevoets, 1979). 

In cat the corticorubral fibers to the caudal two thirds of the red nucleus, 

the part in which the rubrospinal neurons are located, originate from the 

primary sensori-motor cortex. As in monkey, the somatotopy in the cortico

rubro-spinal pathway is preserved,such that the fibers of the cortical "motor 

forelimb area" (c.f. Woolsey, 1958) terminate in the dorsal parts, and those 
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from the "motor hindlimb area" (c.f. Woolsey, 1958) in the ventral parts of 

the red nucleus (Mabuchi, 1966; Padel, 1973; Rinvik and Walberg, 1963; 

Pompeiano and Brodal, 1957b). The premotor area 6 in cat (see Hassler and Muhs

Clement, 1964) is located partly in the gyrus proreus. Only anterograde dege

neration studies have revealed some data concerning corticorubral fibers from 

the gyrus proreus (Rinvik and Walberg, 1963). After lesion in this gyrus dege

nerating terminal fibers were seen bilaterally in the red nucleus. This was 

heaviest ipsilaterally. They did not state in which rostrocaudal part of the 

red nucleus these corticorubral fibers terminate. It would, of course, be of 

interest to know whether these fibers terminate in the rostral one third of 

the cat red nucleus (located lateral to the fasciculus retroflexus),which maybe 

regarded to be analogous to the parvicellular red nucleus in monkey on the 

basis of the projections from this portion of the red nucleus to the inferior 

olive (Conde and Conde, 1982; Saint-Cyr and Courville, 1980; Walberg, 1956). 

Originally the corticorubral fibers in rat were described to be distributed 

only to the ipsilateral parvicellular part of the red nucleus. They apparently 

do not distribute to bhe magnocellular part, which was considered to give rise 

to almost all rubrospinal fibers (Brown, 1974a; Flumerfelt and Gwyn, 1974; 

Gwyn and Flumerfelt, 1974). However, since rubrospinal neurons in rat also 

arise from more rostral parts of the red nucleus (Flumerfelt and Gwyn, 1974) 

the corticorubral fibers from the sensorimotor cortex in this animal are proba

bly also distributed to rubrospinal neurons. As pointed out already, much of 

the controversy related to the efferent connectivity of the red nucleus may 

result from differences concerning,the cytoarchitecture of the parvicellular 

part. If one accepts the cytoarchitectonic borders of Reid (197 5) no rubro

olivary projection exists, since according to this author the parvicellular red 

nucleus in rat does not extend as far rostrally as the fasciculus retroflexus 

(Cintas et al., 1980). Yet, in this animal many fibers projecting to the 

inferior olive do arise from this specific area lateral to the fasciculus retro

flexus, which in fact in cat and monkey is considered as part of the parvicellu

lar red nucleus, projecting to the inferior olive (Conde and Conde, 1982; 

Courville and Otabe, 1974; Miller and Strominger, 1973; Saint-Cyr and Courville, 

1980; Walberg, 1956). Therefore, if one considers the connectivity rather than 

the cytoarchitecture, the "parvicellular" red nucleus in rat extends further 

rostrally than indicated by Reid (1975) and as a consequence recelves many 

fibers bilaterally from the sensorimotor cortex (Brown, 1974b) in the same way 

as in cat and monkey. 

Cortical fibers in rat are distributed not only to the "parvicellular part" 

of the red nucleus, which projects to the inferior olive, but are distributed 
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also to the more caudal parts of the red nucleus, which project to 

the spinal cord. The same is true in opossum where the sensorimotor 

cortex projects to the area lateral to the fasciculus retroflexus, 

which area projects to the inferior olive (Henkel et al.,, 1975; 

Martin et al., 1980) and to the more caudal parts of the nucleus 

which project to the spinal cord (King et al.,1972; Martin, 196G). 

As pointed out above in cat and monkey corticorubral projections 

to both the parvicellular and the magnocellular parts show a topic 

organization (Kuypers and Lawrence, 1967; Mabuchi, 1966; Rinvik and 

Walberg, 1963). However, no such a topic arrangement could be 

demonstrated in opossum (King et al.,1972; Martin, 1968). However, 

in opossum the somatosensori cortex projects only to the cervical 

and rostral thoracic spinal cord segments (Martin and Fisher, 1968), 

while the red nucleus projects throughout the spinal cord. Therefor~ 

a pronounced somatotopic organization in the cortico-rubrospinal 

connections might not be expected (King et al., 1972; Martin, 1968). 

Moreover, in opossum the somatotopic organization ~n the rubro

spinal part of the red nucleus is not so distinct as in cat and 

monkey (Martinet al., 1981b). 

The corticorubral axon terminals ~n opossum, rat, cat and monkey 

contact mainly distal dendrites as was shown in anatomical electron 

microscopic (EM) studies (Brown, 1974; King et al., 1974b) and in 

electrophysiological studies (Humphrey, 1976; Tsukahara, 1967, 

1968a). Cerebellorubral fibers on the other hand, terminate on or 

near the cell body as was shown in anatomical EM studies in opossum, 

rat and cat (Dekker, 1981; King, 1973; Nakamura, 1971) and in 

electrophysiological studies in cat (Tsukahara, 1967 and 1968a). 

Cerebellar afferents 

interposito-Yubral connections 

In monkey and cat, fibers from the nucleus interpositus anterior 

(NIA) , which represent the main source of afferents to the caudal 

red nucleus, are distributed to that part of the red nucleus which 

projects to the spinal cord (Courville, 1966b; Flumerfelt and Otabe, 

1973; Kievit, 1979; Voogd, 1964). This cerebello-rubral connection 

is somatotopically organized, such that the more rostral parts of 

the NIA project to the ventrolateral parts of the red nucleus, while 

the more caudal parts of the NIA project to its dorsomedial parts. 

Thus, according to electrophysiological findings of Pompeiano (1959) 
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and Massion (1961, 1963) and anatomical findings of Pompeiano and Brodal (1957) 

the "hindlimb" area localized in the rostral NIA is connected with the "hind

limb" area ventrolaterally in the red nucleus and the "forelimb" area localized 

in the caudal NIA is connected with the "forelimb" area located dorsomedially in 

the red nucleus. Electrophysiologically, it was also shown that in cat these 

interposito-rubral fibers are in part collaterals from axons which continue to 

the thalamus (Tsukahara et al., 1967). In addition to the fibers distributed 

from NIA to the red nucleus, a limited number of fibers is distributed from 

the nucleus interpositus posterior (NIP). These latter fibers terminate mainly 

in the medial edge of the caudal red nucleus (Voogd, 1964). 

In rat and opossum the interposito-rubral fibers,which are distributed to 

the contralateral red nucleus are also distributed to the caudal red nucleus, 

which projects to the spinal cord (Gwyn and Flumerfelt, 1974; King et al., 1973). 

Electron microscopic studies in rat combining the anterograde intra-axonal 

transport of radioactive aminoacids and the retrograde intra-axonal transport 

of HRP showed that many rubrospinal neurons receive afferents from the cere

bellar interpositus nucleus (Dekker, 1981). 

dendato-rubral connections 

In monkey the NIA and the dentate nucleus clearly distribute fibers to 

different parts of the red nucleus. The former nucleus projects to the magna

cellular subdivision,,Jhile the latter sends its fibers to the parvicellular 

subdivision (Flumerfelt et al., 1973). In cat the dendato-rubral fibers are 

less numerous than in monkey and are distributed to the anterior one third of 

the red nucleus, which part projects to the inferior olive (Angaut and Bowsher, 

1965; Conde, 1966; Courville, 1966b). In opossum approximately the same diffe

rential distribution of interposito-rubral and dendato-rubral fibers exists as 

in monkey, such that the former fibers distribute throughout the red nucleus 

but with an emphasis on the caudal one third and the latter distribute exclu

sively to a small dorsolateral portion, close to the meso-diencephalic junc

tion (King et al.,1973). The fact that the interposito-rubral fibers are 

distributed to caudal magnocellular parts of the red nucleus and dendato-rubral 

fibers to rostral parvicellular parts seems to be in keeping with findings in 

humans. In this species the magnocellular part contains only a limited number 

of neurons, which occupy only the most caudal portion of the nucleus. 

Correspondingly the rubrospinal tract comprised only very few fibers (Massion, 

1967; Nathan and Smith, 1982; Sie, 1956; Verhaart, 1938). This is in keeping 

with the findings of Hassler (1950) -_,,ho stated that the vast majority of the 

cerebello-rubral fibers in the human brain are derived from the dentate 

nucleus, which from animal experiments (see above) is known to project prefer

entially to the pars parvicellularis. 
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Red Nucleus: physiological aspects 

Function of rubrospinat pathway as one of the descending brainstem 

pathways 

The descending pathways are derived from the cortex and the brain

stem, the latter including the red nucleus. The corticospinal path

way terminates in the dorsolateral and ventromedial parts of the 

intermediate zone (Brown, 1971; Chambers and Liu, 1957; Kuypers, 

1964; Martin and Fisher, 1968; Nyberg-Hansen and Brodal, 1963). In 

addition, the corticospinal fibers terminate (especially in the 

chimpanzee and human being) directly on contralateral motoneurons 

of distal extremity muscles and of girdle and proximal extremity 

muscles (Kuypers, 1964; Petras, 1968; Schoen, 1969). In lower 

species such as cat, no such direct corticospinal projection to 

motoneurons exists. 

The descending brainstem pathways to the spinal cord may be divi

ded in two groups (Kuypers, 1964, 1981): the mediatty descending 

pathways which terminate characteristically in the area of long 

propriospinal neurons located ventromedially in the ventral horn 

(Molenaar and Kuypers, 1978) and the tateralty descending pathways, 

which terminate characteristically in the area of short proprio

spinal neurons located dorsolaterally in the intermediate zone 

(Molenaar and Kuypers, 1978). The medially descending pathways 

include the interstitiospinal pathway (Crutcher et al., 1978; Kuypers 

and Maisky, 1975, 1977; Nyberg-Hausen, 1966a; Staal, 1961), the 

tectospinal pathway (Castiglioni et al., 1978; Harting, 1977; Kuypers 

and Maisky, 1975; Martin, 1969; Nyberg-Hausen, 1964; Petras, 1967; 

Staal, 1961; Waldron and Gwyn, 1971), the vestibulospinal pathways 

(Crutcher et al., 1978; Kuypers and Maisky, 1975, 1977; Peterson and 

Coulter, 1977; Vasilenko and Kostyuk, 1976) and the reticulospinal 

pathways from the mesencephalic and pontine reticular formation and 

from the gigantocellular part of the medullary reticular formation 

at the level of the facial nucleus (Crutcher et al., 1978; Edwards, 

1972; Kuypers and Maisky, 1975, 1977; Martinet al. 1979, 1982; 

Peterson et al., 1975; Petras, 1967; Tohyama et al., 1979a+b; Waldron 

and Gwyn, 1971; Zemlan and Pfaff, 1979). These pathways descend in 

the ventral and (or) ventrolateral funiculi of the spinal cord and 

most of them terminate preferentially in the ventromedial part of 

the intermediate zone bilaterally. The laterally descending pathways 
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on the other hand, include the pathways derived from the red nucleus (Edwards, 

1972; Kuypers and Maisky, 1975, 1977; Nyberg-Hansen and Brodal, 1964; Petras, 

1967; Staal, 1961; Tohyama et al., 1979a; Waldron and Gwyn, 1971), the Edinger

Westphal nucleus (Basbaum and Fields, 1979; Loewy and Saper, 1978a+b), the 

ventrolateral pontine tegmentum (Basbaum and Fields, 1979; Busch, 1961; 

Holstege et al., 1979; Kuypers and Maisky, 1975; Martinet al., 1979; Tohyama et 

al., 1979a+b) and raphe magnus, including the adjoining ventral reticular forma

tion (Basbaum and Fields, 1978, 1979; Kuypers and Maisky, 1977; G.F. Martinet 

al., 1979, 1981a; R.F. Martinet al., 1978; Tohyama et al., 1979a+b). These path

ways descend in the dorsolateral funiculus. The rubrospinal tract, which is 

derived from the contralateral red nucleus, terminates in the dorsolateral part 

of the spinal intermediate zone, while the others distribute their fibers to 

the dorsal horn. 

In addition to the medially and laterally descending brainstem pathways 

described above, recent anterograde transport studies have revealed the exi

stence of several other descending brainstem pathways, such as the (sub) 

coeruleospinal (Holstege et al., 1979, 1982; 

Martinet al., 1979; Nygren and Olson, 1977; Tohyama, 1979b) and the raphe 

spinal pathways (from raphe pallidus and adjoining reticular formation) 

(Basbaum and Fields, 1979; Holstege et al., 1982; Hartin et al., 1978; 

Tohyama, 1979). These pathways descend superficially in the lateral and ventral 

funiculi of the spinal cord and terminate both in the intermediate zone as well 

as in the somatic and autonomic motoneuronal cell groups of the ventral and 

lateral horn, respectively. The exact functional role of the connection of 

these descending fibers to the somatic motoneuronal cell groups in the spinal 

ventral horn, is not yet established. 

The findings after transsection of the laterally descending pathways at 

various brainstem levels of the medially descending pathways at the level of 

the abducens nucleus indicate that these pathways subserve different functions 

in motricity. Thus, these brainstem motor pathways in the rhesus monkey sub

serve control of total body-limb activity and independent limb movements 

(Lawrence and Kuypers, 1968 I). The medially descending pathways typically 

subserve steering of axial and proximal limb movements, maintenance of erect 

posture, steering of integrated movements of body and limbs and directing the 

course of progression (Lawrence and Kuypers, 1968 II). The laterally descending 

brainstem pathways on the other hand, are involved in independent use of the 

extremity particularly of the distal parts, which function is primarily sub

served by the rubrospinal tract (Lawrence and Kuypers, 1968 II). This function 

of the laterally descending pathways is confirmed by a lesion study in monkey 
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in which the precentral corticospinal connections and both rubro

spinal pathways were destroyed, while in contrast to the experi

ments of Lawrence and Kuypers (1968, II) the crossed pontospinal 

and uncrossed (sub)coeruleospinal pathways remained intact (Haaxma 

and Kuypers, 1975). The limb contralateral to the precentral lesion 

showed a defect similar to that observed by Lawrence and Kuypers 

(1968, II). 

The corticospinal pathway, because of the way in which it termi

nates in the spinal cord, further amplifies the brainstem motor 

control and in addition provides the capacity of individual finger 

movements by way of direct corticomotoneuronal connections (Kuypers 

and Lawrence, 1968 II). 

The findings in split-brain monkey confirm the above concenpt of 

the functional contributions of the various descending pathways to 

motor control, such that in these animals the seeing half of the 

brain exerts a visuo-motor control over individual arm, hand and 

finger movements contralaterally, but mainly over arm movements 

ipsilaterally (Brinkman and Kuypers, 1~73). This may be explained 

by the distribution of the corticospinal fibers and by the fact that 

the cortical projections to the rubrospinal neurons are distributed 

only ipsilaterally, while those to the cells of origin of the medial 

brainstem system are distributed bilaterally (Hartmann-von Monakow 

et al., 197~; Kunzle, 1978; Kuypers and Lawrence, 1967). The same 

visuo-motor disturbances were observed ipsilaterally in human 

patients, in whom surgical section of the commissures was carried 

out to treat severe convulsive disorders not controlled by medica

tion (Sperry et al., 1969). 

Anatomically, no direct connections exist from the medially and 

laterally descending brainstem pathways to motoneurons, in contrast 

to the corticospinal fibers as mentioned above. Electrophysiologi

cally, however, it was shown that the reticula- and vestibulospinal 

pathways in cat and monkey establish also some monosynaptic connec

tions with motoneurons, preferentially those innervating axial and 

proximal hindlimbs. The rubrospinal pathway in monkey establishes 

also some monosynaptic connections with motoneurons preferentially 

those innervating distal muscles (Grillner et al., 1968, 1970; 

Bongo et al., 1969a; Peterson, 1979; Shapovalov et aL, 1971; 

Shapovalov, 1972). 
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I.2.b. Physiology of the rubrospinal tract as the primary component of the 

laterally descending brainstem pathways 

The facilitatory action of the red nucleus on contralateral flexor 

muscles was shown by Pompeiano (1957) (Massion, 1967) who found 

that stimulating the red nucleus induced a flexion of either the 

anterior or the posterior contralateral limb, depending on which 

part of the red nucleus was stimulated. However, microstimulation of 

the red nucleus in cat and monkey elicites contraction of both 

flexor and extensor muscles of the contralateral limbs (Ghez, 1975; 

Larsen and Yumiya, 1980). These studies also suggested that just as 

the motor cortex, the red nucleus contains colonies of neurons, 

which ultimately activate specifically the motoneuron pools of indi

vidual muscles (Ghez, 1975; Larsen and Yumiya, 1980). Intracellular 

recording studies demonstrated that after stimulating the red 

nucleus a predominance of EPSPs occurs in the flexor a motoneurons 

and IPSPs in the extensor a motoneurons (Hongo et al., 1965, 1969a; 

Sasaki et al., 1960). The pattern of the rubrospinal influence on 

static fusimotor neurons (~ motoneurons) to different muscles 

closely followed that on a motoneurons such that predominantly an 

excitation of flexor neurons and an inhibition of extensor neurons 

occurs (Appelberg et al., 1975). These studies further showed that 

stimulating the red nucleus excites interneurons of the contra

lateral side in Rexed layers VI and VII, which is in keeping with 

anatomical findings (Nyberg-Hansen and Brodal, 1964). These inter

neurons may be divided in two groups: i.e. interneurons excited by 

red nucleus stimulation alone and interneurons which are excited by 

the red nucleus but are also facilitated by primary afferents and 

thus are involved in spinal reflexes (Hongo et al., 1969b, 1972; 

Kostyuk and Pilyavsky, 1969). Flexion movements, which require the 

use of distal muscles, are more affected after red nucleus lesion 

than movements primarily involving more proximal muscles (Sybirska 

and Gorska, 1980). This is confirmed by unit recording in monkey 

red nucleus during skilled movement in which most neurons modulate 

their activity maximally preceding finger or wrist movements 

(Kohlerman et al., 1980). Red nucleus neurons thus modulate their 

activity prior to and during voluntary movement of the contralateral 

limb by which activity they contribute to the initiation of movement 

and development of force in particular muscles (Ghez and Kubota, 

1977). In addition to involvement in steering of muscle activities 
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in the limbs as pointed out above, red nucleus neurons are also modulated in 

phase with locomotion as was shown by electrophysiological recording in red 

nucleus in awake cats. This modulation disappears after removing the cere

bellum, which may indicate that this activity reflects peripheral or spinal 

locomotor rhythms (Orlovsky, 1972; Padel and Steinberg, 1978). The red nucleus 

receives its principal excitatory input from the interpositus nucleus (Angaut 

and Bowsher, 1965; Tsukahara, 1967). Sensory input data generated by movements 

represent the major determinant of the output of the interpositus nucleus 

(Burton and Onada, 1978), and the discharge of both interpositus and red 

nucleus neurons is modulated during voluntary and locomotor movements. In 

addition, red nucleus neurons have wide cutaneous receptive fields by way of 

the cerebellum and respond to deep pressure as well as joint rotation. These 

fields are present ~n those limbs, ~n which the corresponding neurons elicit 

muscle contraction as demonstrated by microstimulation (Ghez, 1975; Padel, 

1981). 

Interposito-rubral EPSPs compared with cerebral evoked EPSPs show much faster 

rise times (Tsukahara, 196 7). This strongly suggests that corticorubral fibers 

make synaptic contact with the remote dendrites of red nucleus neurons, while 

at least some of the cerebellorubral fibers terminate closer to the soma or on 

it (Tsukahara, 1968a). This is based on a cable-like property of dendrites 

(Rall, 1977). 

The cortico-rubro-spinal pathway and the corticospinal pathways have an 

overlapping termination in Rexed laminae V-VII (Kuypers, 1964, 1981; Nyberg

Hausen and Brodal, 1963, 1964). In this respect it is of interest to note that 

both the pyramidal and rubrospinal tract in the cats hindlimb facilitate flexor 

motoneurons and inhibit extensor motoneurons (Bongo et al., 1965, 1969a; Lund

berg, 1962; Pompeiano, 1957; Sasaki et al., 1960). At the cortical level there 

exists a collateral interaction between corticospinal neurons and nearby 

corticorubral neurons (projecting to the caudal red nucleus). This interaction 

is effected through recurrent axon collaterals in sensorimotor cortex. At the 

subcortical level pyramidal tract neurons inhibit or excite rubrospinal neurons 

through axon collaterals in the midbrain (Tsukahara et al., 1968b). The col

lateral interaction at both the cortical and subcortical levels influences the 

balance between cerebral and cerebellar control of the rubrospinal pathway 

(Tsukahara et al., 1968b). 

In surmaary the cortico- and rubrospinal pathways have many features in 

common. In cat they both descend in the dorsolateral funiculus of the spinal 

cord (Nybers-Hansen, 1966b; Nyberg-Hansen and Brodal, 1963, 1964) and terminate 

in largely overlapping areas of the spinal intermediate zone (Flindt-Egebak, 
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1.3. 

1977; Kuypers, 1964, 1981; Nyberg-Hansen and Brodal, 1963, 1964). 

Lesion experiments indicate thattranssection of either of these two 

tracts produce similar deficits in motor function especially per

taining the distal limb movements (Kuypers, 1964; Sybirska and 

Gorska, 1980). However, ~n monkey, the movement capacity provided 

by the corticospinal tract shows a higher degree of motor resolu

tion than the rubrospinal tract, since only the former tract provi

des the capacity to execute individual finger movements (Lawrence 

and Kuypers, 1968 I and II). 

Aims and scope of the present investigations 

The somatotopically organized rubrospinal pathway is the major 

component of the laterally descending brainstem pathways, and is 

especially involved in steering of fractionated movements of the 

distal parts of the limbs. Electrophysiological studies in cat 

showed that this fiber system, in contrast to the medially descen

ding pathways, has a limited degree of collateralization in the 

spinal cord (Abzug et al., 1973 and 1974; Shinoda et al., 1977). The 

red nucleus projects also to the contralateral cerebellum (Brodal 

and Gogstad, 1954; Courville and Brodal, 1966). The collaterali

zation of the rubrospinal neurons to the contralateral cerebellar 

interpositus nucleus is relatively high as indicated by anatomical 

and electrophysiological findings (Anderson, 1971; Brodal and Gog

stad, 1954). Thus, the findings in these studies suggested that 

almost all rubrocerebellar fibers are collaterals from rubrospinal 

neurons. 

In view of the above data it appears that the rubrospinal pathway 

represents a focussed system, which distributes its fibers to speci

fic groups of spinal segments. On the other hand, the rubrocere

bellar pathway probably represents a direct, tightly coupled return 

projection to the interpositus nucleus, which is the main source of 

afferents to the rubrospinal neurons (Courville, 1966b; Dekker, 1981; 

Flumerfelt et al., 1973; King et al., 1973; Tsukahara et al., 1967). 

In the present anatomical study an attempt has been made to 

demonstrate anatomically the existence of collaterals in the rubro

spinal pathway and to compare quantitatively the degree of this col

lateralization in rat, cat and monkey. This was done with the aid of 
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the multiple retrograde fluorescent tracer technique. This technique will be 

described in chapter II. In this anatomical study one fluorescent tracer was 

injected in the cervical grey and another in more caudal segments of the cord. 

In these experiments the distribution of sin3le and double labeled neurons in 

red nucleus was studied. The descending pathways from the ventrolateral pontine 

tegmentum and from the raphe magnus, including the adjoining ventral reticular 

formation, also descend in the dorsolateral funiculus in rat, cat and monkey 

and also terminate in the dorsal grey (Basbaum and Fields, 1978, 1979; Holstege 

et al., 1979; Kuypers and Maisky, 1977; R.F. Martinet al., 1978; G.F. Martinet 

al., 1979 and 1981a; Tohyama et al., 1979a+b). Therefore, in these retrograde 

fluorescent double labeling studies the degree of the collateralization ~n 

these descending tracts was compared to that of the rubrospinal pathway ~n 

each of three mammalian species (i.e. rat, cat and monkey). In addition, in 

cat an attempt was made to determine the location of the rubro-olivary neurons 

in relation to the rubrospinal ones and to establish whether the rubro-olivary 

neurons give collaterals to the spinal cord. These studies will be presented 

in Chapter III and IV. In these studies attention was also paid to the rubro

cerebellar connections. Specifically an attempt has been made to determine 

whether these connections are established by collaterals of rubrospinal 

neurons. These findings will be presented ~n Chapter V. Electron microscopic 

studies in rat, combining the anterograde and retrograde intra-axonal transport 

techniques, showed that many rubrospinal neurons receive afferents from the 

cerebellar interpositus nucleus (Dekker, 1981). Some of the fluorescent 

tracers used in the present study can be employed both retrogradely to demon

strate parent cell bodies as well as anterogradely to demonstrate the fiber 

terminals. Using the fluorescent tracers in this fashion it could be demon

strated in light microsc0py that the cerebellar interposito-rubral fibers 

establish contact with rubrospinal neurons. These data are also presented ~n 

Chapter V. 
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I. Introduction 

In the past the neuroanatomical techniques for tracing fiber connections 

in the brain were primarily based on retrograde and anterograde degenerative 

changes which occur in neuronal cell bodies and axons (nerve fibers) after 

injury to the neuron (Brodal, 1940, 1957; Glees, 1946; Nauta and Gygax, 1954; 

Fink and Heimer, 1967). Recently several new tracing techniques have been 

developed, which are based on intraneuronal transport of substances. Such 

techniques are more effective in tracing fiber connections in the brain than 

the earlier degeneration techniques (Holstege et al., 1979, 1982; Martinet al., 

1979, 1982). The present chapter will deal with the intraneuronal transport of 

some fluorescent substances. Originally, such fluorescent tracers were deve

loped in order to demonstrate the existence of divergent axon collaterals. 

However, later it was found that they could also be used for other purposes 

and in combination with other techniques. 

During the fourties Weiss and Hiscoe (1948) showed that there exists in 

the neuron a proximo-distal 'axonal flow'. Later the characteristics of this 

anterograde axonal flow were studied in detail (Grafstein and Forman, 1980). 

In the late sixties it became widely recognized that the anterograde axonal 

flow of radioactively labeled substances could be used to trace fiber connec

tions Ln the brain. Thus tritiated aminoacids when injected in the brain are 

taken up by nerve cell bodies and incorporated into proteins. Subsequently the 

radioactive label is transported down the axons to their terminals. The distri

bution of the radioactive label can be demonstrated by means of the autoradio

graphic technique (Lasek et al., 1968; Cowan et al., 1972). Hendrickson (1972) 

was the first to show that in this way the labeled terminals of a fiber system. 

can also be demonstrated in EM using EM autoradiography .. Kristensson and 

Olsson (Kristensson," 1970; Kristensson and Olsson, 1971; Kristensson et al., 

1971) and the LaVails (1972) showed that there also exists a retrograde axonal 

flow by means of which certain substances, i.e. bovine albumen and the enzyme 

horseradish peroxidase (HRP) can be transported retrogradely through axons to 

their parent cell bodies. The presence of HRP in the cell body can be demon

strated histochemically by means of several methods (Graham and Karnovsky, 1966; 

Mesulam, 1978; Mesulam and Rosene, 1979; Mesulam et al., 1982). 

Classic Golgi studies (Cajal, 1952) showed that many axons Ln the brain 

give off collaterals. However, with the degeneration or intra-axonal transport 

techniques, it is very difficult to distinguish axon collaterals from unbran

ched fibers. Therefore in the late seventies several attempts were made to 

demonstrate the existence of axon collaterals by developing different retro-
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grade tracers, which after retrograde transport through the stern axon and 

through a collateral respectively, can be demonstrated independently in the 

parent cell body. The following three methods for such retrograde double labe

ling of neurons are available. 

A) The HRP-tritiated apo-HRP technique (Hayes and Rustioni, 1979, 1981). 

This technique is based on the fact that both HRP and tritiated apo-HRP are 

transported retrogradely to the cell body (Kristensson and Olsson, 1971; 

LaVail and LaVail, 1972; Geisert, 1976). The presence of HRP in the cell body 

is then demonstrated histochemically, while the presence of the tritiated-apo

HRP is demonstrated autoradiographically. This technique therefore requires a 

combined histochernical-autoradiographic procedure which can be applied to 

frozen sections. However, because the autoradiographic technique can only de

monstrate the presence of a tritiated label in the upper 3 ym of the section 

(Sidman, 1970), double labeled neurons can only be demonstrated in these upper 

3 ym. 

B) The HRP-Iron dextran technique (Olsson and Kristensson, 1978; Cesaro 

et al., 1979). These two tracers are demonstrated histochemically in the 

parent cell body by first processing the sections for HRP and then demonstra

ting the presence of ferric ions by means of the Perl's reaction. However, 

double labeling may be underestimated when only a few granules of lron dextran 

or HRP are present in the cell body, because they tend to be masked by a 

massive accumulation of the other reaction product. This can be prevented by 

adapting the survival times to the fiber systems under study (Cesaro et al., 

1979). 

C) The fluorescent double labeling technique. This technique makes use of 

the fact that several fluorescent substances are transported retrogradely 

through divergent axon collaterals to the same parent cell body where they can 

be visualized independently by means of fluorescence microscopy. The present 

chapter will deal with this fluorescent double labeling technique (Kuypers et 

al., 1977). A general survey of the various fluorescent retrograde tracers, as 

they were tested in our laboratory, will be provided and a guideline will be 

given for the use of these tracers in animal experiments. 

II. Development of the multiple retrograde fluorescent tracer technique for 

demonstrating axon collaterals. 

The first steps towards the development of a multiple fluorescent tracer 

technique were made by Kristensson (1970) and by Stewart and Scoville (1976) 

who demonstrated that Evans Blue (EB) combined with bovine albumen (BA), is 



46 

Fig. I. 

550nm 360 nm 360 nm 

Jt:d 

DAPI-Pr NY or DY 

EB TB or FE 

This diaeram shows two different fluorescent tracer combinations, 
which are suitable for use in double labeling experiments aimed 
at demonstrating the existence of divergent axon collaterals. On 
the left the combination 11Evans Blue" (EB) and ,,DAPI/Primuline" 
(DAPI/Pr) is shown. EB after retrograde transport labels the parent 
cell body red at 550 nm (EB) and DAPI/Pr labels the parent cell 
body blue with golden fluorescent granules in the cytoplasm at 360 
nm. On the right the combination 11 True Blue" (TB) or 11 Fast Blue" 
(FB) and 11 Nuclear Yellow" (NY) or 11 Diamidino Yellow" (DY) is shown. 
TB and FB after retrograde transport, label the cytoplasm of the 
parent cell body blue at 360 nm, and NY and DY label the nucleus of 
the parent cell body yellow at the same 360 nm excitation wavelength. 
DY refers both to Diamidino Yellow dihydrochloride (DY.2HC1) as well 
as to Diamidino Yellow diaceturic acid (DY.2aa). 



47 

transported retrogradely through axons to their parent cell bodies in the same 

way as HRP. EB can be demonstrated in these cell bodies by means of fluorescence 

microscopybecause in formaline fixed material the EB labeled cell bodies show 

a flaming red fluorescence when illuminated with light of 550 nm wavelength 

(Kristensson, 1970; Kristensson et al., 1971; Steward and Scoville, 1976). 

Therefore the retrograde neuronal labeling by means of Evans Blue (EB) was 

studied in more detail (Kuypers et al., 1977). The findings showed that EB with

out bovine albumen (BA) may give as good or even better retrograde labeling of 

neuronal cell bodies than EB combined with EA. Thus when injections of EB (10% 

in water) in the tongue or in the caudate putamen in rat was followed by one or 

more days survival the hypoglossal neurons in the one case and the neurons in 

the centre median and the substantia nigra pars compacta (SNC) in the other 

were flaming red fluorescent. This red fluorescence was studied in frozen 

sections cut from formalin fixed material, which sections were mounted on slidffi 

and air dried, but were not coverslipped. They were studied with the aid of a 

Leitz Ploemopack fluorescence microscope, which was equipped with a high pres

sure lamp of 100 Watt and with filter mirror systems: A, D, and N2, which 

provide excitation light of approximately 360 nm, 390 nm and 550 nm wavelengths. 

The flaming red fluorescence of the EB labeled neurons could be clearly ob

served with filter mirror system N2 (550 nm wavelength) but only at higher 

magnifications (i.e. objectives of 25x or higher). However, lightly EB labeled 

neurons were difficult to differentiate from not labeled neurons, which at 550 

nm wavelength show a red granular autofluorescence. 

The efficacy of the combination of EB with HRP for double retrograde labe

ling of neurons was tested by injecting these substances together in caudate

putamen of rats followed by one day survival. In these cases many double labeled 

neurons were present in the substantia nigra, which neurons must have been 

double labeled through single axons. When viewed with filter mirror system A 

(360 nm excitation wavelength) the neurons displayed HRP granules in the cyto

plasm, but when viewed with filter mirror system N2 (550 nrn excitation wave

length) they showed only red fluorescence of the nucleus. The absence of the red 

fluorescence from the cytoplasm was probably due to the oxydation of EB by H
2
o

2 
in the presence of HRP, which accumulates in the cytoplasm, but does not enter 

the nucleus. However, since the red fluorescence of the nucleus in the EB-HRP 

double labeled neurons was sometimes difficult to detect, the combination of EB 

and HRP was regarded as less than satisfactory for retrograde double labeling. 

In a new series of experiments an attempt was made to find another tracer 

which could be combined with EB in double labeling experiments. For this purpose 

the retrograde transport of a large series of substances was tested (Kuypers 
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Fig. 2. Photomicrographs in upper row show neurons in the central nervous 
system single labeled with DAPI, Primuline and Bisbenzimide (Bb). 
Photomicrographs in bottom row show neurons single labeled with 
Evans Blue (EB), Granular Blue (GB), Nuclear Yellow (NY) and 
Diamidino Yellow (DY). 
Note that around the retrogradely Bb-labeled neurons Bb-labeled 
glial nuclei are present, which are absent when using NY with 
restricted survival times or when using DY. Arrows indicate Bb
labeled neuronal nuclei. 
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et al., 1977) using the rat nigro~striatal system as a model. All these 

tracers are transported retrogradely both after injections in termination 

areas of fiber systems as well as after injections in the fiber bundles them

selves. In the fluorescence microscope these tracers can be observed only at 

higher magnifications (i.e. objectives of 25x or higher). Thus, the retro

grade transport of DAPI' (2.5% in water) and PrimuZine (10% in water) was dis

covered. 

Neurons, retrogradely labeledwith DAPI display a bright blue fluorescen

ce of the nucleus including the nucleolus and a duller blue fluorescence of 

the cytoplasm when viewed with filter mirror system A (360 nm excitation wave

length). Moreover, the labeled neurons are frequently surrounded by blue 

fluorescent glial nuclei. When viewed with filter mirror system D (390 nm 

excitation wavelength) DAPI labeled neurons are green fluorescent. 

Primuline labeled neurons when viewed with filter mirror systems A and D 

display golden fluo~escent granules in the cytoplasm but no labeling of the 

nucleus. The Primuline fluorescent granules can be differentiated easily from 

the autofluorescent clumps, which are also located in the cytoplasm, but 

which fluoresce brown-yellow at 360 nm. However, in neurons in which the 

cytoplasm is filled with these autofluorescent clumps, the Primuline granules 

may be difficult to detect. A similar labeling is obtained with the retrograde 

fluorescent tracer SITS, which in contract to the vast majority of the other 

tracers, seems to be taken up by terminals only and not by broken axons 

(Schmued and Swanson, 1982). The combination Primuline and DAPI (DAPI/Pr) has 

the advantage that both the nucleus (with DAPI) and the cytoplasm (with DAPI 

and Pr) are labeled. When EB and DAPI/Pr were injected together in rat 

caudate-putamen many double labeled neurons were present in centreme.dian

parafascicular complex and SNC. These neurons, which must have been double 

labeled through single axons, displayed a flaming red EB fluorescence when 

viewed with filter mirror system N2 (550 nm excitation wavelength) and a blue 

and golden granular fluorescence when viewed with filter mirror system A 

(360 nm excitation wavelength) (Figs. I and 2). 

