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Abstract 

 

Of the two most widely estimated univariate asymmetric conditional volatility models, the 

exponential GARCH (or EGARCH) specification can capture asymmetry, which refers to the 

different effects on conditional volatility of positive and negative effects of equal magnitude, and 

leverage, which refers to the negative correlation between the returns shocks and subsequent 

shocks to volatility. However, the statistical properties of the (quasi-) maximum likelihood 

estimator (QMLE) of the EGARCH parameters are not available under general conditions, but 

only for special cases under highly restrictive and unverifiable conditions. A limitation in the 

development of asymptotic properties of the QMLE for EGARCH is the lack of an invertibility 

condition for the returns shocks underlying the model. It is shown in this paper that the 

EGARCH model can be derived from a stochastic process, for which the invertibility conditions 

can be stated simply and explicitly. This will be useful in re-interpreting the existing properties 

of the QMLE of the EGARCH parameters.  

 

Keywords: Leverage, asymmetry, existence, stochastic process, asymptotic properties, 

invertibility. 

 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 

 

In addition to modelling and forecasting volatility, and capturing clustering clustering, two key 

characteristics of univariate time-varying conditional volatility models in the GARCH class of 

Engle (1982) and Bollerslev (1986) are asymmetry and leverage. Asymmetry refers to the 

different impacts on volatility of positive and negative shocks of equal magnitude, whereas 

leverage, as a special case of asymmetry, captures the negative correlation between the returns 

shocks and subsequent shocks to volatility. Black (1976) defined leverage in terms of the debt-

to-equity ratio, with increases in volatility arising from negative shocks to returns and decreases 

in volatility arising from positive shocks to returns. 

 

The two most widely estimated asymmetric univariate models of conditional volatility are the 

exponential GARCH (or EGARCH) model of Nelson (1990, 1991), and the GJR (alternatively, 

asymmetric or threshold) model of Glosten, Jagannathan and Runkle (1992). As EGARCH is a 

discrete-time approximation to a continuous-time stochastic volatility process, and is expressed 

in logarithms, conditional volatility is guaranteed to be positive without any restrictions on the 

parameters. In order to capture leverage, the EGARCH model requires parametric restrictions to 

be satisfied. Leverage is not possible for GJR, unless the short run persistence parameter is 

negative, which is not consistent with the standard sufficient condition for conditional volatility 

to be positive. 

 

As GARCH can be obtained from random coefficient autoregressive models (see Tsay (1987)), 

and similarly for GJR (see McAleer et al. (2007)), the statistical properties for the (quasi-) 

maximum likelihood estimator (QMLE) of the GARCH and GJR parameters are straightforward 

to establish. However, the statistical properties for the QMLE of the EGARCH parameters are 

not available under general conditions. A limitation in the development of asymptotic properties 

of the QMLE for EGARCH is the lack of an invertibility condition for the returns shocks 

underlying the model.   

 

McAleer and Hafner (2014) showed that EGARCH could be derived from a random coefficient 

complex nonlinear moving average (RCCNMA) process. The reason for the lack of statistical 
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properties of the QMLE of EGARCH under general conditions is that the stationarity and 

invertibility conditions for the RCCNMA process are not known, in part because the RCCNMA 

process is not in the class of random coefficient linear moving average models (for further 

details, see Marek (2005)). 

 

The recent literature on the asymptotic properties of the QMLE of EGARCH shows that such 

properties are available only for some special cases, and under highly restrictive and unverifiable 

conditions. For example, Straumann and Mikosch (2006) derive some asymptotic results for the 

simple EGARCH(1,0) model, but their regularity conditions are difficult to interpret or verify. 

Wintenberger (2013) proves consistency and asymptotic normality for the quasi-maximum 

likelihood estimator of EGARCH(1,1) under the non-verifiable assumption of invertibility of the 

model. Demos and Kyriakopoulou (2014) present sufficient conditions for asymptotic normality 

under a highly restrictive conditions that are difficult to verify. 

 

It is shown in this paper that the EGARCH model can, in fact, be derived from a stochastic 

process, for which the invertibility conditions can be stated simply and explicitly. This will be 

useful in re-interpreting the existing properties of the QMLE of the EGARCH parameters.  

 

The remainder of the paper is organized as follows. In Section 2, the EGARCH model is 

discussed. Section 3 presents a stochastic process, from which EGARCH is derived. Some 

concluding comments are given in Section 4. 

 

2. EGARCH 

 

Consider the conditional mean of financial returns as in the following: 

 

tttt IyEy   )|( 1            (1) 

 

where the returns, ty  = tPlog , represents the log-difference in stock prices ( tP ), 1tI  is the 

information set at time t-1, and t  is conditionally heteroskedastic.  
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The EGARCH specification of Nelson (1990, 1991) is given as: 

 

111 log||log   tttt hh   , 1||        (2)  

 

where the standardized shocks, t ~  iid ),0(  , and 1||   is the stability condition when 

1log th  is included in the model. Asymmetry exists if 0 , with symmetry given by 0 , 

while leverage arises if the parametric conditions 0  and    are satisfied. The 

specification in equation (2) is EGARCH(1,1), with EARCH(1) = EGARCH(1,0) when 0 , 

but the specification can easily be extended to EGARCH(p,q).  

