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Abstract

One of the most widely-used multivariate conditional volatility models is the dynamic
conditional correlation (or DCC) specification. However, the underlying stochastic process to
derive DCC has not yet been established, which has made problematic the derivation of
asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the
statistical properties of the QMLE of the DCC parameters have been derived under highly
restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be
obtained from a vector random coefficient moving average process, and derives the stationarity
and invertibility conditions. The derivation of DCC from a vector random coefficient moving
average process raises three important issues: (i) demonstrates that DCC is, in fact, a dynamic
conditional covariance model of the returns shocks rather than a dynamic conditional correlation
model; (ii) provides the motivation, which is presently missing, for standardization of the
conditional covariance model to obtain the conditional correlation model; and (iii) shows that the
appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than
the returns shocks. The derivation of the regularity conditions should subsequently lead to a solid

statistical foundation for the estimates of the DCC parameters.

Keywords: Dynamic conditional correlation, dynamic conditional covariance, vector random

coefficient moving average, stationarity, invertibility, asymptotic properties.
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1.

Introduction

Among multivariate conditional volatility models, the dynamic conditional correlation (or DCC)
specification of Engle (2002) is one of the most widely used in practice. The basic DCC
modelling approach has been as follows: (i) estimate the univariate conditional variances using
the GARCH(1,1) model of Bollerslev (1986), which are based on the returns shocks; and (ii)
estimate what is purported to be the conditional correlation matrix of the standardized residuals.
The first step is entirely arbitrary as the conditional variances could just as easily be based on the

standardized residuals themselves, as will be shown in Section 4 below.

A similar comment applies to the varying conditional correlation model of Tse and Tsui (2002),
where the first stage is based on a standard GARCH(1,1) model using returns shocks. The
second stage is slightly different from the DCC formulation as the conditional correlations are
defined appropriately. However, no regularity conditions are presented, and hence no statistical

properties are given.

The DCC model has been analyzed critically in a number of papers as its underlying stochastic
process has not yet been established, which has made problematic the derivation of the
asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the
statistical properties of the QMLE of the DCC parameters have been derived under highly
restrictive and unverifiable regularity conditions, which in essence amounts to proof by

assumption.

This paper shows that the DCC specification can be obtained from a vector random coefficient
moving average process, and derives the conditions for stationarity and invertibility. The
derivation of regularity conditions should subsequently lead to a solid statistical foundation for

the estimates of the DCC parameters.

The derivation of DCC from a vector random coefficient moving average process raises three
important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model

of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the



motivation, which is presently missing, for standardization of the conditional covariance model
to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or
GARCH model for DCC is based on the standardized shocks rather than the returns shocks.

The remainder of the paper organized is as follows. In Section 2, the standard ARCH model is
derived from a random coefficient autoregressive process to provide a background for the
remainder of the paper. In Section 3, the DCC model is discussed. Section 4 presents a vector
random coefficient moving average process, from which DCC is derived in Section 5. The
conditions for stationarity and invertibility are given in Section 6. Some concluding comments

are given in Section 7.

. Random Coefficient Autoregressive Process

Consider the following a random coefficient autoregressive process of order one:

&y = P&, 1, (1)
where

¢, ~iid(0,),

n, ~iid (0,w).

The ARCH(1) model of Engle (1982) can be derived as (see Tsay (1987)):

h =E(&l |1,) =0+as,. )



where h, is conditional volatility, and 1, is the information set at time t-1. The use of an

infinite lag length for the random coefficient autoregressive process leads to the GARCH model
of Bollerslev (1986).

The scalar BEKK and diagonal BEKK models of Baba et al. (1985) and Engle and Kroner
(1995), though not the Hadamard BEKK and full BEKK models, can be derived from a vector
random coefficient autoregressive process (see McAleer et al. (2008)). As the statistical
properties of vector random coefficient autoregressive processes are well known, the statistical
properties of the parameter estimates of the ARCH, GARCH, scalar BEKK and diagonal BEKK

models are straightforward to establish.

. DCC Specification
Let the conditional mean of financial returns be given as:
Yi = E(yt | It—1)+gt 3)

where Y, = (Y, Ym)' Yi = AlogP, represents the log-difference in stock prices (P,), i =

1,...m, I, is the information set at time t-1, and ¢, is conditionally heteroskedastic. Without

distinguishing between dynamic conditional covariances and dynamic conditional correlations,

Engle (2002) presented the DCC specification as:

Q=0-a- ,8)6 + a77t7177t!1 + Q4 4)

where 6 is assumed to be positive definite with unit elements along the main diagonal, the

scalar parameters are assumed to satisfy the stability condition, « + f < 1, the standardized



.....

g, = D7, ,and D, is a diagonal matrix with typical element /h, ,i=1,....m.