In v~ew of the above findings the combination of EB and DAPI/Pr seemed 

suitable for use in double labeling experiments aimed at demonstrating the 

existence of divergent axon collaterals. In order to test this, the fiber 

projections from the mammillary bodies to the thalamus and mesencephalon were 

used as a model (Vander Kooy et al., 1978) because according to Cajal they 

are at least ~n part established by divergent axon collaterals. In rats EB 

was injected ~n the anterior thalamus and DAPI/Pr in the mesencephalic midlin~ 

After a survival time of 4 days many EB-DAPI/Pr double labeled neurons were 
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present in the lateral mammillary nucleus and in the medial portion of the 

medial nucleus. Also when EB and DAPI/Pr were injected in the left and the 

right anterior thalamus, respectively, many double labeled neurons were present 

~n the mammillary nucleus on both sides. 

The above findings clearly showed that EB and DAPI/Pr could be used as 

retrograde tracers in double labeling experiments. However, in double labeled 

neurons the EB fluorescence and the DAPI/Pr fluorescence is less pronounced 

than in single labeled ones. EB and DAPI/Pr were also used in experiments 

aimed at studying the existence of axonal branching in the ascending raphe and 

nigral projections (Vander Kooy and Kuypers, 1979) and in experiments aimed 

at clarifying the existence of axonal branching in the nigra-fugal connections 

(Bentivoglio et al., 1979a). In this latter study, it was demonstrated that 

the projections from the pars reticulata of the substantia nigra to the tectum 

and the thalamus are at least in part established by divergent axon collate

rals of the same neurons as has been confirmed in electrophysiological experi

ments (Niijma and Yoshida, 1982). Further, in this study (Bentivoglio et al., 

1979a) the efficacy of EB and DAPI/Pr in retrograde labeling of pars reticu

lata neurons from thalamus and from superior colliculus was found to be com

parable to that obtained with HRP as demonstrated by the DAB technique 

(Graham and Karnovsky, 1966; Mesulam et al., 1982). 

In several, largely unpublished, experiments long distance transport of 

DAPI/Pr was found to be somewhat inconsistent especially in cat, because in 

some cases beatiful labeling of cortical and brain stem neurons was obtained 

while in others no such labeling occurred. Therefore the search for other 

fluorescent retrograde tracers was continued. Thus it was found that Bisbenzi

mide (Bb) and Propidium Iodide (PI) are transported retrogradely over long 

distances, e.g. from the thoracic spinal cord to the sensorimotor cortex in 

rat and cat (Kuypers et al., 1979). These two substances, however, produce an 

entirely different type of retrograde neuronal labeling. 

Nigral neurons, which are retrogradely labeled after injections of Bis

benzimide (Bb, 10% in water) in caudate-putamen display a yellow-green granu

lar fluorescence of the neuronal nucleus which also shows a pronounced 

yellow-green fluorescence of its membrane and a pronounced yellow-green fluo

rescent ring around its nucleolus. In heavily labeled neurons, in addition, 

bright yellow fluorescent granules were present in the cytoplasm. This type 

of fluorescence is obtained when viewing the neurons with filter mirror system 

D (390 nm excitation wavelength), but, when using filter mirror system A 

(360 nm excitation wavelength) the nucleus showed a blueish green instead of 

yellow-green fluorescence (Fig. 2). In these experiments with long survival 
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times relative to the transport distance (e.g. several days for transport from 

striatum to substantia nigra in rats), also many fluorescent glial nuclei were 

present around the retrogradely labeled neurons (Fig. 2). These glial nuclei 

can be easily distinguished from the neuronal nuclei because the latter 

characteristically show a fluorescent ring around the nucleolus. The labeling 

of the glial nuclei was thought to be due to Bb migration from the neuronal 

cell body into the glial cells,associated with these neurons, in which glial 

cells Bb, because of its affinity to nucleotides, labeled primarily the nuclei. 

At that time it was not realized however, that this migration of Bb may pro

duce false labeling of neurons (see later). Bb fluorescent glial nuclei also 

occur along axons which proceed from the area of the retrogradely labeled 

neurons to the injection area. These also occur along axons which proceed 

from the injection area to their terminations in other cell groups. It was 

therefore concluded that Bb proceeds both retrogradely and anterogradely 

through axons. However, after anterograde Bb transport through axons no 

transsynaptic labeling of recipient neurons was observed. Yet, later it was 

found that Bb (and Nuclear Yellow (NY) which is related to Bb) after very long 

survival times may produce transsynaptic neuronal labeling (Bentivoglio et 

al., 1980b; Aschoff and Hollander, 1982). 

Propidium Iodide (PI) produces an entirely different retrograde labeling 

than Bb. Strongly PI labeled neurons in SNC after injection of PI (10% in 

water) in caudate-putamen display a brilliant orange-red fluorescence of cell 

body and proximal dendrites when viewed with filter mirror system N2 (550 nm 

excitation wavelength), but show little fluorescence when viewed with filter 

mirror systems A or D. Retrograde PI labeled neurons show very little nuclear 

labeling except for an orange-red fluorescence of the nucleolus. After long 

survival times relative to the transport distance (i.e. longer than the sur

vival times in table I) PI fluorescent glial nuclei appear around the retro

gradely labeled neurons. 

From the characteristics of the retrograde labeling produced by Bb and 

PI it was inferred that they could be used in double labeling experiments 

demonstrating the existence of divergent axon collaterals. This was tested in 

the mammillary bodies of rats (Kuypers et al. 1979) by injecting Bb in one 

thalamus and PI in the other. Many PI-Bb double labeled neurons were present 

in the lateral mammillary nucleus on both sides in the same way as observed 

with EB and DAPI/Pr (see above). These double labeled neurons displayed an 

orange-red PI fluorecent cytoplasm when viewed with filter mirror system N2 

(550 nm excitation wavelength) and a yellow-green (Bb) fluorescent nucleus 

when viewed with filter mirror systems A and D. Since then several investi-
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Colorphotornicrographs of red nucleus neurons, retrogradely labeled 
from the spinal cord. 
A: single TB-labeled neuron 
B: single NY-labeled neuron 
C: TB-NY double labeled neuron 
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gators have used PI for double retrograde labeling and even for triple retro

grade labeling of neurons. In addition, PI has been used in combination with 

histochemical and immunohistochemical techniques (Olmos and Heimer, 1980; Van 

der Kooy and Wise, 1980; Bjorklund and Skagerberg, 1979a+b; Steinbusch et al., 

1981; Brann and Emson, 1980; Hokfelt et al., 1979a+b, 1980). However, Ln our 

laboratory PI has seldom been used because it seems rather toxic and lightly 

PI labeled neurons are very difficult to distinguish from unlabeled ones. This 

latter difficulty, which is also encountered with EB, is due to the fact that 

even in a normal brain many neurons, when viewed with filter mirror system N2, 

display some orange-red autofluorescent granules Ln the cytoplasm. This makes 

lightly PI labeled neurons difficult to distinguish from unlabeled ones al

though PI labeled neurons show an orange-red fluorescent nucleolus. 

In our experiments PI was not transported effectively over long distances, 

especially not in cat (Kuypers et al., 1979). Therefore the search for other 

retrograde tracers was continued. In view of the findings obtained with DAPI, 

special attention was paid to other diamidino compounds, all of which bind with 

RNA and DNA. A large series of diamidino compounds, synthesized in Dr. Dann's 

laboratory, was tested. Many of them give retrograde fluorescent labeling of 

neurons. The following two compounds seemed useful as retrograde tracers, i.e. 

True Blue (TB)x and Granular Blue (GB) (Bentivoglio et al., 1979; Rosina et al., 

1980). In rats they are transported effectively over long distances (from the 

spinal cord to the cerebral cortex) and produce a blue fluorescent labeling of 

the neuronal cytoplasm in cell body and proximal dendrites when viewed with 

filter mirror system A (360 nm excitation wavelength). True Blue also gives a 

pronounced blue labeling of the nucleolus and Granular Blue produces an accumu

lation of blue silver granules in the cytoplasm(Figs. 2 and 3 and Chapter III, 

Fig. 3). Moreover, after long survival times relative to the transport distance 

xin addition to TB mentioned in this chapter which is a chloride, there is 
also another TB compound available (i.e. TB-aceturate), which is more water 
soluble. Howeve~ this soluble-TB gives a smaller number of retrogradely 
labeled neurons as compared to the original TB. 
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(8 days, c.f. Table I) in the nigra-striatal system, some blue fluorescent 

glial nuclei are present around the retrogradely labeled neurons. These and 

further findings have been shown that TB is a very effective retrograde tracer 

in double and triple labeling experiments in rat (Olmos ~nd Heimer, 1980; 

Swanson et al., 1980; Swanson and Kuypers, 1980a+b). 

TB, despite its very favorable characteristics as a retrograde tracer, 

has the disadvantage that it is not transported effectively over long dis

tances in cat. However, an other 'blue' diamidino compound was found, i.e. 

'Fast B~ue' (FB) (Bentivoglio et al., 1980a) which is more soluble in water 

than is TB and is rather effectively transported retrogradely over long dis

tances in rat, cat and monkey (Kuypers et al., 1980; Huisman et al., 1982). 

Retrogradely FB labeled neurons display a blue fluorescent cytoplasm when 

viewed with filter mirror system A, but the FB fluorescence is a little 

duller and slightly more greyish than the TB fluorescence (Chapter IV, Figs. 

7 and 15). After long survival times (much longer than cited in table I) the 

blue cytoplasm contains some orange fluorescent granules and glial nuclei 

surrounding the retrogradely FB labeled neurons, become fluorescent. Moreover, 

contrary to the findings with TB, some very heavily FB labeled neurons with a 

brightly blue fluorescent cytoplasm occasionally display a white to blueish 

fluorescent nucleus (Bharos et al., 1981; Huisman et al., unpublished obser

vations). In the central nervous system this phenomenon was rarely observed 

and only when a relatively long survival time was combined with a short tran

sport distance. However, in the peripheral nervous system apparently this 

phenomenon is more frequently observed (Illert et al., in press)(see later). 

The labeling characteristics of the 'blue' tracers suggested that Bb 

could be combined with TB or FB in double labeling experiments, because the 

double labeled neurons when viewed in the filter mirror system A (360 nm) 

would show a blue fluorescent cytoplasm and a yellow fluorescent nucleus. In 

addition in these cases the neuronal autofluorescence would not interfere 

with the detection of the tracer fluorescence since with filter mirror system 

A (360 nm excitation wavelength) the autofluorescence appears as brown-yellow 

granules in the blue labeled cytoplasm. The effectiveness of such double 

labeling was demonstrated in experiments using the efferent connections of 

the mammillary bodies in rat and cat as a model (Kuypers et al., 1980). How

ever, Bb also provides a yellow-green cytoplasmic labeling which might obscure 

the blue TB or FB labeling. Therefore, in such double labeling experiments 

another benzimidazole, which was provided by Dr. H. Loewe of the Hoechst 

Company, i.e. Nuclear Yellow (NY) is regularly used (Bentivoglio 1980a), 

which gives primarily a nuclear labeling similar to that obtained with Bb 
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(Figs. 2 and 3). In respect to this type of double labeling it may be argued 

that the combination of FB and NY carries the disadvantage that in some cases 

single FB labeled neurons show some blue to white FB labeling of the nucleus 

which could make such neurons difficult to distinguish from FB-NY double labe

led ones. However, in our experiments in the brain only very seldom a strong 

FB labeling of the neuronal nucleus was obtained (Bharos et al., 1981; Huisman 

et al., unpublished observations) and this blue to white FB labeling could al

ways be clearly distinguished from the yellow to green NY (or DY, see below) 

labeling. Therefore the combination of FB and NY has been consistently used ~n 

double labeling experiments in cat and monkey (Fig. 1 and chapter IV, Figs. 7 

and 15) and the combination FB, NY and EB has been used in triple labeling 

experiments in rat (Bentivoglio and Molinari, 1982). 

In one of the first studies ~n which the TB-NY combination was used it 

became obvious however, that the NY and Bb migration out of the retrogradely 

labeled neurons might give rise to false labeling of neurons. The aim of this 

first study was to determine whether corticospinal neurons in rat possess 

callosal collaterals (Catsman et al., 1980). For this purpose NY (10% in 

water) was injected in one hemisphere and TB (2% in water) was injected ipsi

laterally in the spinal cord followed by approximately 6 days survival time. In 

these experiments many of the TB labeled corticospinal neurons in the non

injected hemisphere were TB-NY double labeled. However, in electrophysiological 

experiments (Catsman-Berrevoets et al., 1980) no indication of the existence of 

corticospinal callosal collaterals could be obtained. Moreover, with other 

tracer combinations: e.g. EB and GB, no unequivocal double labeling of cortico

spinal neurons was found. It was therefore concluded that in the TB-NY experi

ments some false NY labeling of corticospinal neurons had occurred, probablydue 

to migration of NY out of the retrogradely labeled callosal neurons as indi

cated by the presence of NY labeled fluorescent glial nuclei around these 

neurons (c.f. Kuzuhara et al., 1980). In a new set of experiments (Bentivoglio 

et al., 1980b) it was found that the NY and Bb migration out of retrogradely 

labeled neurons occurs gradually during the survival period, such that first 

the nucleus is labeled and then the cytoplasm plus the surrounding glial nuclei 

which after longer survival times become progressively more brilliantly fluo

rescent. These experiments further showed that the migration of Bb and NY from 

the retrogradely labeled neurons may be prevented by using 1% Bb in water, or 

1% NY in water (instead of 10%) and by restricting the survival times, such 

that the glial nuclei around the retrogradely labeled neurons either are non

fluorescent or are only dull fluorescent i.e. much duller than the retrogradely 

labeled neurons. When in rat the injections in the spinal cord and the hemis-



56 

phere were repeated in this manner such that first TB was injected in the 

spinal cord followed by a 6-day survival time, and NY (1% in water) was in

jected later in the hemisphere: 28 hours before the animal was sacrificed 

(28 hours NY survival time~ none of the corticospinal neurons were double 

labeled. However, this was not due to a failure of the TB-NY combination to 

double label neurons because, when this same procedure was applied to the 

marnrnillothalamic connections, many double labeled neurons were present in.the 

lateral mammillary nucleus even after very short NY survival times. In restric

ting the survival times NY was preferred above Bb, because NY requires a 

slightly longer transport time than Bb and migrates more slowly out of the 

retrogradely labeled neurons than Bb, which allow for a somewhat longer survi

val time. 

The necessity to inject the two tracers at different times during the 

survival period, however, makes the double labeling with TB or FB in combina

tion with NY a somewhat cumbersome procedure. Nonetheless, the combination of 

NY with TB or FB (Figs. I and 3) is still preferred above the combination of 

a red and a blue tracer because, as pointed out already, when using the red 

tracers, lightly labeled neurons are difficult to distinguish from non-labeled 

ones. 

The complication that TB or FB and NY have to be injected at different 

times during the survival period would be avoided if NY could be replaced by 

another tracer, which also labels mainly the nucleus but does not migrate out 

of the retrogradely labeled neurons. Such a tracer could be injected together 

with TB or FB in the same session. In order to find such a tracer several 

diamidino compounds synthesized in Dr. Dann's laboratory were tested. The 

diamidino compound No 28826 was found which will be called Diamidino Yellow 

dihydrochlorid (DY.2HC1)x. This compound, which is related to GB, TB and FB, 

X 

Two DY compounds are available from Dr. Dann's laboratory and are manufactu
rized by Dr. Illing: DY dihydrochlorid (DY.2HCI) and DY diaceturic acid 
(DY.2aa). The latter compound, which produces neuronal labeling similar to 
that obtained with DY.2HCI is easier to purify. However, these two compounds 
behave differently in the following two respects. First, DY.2aa is much more 
soluble in water than DY.2HCI such that 2% DY.2aa in water produces a clear, 
but highly viscous, yellow solution. The high viscosity makes it less suita
ble for injections in the brain, because a) it often cloggs the injection 
needle or the glasspipette, and b) during withdrawal of the needle or pipette 
from the brain, part of the DY.2aa tends to be pulled up into the needle 
track and sometimes on to the surface of the brain. This phenomenon may be 
avoided by using a 2% DY.2aa suspension in 0.2 M phosphate buffer (pH 7,2) 
under which circumstances the DY precipitates. Secondly, after short distance 
transport DY.2aa migrates more rapidly out of the retrogradely labeled neu
rons than DY.2HCI. Therefore it has been concluded that DY.2HCI should be 
preferred above DY.2aa but that in case of long distance retrograde transport 
a 2% DY.2aa suspension in 0.2 M phosphate buffer (pH 7,2) might be used 
(Keizer et al., in press). 
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Photomicrograph of two motoneuronal populations retrogradely labeled 
with Bisbenzimide (Bb) and Propidium Iodide (PI). Used with per
mission from Illert. 

appears to meet the above requirements and soon will be commercially available 

(Keizer et al., in preparation). At 360 nm excitation wavelength DY.2HCI gives 

a diffuse golden yellow labeling of the neuronal nucleus with a lightly fluo

rescent ring around the nucleolus and a diffuse yellow labeling of the cyto

plasm which sometimes also contains golden yellow fluorescent granules (Fig. 2 

and chapter V, Figs. 4 and 5). DY.2HCI is effectively transported over long 

distances in rat and cat (Fig. I) and can be successfully combined with TB and 

FB in double labeling experiments aimed at demonstrating the existence of di

vergent axon collaterals (Keizer et al. in preparation). 

When trying to obtain double labeling of neurons by way of divergent axon 

collaterals it should be realized that the number of double labeled neurons is 

determined by the sensitivity of the weakest tracer. Therefore a combination of 

the most effective tracers should be used, because if one tracer is much less 
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sensitive than the other, ~.e. labels much fewer neurons, only a small percen

tage of the neurons which give rise to divergent axon collaterals will be 

double labeled. In light of this the combination of TB or FB and NY or DY is 

preferred. 

The fluorescent and the histological features of the injection areas 

produced by the various tracers reported in this chapter (EB, DAPI/Pr, PI, GB, 

TB, FB, Bb, NY, DY) are described in the corresponding publications (Kuypers 

et al., 1977, 1979, 1980; Bentivoglio et al., 1979, 1980a+b; Catsman-Berrevoets 

and Kuypers, 1981; Keizer et al., in preparation). These injection areas in 

general consist of several concentric fluorescent zones which surround the end 

of the needle track where the tracer has been deposited in the brain tissue. 

The findings in the various experiments indicate that the uptake and the retro

grade axonal transport of the different tracers mainly occurs from the central 

zones of the injection areas both from fiber termination areas as well as from 

broken axons. However, as already mentioned SITS seems to be taken up by ter

minals only and not by broken axons (Schmued and Swanson, 1982). 

The injection of the tracers produces tissue necrosis in the centre of the 

injection area. This is most pronounced with DAPI, GB, TB, FB and DY.2HCI. 

However, the occurrence of such necrosis does not interfere with the retrograde 

axonal transport of the tracers as indicated by the fact that DY.2HCI, which 

produces a relatively considerable necrosis in the centre of the injection 

area, gives frequently a retrograde labeling of a larger number of neurons than 

NY which produces relatively little necrosis. 

The preceding description of the retrograde neuronal labeling obtained 

with the different tracers is based on observations in frozen section material 

of the brain. In this respect, it is of importance to emphasize that in 

different parts of the central nervous system and after different histological 

procedures a different type of labeling may be obtained. For example, as 

described by Bjorklund and Skagerberg (1979a+b) in freeze dried material TB 

and PI are present in the neuronal cytoplasm as iceblue and red fluorescent 

granules instead of being distributed diffusely as observed in frozen section 

material (Fig. 5 ). Further, under certain conditions the type of retrograde 

labeling of motoneurons observed in frozen section material after transport of 

the tracers through peripheral nerves (Illert et al., in press) differs from 

that obtained in neuronal systems in the brain. For example after dipping 

branches of the cats radial nerve in 10% FB dissolved in ethylenglycol 

(Illert et al., ~n press) a bright blue fluorescent labeling of both the mota

neuronal cytoplasm and the motoneuronal nucleus was obtained which was so 

bright that it could be observed under low magnification (objective !Ox). 



Fig. 5. Photomicrographs of retrogradely labeled neurons with Propidium 
Iodide (PI) in freeze dried material (left and middle photomicro
graph). Note the granular distribution of PI in freeze dried 
material~ed with permission from Bjorklund and Skagerberg) and 
the diffuse distribution of PI in frozen section material. Note 
also the labeled nucleolus in the left and the right photomicro
graphs. 
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Moreover, after intramuscular injections of 2% NY dissolved in ethylenglycol a 

strong predominantly white-blue cytoplasmic NY labeling of motoneurons occurred 

which also could be observed under low magnification, while only a soft yellow 

NY labeling of the nucleus was present (Illert et al. in press). Thus, under 

those specific circumstances NY labeled motoneurons resemble FB labeled ones. 

This has led Illert and his collaborators to the conclusion that when trying 

to differentially label motoneurons from different peripheral nerves according 

to their procedure, tracers with different emission spectra should be used 

(Fig. 4). The unusual FB, NY and Bb retrograde labeling obtained in motoneurons 

by Illert and his collaborators is probably due to the fact that by using their 

procedure these neurons are almost entirely saturated by the tracers. This 

probably results from the fact that large quantitities of the tracers are in

jected in the muscles and that the peripheral nerves are dipped in high con

centrations of the tracers dissolved in ethylenglycol. This is indicated by 

the observations of Lemon and Muir (personal communications) who obtained a FB 

motoneuronal labeling similar to that observed in neuronal systems in the 

brain, after dipping the deep branch of the monkeys ulnar nerve in 5% FB 

(instead of 10%) which was dissolved in water with 2% DMSO (instead of in 
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ethylenglycol). 

The large intramuscular injections as used by Illert and his collaborators 

produced not only a very heavily labeling of the motoneurons but produced also 

labeling of the endothelial cells lining the bloodvessels in the spinal cord. 

This endothelian labeling is only very rarely observed after small injections 

in the central nervous system and in all likelihood is due to the fact that the 

dye had entered the bloodstream. 

III. Differential retrograde labeling of different members of a neuronal popu

lation by means of fluorescent tracers 

Many cell groups in the brain distribute fibers to several target areas. 

Such projections are either established by divergent axon collaterals of indi

vidual neurons or by axons which are derived from different subsets of neurons. 

In the latter case injecting fluorescent retrograde tracers in the various 

target areas, as done when studying double retrograde labeling, will also 

reveal which subsets of neurons project to which target area. For this purpose 

the same combinations of fluorescent tracers can be used as in double labeling 

studies. Thus EB may be combined with DAPI/Pr, GB, TB, FB, Bb, NY or DY.2HC1 

and GB, TB and FB may be combined with Bb, NY and DY.2HC1. In this way it was 

demonstrated that the neurons in the pars reticulata of the substantia nigra 

project mainly to the thalamus and those in the pars compacta to the caudate

putamen (Bentivoglio et al., 1979a) and that the projection from the medial 

mammillary nucleus to the thalamus is exclusively ipsilateral (Van der Kooy et 

al., 1978). Further, it was shown in rat that different subsets of neurons ln 

the paraventricular nucleus of the hypothalamus give rise to the projections 

to the pituitary gland on the one hand and to the brain stem-spinal cord on 

the other (Swanson and Kuypers, 1980), that the callosal and the spinal pro

jections from the sensorimotor cortex are derived from different neurons which 

are frequently intenningled and that both in rat and cat corticospinal fibers 

and cortical fibers to the lateral thalamic nuclei are derived from different 

subsets of cortical neurons (Catsman et al., 1980, 1981). In this way it has 

also been demonstrated that the neurons in the intralaminar thalamic nuclei 

distribute their fibers to specific cortical areas (Bentivoglio et al., 1981) 

and that different cell populations in the red nucleus project to the cervical 

and the lumbosacral cord, respectively (Huisman et al., 1981, 

1982) (Chapter III, Fig. 5), in agreement with earlier retrograde degene-

ration findings (Flumerfelt and Gwyn, 1974; Pompeiano and Brodal, 1957). 
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Similar findings are obtained Ln other cell groups as in the rat dorsal raphe 

and parabrachial nucleus, the cat Edinger-Westphal nucleus, the rat and primate 

globus pallidus and the pigeon thalamus (Burde et al., 1982; Vander Kooy and 

Hattori, 1980; Vander Kooy and Carter, 1981; Miceli and Reperant, 1982; Parent 

and de Bellefeuille, 1982; Voshart and Vander Kooy, 1981). Using this same 

technique it was also possible to clarify the precise topographical inter

relationship between two neighbouring populations of spinal motoneurons which 

distribute their fibers through different peripheral nerves to different 

muscles (Illert et al., in press). (Fig. 4). 

IV. The use of retrograde fluorescent tracers in studying developmental 

changes Ln fiber connections in the brain. 

The blue retrograde fluorescent tracers i.e. GB, TB and FB remain visible 

in the neuronal cell body for a rather long time and can still be demonstrated 

e.g. after a survival time of two months (Innocenti, 1981). This makes it 

possible to determine whether certain fiber connections in the brain which are 

present early in development are maintained at later stages. For this purpose 

two different tracers are injected in the same structure at different ages. 

Double retrograde labeling of neurons would indicate that the fibers which are 

distributed from these neurons to or through the injection sites at the time 

of the first injection are still present at the time of the second injection. 

In this way developmental changes in the cortical callosal connections 

have been demonstrated in cat and rat. Thu,, Ln cat FB injections were made at 

postnatal day 3 in the visual cortical areas 17 and 18 and NY injections were 

made in these same areas at day 27. In these animals in the non-injected hemis

phere single FB labeled callosal neurons labeled only by the early injection 

were present throughout areas 17 and 18, while FB-NY double labeled neurons 

which were labeled by both injections were present only at the area 17- area 

18 border (Innocenti, 1981). O'Leary et al., (1981) showed in this same way 

that after TB injections in the rat parietal cortex on postnatal day 3 and NY 

injections Ln the same area on postnatal day 17, the non-injected hemisphere 

contained many single TB labeled callosal neurons throughout the parietal 

cortex but contained only columnar patches of TB-NY double labeled neurons. 

These findings have been interpreted to indicate that. in rat and cat cortex at 

the early stages of development callosal connections of the parietal and 

visual areas are derived from neurons throughout these areas but that during 
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further development only the callosal fibers from restricted sets of neurons 

are maintained. However, in regard to such experiments it has to be kept in 

mind that the diamidino compounds (GB, TB, FB and DY.2HC1) because they become 

attached toDNAand RNA (Bentivoglio et al., 1979b; 1980a; Keizer et al., in 

preparation) may interfere with cell processes in which DNA and RNA are in

volved. As a consequence, in such double labeling experiments 'in time' it may 

be necessary to demonstrate that a failure to obtain double labeling does not 

result from a functional impairment of the neuron due to the presence of the 

first tracer (TB or FB). However, in the above experiments this probably does 

not apply since in HRP experiments in adult animals the retrograde HRP labeled 

neurons in areas 17 and 18 and in the parietal cortex are distributed in vir

tually the same way as the double labeled neurons in the retrograde fluores

cent tracer study (Innocenti, 1981; Ivy et al., 1979, 1981; Wise and Jones, 

1976). 

V. Anterograde axonal transport of fluorescent tracers 

As pointed out already, Bb and NY are transported also anterogradely 

through axons as indicated by the presence of fluorescent glial nuclei along 

their trajectory and in their termination area. However, this anterograde 

transport of Bb and NY does not produce a green or yellow fluorescent labeling 

of the axons. Yet, the retrograde and anterograde axonal transport of TB and 

FB does produce a blue fluorescent staining of the axons through which these 

tracers are transported including their terminal arborizations especially when 

using FB (Kuypers and Huisman, 1982; Huisman et al., in press; Rosina in pres~. 

Such anterogradely FB labeled axons and their terminal arborizations frequent

ly show fluorescent varicosities reminiscent of those observed in histofluo

rescent monoamine containing axons (Bjorklund and Skagerberg, 1979a+b). The 

anterograde FB labeling of axons has been obtained both by injection of FB in 

the cell population which give rise to the fibers in question as well as by 

injecting FB in the fiber bundles. In both cases the neurons in question are 

probably damaged. Therefore some of the varicosities observed along the blue 

fluorescent axons may represent degenerative changes. 

The anterograde fluorescent FB labeling of nerve fibers can be visualized 

at 360 nm excitation wavelength and the intensity of their fluorescence can be 

increased by perfusing the animal with 30% formaline instead of with 10% 

formaline (c.f. section VII). 
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Anterograde FB labeling of axons has been observed ln several fiber 

systems in the brain. After FB injections in the caudal medulla oblongata ln 

rat FB labeled axons were seen to proceed into the spinal funiculi and could 

be traced from the funiculi to the motoneuronal cell groups of the ventral 

horn (C5-C8)(Kuypers and Huisman, 1982). After FB injections in the inferior 

olive in cat FB labeled mossy fibers and their rosettes were seen in the cere

bellar cortex (Kuypers and Huisman, 1982). After FB injections in the peri

cruciate cortex in cat FB labeled fibers could be traced through the cerebral 

peduncle and the pyramidal tract to their termination areas in the brain stem 

where their blue fluorescent terminal arborizations could be observed (Rosina, 

in press). After FB injections in the interpositus nucleus in cat FB labeled 

fibers could be traced from the cerebellum to the contralateral red nucleus 

where their terminal arborizations were blue fluorescent (Huisman et al., in 

press). 

The anterograde fluorescent FB labeling of axons and their terminal 

arborizations can be combined with retrograde NY or DY.2HC1 labeling of the 

recepient neurons. For example after FB injections in the cerebellar inter

positus nucleus and NY injections in the contralateral dorsolateral funiculus 

of the spinal cord in cat, blue FB fluorescent fibers could be traced from the 

cerebellum to the contralateral red nucleus. The blue FB fluorescent terminal 

arborizations of these fibers could be observed to make contact with the cell 

body and the dendrites of the retrogradely NY labeled rubrospinal neurons 

(Huisman et al., Brain Research, in press) (Fig. 6). 

VI. Combination of the retrograde tracers with other techniques 

A. Formaldehyde induced histofluorescence technique for monoamines 

The formaldehyde induced histofluorescence technique and its glyoxilic 

acid modification can be used to demonstrate the presence of different mono

amines in nerve cell bodies and their axons (Axelsson et al., 1973; Bjorklund 

etal., 1972; DahlstromandFuxe, 1964, 1965; Falcketal., 1962). In such 

material the catecholamines fluoresce yellow-green and the indolamines fluo

resce brown-yellow (Bjorklund et al., 1968; Falck et al., 1962). This histo

fluorescence technique can be combined with retrograde fluorescent labeling, 

which makes it possible to determine the fiber connections of the monoamine 

containing neurons. This combined technique in general has been applied to 

freeze-dried material (Bjorklund and Skagerberg, 1979a+b; Albanese and 

Bentivoglio, 1982b) but can also be applied to chilled vibrotome sections 
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Fig. 6. Colorphotomicrograph of FB fluorescent fibers in cat red nucleus, 
which are anterogradely labeled from the contralateral cerebellar 
interpositus nucleus. Note: the fiber varicosities, which seem to 
be in contact with the surface of cell body and dendrites of the 
single NY labeled rubrospinal neuron. 
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(Vander Kooy and Wise, 1980). The retrograde fluorescent tracers TB, PI and 

EB are most suited for retrograde labeling of neurons in combination with mono

amine fluorescence histochemistry, because these tracers and the monoamine 

fluorophores can be visualized independently in the same cell. This is facili

tated by the fact that, as has been pointed out earlier, in freeze dried 

material TB and PI show a granular distribution throughout the cytoplasm (Fig. 

4) while the monoamine fluorophores, show a more diffuse distribution. Retro

grade double labeling through divergent axon collaterals by means of PI or EB 

in combination with TB can be combined with monoamine histofluorescence in 

which case three fluorescent markers (i.e. two retrograde tracers and one 

transmitter derived fluorophore) are visualized in one and the same cell 

(Bjorklund and Skagerberg, 1979a+b). 

B). Acetylcholinesterase histochemistry 

The enzyme acetylcholinesterase (AChE) when present in neurons can be 

demonstrated histochemically (Koelle, 1954; Butcher et al., 1975). This method 

can be combined with retrograde HRP labeling, which makes it possible to study 

the efferent connections of AChE neurons (Hardy et al., 1976). Recently it was 

shown that the procedure may be simplified by using retrograde fluorescent 

tracers instead of HRP, because under such circumstances only one histochemical 

procedure is required. Both the AChE brown reaction products and the fluorescent 

tracer can be observed in one and the same cell body by using bright field 

illumination and fluorescence microscopy, respectively (Albanese and Benti

voglio, 1982a). Applying this combined method in the rat substantia nigra it 

was shown that after injecting TB or FB (360 nm excitation wavelength) or EB 

(550 nm excitation wavelength) in the striatum some of the retrogradely labeled 

nigrostriatal neurons also contain AChE reaction products (Albanese and Benti

voglio, 1982a). 

C. Immunohistochemical technique 

Hokfelt and collaborators (Hokfelt et al., 1979a+b, 1980) were the first to 

combine the immunohistochemical technique with fluorescent retrograde tracers. 

Employing this technique Sawchenko and Swanson favor in particular TB out of 

the group of fluorescent tracers (Sawchenko and Swanson, 1981, 1982). However, 

some pitfalls are present, because during the immunohistochemical procedure 

several of the fluorescent tracers diffuse out of the retrogradely labeled 

neuron. This is probably due to the fact that the light fixation as used for 

the immunohistochemical procedure does not adequately anchor the tracer in the 

retrogradely labeled neurons (Sawchenko and Swanson, 1981). Under these cLrcum-
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stances it ~s therefore necessary to photograph the retrogradely labeled neu

rons before the immunohistochemistry is applied. By means of this combined 

technique the transmitter histochemistry of several pathways has now been 

demonstrated (Hokfelt et al., 1979a+b, 1980; Dalsgaard et al., 1982; Sawchenko 

and Swanson, 1982; Chesselet et al., 1982). When PI, Primuline or DY. 

2HCI are used as retrograde tracers it is not necessary to photograph the 

retrogradely labeled neurons before the immunohistochemical procedure, because 

these tracers withstand the immunohistochemistry (Steinbusch et al., 1981; 

Brann and Emson, 1980; Dalsgaard et al., 1982; Skirboll et al., in preparation; 

Steward, 1981). However, when using TB a longer fixation is necessary to 

prevent TB from leaking out of the retrogradely labeled cell body during the 

immunohistochemical procedure (Sawchenko and Swanson, 1981). Skirboll et al. 

(in preparation) prefer a short fixation, because of the immunohistochemistry, 

which implies that the TB retrogradely labeled neurons have to be photographed 

before this procedure. Moreover, according to these investigators (Skirboll 

et al., in preparation) all data about retrogradely labeled neurons are pre

served by photographing and plotting of the material prior to the immunohisto

chemical procedure since during this procedure the tracer may disappear out of 

the labeled neurons, which may cause a loss of 5% - 15% of the labeled neurons 

(Sawchenko and Swanson, 1981; Vander Kooy and Sawchenko, 1982). 