 

In the absence of a specific stochastic process for t ,  it is not possible to state the specific 

conditions for invertibility of the process. For this reason, McAleer and Hafner (2014) proposed 

a random coefficient complex nonlinear moving average (RCCNMA) process for t . However, 

it could not be shown that the RCCNMA process was invertible. 

 

3. Invertibility of a Stochastic Process for Returns Shocks 

 

In this section, a stochastic process for t  is proposed, for which there are simple and explicit 

invertibility conditions.  

 

Consider the following stochastic process for returns shocks given as: 

 

 2/2/2/||exp 11 ttttt          (3) 

 

where t ~  iid (0,1), t ~ iid N ),0(  , and  , . 

 

The conditional expectation of t  is given as: 
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  0| 1 tt IE            (4) 

 

as the expectation of t  is zero and the expectation of the exponential term in equation (3) is 

finite as the iid random variable is normal. It follows that both the unconditional and conditional 

means of t  in equation (3) are zero. 

 

The conditional variance of t  is given as: 

 

    ttttttt EIEh  2||exp| 11
2

1
2    

 

= )||(exp 11   tt   

 

which yields the EGARCH(1,0) = EARCH(1) model as: 

 

11 ||log   ttth  .        (5)  

 

A distributed lag version of equation (3), with lags  , 1 j
j   and 1 j

j  , would 

lead to the EGARCH(1,1) model. 

 

From equation (3), )()( tt signsign   . For invertibility, we need two conditions to hold, the 

first of which is given by: 

 

Condition 1: 0)0( tP   and 1)|(| tP  . 

 

This condition is not restrictive for any variable with a distribution that is absolutely 

continuous under a Lebesque measure. Therefore, 0/ tt   almost surely. It follows that: 
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2/2/||2/)/(log 11   ttttt   

 

and 

 

2/2/||)/(log2 11   ttttt  .     (6)  

 

Equation (6) will be used to invert the stochastic process recursively. 

 

In order to simplify the notation, consider the function given by: 

 

2/2/||)(, xxxf   . 

 

This leads to the following proposition: 

 

Proposition 1: For yx, : 

 

   ||2/|||||)()(| ,, yxyfxf    

 

Proof: Consider the following four cases: 

 

(i) 0,0  yx :  

  |)()(| ,, yfxf   =   |2/)(2/)(| yx    

||)2/||||(

|||2/)(|

yx

yx








 

 

(ii) 0,0  yx :  

  |)()(| ,, yfxf   =   |2/)(2/)(| yx    
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2/|||)|||(

2/||||2/||||

|2/)(2/)(|

yx

yxyx

yxyx













 

as |||| yxyx  . 

 

(iii) 0,0  yx : as in case (i). 

(iv) 0,0  yx : as in case (ii).       

 

Therefore, it can be shown through recursive substitution that: 

 

)))()/log(2()/log(2()/log(2

))()/log(2()/log(2

)()/log(2

3,22,11,

2,11,

1,













ttttttt

ttttt

tttt

fff

ff

f













  (7) 

 

and so on. Each expression depends on ttt ',' , and we need to express t  as a function of 

ttt ', , for invertibility. 

 

In order to simplify notation, consider the two series that are defined recursively: 

 

1),()/log(2

)/log(2)(

,
1

11,
1










kufu

fu

k
nnktnkt

k
n

ntntntn








          (8) 

 

and 

 

1),()/log(2

)/log(2

,
1

11
1










kvfv

v
k
nnktnkt

k
n

ntntn




         (9) 

 

From these definitions, it follows from equations (4) and (5) that: 
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*, Nnu n
nt   

 

and n
nv  depends on the t . Thus, it is necessary to prove that: 

 

t
n
nv  . 

 

For invertibility, the second of two required conditions is given by: 

 

Condition 2: 2||||   . 

 

The following Lemma will be useful in the derivation of the invertibility condition: 

 

Lemma 1:  ||2/|)|||(|| nt

n

t
n
nv   ,  *Nn . 

 

Proof: It was shown from equations (4) and (5) that *, Nnu n
nt  , and it follows from 

equations (8) and (9), and for 2n : 

 

  ||2/|)||(|

|)()(|

||||

11

1
,

1
,











n
n

n
n

n
n

n
n

n
n

n
nt

n
n

uv

ufvf

uvv





  

 

Hence, we can show recursively that: 

 

|)(|2/|)|||(

||2/|)|||(||

,

1

11
1

nt

n

nn

n

t
n
n

f

uvv
















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As , we have |)0()(||)(| ,,,   fff ntnt   , so the Lemma follows by 

Proposition 1.      