As the matrix in equation (4) does not satisfy the definition of a correlation matrix, Engle (2002)

uses the following standardization:

R, = (diag(Q,)) "*Q,(diag (Q,)) ()

There is no clear explanation given in Engle (2002) for the standardization in equation (5) or,

more recently, in Aielli (2013). The standardization in equation (5) might make sense if the
matrix Q, were the conditional covariance matrix of &, or 77, , though this is not made clear. It
is worth noting that the unconditional covariance matrix of &, is not analytically tractable.

Despite the title of the paper, Aielli (2013) also does not provide any stationarity conditions for
the DCC model, and does not mention invertibility. Indeed, in the literature on DCC, it is not
clear whether equation (4) refers to a conditional covariance or a conditional correlation matrix.

Some caveats regarding DCC are given in Caporin and McAleer (2013).

. Vector Random Coefficient Moving Average Process

Marek (2005) proposed a linear moving average model with random coefficients (RCMA), and
established the conditions for stationarity and invertibility. In this section, we derive the
stationarity and invertibility conditions of a vector random coefficient moving average process.
Consider a univariate random coefficient moving average process given by:

& = ‘9t77t—1 + 7 (6)

where



6, ~ iid (0,c).

The conditional and unconditional expectations of ¢, are zero. The conditional variance of &, is

given by:
h, = E(gtz 1) =0+ 0”7t2—1 (7)

which differs from the ARCH(1) model in equation (2) in that the returns shock is replaced by

the standardized shock. The use of an infinite lag length for the random coefficient moving

average process in equation (6), with appropriate restrictions on 6, , would lead to a generalized

ARCH model that differs from the GARCH model of Bollerslev (1986) as it would replace the

returns shock with a standardized shock.

The univariate ARCH(1) model in equation (7) is contained in the family of GARCH models
proposed by Hentschel (1995), and the augmented GARCH model class of Duan (1997).

It can be shown seen from the results in Marek (2005) that a sufficient condition for stationarity
is that the vector sequence v, = (77,,6,77, ;)" is stationary. Moreover, by Lemma 2.1 of Marek

(2005), a sufficient condition for invertibility is that:

E[log6,]]<0. (8)

The stationarity of U, =(7,,6,77,.1)" and the invertibility condition in equation (8) are new

results for the univariate ARCH(1) model given in equation (7), as well as its direct extension to
GARCH models.



Extending the analysis given above to the multivariate case and to a vector random coefficient
moving average (RCMA) model of order p, we can derive a special case of DCC(p,q), namely

DCC(p,0), as follows:

p
&y :zgjtnt—j + 17 9)
-1

where £, and 77, are both mx1 vectorsand &, ,j = 1,...,p are random iid mx m matrices.
As 1, ~iid (0,®), the unconditional variance of &, is given as:

E(h)=(1+a)o.

For the multivariate case in equation (9), it is assumed that the vector 7, ~ iid (0,Q). As the

diagonal elements of Q are equal to unity, this is also the correlation matrix of 7, . It follows

that:

EWQ=P+iaJQ.

This approach can easily be extended to include autoregressive terms. For example, in a model

analogous to GARCH(p,q), namely:

p g
H, =Q+Zai77t_ﬂ7t_i +Zﬂth—j
i=1 =1

9
where g, €[0,1) and > B, <1, it follows that:

it



1+Zp:ai

E(H)=| —2—|Q.

1-34,

j=1

The derivation given above shows that, as compared with the standard DCC formulation, our
formulation permits straightforward computation of the unconditional variances and covariances.
It should also be noted that in Aielli’s (2013) variation of the standard DCC model, it is possible

to calculate the unconditional expectation of the Q, matrix, as in equation (4), but this is not
equal to the unconditional covariance matrix of &, , which is analytically intractable. This is an

additional advantage of using the vector random coefficient moving average process given in

equation (9).