D). Simu~taneous steroid autoradiography and retrograde ~abe~ing of neurons 

The steroid autoradiography makes it possible to localize the steroid 

target cells in the brain (Kim et al., 1977; Morrell et al., 1975). Combining 

the steroid autoradiography with the retrograde tracer technique makes it 

possible to establish both the location of steroid target cells and their 

fiber connections. For this purpose the retrograde fluorescent tracers 

Primuline, True Blue and Granular Blue may be used, since these tracers sur

vive the autoradiographic procedures (Arnold, 1980; Morrell and Pfaff, 1982). 
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VII. Methods for using the fluorescent tracers Evans Blue (EB), DAPI, 

Primuline (Pr), DAPI-Primuline mixture, Propidium Iodide (PI), Granular 

Blue (GB), True Blue (TB), Fast Blue (FB), Nuclear Yellow (NY), Diami

dino Yellow (DY). 

When one begins to use the fluorescent tracers it is of importance first 

to gain some experience with the type of retrograde labeling they produce. For 

this purpose the rat nigrostriatal system can be used as a reliable testing 

ground. Therefore when starting to use the fluorescent tracers one should first 

in a few rats inject 0,4 ~1 to 0,6 ~1 of the tracer in the head of the caudate 

followed by 3 days survival time. Under these circumstances the neurons of the 

substantia nigra pars compacta are consistently labeled. 

The tracers are dissolved or suspended in distilled water with the aid 

of an ultrasonic waterbath (for % solution or suspension used for the diffe

rent tracers, see table I). In general each time 0. I ml of a solution or sus

pension is made up which may be used for 2 weeks, and which is stored in a 

small phial at 4°C. However, the use of fresh solutions or suspensions is 

preferred. 

The tracers are injected either by means of a glass micropipette (tip 

diameter 40-80 ~m), which is connected to an oil filled pressure system, or by 

means of a Hamilton microsyringe equipped with a 22 Gauge needle. When sus

pensions are injected by means of a micropipette a pipette with a tip diameter 

of more than 60 ~m should be used, because with smaller tip diameters the 

pipette tends to become clogged. The smallest injection area obtained after 

injecting 0,1 ~1 TB in rat spinal cord grey matter with a micropipette of a 

tip diameter of 60 ~m measured in mm in diameter (chapter III, Fig. 12). The 

same result has been obtained after injections of FB and DY in the cortex 

(Bullie~ personal communications). However, smaller injection areas (diameter 

of 0.5 mm) can be obtained by means of iontophoresis or chronic implantations 

of micropipettes (Adelheid and Carlsen, 1982). 

The micropipette or Hamilton microsyringe with which the tracers are in

jected is held a few minutes in situ after injection. This helps to minimize 

spreading of the tracer liquid up into the needle track. For each tracer a 

separate pipette or needle is used in order to avoid contamination which may 

produce false double labeling. 

All tracers are transported retrogradely from terminal fields, but they 

are also transported retrogradely from damaged axons. Dissolving the tracers in 

2% dimethylsulfoxide (DMSO) enhances their transport from damaged axons, pas

sing through the injection area (Huisman et al., 1982). In order to detect 

retrograde neuronal labeling by means of the fluorescent tracers, the survival 
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Code number of Filter Mirror Filter Mirror 
the tracers System A System N2 

providing exci- providing exci-
tation light of tation light of 
360 nm wavelength 550 nm wavelength 

Evans Blue cytoplasm + 
(EB) nucleus: red 

DAPI/ Serva,Heidelberg cytoplasm + 
Primuline 18860/Eastman, nucleus: blue/ 

1039 cytoplasm : light 
golden granules 

Propidium Sigma; P-5264 cytoplasm + 
Iodide nucleolus: 
(PI) orange-red 

Granular Diamidino 
X 

cytoplasm: blue, 
Blue (GB) Compound 186j134 with silver 

golden granules 

True Blue Diamidino X 
cytoplasm + 

(TB) Compound 150/129 nucleolus: Blue 

Fast Blue Diamidino2~3 cytoplasm + 
(FB) Compound /50 blue with fine 

silver granules 

Nuclear Benzimidazole XX nucleus + 
Yellow (NY) Compound Hoechst nucleolar ring: 

S769121 golden yellow 
(granular) 

Diamidino Diamidino X 
nucleus + 

Yellow (DY) Compound 288f26 nucleolar ring: 
golden yellow 
(diffuse) 

x The code numbers were given by the institute of Phamacy and Food 
chemistry of the Friedrich-Alexander University in Erlangen (F.R.G.) 
where these substances have been synthetized. For research purposes 
samples can be obtained from Prof.Dr. Illing, Warthweg 14-18 Postfach 
!ISO D-6114 Gross Umstadt Germany 

XX For research purposes small samples of NY can be obtained from 
Dr. H. Loewe, Hoechst Aktiengesellschaft, Postfach 800320, 6230 
Frankfurt am Main 80, F.R.G. 

I 
I 

J 
I 
I 
I 
' 

i 

i 

I 

Table I: shows for the tracers, which are still used, the code numbers, the 
label characteristics at 360 and 550 nm, the percentages of tracer 
solutions, and the survival times, necessary for proper labeling. 
Note the relatively short survival times, which are used for 
Nuclear Yellow (NY). 
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SURVIVAL TH1E, necessary for proper labeling 

RAT RAT RAT CAT CAT 

% tracer Caudate/Put spinal C5 spinal Tl spinal C5 >Pinal Til j solution to Nigra to Red to cortex to red to 

1 

( w/v ) (SNC) Nucleus Nucleus cortex 

I 10% I 24-48h 

! 
I 12,5%/10% 4d 

I I 
i 

3% 2d 7d (7d) 
light 
labeling 

5% i 2-4d 5-7d 7-9d I 
I 
I 

2% I 2-4d 5-7d 7-9d 

3% I 2d 4d 4d 3-4w 3-4w 
I 
l 
l 

1% I 6h 24h 40h +46h +70h 
i - -
I 

2% 2-3d 7d !Od 3w 4w 
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time has to be chosen such that enough tracer has accumulated in the cell 

body. Therefore two factors determine the optimal survival time, i.e. the type 

of tracer and the transport distance. Moreover, proper retrograde labeling 

with the same tracer over the same distance may require different survival 

times ~n different fiber systems. Therefore when applying the tracers in a 

given fiber system, it is necessary to do a few preliminary experiments in 

order to determine the optimal survival time (see table I for survival times 

in striatal-nigral system and descending pathways in rat and cat). The survi

val times for NY must be relatively short, because at longer survival times NY 

migrates out of the retrogradely labeled neurons which produces bright fluo

rescence of the nuclei of adjoining glial cells and may result in false retro

grade labeling of surrounding neurons (Bentivoglio et al., 1980b). Therefore 

the NY survival times are titrated such that at the most a dull glial staining 

occurs around the retrogradely labeled neurons. This implies that when NY is 

used in combination with tracers which require a longer survival time e.g. TB 

or FB, they are injected first and NY is injected later a short time before 

the animal is sacrificed. In this way a relatively long TB or FB survival time 

is combined with a relatively short NY survival time. This somewhat compli

cated procedure may be avoided by using DY instead of NY, since during the 

relatively long survival times required by TB or FB, DY does not leak out of 

retrogradely labeled neurons (Keizer et al., in preparation). In general TB is 

used in rat because it is more blue fluorescent than FB. On the other hand FB 

is preferred above TB in cat and monkey, because FB is more effectively tran

sported over long distances as required in these animals (c.f. table I). 

After the appropriate survival time the animals are sacrificed with an 

overdosis Nembutal (6%) and are transcardially perfused with saline followed 

by formalin. When the fluorescent tracers are combined with HRP, the perfusion 

with glutaraldehyde diminishes drastically the intensity of the fluorescence 

and changes its characteristics. Therefore, under these circumstances a forma-

line perfusion should be used as advocated by Kevetter and Willis (1982). In 

general the perfusion solutions are pumped through the circulation with a 

speed of 80 cc a minute. Rats are perfused with 0.5 liter hypertonic NaCI 

(1.5%) followed by I liter cacodylate or citrate buffered formalin (10%, pH 

7,2) and the brain and spinal cord are then stored overnight in cacodylate or 

citrate buffered sucrose (30%, pH 7,2) at 4°C. Cats and monkeys are trans

cardially perfused with 2 liter hypertonic NaCl (2.7%) followed by 3 liter 

cacodylate or citrate buffered formaline. In general a solution of 10% forma

line (pH 7,2) is used. However, with FB 30% formaline (pH 7,2) is used since 

this stronger fixation enhances the FB fluorescence. Brain and spinal cord of 
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cats and monkeys are not stored overnight in sucrose. These animals, following 

the formaline perfusion, are perfused with cacodylate or citrate buffered 

sucrose (8%, pH 7,2) instead and the brain and spinal cord are dissected and 

immediately cut in frozen sections. In our studies the tissue is frozen to 

approximately -30°C on a freezing microtome and then cut in frozen sections of 

30 vm thick. In order to prevent freeze artefacts the temperature is kept con

stant during cutting of the sections. The material does not have to be cut 

immediately but first can be stored at very low temperature (-80°C). Injected 

spinal segments of a rat spinal cord are coated with carboxymethylcellulose in 

order to preserve the sections containing the needle tracks. Especially in the 

case in which NY is injected a rapid processing of the material is important 

because when the sections are kept in water for some time NY may migrate out 

of retrogradely labeled neurons (Bentivoglio et al., 1980b). Therefore the 

sections, after being cut, are immediately mounted from distilled water. The 

mounted sections are air dried and not coverslipped. The material ~s studied 

with a Leitz Ploemopack fluorescence microscope with a high pressure lamp of 

100 Watt. The microscope is equipped with a filter mirror system A, D and N2, 

providing excitation wavelength of 360 nm, 390 nm and 550 nm, respectively. 

The retrogradely labeled neurons are only clearly visible with objectives of 

25x or higher. These objectives require the use of immersion oil, which is 

applied directly to the air dried sections. The distributions of the single 

and double labeled neurons in the sections are plotted with the aid of an X-Y 

plotter, which is connected with transducers attached to the microscope stage. 

In order to localize exactly the plotted neurons the sections after being 

plotted are counterstained with cresyl violet. Fluorescent counterstains may 

also be used (Schmued et al., 1982). Pictures (black and white or color) are 

taken with the aid of a Leitz-vario-orthomat which regulates the exposure time 

automatically. For black and white pictures an Agfapan 100 film is used and 

for color pictures a Kodak Ektachrome 200 film is used. Also a Kodak Ekta

chrome 400 or 800 film can be used. When illuminating the sections the fluo

rescence in the retrogradely labeled neurons gradually fades. This is especial

ly obvious in lightly TB or FB labeled neurons. The fluorescence also dimi

nishes with time, especially in slides covered with oil. In order to slow down 

this fading of the fluorescence the sections are stored in the dark and at 4°C. 

In this way sections without oil may be kept for several weeks. After long 

storage the tissue starts to display a diffuse glistering fluorescence, which 

tends to obscure the fluorescence of the retrogradely labeled neurons. 
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SUMMARY 

In 8 rats 'True Blue' was injected into dorsal half of C5-C8 spinal grey, 5 days 
later 'Nuclear Yellow' was injected in midthoracic, upper lumbar, lumbosacral and 
sacral cord respectively. The animals were sacrificed about 43 hours after NY 
injections. The distribution of retrogradely labeled neurons was studied in Red 
Nucleus, in Ventrolateral Pontine Tegmentum and in Nucleus Raohe Magnus, all of 
which project to spinal dorsal grey. 

In Red Nucleus large populations of single TB-labeled neurons and single NY
labeled ones occurred in the dorsomedial and ventrolateral part, respectively. In 
addition, about 8 "" of the neurons labeled with TB from C5-C8 were double labeled 
with NY from L5-S I, and 35 ~ ,; from T7-8, which percentages resemble those of 
electrophysiological studies~5 . However, in ipsilateral Nucleus Raphe Magnus about 
40 o ~ of the TB-labeled neurons were double labeled from L5-S I. This percentage 
resembles the 66 o" obtained in electrophysiological studies of reticulospinal collater
als~0. These findings in rat support electrophysiological findings in cat and show, that 
rubrospinal neurons distribute their fibers primarily to the grey matter of specific 
groups of spinal segments, while many of the raphe spinal neurons distribute fibers 
throughout the spinal cord. 

INTRODUCTION 

Classic anatomical studies using the Golgi technique1 ~ demonstrated that many 
axons in the central nervous system give off axon collaterals along their trajectory 
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T B(true blue) cervical 

case 5 

case4 

case1 

lllzone1 
zone2 

TB t C5-8 

case7and 8 

case 5and 6 

1 Ss-4 case 1 and 2 

NY(nuclear yellow) 

Fig. 1. Diagram of the injection sites in the 8 rats reported in this paper. True Blue (TB) was injected 
in all 8 cases in the dorsal part of C5-C8 spinal gray matter. For characteristics of zones 1 and 2 see 
text. The TB injection was combined with a Nuclear Yellow (NY) injection in cases 1 and 2 at S3-4, in 
cases 3 and 4 at L5-S1, in cases 5 and 6 at T13-Ll and in cases 7 and 8 at T7-T8. 

through the brain. For a long time little attention has been paid anatomically to these 
collaterals, mainly because modern tracing techniquesl5,Z0,36 did not make it possible 
to distinguish divergent axon collaterals from unbranched fibers. However, during 
recent years electrophysiological studies have reopened the issue of the existence of 
axon collaterals especially in respect to the descending pathwaysl,2,27,-10,-15. Recently 
the existence of divergent axon collaterals has also been studied anatomically by 
means of the retrograde neuronal double labeling techniques using for example two 
fluorescent retrograde tracers which, after being transported retrogradely through an 
axon and its collateral, label in different colors different features of the parent cel131. 

Similar results can be obtained by means of HRP and [3H]apo-HRP2~. In the present 
study the former technique has been used to study the collaterals of the brainstem 
pathways in rat, which descend from red nucleus (RN), ventrolateral pontine 
tegmentum (VLPT) and nucleus raphe magnus (NRM) to spinal cord where they all 



terminate in the dorsal half of the spinal gray matter7 ,12,18,26,34,37 ,41,50. The retrograde 
fluorescent tracers True Blue (TB)9 and Nuclear Yellow (NY)10,u were used. TB 
produces a blue fluorescent labeling of the cytoplasm and the nucleolus while NY, 
after short survival times relative to the transport distancell, produces only a golden 
yellow fluorescence of the nucleus both tracers at 360 nm excitation wavelength. In all 
animals first TB was injected in the dorsal half of the C5-8 spinal gray. Subsequently 
in the various animals NY was injected at more caudal levels in the cord (Fig. 1). In all 
cases in which the TB deposit was restricted to the gray matter, the number of TB
labeled neurons and the number of TB-NY double-labeled ones in the above brain 
stem cell groups was counted. These data made it possible to approximate both the 
number of neurons in the three different brain stem cell groups in rat which distribute 
fibers to the dorsal half of C5-8 spinal gray and the percentages of these cells, which 
distribute fibers to the various, progressively more caudal portions of the neuraxis. 

MATERIALS AND METHODS 

In 8 rats, anesthetized with Nembutal (6 %), low cervical1aminectomies were 
made and in each rat 5 glass micropipette injections of 0.1 ,ul2 %True Blue (TB) ( =0.5 
,ul in total)9 were made in a rostrocaudal row into the dorsal horn and the dorsal part 
of the intermediate zone of the C5, C6, C7 and C8 segments (Figs. 1 and 2). After 5 
days the animals were operated for a second time. Under Nembutal, new laminec
tomies were made and I ,ul1% Nuclear Yellow (NY)lO,ll was injected in the spinal 
white and gray matter at more caudal levels of the cord. These NY injections were 
made by means of multiple micropipette penetrations to damage a large number of 
fibers. This was in order to obtain NY transport by fibers passing through the injected 
segment and damaged by the penetrations, as well as by fibers terminating there. In 
two rats NY injections were made in the sacral cord (cases 1 and 2), in two rats in the 
lumbosacral cord (cases 3 and 4), in two rats in the upper lumbar cord (cases 5 and 6) 
and in two rats in the midthoracic cord (cases 7 and 8) (Fig. 1). NY injections at the 
different levels were made 45, 44, 43 and 40 h prior to the perfusion of the animals, 
respectively. These short survival times were used in order to avoid migration of NY 
from the retrogradely labeled neurons in the brain stemll. During the entire 
postoperative period the animals were given morphine 0.5 mgfday. 

The rats were sacrificed with an overdose of Nembutal (6 %). They were 
transcardially perfused with 1 liter NaCl (1.5 %) followed by 1 liter cacodylate
buffered formaline (10 %, pH 7.2). The brains and the injected segments were stored 
overnight in cacodylate-buffered sucrose (30 %, pH 7.2) at 4 oc and were cut 
transversally in frozen sections 30 ,urn thick on a freezing microtome. The injected 
segments, before being cut, were coated with carboxymethylcellulose in order to keep 
the sections containing the needle tracks intact. The sections, after being cut, were 
immediately mounted from distilled water and air dried at room temperature. In 
general one out of every three sections was mounted. 

The material was studied with a Leitz Ploemopack fluorescence microscope 
equipped with a filter mirror system A providing excitation wavelength of 360 nm 
wavelength. Subsequently some of the sections were counterstained with cresyl violet. 
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Fig. 2. Photomicrograph of one half of a cross-section between C5 and C8 with TB injection site in the 
spinal gray matter. Note that fluorescence extends through ipsilateral spinal gray matter but that no 
fluorescence is present in the dorsolateral funiculus. 

The distribution of the single TB- and single NY -labeled neurons and of the TB-NY 
double-labeled one in the contralateral red nucleus (RN), the contralateral ventro
lateral pontine tegmentum (VLPT) and the ipsilateral nucleus raphe magnus (NRM) 
was charted with the aid of an X-Y plotter connected with transducers attached to the 
microscope stage. 

At 360 nm excitation wavelength, the retrograde single TB-labeled neurons (Fig. 
3) showed a deep blue fluorescent cytoplasm and a blue fluorescent nucleolus, the 
retrograde single NY-labeled neurons after short survival time relative to the transport 
distance (Fig. 3) showed a golden yellow fluorescent nucleus with a clear fluorescent 



ring around the nucleolus10•11 and the NY-TB double-labeled neurons (Fig. 3) showed 
all mentioned features31. In the present experiments either no fluorescent glial nuclei or 
only a few dull fluorescent ones were present around the single NY-labeled neurons as 
well as around the NY-TB double-labeled ones. This indicates minimal migration of 
NY from the retrogradely labeled neurons11 . 

RESULTS 

Injection areas 
In the 8 rats the TB fluorescent injection areas involved the dorsal horn with the 

intermediate zone and extended ventrally into the ventral horn (Figs. I and 2). In the 
animals reported here no fluorescence occurred in those parts of the dorsolateral 
funiculus in which the rubrospinal, raphe magnus spinal and VLPT-spinal fibers are 
located6•30•34. 

Fig. 3. Photomicrogrdphs ofTB single-, NY single- and TB-NY double-labeled neurons in red nucleus 
(upper row) and the nucleus raphe magnus (bottom row). The TB single-labeled neurons show a 
fluorescent labeling of cytoplasm and nucleolus and the NY single-labeled ones a fluorescent nucleus 
and a clear fluorescent ring around the nucleolus. The TB-NY double-labeled neurons display all 
features. 
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The TB injection area around the needle tracks showed two concentric fluores
cent zones with different features. The first zone, immediately surrounding the needle 
tracks, contained a bright blue fluorescent cellular debris and a dense accumulation of 
fluorescent glial nuclei. In counterstained sections this area showed no further 
cytoarchitectural structure. The second zone contained fluorescent glial nuclei, which 
decreased in number and brightness towards the periphery of this zone. Peripherally in 
this zone also blue-labeled neurons and fibers occurred. The second zone faded into 
the area of the normal tissue with little or no fluorescence. In the present cases zone II 
extended laterally up to the border of the gray matter (Figs. 1 and 2), rostrally to the 
rostral border of C5 and caudally to the caudal border of C8. 

The NY injection area displayed 3 concentric zones around the needle tracks. 
The first zone was very narrow and contained yellow tissue fluorescence and a dense 
accumulation of bright yellow-white glial nuclei. The second zone, which was much 
wider than the first, also displayed yellow tissue fluorescence but contained fewer 
fluorescent glial nuclei. The third zone showed no tissue fluorescence but did contain 
dull fluorescent glial nuclei. The first and second zones involved the injected half of the 
cord, while the third zone extended into the contralateral half of the spinal cord. 
Rostro-caudally the first and second zone involved the injected segments, while the 
third zone extended into the segments rostrally and caudally bordering the injected 
ones. 

Red nucleus 
In all rats a population of single TB-labeled rubrospinal neurons was present in 

the contralateral red nucleus and, in addition, a separate population of single NY
labeled ones occurred. In the caudal portion of the RN the single TB-labeled neurons 
were present mainly in the dorsomedial part, while the single NY-labeled ones were 
present in its ventrolateral part (Figs. 4 and 5). In the more rostral part of the nucleus 
the population oflabeled rubrospinal neurons formed a shell in which the populations 
of single TB- and of single NY -labeled neurons to some degree became interdigitated 
(Fig. 4). Some TB-NY double-labeled neurons were present caudally in the red 
nucleus, between the dorsomedial TB-labeled part and the ventrolateral NY-labeled 
part. However, the bulk of the double-labeled neurons was observed rostrally in the 
nucleus intermixed with the single TB- and the single NY -labeled ones. In general, 
when the NY injections were made progressively more rostrally in the spinal cord the 
number of TB-NY double-labeled neurons in the RN increased in number (Table I, 
histogram 1 ). In order to compare the present findings with earlier electrophysiological 
observations44 the number ofTB-fluorescent neurons in the contralateral red nucleus, 
which were labeled from C5 to C8, were counted and the percentages of these neurons 
which were TB-NY double-labeled were computed. For this purpose the following 
procedure was followed. In each case the TB-labeled neurons as well as the TB-NY 
double-labeled ones were counted in every mounted section; these numbers were 
added and then treated according to the following formula: 

TB-NY double-labeled neurons 
X 100% 

single TB+ TB-NY double-labeled neurons 
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Fig. 4. Semi diagrammatic representation of the distribution of retrogradely labeled neurons in the red 
nucleus after spinal injections in case 2: True Blue (TB) in C5-8 and Nuclear Yellow (NY) in S3-4; in 
case 3: TB in C5-8 and NY in L5-Sl; in case 8: TB in C5-8 and NY in T7-8. Abbreviations: CMP, 
posterior commissure; CP, cerebral peduncle; DCP, decussation of superior cerebellar pedurcles; 
GM, medial geniculate body; IP, interpeduncular nucleus; ML, medial lemniscus; mlf, medial longi
tudinal fasciculus; NC, cochlear nuclei; NIII, oculomotor nucleus; niii, oculomotor nervus; R, red 
nucleus; RF, reticular formation; SC, superior colliculus; SNR, substantia nigra, pars reticulata; snc, 
substantia nigra, pars compacta. 

The total number of TB-labeled neurons, including the TB-NY double-labeled ones, 
in the different cases ranged from 300 to 683. Thus in the two rats with NY injections 
at S3-S4 the percentages were 0% and 0.3 %, in the two rats with NY injections at 
L5-S 1 they were 6 ~~ and 9. 7 %, in the two rats with NY injections at T13-Ll they were 
15% and 25% and in the two cases with NY injections at T7-T8 the percentages were 
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35% and 35% (Table I, histogram I). These findings imply that the red nucleus neurons, 
which project to the C5-C8 spinal gray matter, also distribute branches to more caudal 
parts of the spinal cord. They further indicate that a high proportion of these neurons 
gives rise to branches which pass through or terminate in mid thoracic cord (35 %), 
that a small proportion of neurons give branches which pass through or terminate in 
lumbosacral cord (6 ~~and 9.7 %), and that only one out of 300 neurons gives rise to 
branches which pass through or terminate in low sacral cord. 

Nucleus raphe magnus ( N RM) and ventrolateral pontine tegmentum (VLPT) 
Nucleus raphe magnus. This nucleus, which contains many serotonergic neu

ronsl6,17 also projects by way of the dorsolateral funiculus30,33,49 to the dorsal horn 
and the dorsal part of the intermediate zone6,34. This nucleus comprises a population 
of neurons in the ventral part of the rostral medullary tegmentum immediately 

Fig. 5. Photomicrograph of caudal part of red nucleus. The True Blue (TB) single-labeled neurons are 
located in the dorsomedial part and the Nuclear Yellow (NY) single-labeled ones in the ventrolateral 
part. The oculomotor nerve (III) passes through red nucleus at this level. 



TABLE I 

( 
TB-NY double-labeled neurons ) 

Th? percentages x 100% 
TB single + TB-NY double-labeled neurons 

Histogram I: contralateral red nucleus; histogram 2: ipsilateral nucleus raphe magnus; histogram 3: 
contralateral ventrolateral pontine tegmentum. 
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adjoining the medial lemniscus and the pyramidal tract at the level of the facial 
nucleus. On the basis of the distribution of the serotonergic neuronsl6,17, as well as on 
the basis of the retrograde HRP labeling after HRP injections in the dorsolateral 
funiculus33,48,49, the nucleus appears to be less restricted to the raphe than suggested 
on the basis of the cytoarchitecture47. Thus, on the basis of these findings, the nucleus 
raphe magnus extends laterally along the pyramidal tract, where it includes the nucleus 
reticularis magnocellularis ventralis. In the present study therefore the nucleus raphe 
magnus was defined as that accumulation of neurons in the ventral part of the 
medullary tegmentum at the level of the facial nucleus, which is labeled retrogradely 
by HRP injections in the dorsolateral funiculus7,33_ 
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Fig. 6. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the 
ventrolateral pontine tegmentum and the nucleus raphe magnus after spinal injections. In case 2: 
True Blue (TB) in C5-C8 and Nuclear Yellow (NY) in S3-S4 and in case 8: TB in C5-C8 and NY in 
T7-T8. Note the relatively high number of double-labeled neurons especially in nucleus raphe magnus, 
even in case 2 with NY injection at S3-4. Abbreviations: AC, cerebral aquaduct; ACU, area cuneifor
mis; BC, brachium conjunctivum; CI, inferior colliculus; dr, nucleus dorsalis raphe; FLM, medial 
longitudinal fasciculus; FPT, transverse pontine fibers; LL, lateral lemniscus; LM, medial lemniscus; 
NLL, nucleus of lateral lemniscus; NTS, nucleus of spinal V tract; NVL, lateral vestibular nucleus; 
NVM, medial vestibular nucleus; N7, facial nucleus; n.7, facial nerve; PCI, inferior cerebellar peduncle; 
RM, nucleus raphe magnus; S, nucleus and tractus solitarius; TCS, corticospinal tract; TR, rubro
spinal tract; VLPT, ventrolateral pontine tegmentum; vt, ventral tegmental.nucleus; VIV, fourth 
ventricle. 



Ventrolateral pontine tegmentum (VLPT). Retrograde HRP studies revealed a 
group of neurons adjoining the area of the rubrospinal tract (TRS)7,29,33, which gives 
rise to mainly crossed spinal fibers which descend in the dorsolateral funiculus 
throughout the spinal cord30,4s. These fibers seem to correspond to the crossed 
pontospinal tract of Busch13 and the lateral reticulospinal tract of Papez39. Antero
grade labeled amino acid transport studies26 ,34 showed that this crossed descending 
pathway, which extends throughout the whole length of the spinal cord, terminates in 
the dorsal part of the spinal gray. 

Retrograde labeling in nucleus raphe magnus and ventrolateral pontine tegmentum. 
The distribution of the single TB-labeled neurons and the TB-NY double-labeled ones 
in the NRM and the VLPT was also charted in the 8 rats reported here. The findings in 
these nuclei showed that, in contrast to the arrangement in the RN, the single TB-, 
single NY- and the TB-NY double-labeled neurons in the NRM and the VLPT did 
not display any topographical distribution but were randomly intermixed with one 
another (Fig. 6). In these nuclei the number of the TB-fluorescent neurons labeled 
from C5-C8, including the TB-NY double-labeled ones, were counted. In the NRM 
ipsilateral to the spinal injections they ranged from 66 to 378 and in the VLPT 
contralateral to the spinal injections they ranged from 43 to 150. Subsequently, the 
percentages of the neurons which were double-labeled with NY in these nuclei were 
calculated in the same way as in the red nucleus. Histograms 2 and 3 in Table I show 
that the percentages in these nuclei after NY injections at different spinal levels 
displayed an entirely different distribution than in the RN (histogram 1, Table I) such 
that in all cases a considerable percentage of the TB-labeled neurons in NRM and 
VLPT was double labeled. This was particularly striking in the NRM. Moreover, in 
this nucleus the percentages of the TB-NY double-labeled neurons were always 
roughly of the same magnitude, independent of the spinal level of the NY injections. 
Comparing histogram 1 with histograms 2 and 3 (Table I) clearly demonstrates that 
this arrangement is strikingly different from that in the RN, which is especially clear 
when comparing the percentages of the double-labeled neurons in the different nuclei 
after sacral and lumbosacral NY injections. 

The present findings therefore suggest that different groups of RN neurons to a 
large extent project preferentially to certain levels of the spinal cord and distribute 
only few fibers to the other levels, while many of the NRM neurons distribute 
descending fibers throughout the length of the spinal cord, an arrangement which also 
seems to prevail in the VLPT. 

DISCUSSION 

The use of multiple retrograde fluorescent tracers seems to be one of the few 
anatomical techniques suitable to study the existence of collaterals in brain pathways. 
Therefore this technique has been used to try to clarify anatomically possible 
quantitative differences in collateralization in the rat rubrospinal tract, raphe spinal 
tract from the nucleus magnus and crossed pontospinal tract, all of which descend 
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from the brain stem through the dorsolateral funiculus and terminate in the dorsal half 
of the spinal gray7,12,18,26,34,37,41,50_ However, applying this technique to the 

descending pathways in spinal cord is difficult, especially in rat, due to the close 
proximity between the area of termination of the collaterals in the gray matter and the 
fibers of the descending pathways in the adjoining funiculus. It is therefore imperative 
that the tracer injection is entirely restricted to the gray matter, because injection of 
some of the tracer in the lateral funiculus may result in its retrograde transport 
through damaged fibers. This in turn will lead to retrograde labeling of neurons in the 
red nucleus and the other brain stem cell groups which may not distribute collaterals 
to the injected part of the spinal gray. This difficulty only applies to the TB injections 
in C5-C8 segments. The NY injections at more caudal spinal levels were intentionally 
made to damage many fibers of the lateral funiculus in order to obtain NY retrograde 
transport through a maximum number of fibers descending in this funiculus at the 
NY injected levels. 

In light of the above considerations, in all cases each of the 5 TB injection areas 
in C5-C8 gray were studied histologically in detail and only those cases were selected 
in which the TB fluorescent zones did not involve the lateral funiculus, while the 
remainder of the cases (about 20) were discarded. As a consequence the present 
study is based on the 8 selected cases in which no involvement of the lateral funiculus 
had occurred (Figs. I and 2). Sparing of the lateral funiculus in these 8 cases was 
ccmfirmed by the fact that the population of TB-labeled neurons in the caudal part of 
the contralateral red nucleus was always restricted to its dorsomedial part, while the 
population of NY-labeled neurons was always located separately in the ventrolateral 
part (Figs. 4 and 5). This is in keeping with retrograde degeneration and retrograde 
HRP findings 21,35_ However, in the discarded cases with involvement of the lateral 
funiculus many either TB single- or TB-NY double-labeled neurons were also present 
in the ventrolateral part of the red nucleus. 

Sparing of the rubrospinal tract also implies sparing of the two other descending 
pathways, since their fibers are grouped together with the rubrospinal tract in the 
dorsolateral funiculus, where the raphe-spinal tract is located in the most peripheral 
zone. Correspondingly, in the discarded cases with TB injections in the lateral 
funiculus ~ot only the contralateral red nucleus, but also the ipsilateral nucleus raphe 
magnus and the contralateral ventrolateral pontine tegmentum contained an excepti
onally Targe number of TB single- or TB-NY double-labeled neurons. 

Earlier electrophysiological studies~ 5 of the collaterals of the descending 
pathways reported the number of red nucleus neurons which could be antidromically 
invaded from the C3-8 cervical gray matter, as well as their percentage that could also 
be antidromically invaded by stimulation at other spinal levels (i.e. T3 and L I). In 
order to facilitate a comparison with these earlier electrophysiological data, the 
present data were expressed in the similar manner, such that the number of TB
Iabeled neurons in the respective brain stem cell groups was counted and the 
percentage of these neurons which were double labeled was computed (Table 1). 

The retrograde labeling findings in the red nucleus (Figs. 4 and 5) confirm its 
somatotopic organization as demonstrated by means of the retrograde degeneration 



technique in rat and cat21,42 and the retrograde HRP transport te.:.:hnique in rat35_ 
However, the present findings also demonstrate some degree of somatotopic organiza
tion in the rostral shell-shaped portion of the red nucleus. This rostral portion 
consistently contained the highest number of double-labeled neurons (Fig. 4), which 
indicates that it harbors the bulk of the neurons distributing collaterals to different 
levels throughout the spinal cord. The presence of this considerable number of 
branching neurons in the rostral part of the red nucleus probably explains the fact that 
its somatotopic organization has escaped detection by means of retrograde degenera
tion and HRP transport technique21,35,42_ 

The electrophysiological findings45 and the present anatomical findings appear 
quantitatively roughly of the same magnitude. In fact, the electrophysiological 
findings show that 5 ~~ of neurons projecting to C3-C8 distribute collaterals to L I or 
beyond and 50% to T3 or beyond, while the present findings show that 15-25 ~~ of 
the neurons projecting to C5-C8 distribute collaterals to L I or beyond and 35 ~-~ to 
T7-8 or beyond. The slight differences between these physiological and anatomical 
findings may be due to the fact that different cervical and thoracic segments were 
studied, that possibly a different rostrocaudal extent of the red nucleus was explored 
in the two studies and that the two techniques are of a different nature. However, the 
differences in the two sets of findings may also reflect differences between cat and rat, 
as suggested by some of our preliminary findings in the former animal. 

It may be assumed that the red nucleus neurons projecting to the lumbosacral 
enlargement behave in the same way as those projecting to the cervical enlargement, 
which were the main subject of the present study. If this is correct, the percentage 
distribution of the double-labeled neurons in the present cases (Table I, histogram I) 
indicate that the population of red nucleus neurons which project to a certain group 
of segments distribute only relatively few collaterals to other groups of segments in the 
spinal cord. 

