3 *Monitoring of Heart Transplant Rejection Using a Donor-Specific Soluble HLA Class I ELISA*
1University of Leiden, 2University of Wisconsin-Madison, and 3University of Rotterdam

Our purpose was to utilize a donor-specific sHLA Class I ELISA to monitor damage to heart allografts caused by rejection as an alternative to myocardial biopsy. A group of 21 pts (34 serum samples from 14 pts and 63 samples from 7 pts) were screened for the presence of donor-specific HLA Class I before and after cardiac transplant using an HLA-A2-specific and/or an HLA-B7 specific ELISA. The Ab pairs used in the ELISA were: MA2.1 (anti-A2, B57) and CRII-351 (anti-A2, 28) for detecting HLA-A2, and ME1 (anti-B7, 27) and MB40.2 (anti-B7, 40) for detecting HLA-B7.

The results showed: i) consistent release of donor-type HLA class I immediately post-Tx (d.l: 15-55 ng/ml); and 2) a smaller rise (4-20 ng/ml), during biopsy-proven rejection episodes. Both HLA-A2 and HLA-B7 levels rose in tandem in patients mismatched for both antigens. Patients with no rejection showed no evidence of donor antigen above background (<3 ng/ml) after the 1st post-operative day.

The major difficulty seems to be the problem of background reactivity in patients with HLA-A9 (occasional cross-reactivity with the CRII-351 in A2 ELISA) and with certain non-B7, 27 antigens. The technique may be of clinical value in patients with low background values (<3 ng/ml) and to distinguish rejection from systemic infection which may not cause a rise in donor-specific sHLA.

4 *Peptides derived from HLA class I sequences block allore cognition in vitro and in vivo.*
1Clayberger, C., 1Lyu, S.C., 1Nisco, St., 1Vriens, P., 2Pouletty, P. and *Krensky A.* Departments of Cardiothoracic Surgery and Pediatrics, 1Stanford University School of Medicine, Stanford, CA and 2SangStat Medical Corporation, Menlo Park, CA.

We have prepared synthetic peptides corresponding to the α1 alpha helix of HLA class I molecules and tested them for effects on in vitro immune responses. Some of these peptides were potent inhibitors of T cell differentiation. We evaluated one of these peptides, corresponding to residues 75-84 of HLA-B7, designated Allotrap 07, on heterotopic heart allograft in rats. Treatment of rats with Allotrap 07 either before transplantation or at the time of transplantation caused a slight but significant delay in rejection. Animals given Allotrap 07 in combination with a suboptimal dose of cyclosporine A maintained their grafts indefinitely. When tolerant animals were given a subsequent skin graft from the donor or a third party, they accepted the donor derived graft but rejected the third party graft. Adoptive transfer studies and investigation of donor specific cytotoxic T cell precursors showed that tolerance resulted from anergy, and not from clonal deletion of suppressor cells. Tolerance could be induced if the peptide was administered intravenously, orally and to a lesser extent by subcutaneous injection. These findings indicate that synthetic peptides corresponding to HLA molecules may have important therapeutic effects in humans.