. One Line Derivation of DCC
If 6, inequation (9) is given as:

0, = A, with 2, ~iid(0,a,), j=1,..,p,

jt T Mitim
where 4, is a scalar random variable, then the conditional covariance matrix can be shown to be:

' p '
H,=E(ee |14) :Q+Zaj77t—j77t-j . (10)

j=1

The DCC model in equation (4) is obtained by letting p — o, setting «; —a f7, and

standardizing H, to obtain a conditional correlation matrix. For the case p=1 in equation (10),

the appropriate univariate conditional volatility model is given in equation (7), which uses the

standardized shocks, rather than in equation (2), which uses the returns shocks.



The derivation of DCC in equation (10) from a vector random coefficient moving average
process is important as it: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance
model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the
motivation, which is presently missing, for standardization of the conditional covariance model
to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or
GARCH model for DCC is be based on the standardized shocks rather than the returns shocks.

. Derivation of Stationarity and Invertibility

The formulation of DCC given in the previous section is more natural than the standard
treatment as it can be derived from an underlying stochastic process, and can be also analyzed in
terms of properties such as stationarity and moments. This section derives the stationarity and

invertibility conditions for the DCC model in Theorem 1, based on the following Assumption.
Assumption 1. E[Iog||@)t_k ||]< \Jpm (11)

where |©, | is the Frobenius norm, and @, is given by:

- ‘91t - 02t ept
1 0 0
0O, =
0 1 0

Theorem 1. A sufficient condition for stationarity is that the vector sequence:

Uy = (77t 1 Hltnt—l""’eptntfp)'

10



is stationary. Furthermore, under Assumption 1, the vector random coefficient moving average

process, &, , is invertible.

Proof: The proof of stationarity is similar to that given above for the univariate random

coefficient moving average process. For invertibility, note that:

P
=&~ Zeitnt—J
i1

which can be written as:

~

= ®t77t—l + Et
where
ﬁt = (77t’77t71""'77t7p+1)‘ and Et = (gt’gt—ll“"gt—pﬂ)l'

Hence,

k=1 k=1

=3 1o o+ fow Jin

Now let;

k=1

n J
-3 (1o ).

Consider

11



1 1 -~ 1 1|15 ~
2 log—2— "= Zlog—=—|| [T®
n Ogmunt 77t n Og /—pm (]ﬁ__]l: tk]n n
1 1
< oo Tow )+ logrllﬂtnll
tk||+ log

I C)
n; Ogrll rllﬂt ol

>Elog <0

a.s.

1
e

as Elog|®, </ pm , by assumption. This implies that 7,—7' ——>0 and, hence, 7, is

asymptotically measurable with respectto { ¢, ;, &, ,,... }, and &, is invertible. o

Note that a sufficient condition for equation (11) is that:

B 2
Y Efo] <m (12)
j=1

as Elog | < logE

1
G —||®
e L.l

_loge L \/i”e o (p-gm
OO T | &I TP

l P
=log E\/m;“gjt ”2 +(p-D/p
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< Iog\/izp: EHHJ.tHZ +(p=-1/p

pPm =
< 0.
The condition given in equation (12) may be easier to check than that in equation (11).

For the special case 6, = 4,1, with 4, ~iid(0,«;), j=1, .., p, discussed in Section 5

above, the condition in equation (12) simplifies to the well-known condition on the long-run

persistence to returns shocks, namely:

_Zp:Ezﬁt =iaj < 1.
j=1 j=1

. Conclusion

The paper was concerned with one of the most widely-used multivariate conditional volatility
models, namely the dynamic conditional correlation (or DCC) specification. As the underlying
stochastic process to derive DCC has not yet been established, this has made problematic the
derivation of the asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE).
To date, the statistical properties of the QMLE of the DCC parameters have been derived under

highly restrictive and unverifiable regularity conditions.

The paper showed that the DCC specification could be obtained from a vector random
coefficient moving average process, and derived the stationarity and invertibility conditions. The
derivation of the regularity conditions should eventually lead to a solid foundation for the

statistical analysis of the estimates of the DCC parameters.

13



The derivation of DCC from the vector random coefficient moving average process
demonstrated that DCC is, in fact, a dynamic conditional covariance model of the returns shocks
rather than a dynamic conditional correlation model. Moreover, the derivation provided the
motivation, which is presently missing, for standardization of the conditional covariance model
to obtain the conditional correlation model. Finally, the derivation also showed that the
appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than
the returns shocks. The derivation of regularity conditions should subsequently lead to a solid
statistical foundation for the QMLE of the DCC parameters.
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