The retrograde labeling findings in red nucleus thus suggest that the rubrospinal 
connections represent a highly focussed system. This would be in keeping with 
functional findings22-28,32,..J6 which indicate that in cat and monkey this system is 
especially involved in controlling relatively fractionated extremity movements. The 
highly focussed nature of the rubrospinal system is further emphasized by a comparison 
oft he findings in red nucleus with those in nucleus raphe magnus at the level of the facial 
nucleus. Thus, in the latter nucleus a relatively small population of single NY- and 
single TB-labeled neurons occurred which were largely intermingled and which also 
were intermixed with a large number of double-labeled neurons, such that 31-50% of 
the TB-fluorescent neurons labeled from C5-C8 were NY double-labeled from the 
lumbosacral enlargement or beyond. In this respect, the raphe spinal neurons in the 
nucleus raphe magnus resemble the reticulospinal ones because, according to electro
physiological findings-1°, 66 ~~ of the reticulospinal neurons projecting to the cervical 
cord also distribute collaterals to the lumbar cord or below. In the present study the 
high percentage of double-labeled neurons in the NRM was found to be independent 
of the level of the NY injections. This indicates that a large percentage of the raphe 
spinal fibers projecting from nucleus raphe magnus to the cervical cord distributes 
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branches throughout the length of the spinal cord. This arrangement may explain the 
difficulties encountered in demonstrating a somatotopic organization in the nucleus 
raphe magnus51. It may also suggest that the raphe spinal system in question 
comprises a focussed component consisting of neurons projecting to the two enlarge
ments, respectively, and a diffusely organized component which distributes through
out the length of the spinal cord and probably gives off collaterals at various spinal 
levels. This idea of a subdivision of the raphe spinal system would be strengthened if it 
could be shown that only the latter component mainly comprises serotonergic 
~eurons. In that case this component may represent the anatomical substratum of the 
pain modulating function of the raphe spinal pathway3-S,l9,23,25,39, which function 
presumably is subserved by serotonergic neuronsl6,17 •43,44. However, the diffuse 
component may also represent the raphe spinal pathway to the autonomic cell groups 
throughout the spinal cord, which also are known to receive serotonergic raphe spinal 
fibers6• 

Finally the VLPT, neurons of which give rise to the crossed pontospinal 
pathway29,33 and which has been regarded as the pontine component of the rubro
spinal systeml3, seems to occupy a position between the rubrospinal and the raphe 
spinal system. Thus, it shows little somatotopic organization and also contains a 
high percentage of double,.labeled neurons in the population projecting to the C5-C8 
gray matter, i.e. in the same way as the neurons of the raphe spinal pathway. However, 
in contrast to the findings in the nucleus raphe magnus this percentage tend to show 
some decline when the NY injections are placed progressively more caudally in the 
cord. This suggests that the crossed pontospinal system displays a certain degree of 
specialization in that the bulk of the collaterals of the neurons projecting to C5-C8 
tend to distribute to thy ~lroracic and lumbosacral levels but not to the sacral cord. 
Further studies, however, are necessary to confirm this impression and to give clues to 
the functional distribution of this system, e.g. the control of movements. 
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INTRODUCTION 

Classic anatomical studies using the Golgi technique (Cajal, 1952) demonstrated that many 
axons in the central nervous system give off collaterals along their trajectory through the brain. 
For a long time little attention has been paid anatomically to these collaterals, mainly because 
the available tracing techniques (Nauta and Gygax, 1954; Fink and Heimer, 1967 ; Cowan et 
al., 1972) did not make it possible to distinguish divergent axon collaterals from unbranched 
fibers. However, a few years ago electrophysiological studies have reintroduced the issue 
especially in respect to the descending pathways (Abzug et al., 1973, 1974; Illert et al., 1975; 
Peterson et al., 1975; Shinoda et al., 1977). Recently it has also become possible to study 
divergent axon collaterals anatomically by injecting two fluorescent tracers which, after being 
transported retrogradely through an axon and its collateral, label in different colors different 
features of the parent cell (Kuypers et al., 1980). Similar results may be obtained by using HRP 
and [3H]apo-HRP (Hayes and Rustioni, 1979). However, this technique seems to produce 
relatively fewer double labeled neurons (cf., Hayes and Rustioni, 1981; Huisman et 
al., 1981). In the present study, which deals with the collateralization in several descending 
brain stem pathways in cat and monkey the former technique was therefore employed. 

In a previous fluorescent double labeling study the degrees of collateralization of the 
.mbrospinal, raphe spinal and crossed pontospinal pathways were compared in rat (Huisman et 
al., 1981). The results of this anatomical study in rat have much in common with the earlier 
-electrophysiological findings (Peterson et al., 1975; Shinoda et al., 1977) in cat. However, a 
relatively larger number of rubrospinal neurons projecting to both the cervical and the lumbar 
cord have been demonstrated anatomically in rat than was found electrophysiologically in cat. 
This may reflect differences in the technique, but may also reflect interspecies differences in 
the degree of rubrospinal collateralization such that in rat a larger percentage of rubrospinal 
fibers distributes collaterals to different levels of the cord than in cat. The existence of such 
interspecies differences in degree of rubrospinal collateralization is suggested by the fact that 
injections of two fluorescent tracers at different spinal levels in opossum result in a relatively 
larger number of double labeled rubrospinal neurons than in rat (Huisman eta!., 1981 ; Martin 
et al., 1982) (see Fig. I). In order to detect a possible trend in the interspecies differences in 
degree of collateralization of the rubrospinal tract, in the present experiments the degree of 
collateralization of the rubrospinal tract was studied in cat and monkey and the findings were 
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OPOSSUM 
rostral 

p661 
caudal 

TB 

NY 

TB: C5 (grey) 
NY: Lumb 

RAT 

.. .... . · .. ·. 

!~ifj~\ffj;i: 
TBD+LDLX100::6/. 

Fig. I. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the red nucleus of the 
opossum (Martin. 1982) and of the rat (Huisman. 1981). True Blue (TB) was injected in the cervical grey matter in 
opossum at CS and in the rat at C5-C8. Nuclear Yellow (NY) was injected both in opossum and rat in the lumbar cord. 
Note the difference in somatotopic organization and in the degree of collateralization between opossum and rat. 
Abbreviations: CMP. posterior commissure: CP. cerebral peduncle: DCP. decussation of superior cerebellar 
peduncles: GM. medial geniculate body: IP. interpeduncular nucleus: ML. medial lemniscus: mlf. medial longitudi
nal fasciculus: N IlL oculomotor nucleus: n IlL oculomotor nerve: NC. cochlear nuclei: ped. cerebral peduncle; R, 
red nucleus: RF. reticular formation: rfl. fasciculus retroflexus: SC. superior colliculus: snc, substantia nigra pars 

compacta: SNR. substantia nigra pars reticulata. 

compared with those obtained earlier in rat (Huisman et al., 1981). Moreover, as in rat, the 
collateralization of the rubrospinal tract in cat and monkey was compared with that of the raphe 
spinal tract and of the crossed pontospinal tract. This was prompted by the fact that these two 
tracts. as the rubrospinal tract. project by way of the dorsolateral funiculus to the spinal dorsal 
grey (Nyberg-Hansen and Brodal. 1964; Petras, 1967; Edwards, 1972; Kuypers and Maisky, 
1977; Basbaum and Fields, 1978; Basbaum et al.. 1979; Holstege et al., 1979; Martin et al., 
1979) but in rat (Huisman et al .. 1981) display a much higher degree of collateralization than 
the rubrospinal tract. Therefore. if the collateralization of these two tracts in cat and monkey 
was of the same magnitude as in rat. the possible differences in the collateralization of the 
rubrospinal tract in these animals would be more convincing. 

In the present experiments in cat and monkey the fluorescent tracers ''Fast Blue·' (FB) and 
"Nuclear Yellow·· (NY) have been used since both are transported relatively effectively over 
long distances (Bentivoglio et al.. 1980a. b; Kuypers et al., 1980), although FB more slowly 
than NY, and since they produce a fluorescent double labeling which can be observed at one 
excitation wavelength (i.e. 360nm). 
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In cat and other species the red nucleus projects also to the ipsilateral inferior olive 
(Walberg, 1956; Edwards, 1972; Courville and Otabe, 1974; Martinet a!., 1975, 1980; 
Strominger et al_, 1979) _ Therefore, in two additional cats the relative number of rubrospinal 
neurons which distribute co !laterals to the inferior olive was determined by means of the same 
technique. 

The results of these experiments indicate that in cat and monkey as compared to rat a smaller 
percentage ofthe rubrocervical neurons distributes collaterals to more caudal levels. Further, it 
was found that in cat only very few rubrospinal neurons distribute collaterals to the inferior 
olive. 

FAST BLUE (FB) INJECTION AREA IN 
THE DORSAL PART OF THE GREY MATTER (CAT) 

no FB labeled cells 
1n red nucleus 

Ty-T8 case4,5and6 

zone I 

zone :n:: 

Fig. 2. Diagram of the injection areas in the 11 cats reported in this paper. Fast Blue (FB) was injected in 10 cats in the 
dorsal part of C5-C8 spinal grey matter and in 1 cat in the dorsal columns of C5-C8 spinal cord. For characteristics of 
zones. 1, 2 and 3- see text. The FB injection was combined with a Nuclear Yellow (NY) injection in cases 1, 2 and 3 at 

L3-SL in cases 4. 5 and 6 at T7-T8 and in cases 7, 8, 9 and 10 at T3-T4. 
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FLUORESCENT INJECTION 

AREA IN THE DORSAL 

PART OF THE GREY MATTER (CAT) 

Fig. 3. Photomicrograph of a part of a cross-section between CS and C8 with FB injection area in the dorsal part of the 
spinal grey matter of the cat. Note that zones 1 and ll are restricted to the grey matter of the dorsal horn and intermediate 

zone. 



107 

MATERIALS AND METHODS 

In 10 cats, anesthetized with Nembutal (6%), low cervical laminectomies were made. In 
each cat a rostrocaudal row of 7 glass micropipette injections of 3% "Fast Blue" (FB) 
(Bentivoglio et al., 1980a; Kuypers et al., 1980) were made into the dorsal horn and the dorsal 
part of the intermediate zone ofC5, C6, C7 and CS (see Fig. 3 and Table II). In one cat FB was 
injected in the C5-C8 dorsal columns (see Fig. 2). This case served as a control. 

After 4 weeks the animals were reoperated. Under Nembutal, new laminectomies were 
made at more caudal levels (see Fig. 2) and 1% "Nuclear Yellow" (NY) either dissolved in 
water (Bentivoglio eta!., 1980a,b; Kuypers et al., I 980) or in 2% dimethylsulfoxide (DMSO) 
was injected in the spinal white and grey matter in the different cats at different spinal levels 
(see Fig. 2 and Table II). DMSO was used because in the present experiments it was found that 
the admixture of DMSO in cat improves NY transport from damaged fibers, passing through 
the injected segments (Keefer, 1978). In the one cat, with FB injections in the dorsal columns, 
NY was injected at T7-T8. 

In order to avoid migration of NY from the retrogradely labeled neurons relatively short 
survival times were used (Bentivoglio et al., l980b). The appropriate survival times for 
labeling of red nucleus neurons at each of the various transport distances were determined 
empirically. They were found to display a more or less linear relationship with the NY 
transport distance (see Table I). The NY injections at L3 were therefore made 70 h prior to the 
perfusion ofthe animals, those at TS: 58 h prior and those at T4: 53 h prior (see Tables I and II). 
Using these survival times either no fluorescent glial nuclei or only a few dull fluorescent ones 
were present immediately around the single NY-labeled neurons as well as around the FB-NY 
double labeled ones. This indicates that minimal migration of NY from the retrogradely 
labeled neurons has occurred. Therefore the NY fluorescent neurons could with confidence be 

TABLE l 

In order to avoid migration of "Nuclear Yellow·· (NY) out of the labeled neurons. the NY survival time should be 
restricted. The graph shows the appropriate NY survival times relative to the transport distance. The points which 
construct the line are found empirically in rubrospinal fibers in cat. Point I is found empirically in propriospinal fibers 
in cat. (I) The NY survival ofT7-C6 in the cat. which distance is± 8.5 em. amounts to 30 h. (2) The NY survival time 
ofC6 to the red nucleus in the cat. which distance is± I 0.5 em. amounts to46 h. (3) The NY survival time ofT3 to the 
red nucleus in the cat. which distance is± 15 em. amounts to 53 h. (4) The NY survival time ofT7 to the red nucleus in 
the cat. which distance is± 19 em. amounts to 58 h. \5) The NY survival time of L2 to the red nucleus in the cat. which 

distance is ± 28 em. amounts to 69 h. Abbreviations: ps. propriospinal: rs. rubrospinal. 

NY survival 
time in hours 
70 

60 
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40 

30 

20 
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TABLE II 

This table shows: (I) the amount in ,ul of Fast Blue 3% (FB) and Nuclear Yellow 1% (NY) used in the different cases; 
(2) the use of dymethylsulfoxide 2% (DMSO); (3) the injection areas ofFB and NY in the different cases; (4) the FB 

and NY survival times. 

,ul FB (3 o/c) Injection area Surv. time ,ul NY (I%) lnj. area Surv. time 
(weeks) use of (hemiin- (h) 

DMSO (2%) filtr.) 

Case I. cat 2.1 C5-C8 dorsal grey 4 3.6 L3 ipsilat. 70 
matter to FB inj. 

Case 2. cat 2.I C5-C8 dorsal grey 4 3.6 L3 ipsilat. 70 
matter to FB inj. 

Case 3, cat 2.I C5-C8 dorsal grey 4 3.6 L3-L6 70 
matter in DMSO ipsilat. 

to FB inj. 

Case 4, cat 2.I C5-C8 dorsal grey 4 3.6 T8 ipsilat. 58 
matter to FB inj. 

Case 5, cat 2.I C5-C8 dorsal grey 4 3.6 T8 ipsilat. 58 
matter to FB inj. 

Case 6, cat 2.1 C5-C8 dorsal grey 4 3.6 T7-T8 58 
matter in DMSO ipsilat. 

to FB inj. 

Case 7, cat 2.1 C5-C8 dorsal grey 4 3.6 T4-T5 53 
matter ipsilat. 

to FB inj. 

Case 8, cat 2.1 C5-C8 dorsal grey 4 3.6 T4-T5 53 
matter ipsilat. 

to FB inj. 

Case 9. cat 2.1 C5-C8 dorsal grey 4 3.6 T4 ipsilat. 53 
matter in DMSO to FB inj. 

Case 10. cat 2.1 C5-C8 dorsal grey 4 3.6 T3-T4 53 
matter ipsilat. 

to FB inj. 

Case I I. cat 2.8 inferior olive 2 3.6 C5-C8 46 
contralat. 
to FB inj. 

Case 12. cat 2.8 inferior olive 2 7.5 L3-L5 46 
in DMSO contralat. after the 

to FB inj. C5-C8 inj. 

7.5 C5-C8 
in DMSO contralat. 

to FB inj. 

Case 13. monkey 2...! C5-C8 dorsal grey 4 8.2 Sl-S3 70 
matter in DMSO ipsilat. 

to FB inj. 

Case 14. monkey 4.3 C5-C8 dorsal grey 4 8.2 L2-L5 72 
matter in DMSO 

Case 15. monkey 4.4 C5-C8 dorsal grey 4 12.8 T8-T9 60 
matter 
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TABLE III 

This table shows: (I) the% formalin used at the perfusion; (2) the exact amount of single FB, single NY and FB-NY 
double labeled neurons in red nucleus of the different cases. In addition the single FB + FB-NY double labeled cells 

and the single NY+ FB-NY double labeled neurons in red nucleus were calculated. 

Formaline Single FB- Single NY- FB-NY cells Single FB + Single NY+ 
perfusion labeled labeled in red FB-NY cells FB-NY cells 

(%) cells in cells in nucleus in red nucleus in red nucleus 
red nucleus red nucleus 

Case 1, cat 10 1320 1622 28 1348 1650 

Case 2, cat 10 1268 2792 30 1298 2822 

Case 3, cat 30 2328 1896 93 2421 1989 

Case 4, cat 30 1704 1428 156 1860 1584 

Case 5, cat 30 1893 2415 213 2106 2628 

Case 6, cat 30 1623 2268 207 1830 2475 

Case 7, cat 30 1383 1005 231 1614 1236 

Case 8, cat 30 1437 1146 312 1749 1458 

Case 9, cat 30 1712 5294 426 2138 5720 

Case 10, cat 10 786 3789 240 1026 4029 

Case II, cat 30 2442 0 2442 

Case 12. cat 30 2886 2887 

Case 13, monkey 30 1330 817 1331 818 

Case 14, monkey 30 1236 1635 87 1323 1722 

Case 15, monkey 30 1170 1524 120 1290 1644 

regarded as genuinely retrogradely labeled. However, in all experiments always faint NY 
staining of glial nuclei occurred diffusely through the area of NY labeled neurons (see Fig. 9). 
This may have resulted from migration of NY out the rubrospinal axons. 

In the two cats (cases 11 and 12), in which the rubrospinal collaterals to the inferior olive 
were studied, FB was injected in the latter structure through a hole drilled in the base of the 
skull and NY was injected contralaterally in the cervical spinal cord through a laminectomy 
(see Table II and Fig. 5). 

All cats were sacrificed with an overdose of Nembutal (6%). They were transcardially 
perfused with 2liters NaCl (2. 7%) followed by 3 liters cacodylate-buffered (pH 7 .2) formalin 
( 10 o/c or 30 o/c. see Table III) followed by 2 liters cacodylate-buffered (pH 7 .2) sucrose (8 o/c). 

In 3 monkeys (cases 13, 14 and 15) similar FB injections were made as in the I 0 cats (cases 
1-10), i.e., in the dorsal part of the C5-C8 spinal grey matter (see Figs. 4 and 13). After 4 
weeks the animals were re-operated and NY either dissolved in water or dissolved in DMSO 
was injected in the spinal white and grey matter at different spinal levels caudal to T3 (see 
Table II). The animals were sacrificed at the appropriate NY survival times (see Table II) based 
on the relationship between transport distance and transport time found in the rubrospinal 
fibers in cat (see Table I). The monkeys were transcardially perfused with 2liters N aCl (2. 7%) 
followed by 3 liters cacodylate-buffered (pH 7 .2) formalin (1 0% or 30%, see Table III), 
followed by 2 liters cacodylate-buffered (pH 7 .2) sucrose (8% ). 

The brains and the injected segments of the cats and monkeys were cut transversally in 
frozen sections, 30 ,urn thick, on a freezing microtome. The sections, after being cut, were 
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FLUORESCENT INJECTION 

AREA IN THE DORSAL PART 

OF THE GREY MATTER 
(MONKEY) 

Fig. 4. Photomicrograph of a part of a cross-section between CS and CS with FB injection area in the spinal grey 
matter of the monkey. Note that zones I and II are restricted to the grey matter ofthe dorsal hom. the intermediate zone 

and in part of the ventral· horn. 
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OLIVE IN CAT (CASE 13) 
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Fig. 5. Diagram of the injection area in inferior olive in cat. For characteristics of zones 1. 2 and 3. see text. 
Abbreviations: A. nucleus ambiguus: DAO. dorsal accessory olive: dl. dorsal lamella of principal olive: FLM, 
medial longitudinal fasciculus: G +C. nucleus gracilis and cuneatus: K. cap of Kooy: MAO. medial accessory olive: 
N VII. facial nucleus: N XII. hypoglossal nucleus: n XII. hypoglossal nerve: N Xllp. nucleus prepositus hypoglossi: 
NC. cochlear nucleus: NCE. external cuneate nucleus: NRL. lateral reticular nucleus: NTSV. nucleus of spinal V 
tract: NVL. lateral vestibular nucleus: NVM. medial vestibular nucleus: PC!. inferior cerebellar penduncle: RFl, 
lateral reticular formation: RS. rubrospinal tract: S. nucleus and tractus solitarius: TCS. corticospinal tract: TS V, 

spinal V tract; vi. ventral lamella of principal olive: X, dorsal motor nucleus of vagus. 

B 
Fig. 6. A shows the FE-labeled neurons with their dendrites of the nucleus of Darkschewitsch after FB injections in 
the cat inferior olive. B shows the FB labeling of the hypoglossal neurons with their axons (nervus hypoglossus) after 
FB injections in the cat inferior olive. which also damaged the axons of the hypoglossal nerves. at their exit from the 
medulla oblongata. Note that after a perfusion with 30% formalin instead of 10% the FB labeling is very strong. and 

the proximal dendrites and axons are also labeled. 
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Fig. 7. Photomicrographs of single FB. single NY and FB-NY double labeled neurons in red nucleus (upper row) and 
the nucleus raphe magnus (bottom row) of the cat. The FB single labeled neurons show a fluorescent labeling of the 
cytoplasm with silver fluorescent granules and the NY single labeled ones a fluorescent nucleus and a clear fluorescent 

ring around the nucleolus. The FB-NY double labeled neurons display all features. 

immediately mounted from distilled water and air dried at room temperature. In general, one 
out of every three sections was mounted. The material was studied with a Leitz Ploemopack 
fluorescence microscope equipped with a filter mirror system A (360 nm excitation wave
length). At this excitation wavelength single FB labeled neurons show a blue fluorescent 
labeling of the cytoplasm of cell body and proximal dendrites with silver fluorescent granules. 
Perfusion with 30% formalin produced a more intense FB fluorescence than with 10 o/c 
formalin and also resulted in labeling of axons and proximal dendrites of the labeled cells (see 
Fig. 6). Single NY-labeled neurons, after short survival times (Bentivoglio et al., 1980b), 
show mainly a golden yellow fluorescence of the nucleus with a clear ring around the 
nucleolus. Double labeled neurons show all mentioned features (see Figs. 7 and 15) at the same 
360 nm excitation wavelength (Kuypers et aL 1980). 

RESULTS 

(A) Injection areas 

The FB injection area around the needle tracks in the spinal cord and inferior olive in cat and 
monkey showed 3 concentric zones (Bharos et al., 1981). Zone I, surrounding the needle 
track, was brilliantly white-blue fluorescent and contained few cellular elements but many 
orange fluorescent granules. In cresyl violet sections, it represented a pale area witli a few 
neurons or glial cells. Zone II was characterized by a dense accumulation of blue fluorescent 
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glial cells with a blue fluorescent nucleus. In cresyl violet sections this zone was darkly stained 
because of many glial nuclei. Zone III contained some fluorescent glial nuclei and neurons as 
well as blue fluorescent fibers. Towards its periphery the fluorescent glial nuclei progressively 
diminished in number and zone III thus faded into an area of normal tissue with little 
fluorescence. 

FB transport occurs from zones I and II, but not from zone III, since in the control cat with 
FB injections in the dorsal columns in which only zone III involved the rubrospinal termination 
area (see Fig. 2) no FB-labeled cells occurred in red nucleus. In the cases (cats 1-10 and the 
3 monkeys) in which FB was injected in the C5-C8 grey matter, zone II extended laterally up 
to the border of the grey matter and ventrally into the ventral hom (Figs. 2, 3, 4 and 13). 
Rostrocaudally it extended up to the rostral border of C5 and down to the caudal border of C8. 
No FB fluorescence occurred in those parts of the dorsolateral funiculus containing the 
rubrospinal, raphe spinal and crossed pontospinal tracts (Nyberg-Hansen and Broda!, 1964; 
Petras, 1967; Edwards, 1972; Kuypers and Maisky, I 977; Basbaum and Fields, 1978, 1979; 
Holstege et al., 1979; Martinetal., 1979). In the two cats (cats II and 12), with FB injections 
in the inferior olive, zone II extended from the medial to the lateral border of the inferior olive. 
It extended dorsally 0.5 mm beyond its dorsal border (see Fig. 5) and extended rostrocaudally 
throughout the length of the inferior olive. 

The NY injection areas also displayed 3 concentric zones (Bharos et al., 1981). Zone I was 
very narrow and contained yellow tissue fluorescence and a dense accumulation of bright 
yellow-white glial nuclei. Zone II was much wider than the first. It also displayed yellow tissue 
fluorescence but contained fewer fluorescent glial nuClei. Zone III contained only dull 
fluorescent glial nuclei. The zones I and II involved both the grey and white matter of the 
injected half of the cord, while zone III extended into the contralateral half. Rostrocaudally, 
zones I and II involved the injected segments, while zone III extended into the rostrally and 
caudally adjacent ones. However, retrograde transport over long distances does not take place 
from zone III since no NY retrograde labeling was present in the red nucleus contralateral to the 
non-injected half of the spinal grey which was involved by zone III only. 

(B) Measures taken to increase the number of labeled neurons (Table III) 

From some of the findings in the present study the impression wa~ gained that in cat NY is 
much less effectively transported from damaged axons than in rat (Huisman et al., 1981). In 
order to determine whether this transport in cat could be improved by the admixture of DMSO: 
in one cat I o/c NY dissolved in water was injected in the C5--C8 dorsolateral funiculus while in 
another cat I o/c NY dissolved in 2 o/c DMSO (Keefer, 1978) was injected. Only in the latter cat 
a substantial number of NY-labeled neurons were present contralaterally in the ventrolateral 
part of the red nucleus, which neurons project to the lumbosacral cord (Pompeiano and Broda!, 
1957; Nyberg-Hansen and Broda!, 1964). The same was observed in other animals of the 
present study in which NY dissolved in DMSO was injected (see number of NY-labeled 
neurons in Table III). It was therefore concluded that in cat an effective NY transport from 
damaged fibers, which pass through the injection area, only occurs when NY is dissolved in 
DMSO*. 

* The facilitatory influence of DMSO on this transport probably results from the fact that it increases the permeability of 
the membranes. In this respect it is of interest to recall that during bathing the intact vagus nerve bisbenzimide (Bb) 
remained in solution. while True Blue (TB) adhered directly to the sheath of the nerve and resulted in retrograde 

transport (Sawchenko and Swanson. 1981 ). 
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In order to determine whether the FB fluorescence could be improved by a stronger fixation 
a 30% formalin perfusion was used in cat and monkey instead of 10%. This measure increased 
the intensity of FB fluorescence and thus also increased the total number of cells which could 
be recognized as FB-labeled (see numbers of FB-labeled neurons in Table III). 

(C) Red nucleus in cat and monkey 

Cytoarchitecture 
The red nucleus in cat and monkey may be subdivided into a caudal (magnocellular) part and 

a rostral part. The magnocellular part in cat occupies the caudal 2/3 of the nucleus but in 
monkey occupies the caudal1/2. In both species the caudal portion of the magnocellularpart of 
the red nucleus is round in cross-section and contains large neurons which are dispersed 
between the tegmental fiber bundles. The rostral portion of the magnocellular red nucleus in 
monkey is also round in cross-section but contains mainly medium sized neurons. In cat this 
portion of the magnocellular part as seen in cross-section has the shape of a flattened disk and 
contains both large and small neurons. According to earlier retrograde degeneration findings 
these various types of neurons in the magnocellular part of the red nucleus in cat and monkey 
all give rise to rubrospinal fibers (Pompeiano and Broda!, 1957; Poirier and Bouvier, 1966; 
Kuypers and Lawrence, 1967). 

The rostral part of the red nucleus in monkey is rather sharply delineated against the 
surrounding reticular formation and contains relatively small neurons. Therefore, as in other 
higher primates. this part of the red nucleus is called the parvicellular part. In the dorsal portion 
of this parvicellular part the cells form a loose network but in the ventral parts they are rather 
densely packed. The parvicellular part in monkey extends rostrally close to the mesodience
phalic junction, i.e., just beyond the level where the fasciculus retroflexus (FR) traverses in 
full length the mesencephalic tegmentum. At these levels the parvicellular part is mainly 
located lateral to the FR. In monkey, a small group of medium sized multipolar neurons 
extends from the caudal part of the magnocellular part rostrally over a short distance along the 
lateral aspect of the parvicellular part, up to the level where the cross-section through the 
fasciculus retroflexus (FR) is located immediately ventral to the red nucleus. 

The rostral part of the red nucleus in cat is also situated lateral to the FR. However, in the cat 
this part of the nucleus is not truly parvicellular as in monkey but consists of a loose network 
of small multipolar neurons which is difficult to delineate from the surrounding reticular 
formation. Yet, it seems reasonable to regard this portion of the red nucleus in cat as the 
counterpart of the parvicellular part in monkey since both structures give rise to the ipsilaterally 
descending rubro-olivary fibers (Walberg. 1956; Edwards, 1972; Courville and Otabe, 1974; 
Strominger et al., 1979; Conde and Conde, 1982). 

Rubrospinal neurons in cat and monkey 
In all 10 cats and in the 3 monkeys a population of single FB-labeled and single NY-labeled 

neurons was present in the caudal portion of the magnocellular red nucleus. In both groups of 
animals the single FB-labeled neurons were concentrated dorsomedially while the single 
NY-labeled ones were concentrated ventrolaterally (see Figs. 8, 9 and 13). In the rostral 
portion of the magnocellular part of the nucleus in monkey this arrangement was roughly 
maintained but in the rostral portion of the magnocellular red nucleus in cat the two populations 
of single FB- and single NY-labeled neurons which comprised both large and small cells 
became interdigitated to some degree as observed also in rat (Huisman et al., 1981). It was 
quite striking to note that the population of labeled rubrospinal neurons in monkey was not 
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Fig. 8. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the red nucleus of the 
cat in case 2: FB in C5-C8 and NY in L3: case 4: FB in C5-C8 and NY in T8; case I 0: FB in C5-C8 and NY in T3; 
ca:-.e II: FB in the ipsilateral inferior olive and NY in the contralateral C5-C8 spinal cord. Abbreviations: CG. central 
grey: CP. cerebral peduncle; DCP. decussation of superior cerebellar pend uncles; IP. interpeduncular nucleus; LM, 
medial lemniscus: N III. oculomotor nucleus: MB. mammillary bodies; Ill. oculomotor nerve; R, red nucleus; Rp. 
parvicellular part of red nucleus: SNC. substantia nigra pars compacta; SNR. substantia nigra pars reticulata; III V. 

third ventricle. 
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Fig. 9. Photomicrograph of dorsomedial part of caudal red nucleus in cat.labeled with FB from C5-C8 contralateral 
spinal cord. which part passes into the ventrolateral part.labeled with NY from TS-T9 contralateral spinal cord. Note 
the faint staining of glial nuclei diffuse through the ventrolateral part and the FB-NY double labeled neuron located at 

the transition of the dorsomedial FB-labeled part to the ventrolateral NY-labeled part. 

restricted to the magnocellular part of the red nucleus but extended rostrally as a thin shell 
alongside the lateral aspect of the parvicellular part up to the level where the cross-section of 
the fasciculus retroflexus (FR) is located immediately ventral to the nucleus. This is in keeping 
with the retrograde HRP findings of Kneisley et aL ( 1978) as inferred from their illustrations. 
In this lateral shell of rubrospinal neurons both single FB- and single NY-labeled neurons were 
present but the NY-labeled rubrospinal neurons were much more numerous than the FB-la
belcd ones and the latter were located more dorsally than the former (see Fig. 13). This is in 
keeping with the HRP findings (Kneisley et aL. 1978) that the rubrolumbar neurons in monkey 
extend more rostrally than the rubrocervical ones. 

In the cats and monkeys double labeled neurons were also present in the red nucleus. In all 
cases (cats and monkeys) some FB-NY double labeled neurons were present in the caudal 
portion of the magnocellular part of the red nucleus. i.e., between the dorsomedially located 
FB-labeled neurons and the ventrolaterally located NY-Iabe!ed ones. However, as in rat 
(Huisman et aL, 1981). the majority of the double labeled neurons were observed in the rostral 
portion of the magnocellular part of the nucleus. where they were intermixed with the single 
FB- and single NY-Iabeled ones. In monkey double labeled neurons were also observed in the 
lateral shell alongside the parvicellular part, where they were in general situated dorsally. 