 

We now consider 1L  and P  convergence in the following Proposition: 

 

Proposition 2:  Under Conditions 1 and 2, it follows that: 

 

 

 

which can be used to derive the invertibility conditions. 

 

Proof: Under Lemma 1, it is straightforward to show that: 

 

    0||2/|)|||(||    nnt

n

t
n
n EvE  . 

 

As 1L  convergence implies  convergence, this proves the proposition.        

  

Remark: As all the moments of a normal distribution exist, it is straightforward to prove pL  

convergence 0 p . 

 

Lemma 1 is not sufficient to prove almost sure convergence as we do not know how the series 

  *)( Nnnt    behaves for a fixed  . Borel Cantelli’s Lemma, which is given in Lemma 2, 

enables a demonstration of almost sure convergence: 

 

Lemma 2:  Define the probability space ),,( PA  and consider a series of sets, 8)(
NnnE


, where 

AEn  . If 
n

nEP )(  converges, then 0)sup(lim  nn EP . 

 

Lemma 2 can be used to prove the following Proposition of almost sure convergence: 

0)0(, f



t
PL

n
n
nv ,1  

P
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Proposition 3:  Under Conditions 1 and 2, it follows that: 

 

tn
n
nv     almost surely, 

 

which proves invertibility. 

 

Proof:  By Lemma 1, for   it holds that:  

 

|)(|2/|)|||(|)()(|  nt

n

t
n
nv  , .  

 

By Condition 2: 

 

12/|)|||(   , so that  a  as 12/|)|||(  a . 

 

The objective is to find a set A  with probability one such that, A  , 

).()(  tn
n
nv      

Define:  

 

 n
ntn aE )/1(|)(|:      and  /)/1(2)( n

n aEP   

 

where )(  is the cumulative density function of a standard N(0,1) random variable: 

 

    dxea x
a

n

n

2/
/)/1(

2

2/1/)/1( 







 . 

 

Moreover, *NN   such that, 1/)/1(,  naNn . For Nn  , it follows that: 

 

*Nn
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   

 

 

)(

2)2/1(

2)2/1(

2/1

2/12/1

)2/()/1(

/)/1(2/

2/
/)/1(

2/||
/)/1(

2/
/)/1(

2

n

a

ax

x
a

x
a

x
a

ao

e

e

dxe

dxedxe

n

n

n

nn


















































 

 

Therefore, )()( n
n aoEP  , with 1a ,  as convergence of 

n

na  implies that 
n

nEP )(  also 

converges. By Lemma 2, it follows that 0)sup(lim  nn EP . However, AEnn  suplim  and 

 

 
 k

kt

k

n nk
knn

ankn

Enkn

EEE

)/1(|)(|,:

,:

suplim


















 

 

Therefore,  k
kt

c anknE )/1(|)(|,:    , and 1)( EP c  as 0)( EP .  

 

Furthermore,   n
nt

c aOE )/1(|)(|:    .   

 

As  12/|)|||(0  a  implies |)|||/(2/1  a , it follows that: 

 

 n
nt aO )/1(|)(|    implies   n

nt o |)|||/(2|)(|    which implies, for : 

 

    02/|)|||(|)(|    n
n

nt  .  

 

By Lemma 1, Ec  implies 0|)()(|   n
n
nt v   and  1)( EP c . 

 

Ec
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Therefore, tn
n
nv     almost surely.       

 

 

4. Conclusion 

 

The two most widely estimated asymmetric univariate models of conditional volatility are the 

exponential GARCH (or EGARCH) model and the GJR model. Asymmetry refers to the 

different effects on conditional volatility of positive and negative effects of equal magnitude, As 

EGARCH is a discrete-time approximation to a continuous-time stochastic volatility process, and 

is expressed in logarithms, conditional volatility is guaranteed to be positive without any 

restrictions on the parameters. For leverage, which refers to the negative correlation between 

returns shocks and subsequent shocks to volatility, EGARCH requires parametric restrictions to 

be satisfied. Leverage is not possible for GJR, unless the short run persistence parameter is 

negative, which is unlikely in practice. 

 

The statistical properties for the QMLE of the GJR parameters are straightforward to establish. 

However, the statistical properties for the QMLE of the EGARCH parameters are not available 

under general conditions, but rather only for special cases under highly restrictive and 

unverifiable conditions.  

 

A limitation in the development of asymptotic properties of the QMLE for EGARCH is the lack 

of an invertibility condition for the returns shocks underlying the model. It was shown in the 

paper that the EGARCH model could be derived from a stochastic process, for which the 

invertibility conditions could be stated simply and explicitly (conditions 1 and 2). This should be 

useful in re-interpreting the existing properties of the QMLE of the EGARCH parameters.   
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