When comparing the findings in cats and monkeys it appeared that when the NY injections 
were made progressively more rostrally in the spinal cord starting at the sacral levels the 
FB-NY double labeled neurons in red nucleus increased in number. In order to compare the 
present findings in cat and monkey with those in rat (Huisman et a!.. 1981) and with earlier 
electrophysiological findings in cat (Shinoda eta!.. I 977) the numbers of single FE-labeled 
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FB-NY double labeled neurons 

FB single+ FB-NY double labeled neurons 
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X 100% 

Histogram 1 : contriliateral red nucleus of the cat; histogram 2: ipsilateral nucleus raphe magnus of the cat; histogram 
3 : contralateral ventrolateral pontine tegmentum of the cat. 
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neurons, of single NY-labeled neurons and of FB-NY double ones were counted in each 
section. From the total number of these neurons the percentages ofFB-labeled neurons which 
were FB-NY double labeled were computed according to the following formula: 

FB-NY double labeled neurons 
~~~~~~~~~~~~--------XIOO%. 
single FB + FB-NY double labeled neurons 

Percentages of double Labeled neurons in cat 
In each of the 3 groups of cats injected at L3, T7-T8 and T4, one case was injected with 1% 

NY dissolved in 2% DMSO (case 3 at L3, case 6 at T7-T8 and case 9 at T4) and was also 
perfused with 30% formalin, (see Tables II and III). In these 3 cases the largest number of FB
and NY -labeled neurons was obtained. In the 3 cats (cases I, 2 and 3) with NY injections at L3: 
2. I o/c, 2. 3 % and 3. 8 % of the FB-labeled neurons in the red nucleus were FB-NY double 
labeled. In the 3 cats (cases 4, 5 and 6) with NY injections at T7-T8: 10.1 %, 8.4% and 11.3% 
of the FB-labeled neurons were double labeled. In the 3 cats (cases 7, 8 and 9) with NY 
injections at T4-T5: 14.3%, 17.8% and 19.8% of the FB-labeled neurons were double 
labeled and in the one cat (case I 0) with NY injections at T3-T4: 21.5% of the FB-labeled 
neurons were double labeled (see Table IV, histogram 1). 

Percentages of double labeled neurons in monkey 
In the monkeys the following percentages were found: in case 13 with NY injections at 

S I-S3 0.07% of the FE-labeled rubrospinal neurons were found to be FB-NY double labeled, 
in case 14 with NY injections at L2-L5 6.6o/c were double labeled and in case 15 with NY 
injections at T8-T9 9.3% (see Table V, left histogram). 

Histogran1 of the percentages 
FB-NY double labeled neurons 

TABLE V 

==~~--==~~~~~~~----- X 1007c FB single+ FB-NY double labeled neurons 

in monkey red nucleus (left histogram) and in monkey nucleus raphe magnus (right histogram). 

MONKEY 100 

6.6% 

S1-S3 L2-Ls 

HISTOGRAM RED NUCLEUS 

(RN) 

14 

27% 

HISTOGRAM NUCLEUS 
RAPHE MAGNUS (NRM) 
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Percentages of double labeled neurons in cat and monkey compared 
The findings in this entire group of cats and monkeys thus imply that some of the red nucleus 

neurons, which project to the C5-C8 spinal grey matter, also distribute branches to more 
caudal parts of the spinal cord. They further indicate that in cat a relatively high proportion of 
these neurons gives rise to branches which terminate in or pass through the T4-T5 spinal 
segments ( ± 20%); a smaller proportion gives branches which terminate in or pass through 
T7-T8 ( ± 10%), and only a very few neurons give branches which terminate in or pass through 
the lumbosacral cord ( ± 3%). The arrangement in monkey seems to be similar to that in cat, 
such that a small percentage of rubrocervical neurons gives rise to collaterals which terminate 
in or pass through T8-T9 (9.3 %), an even smaller percentage gives rise to collaterals which 
terminate in or pass through L2-L5 (6.6%) while extremely few rubrocervical neurons 
(0.07%) give rise to co !laterals to the sacral cord. 

Rubro-olivary neurons in cat 
In the two cats (cases II and 12) with FB injections in inferior olive and NY injections 

contralaterally in spinal cord the following findings were obtained. In case II in which NY 
dissolved in water was injected in the cervical cord (C5-C8) the population of single NY 
labeled neurons was located in the dorsomedial part of the red nucleus. In case 12 in which NY 
dissolved in DMSO was injected in both the cervical (C5-C8) and the lumbar cord (L3-L5) the 
single NY-labeled population occupied both the dorsomedial and the ventrolateral parts of the 
red nucleus. It was therefore concluded that in the former case (II) there was only NY transport 
from the C5-C8 spinal grey matter, while in the latter case (12) there was NY transport from 
the C5-C8 and the L3-L5 spinal grey matter and probably also from damaged fibers passing 
through the injected segments. Both cases were perfused with 30 o/c formalin which resulted in 
a high intensity of the FB fluorescence in retrogradely FB-labeled cells (see Figs. I 0 and II). 

Fig. I 0. Photomicrograph of the single FE-labeled neurons in the parvicellular red nucleus of the cat. immediately 
lateral to the fasciculus retroflexus (FR). Abbreviations: CP, cerebral peduncle: FR. fasciculus retroflexus; Rp, 

parvicellular part of the red nucleus: III V, third ventricle. 
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Fig. 11. Photomicrograph of the single FB-labeled neurons in the parvicellular red nucleus of the cat, ventrally to the 
fasciculus retroflexus (FR). Abbreviations: CP, cerebral peduncle: FR. fasciculus retroflexus; MB, mammillary 

bodies: Rp, parvicellular part of the red nucleus: III V, third ventricle. 
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Fig. 12. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the ventrolateral 
pontine tegmentum (VLPT) and the nucleus raphe magnus (RM) after spinal injections in cat. In case 2: Fast Blue (FB) 
in C5-C8 and Nuclear Yellow (NY) in L3 and in case 10 FB in C5-C8 and NY in T3. Note the relatively high number 
of double labeled neurons especially in RM, even in case 2 with NY injected in L3. Abbreviations: BC. brachium 
conjunctivum: C. nucleus coeruleus: FLM, medial longitudinal fasciculus: LL. lateral lemniscus: LM. medial 
lemniscus: NC, cochlear nucleus: NCI, nucleus of inferior colliculus: NCu. cuneate nucleus: NP. pontine nuclei: 
NRP, reticular nucleus of pontine tegmentum: NTS V. nucleus of spinal V tract: NVL. lateral vestibular nucleus: 
NVM, medial vestibular nucleus: N VII. facial nucleus: n VII. facial nerve: PCL inferior cerebellar peduncle: PCM. 
medial cerebellar peduncle: RF. reticular formation: RM. nucleus raphe magnus: RS. rubrospinal tract: SC, nucleus 

su'Jcoeruleus: TSC. corticospinal tract: TSV. spinal V tract: VLPT. ventrolateral pontine tegmentum. 
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In the caudal one-third of the red nucleus in both cases only single NY-labeled neurons 
occurred, but many FE-labeled neurons were present in the central grey at these levels. In the 
middle one-third a large population of NY-labeled neurons was present but some single 
FE-labeled cells occurred, i.e., in the most dorsomedial part of the nucleus. This group of red 
nucleus neurons was continuous with a group of single FE-labeled cells in the dorsomedially 
adjoining interstitial nucleus of Cajal (INC) and many FB-labeled neurons were also present in 
the nucleus of Darkschewitsch (see Fig. 6A) (cf., Henkel et al., 1975; Brown et al., 1977; 
Cintas et al., 1980; Martinet al., 1980; Saint-Cyt and Courville, 1980). Finally in the rostral 
one-third of the red nucleus only single FB-labeled neurons were present, which were located 
medial, ventral and lateral to the fasciculus retroflexus (see Figs. 8, 10 and 11). This 

MONKEY 

CAUDAL DL~LFB x1Q0%:=:6,6% 

FB :;: 

CASE 15 
FB Cs-Cs 
NY T 8 -T 9 

___l?..lc_ x100lb9,3% 
DL+FB 

FAST BLUE(FB) INJECTION 
AREA IN THE DORSAL 
PART OF THE GREY 
MATTER ( C5 .Cs) 

Fig. 13. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the red nucleus after 
spinal injections in monkey; in case 14: Fast Blue (FB) in C5-C8 and Nuclear Yellow (NY) in L2-L5 and in case 15: 
FB in C5-C8 and NY in T8-T9. Note the rostral extension of rubrospinal neurons in the lateral part of red nucleus. 
particularly the neurons which project to lower levels in the spinal cord. Abbreviations: G. central grey; CP, cerebral 
peduncle: DCP. decussation of superior cerebellar peduncles; IP. interpeduncular nucleus: ML, medial lemniscus; 
mlf. medial longitudinal fasciculus; N III oculomotor nucleus; n III. oculomotor nerve; Rm, red nucleus, magnocel
lular part; Rp. red nucleus. parvicellular part; SNC, substantia nigra. pars compacta; SNR, substantia nigra, pars 

reticulata. 
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population of FB-labeled neurons, which gradually tapered down at the level of the mam
millary bodies, was continuous dorsomedially with a population of single FE-labeled cells in 
the nucleus ofDarkschewitsch. The group of small FE-labeled cells in the rostral part of the red 
nucleus could be effectively delineated on the lateral and ventral sides and in part also on the 
medial side (see Figs. 10 and 11). It resembled in its configuration the parvicellular part of the 
red nucleus as observed in monkey (Kuypers and Lawrence, 1967). 

In these two cats hardly any double labeled neurons were observed. Thus, in case 11 no 
FB-NY double labeled cells occurred and in case 12 only one FB-NY double labeled neuron 
was present, at the rostral border of the single NY-labeled population. These findings indicate 
that the rubro-olivary fibers in cat are derived virtually only from neurons in the rostral part of 
the red nucleus and that extremely few rubrospinal neurons distribute collaterals to the inferior 
olive (cf. Anderson, 1971). 

(D) Nucleus raphe magnus (NRM) and ventrolateral pontine tegmentum (VLPT) in cat and 
monkey 

Nucleus raphe magnus (NRM) 
The NRM distributes fibers to the dorsal part of the spinal grey matter including the dorsal 

hom, by way of the dorsolateral funiculus (Basbaum et al., 1978; Leichnetz et al., 1978; 
Basbaum and Fields, I979; Tohyama et al., I979a,b; Goode et al., 1980; Martinet al., 
I 98 I a). However, the retrograde! y labeled neurons in the area of the NRM after HRP 
injections in the dorsolateral funiculus (Leichnetz et al., 1978; Basbaum and Fields, 1979; 
Tohyama et al., I 979a) are not restricted to the NRM but extend laterally through the ventral 
part of the reticular formation dorsal to the pyramidal tract. In the present study the NRM 
projecting to the spinal dorsal grey was therefore defined according to the distribution of the 
retrogradely labeled neurons. This area corresponds to the distribution area of serotonergic 
neurons in rat (Dahlstrom and Fuxe, I 964, I 965), cat (Persson et al., 1978 ; Wiklund et al., 
I982) and monkey (Hubbard and DiCarlo, I974; Schofield and Everitt, 1981) at this level, 
because they extend laterally from the nucleus raphe as defined by Taber (I 960, I 961) into the 
nucleus gigantocellularis lateralis, i.e., dorsal and lateral to the pyramidal tract. 

Ventrolateral pontine tegmentum (VLPT) 
Retrograde HRP studies showed that a group of neurons in the ventrolateral pontine 

tegmentum adjoining the area of the rubrospinal tract (TRS) (Kuypers and Maisky. I 975; 
Leichnetz et a!., I 978; Basbaum and Fields, 1979) give rise to mainly crossed pontospinal 
fibers which descend in the dorsolateral funiculus throughout the spinal cord (Kuypers and 
Maisky, I 977; Holstege et al., I 979; Tohyama et al.. I 979). These fibers seem to correspond 
to the crossed pontospinal tract of Busch ( 1964) and the lateral reticulospinal tract of Papez 
(I 926). Anterograde labeled amino acid transport studies (Holstege et al.. 1979; Martinet al., 
I 979) showed that this crossed descending pathway terminates in roughly the same portion of 
the spinal grey as the rubrospinal tract. i.e .. in the dorsal part of the spinal intermediate zone. 
but also terminates in the spinal dorsal hom. 

Retrograde labeling in nucleus raphe magnus (NRM) and rentrolateral pontine tegmentum 
(VLPT) 
(a) Cat. In the 10 cats with FB and NY spinal injections the single FB. single NY and the 

FB-NY double labeled neurons in the NRM and the VLPT did not display any topographical 
distribution but were randomly intermixed with one another (see Fig. 12). This is in keeping 
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Fig. 14. Photomicrograph of dorsomedial part of caudal red nucleus in monkey, labeled with FB from C5-C8 
contralateral spinal cord. Note the reticulated structure. in which the single FB-labeled neurons are arranged. 

Fig. 15. Photomicrographs of single FB. single NY and FB-NY double labeled neurons in red nucleus (upper row) 
and nucleus raphe magnus (bottom row) of the monkey. The single FE-labeled neurons show a fluorescent labeling of 
the cytoplasm with silver fluorescent granules and the single NY-labeled ones a fluorescent nucleus and a clear ring 

around the nucleolus. The FB-NY double labeled neurons display all features. 

with the anatomical findings in rat (Huisman et a!., 1981) and opossum (Martin et a!., 
1981a,b). In the different experiments in cat the total number of neurons which were FB 
labeled from C5-C8 in the ipsilateral NRM ranged from 591 to 2943. In the contralateral 
VLPT the number ranged from Ill to 525. The percentages of the FB-labeled neurons in these 
nuclei which were FB-NY double labeled after injections at different spinal levels were 
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entirely different from those obtained in red nucleus (see histograms l, 2 and 3 in Table IV). 
Thus in all cases a large percentage of the FB-labeled neurons in NRM and VLPT was double 
labeled. This was particularly striking in the NRM, as observed also in rat (Huisman et· al., 
1981) and opossum (Martinet al., 1981b). Moreover, the percentages of the FB-NY double 
labeled neurons in the NRM were always of roughly the same magnitude, varying from 55% to 
60%, no matter at which spinal level NY was injected. Only in cases 5 and 7, they were lower: 
24.5% and 30.5%, respectively, in which cases the percentages ofFB-NY double labeled 
neurons in the VLPT were also lower than in the other cases (Table IV). 

The findings in the red nucleus, the nucleus raphe magnus and the ventrolateral pontine 
tegmentum therefore suggest that in red nucleus to a large extent different groups of neurons 
project preferentially to different levels of the spinal cord and distribute only few collaterals to 
the other levels, while a large portion of NRM neurons as well as of VLPT ones distribute 
collaterals throughout the length of the spinal cord. Since always roughly the same percentage 
of double labeled neurons .occurred in NRM and VLPT independent of the level of NY 
injections, it seems likely that many NRM and VLPT neurons give rise to long descending 
fibers proceeding throughout the length of the spinal cord giving off collaterals to the spinal 
grey at many different levels. 

(b) Monkey. The distribution of the labeled cells in NRM and VLPT in monkey was the 
same as observed in cat (see Fig. 16). The numbers of single FB-labeled neurons including 
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Fig. 16. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the ventrolateral 
pontine tegmentum (VLPT) and the nucleus raphe magnus (NRM) after spinal injections in monkey. In case 14: Fast 
Blue (FB) in C5-C8 and Nuclear Yellow (NY) in L2-L5 and in case 15 FB in C5-C8 and NY in T8-T9. Note the 
relatively high number of double labeled neurons. especially in NRM. even in case 14 with NY injected in L2-L5. 
Abbreviations: BC brachium conjunctivum: C. nucleus coeruleus: LL. lateral lemniscus: LM. medial lemniscus: N 
VIII. facial nucleus: n VII. facial nerve: NP. pontine nuclei: NRM. nucleus raphe magnus: NRP. reticular nucleus of 
pontine tegmentum: NTS V. nucleus of spinal V tract: NVL. lateral vestibular nucleus: NVM. medial vestibular 
nucleus; PCI. inferior cerebellar peduncle: PCM. medial cerebellar peduncle: RF. reticular formation: RS. rubrospi
nal tract; SC, nucleus subcoeruleus; ST. spinothalamic tract: TCS. corticospinal tract: tr V. tract of mesencephalic V 

nucleus; TS V. spinal V tract: VLPT. ventrolateral pontine tegmentum. 
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FB-NY double labeled ones in the ipsilateral NRM ranged from 1220 to 2344. In the 
contralateral VLPT these numbers were 321 in case 14 and 525 in case 15. In case 13 the 
number of such labeled neurons in the contralateral VLPT was very low, therefore no 
percentages were computed in this case. The percentages of FE-labeled neurons which were 
FB-NY double labeled in NRM were 27% (case 13), 31.1% (case 14) and 43.9% (case 15) 
(see Table V). In VLPTthesepercentages were29% (case 14) and30.3% (case 15). Therefore 
in the NRM, VLPT and the red nucleus in the monkeys the same differences in the percentages 
of the double labeled neurons were observed as in the cats (compare the histograms in Tables 
IV and V). This indicates that also in monkey different groups of RN neurons to a large extent 
project preferentially to certain levels of the spinal cord and distribute only few collaterals to 
the other levels, while many of the NRM and VLPT neurons distribute collaterals throughout 
the length of the spinal cord. 

DISCUSSION 

The present study tried to elucidate in cat and monkey differences in the degree of 
collateralization in the spinal cord between 3 brain stem pathways, i.e., the rubrospinal tract, 
the rostral medullary raphe spinal tract and the crossed pontospinal tract, all of which descend 
through the dorsolateral funiculus and terminate in the dorsal part of the spinal grey (Nyberg
Hausen and Brodal, 1964; Petras, 1967; Edwards, 1972; Basbaum and Fields, 1978, 1979; 
Holstege et al., 1979; Martinet al., 1979). On the basis of the present findings the degree of 
collateralization of the rubrospinal tract in cat and monkey could also be compared with that in 
other species. This latter comparison appeared to be of interest because earlier findings 
suggested that the degree of collateralization of the rubrospinal tract differs in different animals 
(Huisman et al., 1981; Martinet al., 1982). 

Technique 

The multiple retrograde fluorescent tracer technique (Kuypers et al., 1980) and the 
HRP-[3H]apo-HRP technique (Hayes and Rustioni, 1979, 1981) seem to be most suitable for 
demonstrating the existence of collaterals in brain pathways. However, a comparison of the 
results obtained by means of these two techniques, e.g., in respect to the raphe spinal 
projections (cf., Hayes and Rustioni, 1981; Huisman et al., 1981), suggested that the 
retrograde fluorescent tracer technique produces a larger proportion of double labeled neurons. 
Therefore this method was chosen. This choice was reinforced by the fact that in the present 
study a larger number of double labeled neurons were found in raphe and red nucleus in cat than 
seems to have been obtained by means of the HRP-[3H] apo-HRP method (Hayes and Rustioni, 
1981) in the same animal. This difference may be explained by the fact that in the autora
diographic material silver grains will only be elicited in the emulsion by sources of radioac
tivity which are located in the upper 3 ,urn layer of the 40 ,urn sections (Sidman, 1970). As a 
consequence, even under optimal circumstances, only a small percentage of the total popula
tion of HRP-labeled neurons observed in each 40 ,urn section can be double labeled. The 
fluorescent tracers are also more sensitive than HRP, as suggested by the findings of Saw
chenko and Swanson (1981) that the fluorescent tracers label approximately twice as many 
neurons than the HRP-TMB technique (Mesulam and Rosene, 1979). This is supported by a 
comparison of the present findings with those obtained by Conde and Conde (personal 
communications) which shows that after Fast Blue (FB) injections in inferior olive the number 
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of labeled rubro-olivary neurons at a given level in the red nucleus was significantly larger than 
obtained with the HRP-BDHC technique (Mesulam, 1976; Conde and Conde, 1982) at 
approximately the same level (i.e., in a 30 j.lm section about 80 FB-labeled neurons and in a 
60 ftm section about 40 HRP-labeled neurons). 

In order to obtain reliable quantitative data concerning single FB- and NY-labeled neurons 
and FB-NY double labeled neurons several requirements had to be fulfilled. First the FB 
injections in C5-C8 had to be restricted to the grey matter and must not have involved the fiber 
bundles of the 3 tracts in the dorsolateral funiculus. Under the present circumstances with 4 
weeks survival time FB was only transported from zones I and II (see Results). Therefore only 
those cases have been selected for study (I 0 cats and 3 monkeys) in which zones I and II were 
restricted to the grey matter and did not involve the dorsolateral funiculus. The remaining cases 
(I 0 cats) were discarded. In order to obtain reliable quantitative data it was also necessary to 
label retrogradely a very large number of neurons. For this purpose two measures were taken. 
First perfusion with 30 Cflc formalin instead of with I 0 o/c formalin was used, because the former 
results in a much more intense FB labeling than the latter. As a consequence a much larger 
number of neurons could be recognized as FB labeled. Moreover, in the more recent cases a 
NY -DMSO mixture was injected in cat since this mixture in cat strongly increased the number 
of neurons which were retrogradely labeled from damaged axons passing through the injected 
segments (see Results). 

Earlier electrophysiological studies have dealt with the collaterals of descending pathways. 
Shinoda et a!. ( 1977) reported the number of red nucleus neurons which could be antidromi
cally invaded from C3-C8 grey matter and the percentage of these neurons which could 
be antidromically invaded by stimulation of the fibers passing through different more 
caudal segments of the cord. In order to facilitate a comparison between our anatomical data 
and these physiological data the anatomical experiments were set up in a comparable manner. 
Thus the number of FB-labeled neurons which project to the C5-C8 dorsal grey matter was 
counted and the percentages of these neurons which were also labeled with NY were 
computed. This procedure also allowed a comparison between the present findings in cat and 
monkey and those obtained earlier in rat (Huisman et a!.. 1981 ). 

Somatotopic organi::;ation (!l reel nucleus 

In cat the injections of the two tracers in C5-C8 and in more caudal spinal segments in 
essence labeled two different populations of rubrospinal neurons. The distribution of the total 
population of these retrogradely labeled rubrospinal neurons confirmed previous findings 
(Pompeiano and Broda!. 1957; Hayes and Rustioni. 1981) and showed that the rubrospinal 
neurons are mainly present in the caudal two-thirds of the nucleus. The findings in the 
experiments with FB injections in the inferior olive and NY injections in the cervical cord 
further showed that in cat the red nucleus neurons. which distribute fibers to the ipsilateral 
inferior olive (Walberg. 1956; Courville and Otabe. 1974; Martin et a!.. 1975, 1980; 
Strominger et al.. 1979). represent a separate population which is largely restricted to the 
rostral part of the nucleus (see Fig. 8). This is in keeping with other HRP findings (Saint-Cyr 
and Courville. 1980; Conde and Conde. 1982). 

The distribution of the single FB- and single NY-labeled rubrospinal neurons confirmed the 
somatotopic organization of this nucleus as demonstrated earlier by means of other techniques 
(Pompeiano and Broda!. 1957; Tsukahara et a!.. 1967; Gwyn. 1971 ; Hayes and Rustioni. 
1981). Thus, in the caudal half of the magnocellular part the rubrocervical, the rubrothoracic 
and the rubrolumbar neurons are located in the dorsomedial, intermediate and ventrolateral 
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part of the nucleus, respectively. On the other hand in the rostral half of the magnocellular part 
these neurons become intermixed (see Fig. 8). 

In monkey retrograde degeneration studies (Poirier and Bouvier, 1966; Kuypers and 
Lawrence, 1967) showed that the rubrospinal neurons are largely restricted to the magnocel
lular part. However, the present findings showed that the population of rubrospinal neurons 
extends further rostrally and continues along the lateral aspect of the parvicellular part (see Fig. 
13) up to the level, where the cross-section through the fasciculus retroflexus is located ventral 
to the nucleus. This seems in keeping with the retrograde HRP finding of Kneisley et al. ( 1978) 
as inferred from their illustrations. The location of these rubrospinal neurons appears to 
correspond with that of neurons with coarse Nissl bodies (Miller and Strominger, 1973). This 
supports the idea that rubrospinal neurons are characterized by their internal configuration 
more or less independent of the size of the neurons (King et al., 1971). 

The present findings support the earlier reportc:d somatotopic organization in the caudal 
magnocellular part of the monkey red nucleus (Kneisley et al., 1978). They also indicate that in 
the rostral extension of the population of rubrospinal neurons along the lateral aspect of the 
parvicellular part the rubrocervical neurons are located dorsal to the rubrolumbar ones and that 
the latter continue more rostrally than the former (see Fig. 13). 

Collateralization in rubrospinal tract 
The percentages of the rubrocervical neurons in cat projecting to C5-C8 which also 

distribute collaterals to more caudal levels, as computed from the present anatomical findings, 
are of the same order of magnitude as those inferred from the earlier electrophysiological 
findings in this animal. Thus according to the electrophysiology (Shinoda eta!., I 977) 5% of 
the rubrocervica1 neurons projecting to C3-C8 distribute collaterals to segments caudal to L I , 
and 50% distribute collaterals to segments caudal to T2. According to the anatomical findings 
about 3% of the rubrocervical neurons projecting to C5-C8 distribute collaterals to the 
segments caudal to L2 and about 20% distribute collaterals to the segments caudal to T3 (see 
Table IV). In monkey a similar arrangement was found anatomically: 9.3% of the rubrocer
vical neurons projecting to C5-C8 were found to distribute collaterals to the segments caudal to 
T8 and 6.6% to the segments caudal toLl (see Table V). 

The slight differences between the percentages obtained by means of the electrophysiologi
cal and the anatomical techniques may be due to the fact that in the two types of experiments 
slightly different cervical segments were studied and slightly different thoracic and lumbar 
segments were stimulated and injected respectively. The differences may also be due to 
differences in the rostrocaudal extent of the nucleus, explored in the two types of experiments. 

Rubrospinal collateralization in different animals 
A comparison of the present anatomical findings in cat and monkey with those obtained in 

rat (Huisman eta! .. 1981) indicates that the rubrospinal system in rat displays a higher degree 
of collateralization than in cat and monkey. Thus in rat 20% of the rubrocervical neurons 
projecting to C5-C8 distribute collaterals to segments caudal to L I versus only about 3% in cat 
and about 6 o/c in monkey. Further, in rat about 35% of the rubrocervical neurons distribute 
collaterals to segments caudal to T7 versus about 10% in cat and monkey. The rubrospinal tract 
in cat and monkey therefore appears to be more focussed than in rat such that in the former 
species a larger proportion of the rubrospinal neurons distributed fibers to a restricted part of 
the spinal cord than in the latter. This is further emphasized by the fact that the high degrees of 
collateralization of the raphe spinal and the crossed pontospinal tract are of the same order of 
magnitude in the 3 species (see below). 
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The comparison of the anatomical findings in opossum and rat (Huisman et al., 1981 ; 
Martin et al., 1982) strongly suggests that the rubrospinal tract in opossum shows an even 
higher degree of collateralization than in rat. This would imply that the rubrospinal tract in rat, 
in tum, is more focussed than in opossum. The fact that the red nucleus in opossum displays a 
much less rigid somatotopic organization than in rat (Martinet al., 197 4; Huisman et al., 1981) 
suggests that with an increase in collateralization the somatotopic organization becomes less 
sharply defined. If this is correct the absence of any somatotopic organization in the red 
nucleus in pigeon (Wild et al., 1979) and in reptiles (ten Donkelaar and de Boer-van Huizen, 
1978) would imply that in these species the rubrospinal tract displays an even more pronounced 
collateralization than in opossum. In snakes this tract seems to be lacking (ten Donkelaar, 
1976a,b). It therefore appears that the rubrospinal tract, as a highly focussed fiber brain 
stem system, emerges only gradually during phylogeny. It would be of interest to determine 
whether in respect to the rubrospinal collateralization the ontogeny mimics the phylogeny, 
such that e.g. in newborn kittens a higher degree of collateralization occurs than in adult cat. 
This question is prompted by the fact that in other structures such an ontogenetic decrease in 
col!ateralization has been established (Innocenti, 1981; O'Leary et a!.. I 98 I). 

In respect to the phylogenetic decrease in rubrospinal collateralization, it is of interest to 
recall that in cat and monkey (Kuypers, 1964; Lawrence and Kuypers, 1968; Smith, 1970; 
Gorska and Sybirska, 1978; Kohlerman et al., 1980) this tract together with the corticospinal 
tract contributes to the capacity to execute relatively independent movements of the distal parts 
of the limbs. This is probably based on the fact that in these animals a relatively limited degree 
of collateralization occurs such that many of the rubrospinal neurons project to very restricted 
parts of the spinal cord. The suggested decrease in collateralization of this tract from reptiles to 
pigeon, opossum, rat, cat and monkey makes it likely that the capacity of the rubrospinal tract 
to provide the facility for the execution of relatively independent movements of the individual 
extremities also gradually emerges during phylogeny. This notion is strengthened by the fact 
that such a capacity is clearly present in monkey and cat, in that sense that it seems to be lacking 
in reptiles. 

Collateralization in the three tracts compared 
The relatively limited degree of collateralization of the rubrospinal tract is emphasized by 

the contrast between the number of double labeled neurons in red nucleus and in nucleus raphe 
magnus (NRM) at the level of the facial nucleus. The NRM in cat and monkey contained a 
relatively small population of FB and NY single labeled neurons which project to the cervical 
and the more caudal segments respectively, but contained a relatively large population of 
double labeled neurons, i.e., 55-60% of the raphe cervical neurons in cat and about 40 o/c in 
monkey. These high percentages occurred more or less independent of the level of the caudal 
NY injection (see Tables IV and V). Moreover, no clear-cut somatotopic organization in the 
distribution of these 3 types of neurons was observed. These findings in cat and monkey are in 
keeping with those in rat (Huisman et al., 1981) in which about 40 o/c of the raphe cervical 
neurons were always double labeled and with those in opossum (Martinet al., 1981a,b). The 
raphe spinal system therefore resembles the reticulospinal system since according to an 
electrophysiological study (Peterson et al., 1975), 66o/c of the reticulocervical neurons 
distribute collaterals to the segments caudal to L 1. The anatomical findings suggest that a large 
percentage of the raphe spinal neurons in NRM distribute collaterals throughout the length of 
the spinal cord, but that the remainder project to restricted parts of the cord. This would imply 
that the raphe spinal system comprises both a focussed component and a diffuse component. 

In rat, cat and monkey many NRM neurons contain serotonin (Dahlstrom and Fuxe, 1964. 
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RAT TB anterior interpositus 
NY C5_c8 

ROSTRAL 

TB~LDLX 100 = 20,4/. 

CAUDAL • NY,Jo DL *':~ Ts::: oo ~ 

Fig. 17. Semidiagrammatic representation of the distributions of retrogradely labeled neurons in the red nucleus in rat 
after True Blue (TB) injections in the interpositus nucleus and Nuclear Yellow (NY) injections in the spinal cord. 
ipsilateral to the interpositus injection. Note that almost all TB-labeled rubrocercbellar neurons arc double labeled with 
NY from the spinal cord. Abbreviations: CMP. posterior commissure: CP. cerebral peduncle: DCP. decussation of 
superior cerebellar peduncles: GM. medial geniculate body: IP. nucleus interpositus: !Pcd. interpeduncular nucleus: 
L. lateral nucleus of the cerebellum: M. medial nucleus of the cerebellum: ML. medial lemniscus: mlf. medial· 
longitudinal fasciculus: NC. cochlear nuclei: N III. oculomotor nucleus: n III. oculomotor nerve: R. red nucleus: RF. 
reticular formation: SC. superior colliculus: SNC. substantia nigra. pars compacta: SNR. substantia nigra. pars 

reticulata: V. fourth ventricle: vest. com pl.. vestibular complex. 
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1965; Hubbard and DiCarlo, 1974; Persson et a!., 1978; Schofield and Everitt, 1981; 
Wiklund et a!., 1982) and in rat about 45% of the raphe spinal neurons contain serotonin 
(Bowker et a!., 1981). It would therefore be of interest to determine whether either the 
focussed or the diffuse component of the raphe spinal system would be preferentially derived 
from serotonergic neurons. Raphe spinal neurons also contain substance P and enkephalin 
(Hokfelt et a!., 1979; Bowker et a!., 1981) probably in some neurons in coexistence with 
serotonin (Hokfelt et a!., 1977, 1978; Bowker eta!., 1981). If the serotonergic neurons in the 
NRM give rise either to the focussed or the diffuse component of the raphe spinal system one of 
these two components would in particular sub serve the pain modulating function of the raphe 
spinal pathway (Oliveras eta!., 1975. 1977; Basbaum eta!., 1976a,b, 1977; Beall et al., 
1976; Fields et a!., 1977; Guilbaud eta!., I 977; Basbaum and Fields, I 978, I 979; Fields and 
Basbaum, I 978; Giesler eta! .. 1981) since this function is presumably provided by serotoner
gic raphe spinal neurons (Dahlstrom and Fuxe, 1965; Proudfit and Anderson, 1973, 1974; 
Proudfit eta! .. 1980). However. the focussed or the diffuse component may also represent the 
serotonergic raphe spinal fibers to the autonomic cell groups throughout the spinal cord 
(Dahlstrom and Fuxe. 1965; Basbaum eta!.. 1978; Steinbusch. 1981). 

The crossed pontospinal tract ji·mn VLPT neurons 
The crossed pontospina1 tract from VLPT neurons in cat and monkey (Kuypers and Maisky, 

I 975) seems to occupy a position between the rubrospinal and the raphe spinal system as also 
observed in rat. Thus. it shows little somatotopic organization and a relatively high degree of 
collateralization (see Figs. 12 and I 6). 

Rubro-olivary connections 
The rubro-olivary neurons in cat were found in the rostral portion ofthe red nucleus which is 

in keeping with the HRP findings (Saint-Cyr and Courville. I 980; Conde and Conde. 1982). 
This part probably corresponds with the pars parvicellularis in monkey (Kuypers and 
Lawrence, !967). Moreover. from the present findings it may be concluded that the rubrospi
nal neurons and the rubro-olivary ones constitute two separate populations as suggested also by 
HRP findings (Conde and Conde. I 980. 1982) and that rubrospinal neurons distribute virtually 
no collaterals to the inferior olive (see Fig. 8). 

Rubrocerebellar connections 
In view of the above discussed rubrospinal and rubro-olivary connections it is of interest to 

recall that red nucleus neurons also distribute fibers to the crossed cerebellar interpositus 
nucleus (Courville and Broda!. I 966). Recently another series of double labeling experiments 
in rat was initiated in order to detem1ine whether the rubrocerebellar fibers represent col laterals 
of rubrospinal neurons (Huisman. Kuypers. Conde and Keizer. in preparation). In thi~ ~tudy 
"True Blue" and "Nuclear Yellow" were used as retrograde tracers. Preliminary double 
labeling findings in this study show that at least 25 '7c of rubrospinal neurons in rat distribute 
collaterals to the cerebellar interpositus nucleus (see Fig. I 7). The existence of these collaterals 
was suggested earlier by retrograde degeneration findings in cat (Broda! and Gogstad. 
1954). Electrophysiological studies in cat showed that all rubrocerebellar fibers are collaterals 
of rubrospinal fibers (Anderson. 197 I). This is in agreement with our preliminary anatomical 
findings that in rat almost all red nucleus neurons labeled from the cerebellum were also 
labeled from the spinal cord. 



131 

ACKNOWLEDGEMENTS 

The authors thank Prof. Dr. 0. Dann (Friedrich-Alexander Universitat, Erlangen) and Dr. 
H. Loewe (Hoechst Company, Frankfurt) for providing small quantities ofFB, TB and NY. 
They also thank Mr. E. Dalm and Mr. H. Klink for their technical assistance, Miss P. van 
Alphen and Mr. P. Smaal for the photography, Dr. F. Conde for constructive comments on the 
manuscripts and Miss E. Klink and Miss G. van Gelder for typing it. 

REFERENCES 

Abzug. C.. Maeda. M .. Peterson. B.W. and Wilson. V.J. (1973) Branching of individual lateral vestibulospinal 
axons at different spinal cord levels. Brain Res .. 56: 327-330. 

Abzug. C.. Maeda. M .. Peterson. B. W. and Wilson. V .J. (I 974) Cervical branching of lumbar vestibulospinal axons. 
J. Physiol. (Lond.). 243: 499-522. 

Anderson. M.E. (I 971) Cerebellar and cerebral inputs to physiologically identified efferent cell groups in the red 
nucleus of the cat. Brain Res .. 30: 49--66. 

Basbaum. A.!. and Fields. H .L. ( 1978) Endogenous pain control mechanisms: review and hypothesis. Ann. Neurol., 
4: 451-462. 

Basbaum. A.!. ami Fields. H.L. I I '-J7'-J) The origin of descending pathways in the dorsolateral funiculus of the spinal 
cord of the cat and rat: further studies on the anatomy of pain modulation. J. comp. New·ol .. 187: 513-532. 

Basbaum. A.!.. Marley. N. and O'Keefe. J. ( 1976a) Spinal cord pathways involved in the production of analgesia by 
brain stimulation. In: Admnces in Pain Research and Therap-'·· Vol. I, J.J. Bonica and D. Albc-Fessard 
(Eds.). Raven Press. New York. pp. 511-515. 

Basbaum. A.!.. Clanton. C .H. and Fields. H.L. ( 1976b) Opiate and stimulus-produced analgesia: functional anatomy 
of a medullospinal pathway. Proc. IWI. Acad. Sci. (Wasil.), 73: 4685-4688. 

Basbaum. A.!.. Marley. N.J.E .. O'Keefe. J. and Clanton. C. H. ( 1977) Reversal of morphine and stimulus-produced 
analgesia by subtotal spinal cord lesions. Pain. 3: 43-56. 

Basbaum. A.!.. Clanton. C .H. and Fields. H .L. (I 978) Three bulbospinal pathways from the rostral medulla of the 
cat: an autoradiographic study of pain modulating systems. J. comp. Neurol .. 178:209-224. 

Beall. J.E .. Martin. R.F .. Applebaum. A.E. and Willis. W.O. (1976) Inhibition of primate spinothalamic tract 
neurons by stimulation in the region of the nucleus raphe magnus. Brain Res .. 114: 328-333. 

Bentivoglio. M .. Kuypers. H.G.J.M .. Catsman-Bcrrcvocts. C.E .. Loewe. H. and Dann. 0. (1980a) Two new 
fluorescent retrograde neuronal tracers. which arc transported over long distances. Neurosci. Lett .. I 8: 25-30. 

Bentivoglio. M .. Kuypers. H.G.J.M. and Catsman-Bcrrcvoets. C. E. (I 980bJ Retrograde neuronal labeling by means 
of bisbenzimide and Nuclear Yell ow ( Hoechst S-76'-J 121 ). Measures to prevent diffusion of the tracers out of 
retrogradely labeled neurons. N<'llmsci. Lei/ .. I X: I 1-1 X. 

Bharos. T.B .. Kuypers. H.G.J .M .. Lemon. R.N. and Muir. R.B. (I 981 J Divergent col laterals from deep cerebellar 
neurons to thalamus and tectum. and to medulla oblongata and spinal cord: retrograde fluorescent and 
clectrophysiological studies. Exp. Brain Res .. 42: 39'-J--410. 

Bowker. R.M .. Stcinbusch. H. W.M. and Coulter. J.D. I I '-JX I) Serotonergic and pcptidergic projections to the spinal 
cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. 
Brain Res .. 21 I: 412-417. 

Broda!. A. and Gogstad. A.C. (I 954 I R ubrocerebcllar connections an experimental study in the cat. Anal. Rec., I I 8: 
455-485. 

Brown. J. T .. Chan-Palay. V. and Palay. S .L. ( 1977) A study of afferent input to the inferior olivary complex in the rat 
by retrograde axonal transport of horseradish peroxidase. J. comp. Neurol .. 176: 1-22. 

Busch. H.F.M. ( 196-:1-) Anatomical aspects of the anterior and lateral funiculi at the spinobuibar junction. In: 
Organbuion of' the Spinal Cord. Progress in Brain Research. Vol. II. J.C. Eccles and J.P. Schade (Eds.). 
Ebevier. Amsterdam. pp. 223-235. 

Cajal. S. Ramon y 1 1952) Histologi~ du SYst2me Nen·eux de /'Homme et des Vertehris. lnstituto Ramon y Cajai. 

Madrid. 
Cintas. H.:vJ .. Rutherford. J .G. and Gwyn. D.G. ( 1980) Some midbrain and diencephalic projections to the inferior 

olive in the rat. In: The Inferior Olimn· Nucleus: AnatomY and Physiology. J. Courville et al. (Eds.), Raven 
Press. New York. pp. 73-96. 

Conde. F. and Conde. H. (I 980) Demonstration of a rubrothalamie projection in the cat. with some comments on the 
origin of the rubrospinal tract. Neuroscience, 5: 789-802. 



132 

Conde, F. and Conde, H. ( 1982) The rubro-olivary tract in the cat, as revealed by retrograde transport of horseradish 
peroxidase. Neuroscience. 7: 715-724. 

Courville, J. and Brodal. A. ( 1966) Rubro-olivary connections in the cat: an experimental study with silver 
impregnation methods. J. comp. New·o/ .. 126: 471-486. 

Courville, J. and Otabe. S. ( 1974) The rubro-olivary projection in the macaque: an experimental study with silver 
impregnation methods. J. comp. Neurol .. !58: 479-494. 

Cowan, W.M., Gottlieb. D.l., Hendrickson. A.E., Price, J.L. and Woolsey, T.A. (1972) The autoradiographic 
demonstration of axonal connections in the central nervous system. Brain Res., 37: 21-5 I. 

Dahlstrom, A. and Fuxe. K. ( 1964) Evidence for the existence of monoamine-containing neurons in the central 
nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physio/. 
sca!l(/ .. 62 (Suppl. 232): 1-55. 

Dahlstr(im, A. and Fuxe. K. ( 1965) Evidence for the existence of monoamine neurons in the central nervous system. 
II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron system. Acta 
phvsiol. scwul .. 64 (Suppl. 247): 1-38. 

Donkelaar, H.J. ten ( 1976a) Descending pathways from the brainstem to the spinal cord in some reptiles. I. Origin. J. 
comp. Neurol .. 167: 421-442. 

Donkelaar. H.J. ten ( 1976b) Descending pathways from the brainstem to the spinal cord in some reptiles. II. Course 
and site of termination. J. comp. Neurol .. 167: 443-464. 

Oonkclaar. H.J. ten and de Boer-van Huizen. R. ( 1978) Cells of origin of pathways descending to the spinal cord in a 
lizard (Larcellla gal/mi). Neurosci. Lert.. 9: 123-128. 

Edwards. S.B. ( 1972) The ascending and descending projections of the red nucleus in the cat: an experimental study 
using an autoradiographic tracing n1cthod. Brain Res .. 48: 45-63. 

Fields. H.L. and Basbaum, A.!. ( 1978) Brainstem control of spinal pain-transmission neurons. Ann. Rev. Physiol .. 
40: 217-248. 

Fields. H.L.. Basbaum. A.!.. Clanton. C.H. and Anderson. S.D. ( 1977) Nucleus raphe magnus inhibition of spinal 
cord dorsal horn neurons. Brain Res., 126: 441-453. 

Fink. R.P. and Heimer. L. ( 1967) Two methods for selective silver impregnation of degenerating axons and their 
synaptic endings in the central nervous system. Brain Res., 4: 369-374. 

Giesler. G.J.. Gerhart. K.D., Yezierski. R.P .. Wilcox. T.K. and Willis, W.D. ( 1981) Postsynaptic inhibition of 
primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res .. 204: 184-188. 

Goode. G.E., Humbertson. A.O. and Martin. G.F. ( 1980) Projections from the brain stem reticular formation to 
laminae I and II of the spinal cord. Studies using light and electron microscopic techniques in the North 
American opossum. Brain Res., 189: 327-342. 

Gorska. T. and Sybirska. E. ( 1978) Effects of red nucleus and pyramidal lesions on forelimb movements in cats. 
Neurosci. Lerr., I: 127. 

Guilbaud. G., Oliveras, J .L.. Giesler. G. and Besson. J. M. ( 1977) Effecb induced by stimulation of the centralis 
inferior nucleus of the raphe on dorsal interneurons in eat's spinal cord. Brain Res., 126: 355-360. 

Gwyn, D.G. ( 1971) Acetylcholinesterase activity in the red nucleus of the rat. Effects of rubrospinal tractotomy. Brain 
Res., 35:447-461. 

Hayes, N .L. and Rustioni. A. ( 1979) Dual projections of single neurons are visualized simultaneously: use of 
enzymatically inactive [3H]HRP. Brain Res., 165: 321-326. 

Hayes. N.L. and Rustioni, A. ( 1981) Differential and collateral descending projections to spinal enlargements. Exp. 
Brain Res., 41: 89-107. 

HenkeL C.K .. Linauts, M. and Martin. G.F. ( 1975) The origin of the annulo-olivary tract with notes on other 
mesencephalo-olivary pathways. A study by the horseradish peroxidase method. Brain Res .. I 00: 145-150. 

Hokfelt. T., Ljungdahl. A., Terenius. L.. Elde. R. and Nilsson. G. ( 1977) Immunohistochemical analysis of peptide 
pathways possibly related to pain and analgesia: enkephalin and substance P. Proc. nat. A cad. Sci. (Wash.). 
74: 3081-3085. 

Hokfelt. T .. Ljungdahl. A., Steinbusch. H .. Verhofstad. A .. Nilsson. G .. Brodin, E .. Pernow. B. and Goldstein. M. 
( 1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine
containing neurons in the rat central nervous system. Neuroscience. 3: 517-538. 

Hokfelt, T .. Terenius. L., Kuypers. H.G .J .M. and Dann. 0. ( 1979) Evidence for enkephalin immunoreactive neurons 
in the medulla oblongata projecting to the spinal cord. Neurosci. Lerr .. 14: 55-60. 

Holstege, G., Kuypers. H.G.J .M. and Boer. R.C. ( 1979) Anatomical evidence for direct brain stem projections to the 
somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res .. 171: 
329-333. 

Hubbard, J.E. and DiCarlo. V. ( 1974) Fluorescence histochemistry of monoamine-containing cell bodies in the brain 
stem of the squirrel monkey (Saimiri sciureus). III. Serotonin-containing groups. J. comp. New·ol.. !53: 
385-398. 



133 

Huisman. A.M .. Kuypers. H.G .J .M. and Verbrugh. C.A. (1981) Quantitative differences in collateralization of the 
descending spinal pathways from red nucleus and other brainstem cell groups in rat as demonstrated with the 
multiple fluorescent retrograde tracer technique. Brain Res., 209: 271-286. 

Illert, M., Lundberg. A., Padel, Y. and Tanaka, R. ( 1975) Convergence on propriospinal neurons which may mediate 
disynaptic corticospinal excitation to forelimb motoneurones in the cat. Brain Res., 93: 530--534. 

Innocenti, G.M. ( 1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science, 
212: 824-827. 

Keefer. D.A. ( 1978) Horseradish peroxidase as a retrogradely transported. detailed dendritic marker. Brain Res., 140: 
15-32. 

King. J.S., Schwyn, R.C. and Fox. C.A. (1971) The red nucleus in the monkey (Macaca mulatta). A Golgi and EM 
study. J. comp. Neurol .. 142: 75-108. 

Kneisley. L.W .. Biber, M.P. and La Vail, J.H. (1978) A study of the origin of brain stem projections to monkey spinal 
cord using the retrograde transport method. Exp. Neurol .. 60: 116-139. 

Kohlerman, N.J .. Gibson, A.R. and Houk, J.C. (1980) Unit activity in monkey red nucleus during skilled move
ments. Soc. Neurosci. Ahstr., 6: 675. 

Kuypers, H.G.J .M. ( 1964) The descending pathways to the spinal cord. their anatomy and function. In: Or!(ani~ation 
of the Spinal Cord, Progress in Brain Research, Vol. II. J.C. Eccles and J.P. Schade (Eds.), Elsevier, 
Amsterdam, pp. 178-200. 

Kuypers, H.G.J .M. and Lawrence, D.G. ( 1967) Cortical projections to the red nucleus and the brainstem in the rhesus 
monkey. Brain Res., 4: 151-188. 

Kuypers. H.G.J.M. and Maisky, V.A. (! 975) Retrograde axonal transport ofHRP from spinal cord to brain stem cell 
groups in the cat. Neurosci. Lett., I: 9-14. 

Kuypers, H.G .J .M. and Maisky. V .A. ( 1977) Funicular trajectories of descending brain stem pathways in cat. Brain 
Res .. 136: 159-165. 

Kuypers, H.G.J.M., Bentivoglio, M .. Catsman-Berrevoets, C.E. and Bharos, T.B. (1980) Double retrograde 
neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation 
wavelength which label different features of the cell. Exp. Brain Res., 40: 383-392. 

Lawrence, D.G. and Kuypers, H.G.J.M. ( 1968) The functional organization of the motor system in the monkey. II. 
The effects of lesions of the descending brain stem pathways. Brain, 91 : 15-36. 

Leichnetz, G.R .. Watkins. L.. Griffin, G., Murfin, R. and Mayer, D.J.. (1978) The projection from nucleus raphe 
magnus and other brain stem nuclei to the spinal cord in the rat: a study using the HRP blue-reaction. Neurosci. 
Lett.. 8 : I I 9-124. 

Martin. G.F .. Dom. R., Katz, S. and King, J.S. ( 1974) The organization of projection neurons in the opossum red 
nucleus. Brain Res., 78: 17-34. 

Martin. G.F .. Dom. R .. King, J.S .. Robards, M. and Watson, G.R.R. ( 1975) The inferior olivary nucleus of the 
opossum (Didelphis marsupia/is virginiana). its organization and connections. J. comp. Neurol., 160: 
507-534. 

Martin, G.F., Humbertson. Jr., A.O., Laxson. L.C., Panneton, W.M. and Tschimadia, l. ( 1979) Spinal projections 
from the mesencephalic and pontine reticular formation in the North American opossum: a study using axonal 
transport techniques. J. comp. New·of .. 187: 373-400. 

Martin. G .F .. Culberson. J., Laxson. C., Linauts. M., Panneton. M. and Tschimadia. l. ( 1980) Afferent connections 
of the inferior olivary nucleus with preliminary notes on their development: studies using the North American 
opossum. In: The Inferior Olivary Nucleus: Anatomy and Phvsiology. J. Courville eta!. (Eds.). Raven Press, 
New York, pp. 35-72. 

Martin, G.F., Cabana, T .. Humbertson. A.O .. Laxson. L.C. and Panneton, W.M. ( 198la) Spinal projections from 
the medullary reticular formation of the North American opossum: evidence for connectional heterogeneity. J. 
comp. Neuro/.. 196: 663-682. 

Martin. G .F .. Cabana, T. and Humbertson, A.O. ( 1981 b) Evidence for collateral innervation of the cervical and 
lumbar enlargements ofthe spinal cord by single reticular and raphe neurons: studies using fluorescent markers 
in double-labeling experiments on the North American opossum. Neurosci. Lett., 24: 1-6. 

Martin. G.F .. Cabana. T. and Humbertson. A.O. ( 1981) Evidence for a lack of distinct rubrospinal somatotopy in the 
North American opossum and for collateral innervation of the cervical and lumbar enlargements by single 
rubral neurons. J. comp. Neuro!., 201: 255-263. 

Mesulam, M.M. ( 1976) The blue reaction product in horseradish peroxidase neurohistochemistry: incubation 
parameters and visibility. J. Histochem. Cytochem., 24: 1273-1280. 

Mesulam. M.M. and Rosene, D.L. ( 1979) Sensitivity in horseradish peroxidase neurohistochemistry: a comparative 
and quantitative study of nine methods. J. Histochem. Cytochem., 27: 763-773. 

Miller. R.A. and Strominger. N.L. ( 1973) Efferent connections of the red nucleus in the brainstem and spinal cord of 



134 

the rhesus monkey. J. comp. Neural., 152: 327-346. 
Nauta, W.J.H. and Gygax, P.A. ( 1954) Silver impregnation of degenerating axons in the central nervous system: a 

modified technique. Stain Techno/., 29: 91-94. 

Nyberg-Hansen, P. and Broda!, A. ( 1964) Sites ami mode of termination of rubrospinal fibers in the cat. An 
experimental study with silver impregnation methods. J. Anat. (Lond.), 98: 235-253. 

O'Leary, D.D.M., Stanfield, B.B. and Cowan, W.M. ( 1981) Evidence that the early postnatal restriction of the cells 
of origin of the callosal projection is due to the elimination of axonal collaterals rather than to death of neurons. 
Develop. Brain Res., 1: 607-617. 

Oliveras, 1 .L., Redjemi. F., Guilbaud, G. and Besson, 1 .M. ( 1975) Analgesia induced by electrical stimulation of the 
inferior centralis nucleus of the raphe in the cat. Pain, 1: 139-145. 

Oliveras. J .L., Hosobuchi, Y., Redjemi. R., Guilbaud, G. and Besson, 1 .M. ( 1977) Opiate antagonist, naloxone, 
strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior). Brain Res .. 120: 
221-229. 

Papez. J.W. (1926) Reticulospinal tracts in the cat. Marchi method. J. comp. New·of .. 41: 365-399. 
Persson, M., Wiklund, L. and Leger. L. ( 1978) Distribution of monoaminergic neurons in cat brain stem, with special 

reference to indolaminergic cell groups outside the raphe nuclei. Neurosci. Lett., Suppl. I: S271. 
Peterson, B.W., Maunz, R.A., Pitts. N.G. and Machel, R.G. (1975) Patterns of projection and branching of 

reticulospinal neurons. Exp. Brain Res .. 23: 333-351. 
Petras, J.M. (1967) Cortical, tecta! and tegmental fiber connections in the spinal cord of the cat. Brain Res .. 6: 

275-324. 
Poirier. L.1. and Bouvier, G. ( 1966) The red nucleus and its efferent nervous pathways in the monkey. J. comp. 

Neurol .. 128: 223-244. 
Pompeiano, 0. and Broda!, A. ( 1957) Experimental demonstration of a somatotopical origin of rubrospinal fibers in 

the cat. J. comp. Neurol .. 108: 225-251. 
Proudfit, H.R. and Anderson. E.G. ( 1973) lntluence of serotonin antagonists on bulbospinal systems. Brain Res .. 61 : 

331-341. 
Proudfit. H. K. and Anderson, E.G. ( 1974) New long latency bulbospinal evoked potentials blocked by serotonin 

antagonists. Brain Res .. 65: 542-546. 
Proudfit. H.K .. Larson. A.A. and Anderson. E.G. ( 1980) The role of GABA and serotonin in the mediation of 

raphe-evoked spinal cord dorsal root potentials. Brain Res .. 195: 149-165. 
Saint-Cyr. J.A. and CourVille. 1. ( 1980) Projections from the motor cortex. midbrain. and vestibular nuclei to the 

inferior olive in the cat: anatomical organization and functional correlates. In: The li!f'erior 0/imn· Nucleus: 
AnatomY and Phn"iology, J. Courville eta!. (Eds.). Raven Press. New York. pp. 97-124. 

Sawchenko. P.E. and Swanson. L.W. ( 1981) A method for tracing biochemically defined pathways in the central 
nervous system using combined t1uorescence retrograde transport and immunohistochemical techniyucs. 
BrainRes .. 210:~1-51. 

Schofield. S. M.P. and E n~ritt. B .J. ( ILJX I 1 The organization of indolamine neunms in the brain of the rhesus mun ~cy 
(Macaca mulllltu). J. comp. Neurol., 197: 369-383. 

Shinoda, Y .. Chez. C. and Arnold. A. ( 1977) Spinal branching of rubrospinal axons in the cat. Exp. Brain Re.1., 30: 
203-218. 

Sidman. R.L. ( 1970) Autoradiographic methods and principles for study of the ner\'ous system with thymidine- 3H. In: 
Com~mporan· Res~arch Methods in Neuroanatomy. W.J.H. Nauta and S.O.E. Ebbesson 1Eds.1. Springer. 
Berlin, pp. 252-274. 

Smith, A.M. ( 1970) Effects of rubral area lesions and stimulation on conditioned forelimb tlexion responses in the cat. 
Brain Res .. 24: 549. 

Steinbusch. H. W .M. ( 1981) Distribution of sen,tonin-immunoreacti\'it) in the central ner\'llliS S) stem of the rat-cell 
bodies and terminals. N~uros,·i~nce. 6: 557--618. 

Strominger. N.L.. Truscott. C .. Miller. R.A. and Royce. G.J. ( IY7YI An autoradiographic stud) of the rubrnoli,·ar) 
tract in the rhesus monkey. J. COl/If'. c\'eurol .. 83: 3J-t6. 

Taber. E. (1961) The cyotoarchitccture of the brain stem of the cat. J. co1np . .\'~um! .. 116: 27-69. 
Taber. E., Broda!. A. and Walberg. F. ( 19601 The raphe nudei nf the brain stem in the cat. I. Normal topograph) and 

cytoarchitecture and general discussiLm. J. comt'· .\'eurl'l .. 114: 161-ll-:8. 
Tohyama. M., Sakai. K .. Sal vert. D .. Tourct. \1. and JoU\et. \1. 1 I Y7Yal Spinal projcc·tion, fn,m the lLl\\ er brain stem 

in the cat as demonstrated by the HRP technique. I. Origins nf the reticulospinal tracts and their funicular 
trajectories. Brain Res .. I 73: 383--1-03. 

Tohyama. M .. Sakai. K .. Touret. M., Salwr1. D. and 1nun~t. l\1. 1 !979b 1 Spinal pmjectinns fwm the ILl\\ er brain 
stem in the cat as demonstrated by the HRP tec·hnique. II. Pwjec·tiL'n' fwm the dnrsal pnntine tegmentum and 
raphe nuclei. Brain Res .. 176: 215-231. 



135 

Tsukahara, N., Toyama, K. and Kosaka, K. (1967) Electrical activity of red nucleus neurones investigated with 
intracellular microelectrodes. Exp. Brain Res., 4: 18-33. 

Walberg, F. (1956) Descending connexions to the inferior olive. J. camp. Neurol .. 104: 77-173. 
Wiklund, L., Leger, L. and Persson, M. (1981) Monoamine cell distribution in the cat brain stem. A fluorescence 

histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J. comp. Neurol .. 
203:613-647. 

Wild, J.M., Cabot, J.B., Cohen, D.H. and Karten, H.J. ( 1979) Origin, course and terminations of the rubrospinal 
tract in the pigeon (Columba Iivia). J. camp. Neurol., 187: 639-654. 



136 

CHAPTER V: COLLATERALS OF RUBROSPINAL NEURONS TO THE 

CEREBELLUM IN RAT. A RETROGRADE FLUO

RESCENT DOUBLE LABELING STUDY 

A. Margriet Huisman, H.G.J.M. Kuypers, 

F. Conde and K. Keizer 

Brain Research: in press 

Key words: red nucleus - cerebellar inter

positus nucleus - multiple fluo

rescent tracers - collateralization. 



137 

Summary 

In a previous study the collateralization of the rubrospinal tract in the 

spinal cord of rat, cat and monkey was studied by means of the fluorescent 

retrograde double labeling technique. In the present study the existence of 

rubrospinal collaterals to the cerebellar interpositus nucleus (NI) has been 

studied using the same technique. In rat 'True Blue' (TB) was injected in the 

cerebellar NI and 'Nuclear Yellow' (NY) was injected ipsilaterally in white 

and grey matter of CS-CS spinal segments. In some cases a new fluorescent 

retrograde tracer was used instead of NY, ~.e. 'Diamidino Yellow' (DY) which 

produces retrograde labeling similar to NY but which migrates only very slowly 

out of the retrogradely labeled neurons. In these experiments only very few 

single TB labeled rubrocerebellar neurons occurred, but many (~ 90%) of the 

TB fluorescent rubrocerebellar neurons were TB-NY or TB-DY double-labeled 

from the spinal cord. At least 37% of the NY and DY fluorescent rubrospinal 

neurons were NY-TB and DY-TB double labeled from the cerebellum. These fin-

dings indicate that, in rat, almost all rubrocerebellar fibers represent col

laterals of rubrospinal neurons, and that at least 37% of the rubrospinal 

neurons give rise to such cerebellar collaterals. 

Introduction 

Anatomical studies demonstrate that the red nucleus projects not only to 

the lower brain stem and tl1e spinal cord, but also to the cerebellum.
6

'
12 

. . . . 6 . . I 
Earl~er anatom~cal f~nd~ngs supported by some electrophys~olog~cal data 

suggested that the rubrocerebellar fibers represent collaterals of rubrospinal 

neurons. In the present study an attempt has been made to clarify this point 

with the aid of the multiple fluorescent retrograde labeling technique~ 7 

Classic anatomical studies using the Golgi technique
8 

demonstrated that 

many axons in the central nervous system give off collaterals along their 

trajectory through the brain. For a long time little attention has been paid 

anatomically to these collaterals, mainly because the available anterograde 

d . d h . 31,16,28,13 "d k . "bl egenerat~on an transport tee n~ques d~ not rna e ~t pass~ e 

to distinguish divergent axon collaterals from unbranched fibers. Recently it 

has become possible to study divergent axon collaterals anatomically, either 

by using two retrograde fluorescent tracers, which for example label diffe-
27 . 3 20 

rent features of the parent cell, or by us~ng HRP and H-apo-HRP. However, 

it seems that with the latter technique fewer double labeled neurons are 

demonstrated than with the former~2 , 23 ' 21 Therefore the multiple fluorescent 



case 1 

case 2 

case 3 

case 4 

case 5 

case 6 

case 7 

case 8 

Table I 

TB (2%) injections in cerebellum TB survival times NY (I%) or DY (2%) NY and DY sur-
till perf us ion injections in vival times 

cs-cs spinal till perfusion 
segments 

1, 2 ul 2% TB 7 days 2 ul 1% NY 24 hours 

1,2 ul 2% TB 7 days 2 ul 1% NY 24 hours 

2,4 ul 2% TB 7 days 2 ul 2% DY 7 days 

1,6 ul 2% TB 7 days 2 ul 2% DY 7 days 

1,2ul2%TB 7 days 2 ul 1% NY 24 hours 

1 ,6 ul 2% TB 7 days 2 ul 2% DY 7 days 

1,2 ul 2% TB 7 days 2 ul 1% NY 24 hours 

I , 2 ul 2% TB 7 days 2 ul 2% DY 7 days 

shaHs: the amount of 2% TB injected in the cerebellum (column 1), the TB survival times (column 2), the 
amount of 1% NY and 2% DY, injected in the spinal cord (column 3) and the NY and DY survival times 
(column 4). 

1--' 
w 
co 
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retrograde tracing technique was used in the present study. In rats, 'True 

Blue' (TB)
2 

was injected in the cerebellar interpositus nucleus and 'Nuclear 

Yellow' (NY) 3 •4 was injected ipsilaterally in the spinal cord. In frozen 

section material, TB produces a blue fluorescent retrograde labeling of neuro

nal cytoplasm, while NY (after short survival time) produces mainly a yellow 

fluorescence of the nucleus. On the basis of earlier findings, double retro

gradely labeled neurons in the red nucleus which are labeled from the cerebel

lum as well as from the spinal cord would display a blue fluorescent cytoplasm 
27 

and a yellow fluorescent nucleus when viewed at 360 nrn excitation wavelength. 

In some cases of the present study a new fluorescent retrograde tracer was 

used instead of NY. This new tracer, which will be described separately, is a 
. . . ' . . . ' ( ) 24 d d~arn~d~no compound: D~am~d~no Yellow DY . It produces a retrogra e neuro-

nal labeling somewhat similar to that obtained with NY, but it migrates more 

slowly out of the retrogradely labeled neurons. 

In the present experiments, the distribution of the single and double 

labeled neurons in the contralateral red nucleus was studied, after injections 

of the two tracers in the cerebellum and the spinal cord, respectively. More

over, the neurons labeled from the spinal cord were counted and the percentage 

of these neurons which were double labeled from the cerebellum was computed. 

Thus the proportion of rubrospinal neurons which distribute collaterals to the 

cerebellum could be approximated. 
22,23 

In earlier fluorescent double labeling experiments the collaterali-

zation of the rubrospinal and raphespinal fibers in the spinal cord was studied 

in rat, cat and monkey. The fluorescent retrograde labeling findings regarding 

the rubrospinal collateralization to the cerebellum in rat were compared with 

the earlier findings regarding the collateralization of the rubrospinal fibers 

in the spinal cord. 

Materialsand Methods 

Injections 

In 29 rats anaesthetized with Nembutal (intrahepatic, 6%), 3 to 6 glass 
? 

micropipette injections of 0.4 ~l 2% 'True Blue' (TB)- were made (1.2- 2.4 ~l 

in total) in the anterior two thirds of the cerebellar interpositus nucleus 

(NI) (Table I). In one of the rats no other injections were made. This animal 

was sacrificed after 7 days survival time and served as a control. In some of 

the rats, immediately after the cerebellar TB injections, laminectomies were 

made at C5-C8 and in each of these rats a spinal hemiinfiltration (i.e. 
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multiple penetrations in one half of the spinal cord) was made with 2 ~1 2% 

'Diamidino Yellow' (DY)
24 

ipsilateral to the interpositus injections. These 

animals survived for one week. The other rats, after they had survived the TB 

injections for 6 days, were reoperated under Nembutal anaesthesia. In these 

animals laminectomies were made at C5-C8 and in each of these rats a hemi

infiltration was made with 2 ~1 1% 'Nuclear Yellow' (NY) 3 ' 4 ' 27 dissolved in 2% 

dimethylsulfoxide (DMSO) (Table I). DMSO was used because it improves NY 
23 transport from damaged fibers passing through the injected segments. These 

animals were sacrificed 24 hours after the NY injections. Thus, in these cases 

a 7 days TB survival time and a 24 hours NY survival time was used (see Table 
I). 

The short NY survival time was necessary ln order to prevent in vivo 

migration of NY from the retrogradely labeled neurons in red nucleus~ The NY 

and DY spinal hemiinfiltrations were made by means of multiple micropipette 

penetrations to damage a large number of passing fibers. This was in order to 

obtain NY and DY transport by fibers passing through the injected segments and 

damaged by the penetrations, as well as by fibers terminating there. 

Of the 29 rats only 9 were used because in the others the TB injections 

were either located too medially and the needle had penetrated the fourth 

ventricle or the injection areas extended too deeply and involved the brain

stem including the area of the rubrospinal tract. In 4 of the 9 rats the TB 

cerebellar injections were centered in the anterior interpositus nucleus (NIA) 

(cases 1,2,3 and 4). Two of these cases (I and 2) had a spinal hemiinfiltra

tion with NY and the other two cases (3 and 4) had a spinal hemiinfiltration 

with DY (Table I). In the one control rat with only the TB injection in the 

cerebellum, the injection area was also centered in the NIA. In the remaining 

4 rats (cases 5,6,7 and 8) TB cerebellar injections were centered outside the 

NI. In case 5 it was located just medial and rostral to the nucleus, in cases 

6 and 7 dorsal to it and in case 8 dorsal and medial to it. Cases 5 and 7 had 

a spinal hemiinfiltration with NY while cases 6 and 8 had a spinal hemi

infiltration with DY. (Table I) 

Perfusion, Fixation 

At the end of the survival period the animals were deeply anaesthetized 

with Nembutal and were perfused transcardially with 1.00 1. Na Cl (1.5%) 

followed by 1.00 1. cacodylate buffered formaline (10%, pH 7,2). The brains 

and the injected segments were dissected and stored overnight in cacodylate 

buffered sucrose (30%, pH 7,2) at 4°C. They were cut transversally in frozen 

sections, 30 ~m thick, on a freezing microtome. The injected segments, before 



Fig. 1. 

CASE 2 
injectionarea in 
hem i-infi It ration 

CASE 3 
TB injectionarea in interpos.ant. 
DY hemi-infiltration in C 

zone II 

Upper row: Diagrams of TB injection areas centered in anterior 
interpositus nucleus in case 2 (left diagram) and case 3 (right 
diagram). For characteristics of zones I and II see text. 
Abbreviations: IP, interpositus nucleus; L, lateral cerebellar 
nucleus; LVN, lateral vestibular nucleus; M, medial cerebellar 
nucleus; MVN, medial vestibular nucleus; PCI, inferior cere
bellar peduncle; V, fourth ventricle. Bottom row: Diagrams of 
the NY hemiinfiltration at C5-C8 in case 2 (left diagram) and 
of DY hemiinfiltration at C5-C8 in case 3 (right diagram). For 
characteristics of zones I, II and III see text. Note: after 
injecting the same quantity of 2% DY and 1% NY the DY injec
tion area is more restricted than the NY injection area. 
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being cut, were coated with carboxymethyl-cellulose ~n order to keep the 

sections containing the needle tracks intact. After being cut, the sections 

through the brain stem and spinal cord were immediately mounted from distilled 
4 water and air dried at room temperature. In general every fourth brain stem 

section was studied ~n detail. 

Data analysis 

The material was studied with a Leitz Ploemopack fluorescence microscope 
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equipped with a filter mirror system A providing excitation light of 360 nm 

wavelength. The fluorescent injection areas were outlined and the distribu

tions of the single TB- and single NY or DY-labeled neurons and of the TB-NY 

or TB-DY double labeled ones in the contralateral red nucleus (RN) were charted 

with the aid of an X-Y plotter connected with transducers attached to the 

microscope stage. The sections through the cerebellum were counterstained with 

cresyl violet and the relationship between the injection areas and the cere

bellar nuclei was determined. 

At 360 nm excitation wavelength the single TB labeled neurons showed a 

deep blue fluorescent cytoplasm and a blue fluorescent nucleolus but no labe

ling of the nucleus, which is in keeping with earlier observations~ The single 

NY labeled rubrospinal neurons, in the present cases showed mainly a golden 

yellow granular fluorescence of the nucleus with a clear fluorescent ring 

around the nucleolus as described earlier~ At this same excitation wave-

length, single DY labeled neurons showed a rather diffuse golden yellow fluo

rescent nucleus, which appeared smaller than the NY labeled ones~4 The fluo

rescent ring around the nucleolus in the DY labeled nuclei was less pronounced 

than in the NY labeled ones. In addition, the cytoplasm of both the cell body 

and proximal dendrites of the single DY labeled neurons frequently showed some 

diffuse yellow fluorescence with golden yellow fluorescent granules. Many neu

rons ~n the red nucleus showed a blue TB fluorescent cytoplasm and a yellow 

NY fluorescent nucleus at the same 360 nm excitation wavelength. These neurons 

were therefore regarded as TB-NY double labeled~] TB-DY double labeled neurons 

showed a rather diffuse golden DY fluorescent nucleus with a slightly fluo

rescent ring around the nucleolus and a blue TB fluorescent cytoplasm. In some 

cases the blue TB fluorescent cytoplasm showed some slight admixture of yellow 
?4 

DY fluorescence and contained some golden yellow fluorescent granules: 

Results 

A) Injection areas 

Cerehellwn 

The TB fluorescent injection areas ~n the cerebellum consisted of two con

centric fluorescent zones. Zone I, immediately surrounding the needle track, 

contained a bright blue fluorescent cellular debris and a dense accumulation 

of fluorescent glial nuclei, but otherwise had lost its normal histological 

texture. Zone II contained much fewer fluorescent glial nuclei, which decreased 

in number and brightness towards the periphery of this zone. In the periphery 



Fig. 2. 

FLUORESCENT I~JJ ECTION AREA !N THE CEREBELLAR 

~JUCLEUS INTERPOSITUS MJTERIOR 
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Composite photomicrograph of a part of a cross section through cere
bellum at the level of the anterior interpositus nucleus (NIA) with 
TB injection area centered in the (NIA)(case 2). Note: no fluo
rescence occurs in inferior cerebellar peduncle or in lateral vesti
bular nucleus and no ependymal cells of the fourth ventricle are 
fluorescent. For location of TB zones I and II see left diagram 
Fig. 1. 
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Fig. 3. Diagrams of the TB injection areas in case 5 (left diagram) and in 
case 6 (right diagram). Note: in case 5 only TB zone II involves 
the anterior interpositus nucleus (NIA) while in case 8 both TB 
zones I and II are located dorsomedially to the NIA. 
Abbreviations: L, lateral cerebellar nucleus; LVN, lateral vesti
bular nucleus; M, medial cerebellar nucleus; MVN, medial vestibular 
nucleus; NIA, anterior interpositus nucleus; PCI, inferior cere
bellar peduncle; V, fourth ventricle. 

of this zone blue fluorescent neurons and fibers also occurred. Zone II gradu

ally faded into the surrounding normal tissue with little or no fluorescence. 

In cases I, 2, 3 and 4 as well as in the control animal the TB zone was 

centered in the rostral part of the NI, referred as NIA (Figs. I and 2) with 

some involvement of the caudal part (NIP). The involvement of the deep cere

bellar nuclei by the injection areas was studied in cresyl violet sections, in 
26 

which the nuclei were defined Ln keeping with the descriptions of Korneliussen 

and of Courville and Brodal!
2 

In case I zone II extended ventrally only into 

the most dorsal portion of the vestibular complex, but spared the inferior 

cerebellar peduncle. In case 2 zone II spared also the vestibular complex (Fi~ 

I and 2). In case 3, zone I extended medially up to the border of the fourth 

ventricle and zone II extended ventrally only into the dorsal portion of the 

vestibular complex (Fig. 1). In case 4, zone II extended ventrally both into 

the vestibular complex and into the inferior cerebellar peduncle. In this case 

fluorescent fibers could be traced caudally through the inferior cerebellar 

peduncle lateral to the descending tract of the spinal trigeminal nerve. How

ever, no blue fluorescent fibers were present in the area of the rubrospinal 
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tract. The ependymal cells lining the fourth ventricle were not fluorescent 

except in case 3 in which fluorescent ependymal cells were present but only 

in the area where zone II extended up to the ventricle (Fig. 1). 

In the cases 5, 6, 7 and 8 zone I did not involve the NI (Fig. 3). In 

case 5 it occupied an area media-rostral to the NI in cases 6 and 7 an area 

dorsal to it and in case 8 an area dorsal and medial to it (Fig. 3). In cases 

5 and 6 zone II involved a major part of the NI (Fig. 3). On the other hand, 

~n case 7 zone II extended just up to the dorsal border of the NI and in case 

8 up to its dorsal and medial border (Fig. 3). 

Spinal cord 

The NY injection area in the C5-C8 spinal segments (case I, 2, 5 and 7) 

displayed 3 concentric zones (Fig. 1). Zone I was very narrow and showed 

yellow tissue fluorescence and a dense accumulation of bright yellow-white 

glial nuclei. Zone II, which was much wider than zone I, also displayed yellow 

tissue fluorescence but contained much fewer fluorescent glial nuclei and some 

fluorescent neuronal nuclei. In contrast to the findings in the TB injection 

areas, this central part of the NY injection area showed relatively normal 

tissue texture in the cresyl violet sections. Zone III showed no tissue fluo

rescence and contained only dull fluorescent glial and neuronal nuclei. Zones 

I and II involved the injected half of the cord, while zone III extended into 

the contralateral half (Fig. 1). Rostra-caudally zones I and II involved the 

injected segments, while zone III extended into the segment rostrally and 

caudally bordering the injected ones. 

The DY injection area in the C5-C8 spinal segments (cases 3, 4, 6 and 8) 

was smaller than the NY injection area and showed the following characteristi~ 

(Fig. 1). The ends of the needle tracks were enlarged by a mass of brown 

yellow fluorescent material and pieces of yellow fluorescent necrotic tissue 

containing many brightly labeled cellular nuclei (Fig. 1). The end of the 

needle tracks were surrounded by two concentric zones in the same way as ~n 

the TB injection area. Zone I displayed yellow blueish tissue fluorescence 

(360 nm excitation wavelength) and contained a dense accumulation of bright 

glial nuclei. In cresyl violet sections this zone had lost its normal histolo

gical texture. Zone II was wider than zone I and showed no tissue fluorescence 

but only yellow fluorescent glial and neuronal nuclei, which decreased peri

pherally ~n number and brightness. This zone II faded into the area of normal 

tissue with little or no fluorescence. Zone I of the DY injection area ~n

volved the injected half of the cord and zone II extended from the injected 

half of the cord over a short distance into the contralateral half (Fig. 1). 
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Fig. 4. Upper row: Photomicrographs of NY (or DY) labeled rubrospinal neu
rons, double labeled with TB from cerebellum. Note golden yellow 
granules in the blue cytoplasm of the TB-DY double labeled neurons. 
Middle row:Photomicrographs of a single NY and a single DY labeled 
rubrospinal neuron. Note: the DY labeled nucleus is more diffusely 
fluorescent than the NY labeled one and the fluorescent ring around 
the nucleolus in the DY labeled nucleus is less pronounced than in 
the NY labeled one. Bottom row: Photomicrographs of single TB la
beled rubro-cerebellar neurons. Note: they display only a blue TB 
fluorescent cytoplasm and nucleolus and do not display any yellow 
fluorescence of the nucleus. 
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tract. The ependymal cells lining the fourth ventricle were not fluorescent 

except in case 3 in which fluorescent ependymal cells were present but only 

ln the area where zone II extended up to the ventricle (Fig. 1). 

In the cases 5, 6, 7 and 8 zone I did not involve the NI (Fig. 3). In 

case 5 it occupied an area medio-rostral to the NI in cases 6 and 7 an area 

dorsal to it and in case 8 an area dorsal and medial to it (Fig. 3). In cases 

5 and 6 zone II involved a major part of the NI (Fig. 3). On the other hand, 

in case 7 zone II extended just up to the dorsal border of the NI and in case 

8 up to its dorsal and medial border (Fig. 3). 

Spinal cord 

The NY injection area in the C5-C8 spinal segments (case I, 2, 5 and 7) 

displayed 3 concentric zones (Fig. 1). Zone I was very narrow and showed 

yellow tissue fluorescence and a dense accumulation of bright yellow-white 

glial nuclei. Zone II, which was much wider than zone I, also displayed yellow 

tissue fluorescence but contained much fewer fluorescent glial nuclei and some 

fluorescent neuronal nuclei. In contrast to the findings in the TB injection 

areas, this central part of the NY injection area showed relatively normal 

tissue texture in the cresyl violet sections. Zone III showed no tissue fluo

rescence and contained only dull fluorescent glial and neuronal nuclei. Zones 

I and II involved the injected half of the cord, while zone III extended into 

the contralateral half (Fig. 1). Rostra-caudally zones I and II involved the 

injected segments, while zone III extended into the segment rostrally and 

caudally bordering the injected ones. 

The DY injection area in the C5-C8 spinal segments (cases 3, 4, 6 and 8) 

was smaller than the NY injection area and showed the following characteristi~ 

(Fig. 1). The ends of the needle tracks were enlarged by a mass of brown 

yellow fluorescent material and pieces of yellow fluorescent necrotic tissue 

containing many brightly labeled cellular nuclei (Fig. 1). The end of the 

needle tracks were surrounded by two concentric zones in the same way as 1n 

the TB injection area. Zone I displayed yellow blueish tissue fluorescence 

(360 nm excitation wavelength) and contained a dense accumulation of bright 

glial nuclei. In cresyl violet sections this zone had lost its normal histolo

gical texture. Zone II was wider than zone I and showed no tissue fluorescence 

but only yellow fluorescent glial and neuronal nuclei, which decreased peri

pherally 1n number and brightness. This zone II faded into the area of normal 

tissue with little or no fluorescence. Zone I of the DY injection area in

volved the injected half of the cord and zone II extended from the injected 

half of the cord over a short distance into the contralateral half (Fig. I). 
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Upper row: Photomicrographs of NY (or DY) labeled rubrospinal neu
rons, double labeled with TB from cerebellum. Note golden yellow 
granules in the blue cytoplasm of the TB-DY double labeled neurons. 
Middle row:Photomicrographs of a single NY and a single DY labeled 
rubrospinal neuron. Note: the DY labeled nucleus is more diffusely 
fluorescent than the NY labeled one and the fluorescent ring around 
the nucleolus in the DY labeled nucleus is less pronounced than in 
the NY labeled one. Bottom row: Photomicrographs of single TB la
beled rubro-cerebellar neurons. Note: they display only a blue TB 
fluorescent cytoplasm and nucleolus and do not display any yellow 
fluorescence of the nucleus. 
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Upper row: Photomicrographs of single NY (or DY) labeled rubrospinal 
neurons and of NY (or DY) labeled rubrospinal neurons double labeled 
with TB from cerebellum. Note: the fluorescence of the DY labeled 
nucleus is more diffuse and the TB-DY double labeled neuron contains 
golden yellow granules in the blue labeled cytoplasm. Bottom row: For 
comparison: photomicrographs of single TB-labeled rubrospinal neurons 
with TB fluorescent cytoplasm and nucleolus. Note: the absence of 
nuclear fluorescence. 
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Rostrocaudally the first and second zones were restricted to the injected 

segments. 

The DY injection area was more restricted than the NY injection area in 

both the transverse and in longitudinal directions. Therefore it may be con

cluded that DY, which is less water soluble than NY, diffuses less through the 

tissue at the injection site. 

Red Nucleus 

In the 8 rats (cases 1-8) in which NY or DY was injected ~n the spinal 

cord, many NY- or DY-labeled rubrospinal neurons were present in the dorsa

medial, intermediate and ventrolateral parts of the contralateral red nucleus. 

These neurons, when single labeled
3

'
24 

showed a yellow fluorescence of the 

nucleus with some yellowish fluorescence of the cytoplasm (Figs. 4 and 5). In 

the one control rat with only a TB injection in the cerebellum, many single 

TB labeled neurons were present ~n the red nucleus. They were located through

out the red nucleus both in the transverse and longitudinal directions. They 

showed only a blue cytoplasmic and nucleolar labeling without any indication 

of a yellow labeling of the nucleus (Fig. 4). In the cases 1-8 with injections 

in the cerebellum and in the spinal cord relatively few single TB labeled 

neurons (~ 70) were present in the contralateral red nucleus. However, a 

relatively large proportion of the NY- or DY-labeled rubrospinal neurons were 

double labeled with TB from the cerebellum, such that they showed a yellow 

fluorescent nucleus and a blue TB fluorescent cytoplasm (Figs. 4 and 5). 

In general, the double labeled neurons were present throughout the rostra

caudal extent of the red nucleus (Fig. 6). However, in the most caudal end 

of the nucleus mainly single NY- or DY-labeled rubrospinal neurons were 

present and only relatively few double labeled neurons occurred (Fig. 6). The 

double labeled neurons were more or less evenly distributed throughout the 

cross-sectional profile of the red nucleus, except in cases 2 and 3 in which 

more double labeled neurons were present in the intermediate and lateral 

portions of the nucleus, including the lateral horn described by Reid et al. 

1975
35 

than in the medial parts (Fig. 6). In order to determine the percentage 

of the NY- or DY-labeled rubrospinal neurons which were TB double labeled from 

the cerebellum the following procedure was adopted. In each case the NY- or 

DY-labeled neurons as well as the TB-NY or TB-DY double labeled ones were 

counted in every fourth section through the red nucleus. These numbers were 

then added, multiplied by four and treated according to the following formula. 

TB-NY double-labeled neurons 
single NY + TB-NY double-labeled neurons X 100% 

( In the animals in which DY was used read DY for NY ) 
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Semidiagrammatic representations of the distributions of retrogradely 
labeled neurons in red nucleus of cases 2 and 3 after TB injections 
contralaterally in the anterior interpositus nucleus (NIA) and a NY 
(case 2) or DY (case 3) hemiinfiltration contralaterally at C5-C8. 
Note: the double labeled neurons are more or less evenly distribu
ted throughout the rostrocaudal extend of the red nucleus; in case 
3 the double labeled neurons show a preponderance laterally 
in the nucleus. 
Abbreviations: CP, cerebral peduncle; DCP, decuss~1tion of superior 
cerebellar peduncles; GM, medial geniculate body; I Ped, interpe
duncular nucleus; ML, medial lemniscus; mlf, medial longitudinal 
fasciculus; NC, cochlear nuclei; N III, ocul,Jmo tor nucleus; n III 
oculomotor nerve; R, red nucleus; RF, reticular formation; SNR, 
substantia nigra, pars reticulata; SNC, substania nigra, pars 
compacta. 
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TB-NY and TB-DY percentages of ' 
TB injection area NY and DY labeled rubro- double labeled yellow (NY or DY) 
(zones I and II) in spinal neurons, including neurons in the labeled neurons, 
the cerebellum double labeled ones red nucleus which \vere double 

labeled with TB 

CASE 1 zone I involved the anterior 
interpositus nucleus 2380 (NY) 484 20,4% 
(NIA) 

CASE 2 zone I involved NIA 2168 (NY) 584 26,9% 

CASE 3 zone I involved NIA 2468 (DY) 1036 42 % 

CASE 4 zone I involved NIA 2824 (DY) 812 28,7% 

CASE 5 zone I b~rderi~g on NIA 2184 (NY) 33 6 15 4% 
zone II lnvolvlng NIA ' 

CASE 6 zone I b~rderi~g on NIA 1996 (DY) 31 6 16 % 
_____ zone II lnvolvlng NIA 

CASE 7 zones I and II dorsal 2246 (NY) 46 2 % 

I 
to NIA o 

CASE 8 zones I and II dorsomedlal 2344 (DY) S2 2 % 
to NIA o 

Table II shmis: 

--- -- -

the localization of the TB injection area in the cerebellum (column 1), the numbers 
and DY labeled rubrospinal neurons (column 2), the number of NY and DY rubrospinal 
double labeled \vith TB from the cerebellum (column 3) and the percentages of NY and 
labeled rubrospinal neurons, double labeled from the cerebellum (column 4). 

of NY 
neurons, 
DY 

>--' 
Ul 
N 
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In the four cases (cases 1,2,3,4) in which zone I of the TB injection 

was centered in the NIA the following findings were obtained. In the cases ln

jected with NY, the total numbers of NY-labeled rubrospinal neurons, including 

the NY-TB double labeled ones were: 2380 (case I) and 2168 (case 2). In the 

cases injected with DY, the total numbers of DY-labeled neurons including the 

DY-TB double labeled ones were 2468 (case 3) and 2824 (case 4)(Table II). In 

the two rats with the NY injections 20.4% (case I) and 26.9% (case 2) of the 

NY labeled rubrospinal neurons were double labeled from the cerebellum. In the 

two rats with the DY injections, 42% (case 3) and 28.7% (case 4) of the DY 

labeled neurons were double labeled from the cerebellum (Fig. 6, Table II). 

The higher percentage in case 3 as compared to cases I, 2 and 4 may be explain

ed by the fact that in case 3 a large quantity of TB was injected in the cere

bellum than in the other cases (cf. Table I) and correspondingly a larger in

jection area was found. 

In the four other cases (cases 5,6,7 and 8), ln which the TB zone I was 

located outside the NI the following findings were obtained. In the red nucleus 

approximately the same number of NY or DY labeled rubrospinal neurons was found 

as in cases 1,2,3 and 4 (Table II), and these neurons displayed the same distri

bution as in the cases I to 4. However, the percentages of the NY and DY la

beled neurons which were NY-TB or DY-TB double labeled varied according the 

location of the cerebellar injection area. Thus, in cases 5 and 6, in which 

only zone II involved the NI (Table II), 15.4% and 16% of the rubrospinal neu

rons was double labeled from the cerebellum. However, in cases 7 and 8 in which 

neither zone I nor zone II involved the NI, virtually no single TB labeled 

neurons were found in the red nucleus and in both cases only 2% of the rubro

spinal neurons were double labeled (Table II). 

These retrograde double labeling findings lead to the conclusion that 

almost all (~90%) of the rubro-cerebellar fibers to the anterior interpositus 

nucleus represent collaterals of rubrospinal neurons. In the 8 cases a maxlmum 

number of 2824 rubrospinal neurons were labeled (case 4, Table II). In case 3 

with the largest cerebellar TB injection area the maximum number of rubrospinal 

neurons was double labeled from the cerebellum (i.e. 1036, Table II). According 

to the formula used in the present study 37% of the rubrospinal neurons were 

double labeled from the cerebellum. Within the restraint of the present method 

these findings suggest that at least 37% of the rubrospinal neurons give rise 

to rubrocerebellar collaterals. 

In some of the cases, in which the TB injections were centered in the 

NIA, the efferent fibers from the cerebellum to the contralateral red nucleus 
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Fig. 7. Photomicrographs of FB fluorescent fibers in cat red nucleus, which 
are anterogradely labeled from the contralateral cerebellar inter
positus nucleus. Note: the fiber varicosities, which seem to be in 
contact with the surface of cell body and dendrites of the single 
NY labeled rubrospinal neurons. 

were anterogradely labeled and appeared as very thin blue threads in the red 

nucleus. However, in some additional experiments in cat with ,.Fast Blue" (FB) 3 

injections in the NIA and NY injections in the spinal cord, such anterograde 

labeling of cerebello-rubral fibers was much more pronounced. Thus in these 

cases, which will be reported separately, blue FB fluorescent fibers could be 

traced from the cerebellum to the cell body and dendrites of retrogradely NY 

labeled rubrospinal neurones (Fig. 7). 
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Discussion 

Earlier anatomical studies
10

'
12 

showed that in cat fibers from the red 

nucleus descend through the rubrospinal decussation to the level of the pontine 

trigeminal nuclei
15 

and then proceed along the fibers of the brachium conjunc

tivum into the cerebellum. These rubrocerebellar fibers approach the deep cere

bellar nuclei from the ventral side~ 2 
Brodal and Gogstad (1954)

6 
on the basis 

of retrograde changes concluded that in the cat the bulk of these fibers ter-
12 

minate in the lateral cerebellar nucleus. However, Courville and Brodal (1966) 

on the basis of anterograde degeneration demonstrated that the termination 

area of the rubrocerebellar fibersis largely restricted to the interpositus 

nucleus (NI) chiefly its anterior part (NIA) and that only a few fibers termi

nate in the posterior interpositus nucleus (NIP). This discrepancy in regard 

to the termination of rubrocerebellar fibers may be due to differences in the 

definition of the border between the interpositus and lateral nucleus used in 

these two studies and to differences in technique. In view of the anterograde 

degeneration findings of Courville and Brodal
12 

it has been assumed in the 

present study that the bulk of the rubrocerebellar fibers both in cat and rat 

terminate in the rostral portion of the NI (i.e. NIA). In this study an attempt 

was made to determine whether these crossed rubrocerebellar fibers represent 

collaterals of rubrospinal neurons. For this purpose in rats 'True Blue' (TB) 

was injected in the cerebellum and 'Nuclear Yellow' (NY) was injected ipsi

laterally in the spinal cord. In some cases a new tracer 'Diamidino Yellow' 

(DY) was used instead of NY. This new tracer produces roughly the same retro

grade labeling as NY but has the advantage that it migrates much more slowly 

out of the retrogradely labeled neurons than NY. Therefore DY does not require 

a short survival time
4 

and can be injected with TB in the same session. 

The present study essentially comprises 9 cases. In one of them, injec

tions (TB) were made in only the cerebellum and in the other 8 cases the in

jections were made both in the cerebellum (TB) and the spinal cord (NY or DY). 

In the one case with only a TB injection in the cerebellum, many single TB la

beled neurons were present throughout the contralateral red nucleus. These neu

rons displayed the typical TB labeling described earlier
2 

and contained only a 

blue TB fluorescent cytoplasm and a bright blue fluorescent nucleolus. However, 

they clearly did not display any yellow fluorescence of the nucleus. In the 

other eight cases only few such single TB labeled neurons were present while 

the majority (~90%) of the neurons with a TB fluorescence of the cytoplasm 

were double labeled such that they also showed a pronounced yellow fluorescence 

of the nucleus. On the basis of these double labeling findings it has been con

cluded that the rubrocerebellar fibers mainly represent collaterals of rubro-
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spinal neurons. This is in keeping with the earlier anatomical and electro-
. l . . d" . 6, I physlo oglcal fln lngs ln cat. 

In order to determine the percentage of rubrospinal neurons which give 

rise to collaterals to the cerebellar interpositus nucleus it was necessary 

to obtain retrograde labeling of a maximum number of rubrospinal neurons as 

well as of a maximum number of rubrocerebellar neurons. 

In order to obtain retrograde labeling of a maximum number of rubrospinal 

neurons use was made of the fact that NY and DY are transported retrogradely 

both from terminal areas and from damaged axons?'
24 

Therefore, the NY and DY 

injections in CS-CS were made by means of multiple pipette penetrations both 

into the grey matter and the white matter. The injections in the grey matter 

were expected to produce retrograde labeling of rubrocervical neurons, while 

those in the white matter were expected to produce retrograde labeling of 

rubrospinal neurons from damaged rubrospinal fibers passing through the CS-CS 

dorsolateral funiculus to more caudal levels of the cord;' 40 , 32 , 33 This 

strategy appeared to have been successful since in all cases a large number of 

rubral neurons was retrogradely labeled. Moreover, they were distributed over 

the dorsomedial, intermediate and ventrolateral parts of the cross-sectional 

profile of the red nucleus, which parts project to the cervical, the thoracic 
. IS 30 19 34 

and the lumbosacral cord respectlvely. ' ' ' In view of these findings, it 

may be concluded that, within the restraints of the present method, a maximum 

number of rubrospinal neurons was retrogradely labeled. 

In order to judge whether the cerebellar TB injections produced a maximum 

number of TB labeled rubrocerebellar neurons the following points should be 

taken into account. The TB injection areas consist of two concentric zones, i.e. 

zone I and II, the former of which seems to give rise to the highest degree of 

retrograde labeling. The NI injections were always made from above, while accor-
. . . . . 12 l . dlng to the earller anatomlcal flndlngs the rubrocerebe lar flbers penetra-

ted the nucleus from below, i.e. through its hilar region. As a consequence it 

was expected that the TB injections which were restricted to the NI produce 

retrograde labeling of rubrocerebellar neurons mainly from the termination area 

of the rubrocerebellar fibers, while injections which also involved the hilar 

region of the NI would in part produce retrograde labeling of rubral neurons 

from damaged rubrocerebellar fibers. In keeping with these expectations it was 

found that in the cases 7 and 8 in which the TB injection area (zones I and II) 

was located dorsal or medial to the NI and largely spared the nucleus, only a 

very small percentage of rubrospinal neurons was double labeled. However, in 

the cases 5 and 6 in which zone I was located outside the NI, but zone II in

volved the nucleus, a larger percentage of rubrospinal neurons was double 



157 

labeled, and in the cases I to 4 in which zone I was centered in the NIA a much 

larger percentage of rubrospinal neurons was double labeled. Moreover, in case 

3, in which zone I was also centered in the NIA, but in which the TB injection 

area most extensively involved the hilar region of the nucleus, the maximum 

number of rubrospinal neurons was double labeled, i.e. 1036 (Table II). 

In the 8 cases a maximum number of 2824 rubrospinal neurons were labeled 

(case 4, Table II). In case 3 with the largest cerebellar TB injection area 

involving both the nucleus and the hilar region a maximum number of 1036 rubro

spinal neurons was double labeled from the cerebellum (Table II). According to 

the formula used in the present study 37% of the rubrospinal neurons were 

double labeled from the cerebellum. 

With the restraint of the present method these findings suggest that at least 

37% of the rubrospinal neurons give rise to rubrocerebellar collaterals. 

The double labeled neurons in the red nucleus, distributing divergent 

axon collaterals to both the cerebellar interpositus nucleus and the spinal 

cord, were more or less evenly distributed throughout the red nucleus both in 

the transverse and longitudinal directions except in cases 2 and 3 in which 

more double labeled neurons were present in the intermediate and lateral parts 

of the nucleus than in the medial parts (Fig. 6). This is in general accor-
6 

dance with the findings of Brodal and Gogstad (1954) that after cerebellar 

lesions retrograde changes occur in large and medium sized neurons, which are 

located in the same parts of the red nucleus as the retrogradely affected 

neurons after spinal lesions. However, after cerebellar lesions Brodal and 

Gogstad found a slight preponderance of retrogradely affected neurons medially 

in the nucleus, while in the present study the double labeled neurons showed a 

slight preponderance laterally in the nucleus which in cases 2 and 3 was more 

pronounced than in the other cases (Fig. 6). This difference may be due to 
6 

the following. In the study of Brodal and Gogstad mainly large to intermediate 

neurons were taken into account, because in such neurons the retrograde changes 

can be recognized most reliably. However, this may produce a bias, because in 

the rostral part of the red nucleus such neurons tend to be concentrated in 

the medial and intermediate parts. On the other hand, ~n the present study 

also many relatively small rubrospinal neurons were double labeled, not only 

in the medial and intermediate parts of the nucleus, but also in the ventro

lateral parts, including the lateral horn described by Reid et a1 .. 
35 

In respect to the present findings it is of interest to note that the 

interpositus nucleus represents the main source of afferents to the rubrospinal 
. II 17 14 neurons which projection in addition is somatotopically organ~zed. ' ' 

The rubrospinal collaterals to the interpositus nucleus therefore appear to 
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Fig. 8. 

cerebellum 

M. I. 

rubrospinal 
tract 

Diagram of the interconnections between red nucleus and contra
lateral cerebellar anterior interpositus nucleus. Note that the 
rubro-interpositus connections are established by collaterals of 
rubrospinal neurons. 
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represent a direct, tightly coupled return projection to cells of origin of 

the afferents of these rubral neurons (Fig. 8). The precise functional role 

of these return projections is still unclear. However, they must be of criti

cal importance since such return projections occur in several places in the 

cerebellar circuitry. Thus, for example the efferent fibers from the deep cere

bellar nuclei to the red nucleus and the thalamus display a similar arrangement 

. . h b 11 37 ' 38 f and glve off dlrect return collaterals to t e cere e ar cortex, rom 

where they receive the bulk of their afferents. Moreover, the inferior olive, 

which gives rise to projections to the cerebellar cortex and the deep cere

bellar nuclei39 also receives return projections from these deep cerebellar 

nuclei. In this context it is of interest to note that in parallel with the 

return collaterals from the rubrospinal neurons to the interpositus nucleus 

also another return projection from the red nucleus to the cerebellar cortex 

exists. This return projection is established by way of rubral fibers to the 
. 41 10 . 1 5 lateral retlcular nucleus, ' which nucleus proJects to the cerebe lum. In 

light of the present findings the question arises as to whether these rubro

lateral reticular connections are also established by collaterals of rubro

spinal neurons. 
22 23 . 

In a preceding fluorescent retrograde labeling study ' lt was demon-

strated that in rat, cat and monkey the rubrospinal and raphe spinal fibers 

give rise to collaterals along their trajectory throughout the spinal cord. 

However, the rubrospinal system was found to produce much fewer of such col

laterals than the raphe spinal system. Thus, in rat 20% and in cat and monkey 

3.8% and 6.6% of the rubrocervical neurons were found to provide collaterals 

to segments caudal to 11, while ln all these species 31-48% of the raphe cervi

cal neurons provide collaterals to the segments caudal to 11 and only a slight-

ly smaller percentage (27%-35%) to segments caudal to Sl (cf. Histograms! and 

2, Fig. 9). It was therefore concluded that the rubrospinal tract represents a 

relatively focussed system, which distributes its individual fibers to restric

ted groups of spinal segments, while the raphe spinal tract represents a 

diffuse system, which distributes almost half of its fibers throughout the 

length of the spinal cord. Moreover, the degree of collateralization of the 

rubrospinal system in rat appeared to be much higher than in cat and monkey, 

Slnce ln rat as compared to cat and monkey a much higher percentage of rubro

cervical neurons give rise to collaterals to the spinal cord caudal to 11 
29 

(Fig. 9, histogram I). This, together with observations in pigeon
42 

and opossum 

suggests that the rubrospinal tract as a focussed system emerges only gradually 

during phylogeny. 

In view of the above interspecies differences ln the degree of collaterali-
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Fig. 9. Histogram I, showing the percentages of rubrocervical neurons, which 
distribute descending collaterals passing through more caudal levels 
of the cord in rat (R), cat (C) and monkey (M). Note that in cat and 
monkey a smaller percentage of the rubrocervical neurons distribute 
collaterals through more caudal levels of the cord than in rat (c.f. 
Huisman et al., 22, 23). 
Histogram II, showing the percentages of raphe-cervical neurons from 
Taberset al. 35 Nucleus Raphe Magnus and adjoining reticular forma
tion, which distribute collaterals passing through more caudal levels 
of the cord in rat (R), cat (C) and monkey (M). llote that a large 
portion (approx. Ij3) of the rubrocervical neurons give rise to col
laterals which descend throughout the length of the spinal cord. 
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zation of the rubrospinal system in the cord the question arose as to whether 

such interspecies differences also exist in respect to the rubrospinal collate

rals to the cerebellum. Therefore a further interspecies comparison of these 

rubrospinal collaterals would be of interest. However, it would seem unlikely 

that the degree of rubrospinal collateralization to the cerebellum would run 

parallel with that of the rubrospinal collateralization in the cord, since 

these two types of rubrospinal collaterals probably subserve an entirely diffe

rent function. 
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GENERAL DISCUSSION 

Technique 

Classic anatomical studies using the Golgi technique (Cajal, 1952) 

demonstrated that many axons in the central nervous system give off 

axon collaterals along their trajectory through the brain. However, 

with the available tracing techniques, which are based on degenera

tion or intra-axonal transport (Cowan, 1972; Fink and Heimer, 1967; 

Kristensson, 1970; Kristensson et al., 1971; LaVail and LaVail, 

1972; Nauta and Gygax, 1954) it is very difficult to distinguish 

divergent axon collaterals from unbranched fibers. Therefore in the 

late seventies several attempts were made to demonstrate the exi

stence of axon collaterals by developing different retrograde tracers, 

which are transported retrogradely through the stem axon and through 

a collateral and which can be demonstrated independently in the 

parent cell body. 

At the moment the following 3 methods for such retrograde 

double labeling of neurons by way of divergent axon collaterals are 

available. 

A) The HRP-tritiated apo-HRP technique (Hayes and Rustioni, 

1979 and 1981). This technique is based on the fact that both the 
3 

enzyme HRP and the H apo-HRP are transported retrogradely to the 

cell body (Geisert, 1976; Kristensson and Olsson, 1971; LaVail and 

LaVail, 1972). The presence of HRP is demonstrated histochemically, 

while the presence of the tritiated-apo HRP is then demonstrated by 

means of autoradiography. Thus, this technique requires a combined 

histochemical-autoradiographic procedure. However, because of the 

fact that by means of the autoradiographic technique the presence of 

label can only be detected in the upper 3 pm of the section, the 

presence of the double labeled neurons can only be demonstrated in 

these upper 3 f-!m. (Sidman, 1970). 

E) The HRP-Iron dextran technique (Cesaro et al., 1979; Olsson 

and Kristensson, 1978). The presence of these two tracers in the 

parent cell body may be demonstrated histochemically by first pro

cessing the sections for HRP and then demonstrating the presence of 

ferric ions in the cell body by means of the Perl's reaction. How

ever, double labeling may be underestimated when few granules of 

iron dextran or HRP are present in the cell body, which are over

shadowed by a massive storage of the other reaction product. This 
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can be prevented by adapting the survival times to the fiber systems under 

study. 

C) The fluorescent double labelinq technique. This technique makes use of 

the fact that several fluorescent substances may be transported retrogradely 

through divergent axon collaterals to the same parent cell body where they can 

be visualized independently by means of fluorescence microscopy (Kuypers et 

al., 1977, 1980). Since this "fluorescent" technique requires only a relati

vely simple procedure (see Chapter II) and is one of the few anatomical tech

niquessuitable to study quantitatively the existence of collaterals in brain 

pathways, this technique has been used to try to clarify anatomically possible 

quantitative differences in collateralization ~n the different brainstem path

ways, which descend through the dorsolateral funiculus i.e. the rubrospinal 

pathway, the descending pathways from the ventrolateral pontine tegmentum and 

from the raphe magnus including the adjoining ventral reticular formation. 

The retrograde fluorescent tracers, used in this study (Chapter III and 

IV), were 11True Blue" (TB) and 11 Nuclear Yellow" (NY) in rats (Chapter III) 

and 11 Fast Blue" (FB) and 11 Nuclear Yellow" (NY) in cats and monkeys (Chapter 

IV)(BentivoBlio et al., 1979; Bentivoglio et al., 1980a+b; Kuypers et al., 

1980). These tracers are transported relatively effectively over long distan

ces, although TE and FE more slowly than NY, and produce a fluorescent double 

labeling which can be observed at one excitation wavelength (i.e. at 360 nm a 

blue TB or FB labeling of the cytoplasm and a yellow NY labeling of the 

nucleus). 

After relatively long survival times NY may migrate out of retrogradely 

labeled neurons into surrounding neurons, as signalled by the presence of NY 

labeled fluorescent glial nuclei (c.f. Chapter II). In order to avoid false 

retrograde labeling relatively short survival times should be used (Benti

voglio et al., 1980b). Therefore first TE or FE was injected in the C5-C8 

dorsal spinal grey and subsequently in a later operation NY was injected at 

more caudal levels of the cord, a short time before the animal was sacrificed. 

Following this procedure, in all cases only dull NY glial labeling was present 

around the single NY- and double TE-NY or FB-NY labeled neurons. This indi

cates that only minimal migration of NY out of retrogradely labeled neurons 

occurred i.e. without any risk of false retrograde labeling. In exceptional 

cases single FE-labeled neurons in the central nervous system show some blue 

to white FE labeling of the nucleus which could make such neurons difficult 

to distinguish from FE-NY double labeled ones. In this respect it should be 

emphasized however, that in our experiments in the brain in which a relati

vely low percentage of FB was dissolved in distilled water only very seldom 
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a strong FB labeling of the neuronal nucleus was obtained (Bharos et al., 

1981; Huisman et al., unpublished observations). Moreover, in this material 

the exceptional blue to white FB labeling of the nucleus could always be 

clearly distinguished from the yellow to green NY labeling of the nucleus. 

Therefore the combination of FB and NY has been consistently used in double 

labeling experiments in cats and monkeys. Applying this technique to the 

descending pathways in spinal cord (Chapter III and IV) is difficult, espe

cially in rat, due to the close proximity between the area of termination of 

the fibers in the grey matter and their trajectory in the adjoining funiculus 

In order to obtain reliable results it is therefore imperative that the tracer 

injection is entirely restricted to the grey matter, because injection of some 

of the tracer in the lateral funiculus may result in its retrograde transport 

through damaged fibers. This in turn will lead to retrograde labeling of 

neurons ln the red nucleus and the other brain stem cell groups which may not 

distribute collaterals to the injected part of the spinal grey This diffi

culty only applies to the injections in C5-C8 segments, because the injections 

at more caudal spinal levels were intentionally made in white and grey matter 

in order to damage many fibers in the lateral funiculus which would result in 

retrograde transport of the tracer through a maximum number of fibers descen

ding in this funiculus at the injected levels. In light of the above consl

derations, in all cases each of the injection areas in C5-C8 grey were studied 

histologically in detail and only those cases were selected for study in which 

the fluorescent zones, from which retrograde transport occurs to the parent 

cell bodies, did not involve the lateral funiculus. The sparing of the fibers 

in the lateral funiculus was confirmed by the fact that the population of 

retrogradely labeled neurons from the cervical grey matter in the caudal part 

of the contralateral red nucleus was always restricted to its dorsomedial 

part, while the population of neurons which were retrogradely labeled from 

lower levels of the cord was always located separately in the ventrolateral 

part of the nucleus. This is in keeping with retrograde degeneration and 

retrograde HRP findings (Flumerfelt and Gwyn, 1974; Gwyn, 1971; Kneisley et 

al., 1978; Murray and Gurule, 1979; Pompeiano and Brodal, 1957). Sparing of 

the rubrospinal tract also implies sparing of the two other descending path

ways, since their fibers are grouped together with the rubrospinal tract in 

the dorsolateral funiculus, where the raphe-spinal tract is located in the 

most peripheral zone (Basbaum and Fields, 1978 and 1979; Brown, 1967; 

Edwards, 1972; Holstege et al., 1979; Kuypers and Maisky, 1977; Martinet al., 

1978 and 1979; Miller and Strominger, 1973; Nyberg-Hansen and Brodal, 1964; 

Petras, 1967; Tohyama et al;, 1979a+b; Waldron and Gwyn, 1971). 
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A comparison of the results obtained by the multiple retrograde fluo-
3 

rescent tracer technique on one hand and the HRP- H-apo-HRP technique (Hayes 

and Rustioni, 1979, 1981) on the other hand suggested that the retrograde 

fluorescent tracer technique produces a larger proportion of double labeled 

neurons (Hayes and Rustioni, 1981; c.f. Huisman et al., 1981; Huisman et al., 

1982). This difference may be explained by the fact that in the autoradio

graphic material silver grains will only be elicited in the emulsion by 

sources of radioactivity which are located in the upper 3 pm layer of the 40 

pm sections (Sidman, 1970). As a consequence, even under optimal circumstan

ces, only a small percentage of the total population of HRP labeled neurons 

observed in each 40 pm section can be double labeled. 

The fluorescent tracers are suggested to be more sensitive than HRP, as 

pointed out by the findings of Sawchenko and Swanson (1981) that the fluo

rescent tracer TB in rat labels approximately twice as many neurons than the 

HRP-TMB technique using HRP-polyacrylamide gel implants (Mesulam and Rosene, 

1979). This is supported by a comparison of the present findings with those 

obtained by Conde and Conde (1982) (personal communications) which show that 

in our experiments after Fast Blue (FB) injections ~n inferior olive of the 

cat the number of FB labeled rubro-olivary neurons at a given level in the 

red nucleus was significantly larger than obtained with the HRP-BDHC techni

que (Conde and Conde, 1982; Mesulam, 1976,197~,1979) at approximately the 

same level (i.e. in a 30 pm section about 80 FB labeled neurons and in a 60 

pm section about 40 HRP labeled neurons). On the other hand comparing the 

efficacies of FB and HRP in retrograde labeling of cortical neurons in cat 

after injections in the cervical cord including the white matter showed that 

twice as many cortical neurons were labeled with HRP than with FB (Keizer et 

al., in preparation b). However, this is true only for FB transport from 

damaged fibers, since after FB injections in termination areas i.e. in the 

spinal grey instead of in the dorsolateral funiculus, in which the bulk of 

the corticospinal fibers descend (Armand and Kuypers, 1980; Armand, 1982; 

Chambers and Liu, 1957) approximately the same number of FB labeled neurons 

are present in the corresponding cortical area as obtained with HRP. After FB 

injections in the dorsolateral funiculus much less FB labeled neurons were 

obtained than HRP (Keizer et al., in preparation b) even if FB is dissolved 

in dimethylsulfoxide (Huisman et al., 19~2; Keefer, 1978). The efficacy of the 

fluorescent dye ,Nuclear Yellow" (NY), which is related to ,Bisbenzimide" (Bb) 

turned out to be comparable to that of HRP (TMB procedure) (Keizer et al., in 

preparation b; Sawchenko and Swanson, 1981). The fact that a larger number 

of cortical neurons is retrogradely labeled from damaged fibers with HRP than 
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with FB, may be explained by the fact that FB gives much more necro

sis at the injection site than HRP, which necrosis may interfere with 

uptake and retrograde transport of the tracer. However, NY gives much 

less necrosis at the injection site than FB and TB. Yet ~n cat and 

monkey optimal retrograde NY transport from damaged fibers is only 

obtained when NY is dissolved in dimethylsulfoxide (Huisman et al., 

1982). Remarkably enough this ph~nomenon was not observed in rat in 

which a very effective retrograde NY labeling of neurons was obtained 

both from damaged fibers as well as from termination areas (Huisman 

etal., 1981). 

The fact that in all cases a difference in degree of collatera

lization was found between the rul,rospinal tract on one hand and the 

raphe- and ventrolateral pontine tegmentospinal tracts on the other 

hand supports the reliability of this double labeling technique. 

Furthermore, the quantitative anatomical data of the present studies 

were all in good agreement with earlier electrophysiological studies, 

which will be discussed below. 

In chapter V the use of a new retrograde tracer is reported: 

11Diamidino Yellow"(DY), which migrates only very slowly out of the 

cell and can be used in combination with TB or FB in double labeling 

experiments (Keizer et al., ~n preparation a).DY when combined with 

TB or FB is as effective as NY in double labeling of neurons by way 

of divergent axon collaterals. However, DY migrates much more slowly 

out of the retrogradely labeled neurons than G~ and therefore does 

not require a short survival time. As a consequence DY may be inj ec

ted at the same time as TB or FB, without the risk that DY leaks out 

of retrogradely labeled neurons into surrounding glial and neuronal 

nuclei, which could produce false double labeling. 

After injecting DY in the cervical cord in rat and cat many 

single DY labeled neurons were present in both the dorsomedial and 

ventrolateral parts of the red nucleus, which indicates that DY as NY 

is transported both from axon terminals and from passing fibers 

(Keizer et al., in preparation; Huisman et al., in press ) . More

over, in double labeling experiments in rat in which the collaterali

zation of rubrospinal neurons to the cerebellum was studied quanti

tatively, the combination TB-NY was compared with the combination 

TB-DY (Chapter V). The findings in these cases led to the conclusion 

that in quantitative double labeling studies DY may be used instead 

of NY, since the combination TB-DY results approximately in the same 
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percentage of double labeled neurons as the combination TB-NY. This 

was confirmed by a more elaborate quantitative study in rat and cat, 

in which DY was compared with NY in the combination with TB in rat 

and with FB in cat (Keizer et al., in preparation a). 

The rubrospinal tract in rat, cat and monkey 

Somatotopic organization of red nucleus 

In rat the retrograde labeling findings ln the red nucleus (Chapter 

III Figs. 4 and 5) confirm its somatotopic organization as demon

strated by means of the retrograde degeneration technique (Flumer

felt and Gwyn, 1974) and the retrograde HRP transport technique 

(Murray and Gurule, 1979). However, contrary to these studies the 

present findings also demonstrate some degree of somatotopic organi

zation in the rostral shell-shaped portion of the red nucleus. This 

rostral portion consistently contained the highest number of double

labeled neurons (Chapter III Fig. 4) which indicates that it harbors 

the bulk of the neurons distributing collaterals to different levels 

throughout the spinal cord. The presence of this considerable number 

of branching neurons in the rostral part of the red nucleus probably 

explains the fact that its somatotopic organization has escaped 

detection by means of other techniques (Flumerfelt and Gwyn, 1974; 

Gwyn, 1971; Murray and Gurule, 1979). 

In cat the retrograde labeling findings in red nucleus confirm 

previous findings (Hayes and Rustioni, 1981; Pompeiano and Brodal, 

19572 and showed that the rubrospinal neurons are mainly present in 

the caudal two-thirds of the nucleus. The findings ln the experi

ments with FB injections in the inferior olive and NY injections in 

the cervical cord further showed that in cat the red nucleus neurons, 

which distribute fibers to the ipsilateral inferior olive (Courville 

and Otabe, 1974; Martinet al., 1975, 1980; Strominger et al., 1979; 

Walberg, 1956) represent a population, which is seperate from rubro

spinal neurons and which is largely restricted to the rostral part 

of the nucleus including the area laterally adjoining the fasciculus 

retroflexus (Chapter IV Figs. 8, 10 and II). This is in keeping 

with other HRP findings (Conde and Conde, 1982; Saint-Cyr and Cour

ville, 1980 and 1981; Walberg and Nordby, 19BI). The distribution 

of the rubrospinal neurons, which are retrogradely labeled from the 

cervical, thoracic and lumbar cord confirmed the somatotopic organi-
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zation of this nucleus as demonstrated earlier by means of other 

techniques (Hayes and Rustioni, 1981; Pompeiano and Brodal, 1957; 

Tsukahara et al., 1967). Thus, in the caudal half of the magnocellu

lar part of the rubrocervical, the rubrothoracic and the rubrolumbar 

neurons are located in the dorsomedial, intermediate and ventro

lateral parts of the nucleus, respectively. On the other hand in the 

rostral half of the magnocellular part these neurons become inter

mixed (Chapter IV Fig. 8). 

In monkey retrograde degeneration studies (Kuypers and Lawrence, 

1967; Poirier and Bouvier, 1966) showed that the rubrospinal neurons 

are largely restricted to the magnocellular part. However, the 

present findings showed that the population of rubrospinal neurons 

extends further rostrally and continues along the lateral aspect of 

the parvicellular part (Chapter IV Fig. 13) up to the level, where 

the cross-section through the fasciculus retroflexus is located 

ventral to the nucleus. This seems in keeping with the retrograde 

HRP finding of Kneisley and collaborators (1978) as inferred from 

their illustrations. The location of these rubrospinal neurons 

appears to correspond with that of neurons with coarse Nissl bodies 

(Miller and Strominger, 1973). This supports the idea that rubro

spinal neurons are characterized by their internal configuration 

more or less independent of the size of the neurons (King et al., 

1971). The present findings support the earlier reported somatotopic 

organization in the caudal magnocellular part of the monkey red 

nucleus (Kneisley et al., 1978). They also indicate that in the 

rostral extension of the population of rubrospinal neurons along the 

lateral aspect of the parvicellular part, the rubrocervical neurons 

are located dorsal to the rubrolumbar ones and that the latter neu

rons continue more rostrally than the former (Chapter IV Fig. 13). 

CoUateraZ-iza<;ion o."' the ri/J:rospinal tr·act in rat, cat and monkey 

Earlier electrophysiological studies in cat have dealt with the 

collaterals of the rubrospinal pathway. Shinoda et al. (1977), re

ported the number of red nucleus neurons, which could be antidromi

cally invaded from C3-C8 grey matter and the percentage of these 

neurons, which could be antidromically invaded by stimulation of the 

fibers passing through different more caudal segments of the cord. 

In order to facilitate a comparison between our anatomical data and 
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these physiological data the anatomical experiments were set up in a comparable 

manner. Thus the number of TB or FB labeled neurons which project to the C5-C8 

dorsal grey matter were counted and the percentages of these neurons which were 

also labeled with NY from lower levels of the cord were computed. These percen

tages as computed from the anatomical findings in cat, were found to be of the 

same order of magnitude as those inferred from the earlier electrophysiological 

findings in this animal. Thus according to the electrophysiology in cat (Shino

da et al., 1977) 5% of the rubrocervical neurons projecting to C3-C8 distri

bute collaterals to segments caudal to Ll and 50% distribute collaterals to 

segments caudal to T2. According to the anatomical findings about 3% of the 

rubrocervical neurons projecting to C5-C8 distribute collaterals to the seg

ments caudal to L2 and about 20% distribute collaterals to the segments caudal 

to TJ (Chapter IV Table IV). In monkey a similar arrangementwas found anatomi

cally: 9,3% of the rubrocervical neurons projecting to C5-C8 were found to 

distribute collaterals to the segments caudal to T8 and 6,6% to the segments 

caudal toLl (Chapter IV Table V). The slight differences between the percen

tages obtained by means of the electrophysiological and the anatomical techni

ques may be due to the fact that in the two types of experiments slightly 

different cervical segments were studied and slightly different thoracic and 

lumbar segments were stimulated and injected, respectively. The differences may 

also be due to differences in the rostra-caudal extent of the nucleus explored 

ln the two types of experiments. 

A comparison of the anatomical findings in cat and monkey with those ob

tained in rat (Chapter IV and III) respectively, indicates that the rubrospinal 

system ln rat displays a higher degree of collateralization than in cat and 

monkey. Thus in rat 20% of the rubrocervical neurons projecting to C5-C8 distri

bute collaterals to segments caudal to Ll versus only about 3% in cat and about 

6% in monkey. Further, in rat about 35% of the rubrocervical neurons distribute 

collaterals to segments caudal to T7 versus about 10% ln cat and monkey. The 

rubrospinal tract in cat and monkey therefore appears to be more focussed than 

in rat, such that in the former species a larger proportion of the rubrospinal 

neurons distribute fibers to a restricted part of the spinal ccrd than in the 

latter. This conclusion is further strengthened by the fact that the high 

degrees of collateralization of the raphe-spinal and the crossed pontospinal 

tract are of the same order of magnitude in the three species (see VI.2.c.). 

The comparison of the anatomical findings in opossum and rat (Huisman et 

al., 1981; Martinet al., 1981a) strongly suggests that the rubrospinal tracl 

in opossum shows an even higher degree of collateralization than in rat. This 

would imply that the rubrospinal tract ln rat, in turn, is more focussed than 
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1n opossum. The fact that the red nucleus in opossum displays a much 

less rigid somatotopic organization than in rat (Huisman et al., 

1981; Martinet al., 1974, 1981) implies that with an increase in 

collateralization the somatotopic organization becomes less sharply 

defined. If this ~correct the absence of any somatotopic organiza

tion in the red nucleus in pigeon (Wild et al., 1979) and in reptiles 

(ten Donkelaar and De Boer-van Huizen, 1978) would imply that in 

these species the rubrospinal tract displays an even more pronounced 

collateralization than in opossum. In the tadpole this tract develops 

just at the stage when limbs are developing (ten Donkelaar, 1982), 

while in snakes this tract seems to be lacking (ten Donkelaar, 1976a+ 

b). It therefore appears that the rubrospinal tract, as a highly 

focussed fiber brain stern system, is only present in higher mammals. 

It would be of interest to determine whether in respect to the rubro

spinal collateralization the 11 ontogeny rn1rn1cs the phylogeny", such 

that e.g. in new-born kittens a higher degree of collateralization 

occurs than in adult cat. This question is prompted by the fact that 

in other structures such an ontogenetic decrease in collateralization 

has been established (Innocenti, 1981; O'Leary et al., 1981). 

In respect to the decrease in rubrospinal collateralization 

from higher to lower mammals it is of interest to recall that in cat 

and monkey (Gorska and Sybirska, 1978; Kohlerrnan et al., 1980; 

Kuypers, 1964; Lawrence and Kuypers, 1968; Smith, 1970) this tract 

together with the corticospinal tract contributes to the capacity to 

execute relatively independent movements of the extremities in parti

cular their distal parts. This is probably a reflection of the fact 

that in these animals a relatively limited degree of rubrospinal col

lateralization exists such that many of the rubrospinal neurons 

project to very restricted parts of the spinal cord. The suggested 

decrease in collateralization of this tract from reptiles to pigeon, 

opossum, rat, cat and monkey makes it likely, that the capacity of 

the rubrospinal tract to assist in the execution of relatively in

dependent movements of the individual extremities is present only in 

the higher mammals. This is exemplified by the fact that this capa

city which 1s clearly present in monkey and cat, seems to be lacking 

in reptiles. 
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collateralization of the raphe spinal and ventrolateral pontine 

tegmentum spinal tracts in rat, cat and monkey. 

The descending pathway from the nucleus raphe magnus (NRM)(i.e. 

the nucleus raphe magnus as defined by Taber (1960,1961) and the 

lateral adjoining ventral reticular formation dorsal to the pyrami

dal tract) and the crossed descending pathway from the ventrolateral 

pontine tegmentum (VLPT) descend together with the rubrospinal tract 

through the dorsolateral funiculus. Moreover as the rubrospinal tract 

they distribute fibers to the dorsal spinal grey (Basbaum et al., 

1978; Basbaum and Fields, 1979; Goode et al., 1980; Holstege et al., 

1979; Kuypers and Maisky, 1975 and 1977; Leichnetz et al., 1978; 

Martin et al., 1979; Martin et al., 19i:l1; Tohyama et al., 1979a+b). 

This arra~gement provided the opportunity to compare the collaterali

zation o{ these three tracts in the same experiment. As compared to 

the findings in the red nucleus a relatively large proportion of NRM

cervical neurons was found to be double labeled from more caudal 

levels of the cord in all three species (c.f. Chapter III Table I; 

Chapter IV, Table IV and V; Chapter V Fig. 9). Thus in rat about 40%, 

in cat about 55-60% and in monkey about 40% of raphe-cervical neurons 

were double labeled from several more caudal levels of the cord. 

These high percentages occurred more or less independent of the level 

of the caudal injections varying between 30-50% in rat, 40-60% in cat 

and 30-40% in monkey. Moreover, no clear-cut somatotopic organiza

tion in the distribution of the single and double labeled neurons was 

observed. (Chapter III Fig. 6; Chapter IV Figs. 12 and 16). These 

findings in rat, cat and monkey (Huisman et al., 1981; Huisman et al., 

1982; Chapter III and IV) are in keeping with those in opossum 

(Martin et al., 1981a+b). The raphe spinal system therefore resembles 

the reticulospinal system since according to an electrophysiological 

study (Peterson et al., 1975). 66% of the reticulocervical neurons 

distribute collaterals to the segments caudal to L1. 

In respect to the raphe spinal connections, the anatomical 

findings_suggest that a large percentage of the raphe spinal neurons 

in NRM distribute collaterals throughout the length of the spinal 

cord, but that the remainder project to restricted parts of the cord. 

This would imply that the raphe spinal system comprises both a 

focussed component and a diffuse component. One of these two compo

nents may possibly subserve the pain modulating function of the 
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raphe spinal pathway (Basbaum et al., 1976a+b, 1977; Basbaum and 

Fields, 1978 and 1979; Beall et al., 1976; Fields et al., 1977; 

Fields and Basbaum, 1978; Giesler et al., 1981; Guilbaud et al., 

1977; Hayes et al;, 1978; Oliveras et al., 1975 and 1977) which 

function is presumably provided by serotonergic raphe spinal neurons 

(Dahlstrom and Fuxe, 1965; Proudfit and Anderson, 1973 and 1974; 

Proudfit et al., 1980). However, the focussed or the diffuse compo

nent may also represent the serotonergic raphe spinal fibers to the 

autonomic cell groups throughout the spinal cord (Amendt et al., 

1979; Basbaum et al., 1978; Bowker et al., in press; Coote and 

Macleod, 1974; Dahlstrom and Fuxe, 196~; Loewy and McKellar, 1981; 

Steinbusch, 1981). 

The crossed pontospinal tract (Busch, 1964; Papez, 1926) from 

VLPT neurons in rat, cat and monkey (Basbaum and Fields, 1979; 

Kuypers and Maisky, 1975; Leichnetz et al., 1978) which tract is 

located in the dorsolateral funiculus ventromedial to the rubro

spinal tract (Busch, 1961), seems to occupy a position between the 

rubrospinal and the raphe spinal system in respect to the degree of 

collateralization. Thus, it shows little somatotopic organization 

and a relatively high degree of collateralization (Chapter III Fig. 

6 and Table I; Chapter IV Figs. 12 and 16 and Table IV). In contrast 

to the findings in the nucleus raphe magnus the percentages of VLPT

cervical neurons, which are double labeled from more caudal levels 

of the cord tend to show some decline when the injections are placed 

progressively more caudally in the cord. This suggests that the 

crossed pontospinal system which has been regarded as the pontine 

component of the rubrospinal system (Busch, 1964) displays a certain 

degree of specialization in that the bulk of the collaterals of the 

neurons projecting to C5-C8 tend to distribute to the thoracic and 

lumbosacral levels but not to the sacral cord. Further studies, 

however, are necessary to confirm this impression and to give clues 

to the function distribution of this system. 

Collateralization of the rubrospinal tract to the cerebellum 

Since the red nucleus also distributes fibers to the contra

lateral cerebellar anterior interpositus nucleus (NIA)(Courville and 

Brodal, 1966) and since these fibers originate from the same rostra

caudal parts of the red nucleus as the rubrospinal fibers (Brodal 
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and Gogstad, 1954) it was of interest to study the collateralization of rubro

spinal neurons to the cerebellum by means of the retrograde fluorescent double 

labeling technique and to compare this with the collateralization of the rubro

spinal tract in the spinal cord (Huisman et al., 1981, 1982 and Huisman et al., 

in press., Chapter III, IV and V). It was found that in rat, almost all rubro

cerebellar fibers represent collaterals of rubrospinal neurons (Chapter V Fig. 

6), which is in keeping with earlier anatomical and electrophysiological fin

dings in cat (Anderson, 1971; Brodal and Gogstad, 1954) and that at least 37% 

of the rubrospinal neurons give rise to such cerebellar collaterals. The double 

labeled neurons in the red nucleus, distributing divergent axon collaterals to 

both the cerebellar NJAand the spinal cord, were more or less evenly distri

buted throughout the red nucleus both in the transverse are longitudinal direc

tions except in cases 2 and 3 in which more double labeled neurons were present 

in intermediate and lateral parts of the nucleus (Chapter V Fig. 6). This is in 

accordance with the findings of Brodal and Gogstad (1954) that after cerebellar 

lesions retrograde changes occur in neurons, which are located in the same 

parts of the red nucleus as the retrogradely affected neurons after spinal 

lesions. 

In respect to the findings that almost all rubrocerebellar fibers are col

laterals of rubrospinal ones it is of interest to note that the interpositus 

nucleus represents the main source of afferents to the rubrospinal neurons 

which projection in addition is somatotopically organized (Courville, 1966; 

Dekker, 1981; Flumerfelt et al., 1973; King et al., 1973). The rubrospinal 

collaterals to the interpositus nucleus therefore appear to represent a direct, 

tightly coupled return projection to cells of origin of the afferents of these 

rubral neurons (Chapter V Fig. 8). The precise functional role of these return 

projections is still unclear. However, they must be of critical importance 

since such return projections occur in several places in the cerebellar clr

cuitry. In this context it is of interest to note that in parallel with the 

return collaterals from the rubrospinal neurons to the interpositus nucleus 

also another return projection from the red nucleus to the cerebellar cortex 

exists. This return projection is established by way of rubral fibers to the 

supraspinal portion of the lateral reticular nucleus (i.e. the part of the 

nucleus not in receipt of fibers from the spinal cord (Brodal, 1943; ~alberg, 

1958). This lateral reticular nucleus is also designated as the nucleus of the 

lateral funiculus (Brodal, 194J), which name makes it distinct from the reti

cular formation. In light of the present findings the question arises as to 

whether these rubro-lateral reticular connections are also established by col

laterals of rubrospinal neurons. 
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As was shown in Chapter III and IV (Huisman et al., 1981 and 1982), the 

rubrospinal tract represents a relatively focussed system, which distributes 

its individual fibers to restricted groups of spinal segments. Moreover, the 

degree of collateralization of the rubrospinal system in rat appeared to be 

much higher than in cat and monkey, since in rat as compared to cat and 

monkey a much higher percentage of rubrocervical neurons give rise to col

laterals to the spinal cord caudal toLl (Chapter V Fig. 9, histogram I). 

This, together with observations in pigeon (Wild, 1979) and opossum (Martin 

et al., 1981c) suggests that the rubrospinal tract as a focussed system 

emerges only gradually during phylogeny. In view of the above interspecies 

differences in the degree of collateralization of the rubrospinal system in 

the cord the question arose as to whether such interspecies differences also 

occur ln respect to the rubrospinal collaterals to the cerebellum. Therefore 

a further interspecies comparison of these rubrospinal collaterals would be 

of interest. However, to some extent, it would seem unlikely that the degree 

of rubrospinal collateralization to the cerebellum would run parallel with 

that of the rubrospinal collateralization in the cord, since these two types 

of rubrospinal collaterals probably subserve an entirely different function. 
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Summary 

Classical anatomical studies using the Golgi technique demonstrated that many 

axons in the central nervous system give off axon collaterals along their 

trajectory through the brain. For a long time little attention has been paid 

anatomically to these collaterals mainly because modern tracing techniques did 

not make it possible to distinguish divergent axon collaterals from unbranched 

fibers. However, during recent years electrophysiological studies have re

opened the issue of the existence of axon collaterals especially in respect to 

the descending pathways. Recently the existence of divergent axon collaterals 

has also been studied anatomically by means of the retrograde neuronal double 

labeling techniques using for example two fluorescent retograde tracers which, 

after being transported retrogradely through an axon and its collateral, label 

in different colors different features of the parent cell (Kuypers et al., 

1980). 

In the present quantitative anatomical study, which deals with the col

lateralization of descending brainstem pathways from red nucleus (RN), raphe 

magnus (NRM) and ventrolateral pontine tegmentum (VLPT) in rat, cat and monkey 

this retrograde fluorescent double labeling technique was employed (c.f. 

chapter III and IV). The descending brainstem pathways from RN, NRM and VLPT 

all descend throughout the spinal cord in the dorsolateral funiculus and ter

minate in the dorsal half of the spinal grey matter. In order to study the col

lateralization of these pathways, "True Blue" (TB) in rat or "Fast Blue" (FB) 

in cat and monkey was injected in the dorsal half of the C5-C8 spinal grey 

avoiding the adjoining dorsolateral funiculus. Subsequently in the various 

animals NY was injected at more caudal levels in the cord. TB and FB produce a 

blue fluorescent labeling of the cytoplasm while NY after short survival times 

relative to the transport distance, produces only a golden yellow fluorescence 

of the nucleus. This fluorescent retrograde labeling obtained with all three 

tracers can be observed at the same 360 nm excitation wavelength. In all cases 

in which the TB or FB deposit was restricted to the grey matter, the number of 

TB or FB labeled neurons and the number of TB-NY or FB-NY double labeled ones 

~n the above brain stem cell groups was counted. These data made it possible 

to approximate both the numbers of neurons ~n the three different brain stem 

cell groups ~n rat which distribute fibers to the dorsal half of C5-C8 spinal 

grey and to compute the percentages of these cells, which distribute fibers 

to the various, progressively more caudal portions of the neuraxis. 

The retrograde fluorescent labeling findings in the red nucleus confirm 

its somatotopic organization as demonstrated by means of other anatomical and 
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physiological techniques (Kneisley et al., 197~; Murray and Gurule, 1979; 

Pompeiano and Brodal, 1957; Tsukahara et al., 1967). The double labeling 

findings show a relatively limited degree of collateralization of rubrocervical 

neurons to more caudal levels of the cord indicating that the red nucleus 

represents a rather focussed system which distributes its individual fibers to 

specific groups of spinal segments. On the other hand, the NRM-spinal and 

the VLPT-spinal pathways show little somatotopic organization and a relatively 

high degree of collateralization. These double labeling findings are in keeping 

with electrophysiological findings in cat (Peterson et al., 1975; Shinoda et 

al., 1977). A comparison of the anatomical findings in cat and monkey, with 

those obtained in rat indicates that the rubrospinal system in rat displays a 

higher degree of collateralization than in cat and monkey, while the high degree 

of collateralization of the NRM-spinal and the VLPT-spinal pathways are of the 

same order of magnitude in all three species (c.f. chapter III and IV). This 

indicates that the rubrospinal tract as a highly focussed brain stem fiber 

system, emerges only gradually during phylogeny. 

In another double labeling study in rat the collateralization of rubro

spinal neurons to the cerebellar anterior interpositus nucleus (NIA) was stu

died and compared with the collateralization of the rubrospinal tract in the 

spinal cord (c.f. chapter V). For this purpose TB was injected in the NIA and 

NY or 11Diamid ino Yell ow" (DY) in the cervical spinal cord. It was found that 

in rat almost all rubrocerebellar fibers represent collaterals of rubrospinal 

neurons, which is in keeping with earlier anatomical and electrophysiological 

findings in cat (Anderson, 1971; Brodal and Gogstad, 1954) and that at least 

37% of the rubrospinal neurons give rise to such cerebellar collaterals. The 

double labeled neurons in the red nucleus, distributing divergent axon col

laterals to both the cerebellar NIA and the spinal cord, were more or less 

evenly distributed throughout the red nucleus, which is in general accordance 

with the retrograde degeneration findings of Brodal and Gogstad (1954). In this 

same study DY was compared with NY in double labeling with TB. From the fin

dings it was concluded that in quantitative double labeling studies DY may be 

used instead of KY, since the combination TB-DY results in approximately the 

same percentage of double labeled neurons as the combination TB-NY. This was 

confirmed by a more elaborate quantitative study in rat and cat, in which DY 

was compared with 1\Y in the combination with TB in rat and with FB in cat 

(Keizer et al., in preparation) 
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Samenvatting voor leken 

Om mijn studie te plaatsen in bet perspectief van de kennis en concepten over 

het centraal zenuwstelsel grijp ik ver in de tijd terug. 

In de Griekse oudheid was bet Plato (427-347 voor Christus) die drie ziels

vormen lokaliseerde in het lichaam: bet denken in de hersenen, de levensadem 

in het hart en het instinkt in de lever. Het denken werd door de Grieken ge

plaatst in de hersenholtes (=ventrikels), die omgeven werden door hersen

substantie, die niet van betekenis geacht werd. Op grand van deze 11ventrikel

leer" heeft Galenus, die vanaf 162 in Rome praktizeerde, een medisch oevre 

geschreven, dat eeuwenlang zijn invloed heeft doen gelden. In die tijd werden 

de hersenen dan ook afgebeeld als schematisch afgebakende kompartimenten en 

later als bolvormige holtes. De sensus communis, een begrip dat van Aristote

les afkomstig is, en door hem in het hart gelokaliseerd, werd in die tijd 

onder andere in een van die holtes geplaatst. Dit begrip is later te her

kennen in het Engelse common sense. In de Renaissance wordt de schematische 

hersenholte afbeelding vervangen door meer realistische weergaves zoals o.a. 

door Leonardo da Vinci (1452-1519) die behalve kunstenaar ook een wetenschaps

man was. In de 16e eeuw gaat de aandacht in de hersenanatomie verschuiven van 

de hersenholtes naar de hersensubstantie zelf, die om de ventrikels been ligt. 

Deze verschuiving is met name te bespeuren in de afbeeldingen van de hersenen. 

Zo laat Vesalius (1514-1564) in een houtsnede bijzondere strukturen zien, die 

wij nu als capsula interna zouden herkennen en laat Varolio (1543-1575) de 

pons (brug) zien. Ook Descartes (1596-1650) en Willis (1621-1675) laten natuur

getrouwe afbeeldingen zien. Zij houden echter allen nog vast aan de Griekse 

theorie dat de belangrijkste processen plaatsvinden in de hersenholtes en dat 

de hersensubstantie zelf een onbelangrijke rol speelt. De Deen Niels Stensen 

(1638-1686) onderstreept echter, dat kennis van hersenen alleen te verkrijgen 

is via onbevooroordeelde studie van anatomie van het zenuwstelsel, met name 

van de vezelstrukturen in de witte stof. Met de komst van de lichtmicroscoop 

(van Leeuwenhoek 1632-1723) werd het mogelijk om de struktuur van hersenweefsel 

te bestuderen. In de huidige tijd beantwoorden modellen als een 11 telefoon

centrale" of een .. computer" bet meest aan de gestelde vragen over struktuur 

en funktie van de hersenen. Deiters (1834-1863) beschreef voor het eerst de 

zenuwcellen, waaruit het centraal zenuwstelsel is opgebouwd. Een zenuwcel 

(=neuron) bestaat uit een zenuwcellichaam met een groat aantal korte uitlopers 

(=dendrieten) en een lange uitloper, (zenuwvezel of axon), die zich kan op

splitsen in zenuwvezelvertakkingen (Fig. 1). De zenuwvezeleindigingen staan in 

contact met een volgende zenuwcel of spiercel. De informatie overdracht loopt 
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van het zenuwcellichaam via de zenuwvezel naar de zenuwvezeleindiging(en) en 

vindt plaats door elektrische veranderingen (potentiaal veranderingen) in de 

wand (membraan) van de zenuwvezel. Allerlei technieken zijn sindsdien ont

wikkeld om een zenuwcellichaam met zijn zenuwvezel zichtbaar te maken om zo

doende te bepalen waar die zenuwcel via zijn vezel, zijn informatie naartoe 

stuurt. Aanvankelijk werd gebruik gemaakt van de zilver impregnatie techniek 

van Golgi (1844-1926) 1 die selectief enkele zenuwcellen in een gebied kleurt 

terwijl de rest van de cellen ongekleurd blijft. Met behulp van deze techniek 

heeft Cajal (1852-1~34) het zenuwstelsel bestudeerd (Cajal, 1952) waarbij hij 

beschreef dat zeer veel zenuwvezels zijtakken afgeven (Fig. 1). Vervolgens 

werd gebruikt gemaakt van degeneratieve technieken. Deze technieken zijn ge

baseerd op het feit dat na beschadiging van een zenuwcellichaam, de bijbe

horende zenuwvezel degenereert (afsterft) en dat na beschadiging van een zenuw

vezel, het bijbehorende zenuwcellichaam degenereert. Deze degeneratieve ver

anderingen in zenuwvezel of zenuwcellichaam zijn na een bepaalde behandeling 

van bet weefsel zichtbaar onder de microscoop (Marchi en Algeri, 1885; 
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Rasdolsky, 1925; Nauta en Gygax, 1954; Fink en Heimer, 1967). Gedurende de 

veertiger jaren werd door Weiss en Hiscoe (1948) aangetoond, dat er in een 

zenuwcel een vloeistofstroom bestaat die vanuit het zenuwcellichaam de zenuw

vezel ingaat. Eind zestiger jaren werd ontdekt, dat m.b.v. deze stroom radio

actief gemerkte stoffen door de zenuwvezel getransporteerd kunnen worden en 

aldus vezelverbindingen in de hersenen opgespoord kunnen worden (Lasek en 

medewerkers, 1968; Cowan en medewerkers, 1972). Kristensson en Olsson (1970, 

1971) en de LaVails (1972) toonden aan, dat er in de zenuwvezel ook een terug

gaande vloeistofstroom bestaat, d.w.z. van het vezeluiteinde teruggaand in de 

richting van het zenuwcellichaam. Deze stroom is dus tegen de richting in van 

de electrische informatie-overdracht. Met behulp van het enzym mierikswortel 

peroxidase (horseradish peroxidase: HRP) wat teruggaand getransporteerd wordt 

kunnen de zenuwcellichamen van de verschillende zenuwvezels geidentificeerd 

worden, waardoor vezelverbindingen bepaald kunnen worden. Behalve HRP zijn er 

momenteel vele andere stoffen bekend, die teruggaand in zenuwcellen getran·

sporteerd worden. 

Onze onderzoeksgroep onder leiding van Professor Kuypers heeft recent een 

aantal merkstoffen beschreven, die met een fluorescentie microscoop zichtbaar 

te maken zijn. Een aantal van deze stoffen is zeer geschikt om te onderzoeken 

of een individuele zenuwcel vertakkingen (collateralen) naar verschillende 

gebieden in de hersenen stuurt. Hiertoe worden twee stoffen, die in de fluo

rescentie microscoop van elkaar te onderscheiden zijn op twee verschillende 

plaatsen in de hersenen ingespoten. Als na zo'n dubbele injectie op b.v. punt A 

en B, in gebied C door teruggaande stroom dubbelgemerkte zenuwcellen gevonden 

worden, dan betekent dit dat die cellen in gebied C een zenuwvezel vertakking 

naar punt A en een andere naar punt B sturen (Fig. 1). Ieder van deze cellen 

geeft dus tegelijkertijd informatie door naar twee verschillende gebieden in 

de hersenen, wat in functioneel opzicht van groot belang is om te weten. 

Immers als meer bekend wordt over hoe 11de telefooncentrale" of 11 computer" 

geconstrueerd is, wordt daardoor ook duidelijker hoe deze eventueel werkt. 

Met behulp van deze techniek heb ik onderzocht in welke mate de 11rubrospinale 

vezels" (dit zijn vezcls, die vanuit de celgroep 11nucleus ruber", gelegen in 

de hersenstam, door het hele ruggemerg heen afdalen) op zijn traject door het 

ruggemerg heen zijtakken afgeeft. De anatomische bevindingen van mijn verge

lijkende studie in diverse diersoorten geven meer inzicht in de functie die 

deze 11 rubrospinale vezels" hebben in de besturing van de motoriek. Vereen

voudigd zou geconcludeerd kunnen worden dat de 11rubrospinale vezels" een 

functie hebben in de besturing van de middelgrove motoriek van armen en benen, 

d.w.z. die motoriek die tussen de grove motoriek van de romp en de fijne 

motoriek van de individuele vingers instaat. 
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List of abbreviations 

A 

AC 

AChE 

ACU 

BA 

Bb 

BC 

BDHC 

c 
CG 

CI 

c~ 

nucleus ambiguus 

cerebral aquaduct 

acetylcholinesterase 

area cuneiformis 

bovine albumine 

Bisbenzimide 

brachium conjunctivum 

benzidine dihydrochloride 

nucleus coeruleus 

central grey 

inferior colliculus 

posterior commissure 

CP (or Cped) cerebral peduncle 

DAO dorsal accessory olive 

DAPI/Pr DAPI/Primuline 

DCP decussation of superior cerebellar peduncles 

DL double labeled 

dl dorsal lamella of principal olive 

DMSO dimethylsulfoxide 

dr nucleus dorsalis raphe 

DY Diamidino Yellow 

EB Evans Blue 

EPSP excitatory postsynaptic potential 

FB Fast Blue 

FLM medial longitudinal fasciculus 

FPT transverse pontine fibers 

FR fasciculus retroflexus 

G central grey 

GB Granular Blue 

G+C nucleus gracilis and cuneatus 

GM medial geniculate body 

HRP Horseradish peroxidase 

HRP-TMB Horseradish peroxidase-tetramethylbenzidine 
dihydrochloride 

IP interpeduncular nucleus 

IPSP inhibitory postsynaptic potential 

K cap of Kooy 

L lateral nucleus of cerebellum 
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LL 

LM 

LVN 

MAO 

M 

MB 

ML 

MLF (or mlf) 

MVN 

NIII 

niii 

NVII 

nVII 

NXII 

nXII 

NXII 
p 

NC 

NCE 

NCI 

NCu 

NIA 

NLL 

NP 

NRL 

NRM 

NRP 

NTS v 

NVL 

NVM 

NY 

PCI 

PCM 

ped 

PI 

Pr 

ps 

k (or RN) 

RF 

RFI 

lateral lemniscus 

medial lemniscus 

lateral vestibular nucleus 

medial accessory olive 

medial nucleus of the cerebellum 

mammillary bodies 

medial lemniscus 

medial longitudinal fasciculus 

medial vestibular nucleus 

oculomotor nucleus 

oculomotor nerve 

facial nucleus 

facial nerve 

hypoglossal nucleus 

hypoglossal nerve 

nucleus prepositus hypoglossi 

cochlear nuclei 

external cuneate nucleus 

nucleus of inferior colliculus 

cuneate nucleus 

anterior interpositus nucleus 

nucleus of lateral lemniscus 

pontine nuclei 

lateral reticular nucleus 

nucleus raphe magnus 

reticular nucleus of pontine tegmentum 

nucleus of spinal V tract 

lateral vestibular nucleus 

medial vestibular nucleus 

Nuclear Yellow 

inferior cerebellar peduncle 

medial cerebellar peduncle 

cerebral peduncle 

Propidium Iodide 

Primuline 

propriospinal 

red nucleus 

reticular formation 

lateral reticular formation 



rfl fasciculus retroflexus 

RM nucleus raphe magnus 

Rm red nucleus, magnocellular part 

Rp red nucleus, parvicellular part 

RS rubrospinal tract 

rs rubrospinal 

s nucleus and tractus solitarius 

sc nucleus subcoerul eus 

SNC (or snc) substantia nigra, pars compacta 

SNR substantia nigra, pars reticulata 

ST spinothalamic tract 

TB True Blue 

TCS corticospinal tract 

TR ~or TRS) rubrospinal tract 

trV 

TSV 

VIII 

VIV 

tract of mesencephalic V nucleus 

spinal V tract 

third ventricle 

fourth ventricle 

vest. compl. vestibular complex 

vl 

vt 

VLPT 

X 

ventral lamella of principal olive 

ventrAl tc?ment[]l nucleus 

ventrolateral pontine tegmentum 

dorsal motor nucleus ot vagus 
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