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CLINICAL INVESTIGATIONS 

Mechanism of high-speed rotational atherectomy and 
adjunctive balloon angioplasty revisited by quantitative 
coronary angiography: Edge detection versus 
videodensitometry 

Clemens von Birgelen, MD, Victor A. Umans, MD, PhD, Carlo Di Mario, MD, PhD, 
David Keane MB, MRCPI, PhD, Robert Gil, MD, Francesco Prati, MD, 
Pim de Feyter, MD, PhD, and Patrick W. Serruys, MD, PhD Rotterdam, The Netherlands 

High-speed rotational coronary atherectomy (RA) is prima- 
rily used to treat complex lesions. Quantitative angiographic 
analysis of such complex lesions by edge detection is often 
unsuitable, whereas videodensitometry, measuring vessel 
dimensions independently of the target stenosis contours, 
may offer potential advantages. To gain insight into the op- 
erative mechanism of RA and to study the agreement 
between the two quantitative angiographic methods in mea- 
suring the minimal luminal cross-sectional area, the edge 
detection and videodensitometry techniques were applied 
to coronary angiograms of 21 lesions in 19 patients with 
symptoms who underwent successful RA and balloon angi- 
oplasty (BA). Obstruction diameter as determined by edge 
detection increased from 1.00 ± 0.31 mm before interven- 
tion to 1.35 ±0.29 mm after RA (p<0.001) and further 
increased to 1.74 ± 0.33 mm after adjunctive BA (p < 0.001). 
The mean between-method difference (edge detection mi- 
nus videodensitometry) was 0.34 mm 2 before intervention, 
0.13 mm 2 after RA, and 0.09 mm 2 after adjunctive BA (not 
significant). The standard deviation of the differences de- 
creased from ±0.87 mm 2 before intervention to ±0.80 mm 2 
after RA (not significant) and increased after BA significantly 
to ±1.21 mm 2 (p < 0.05). Thus edge detection and videoden- 
sitometry provided equivalent immediate angiographic re- 
sults after RA and adjunctive BA. The good agreement after 
RA may reflect the operative mechanism of RA, which by 
ablation of noncompliant plaque material yields a circular 
symmetric lumen with smooth surface. The increased dis- 
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persion of the between-method differences observed after 
adjunctive BA presumably results from dissections, plaque 
ruptures, and loss of luminal smoothness after balloon dila- 
tation. (AM HEART J 1995;130:405-12.) 

High-speed rotational atherectomy (RA) is an inter- 
ventional device that ablates and pulverizes non- 
compliant coronary plaque material by high-fre- 
quency rotation of a diamond-coated burr. 1 It may be 
used as a stand-alone procedure for treatment of 
coronary lesions but is frequently used as a primary 
device and is subsequently combined with balloon 
angioplasty (BA) or directional atherectomy. 2-13 It 
has by preference been applied to diffusely diseased 
and calcified coronary arteries with complex lesion 
architecture.5, 9-17 To assess the results ofintracoro- 
nary interventions objectively, reliably, and repro- 
ducibly, a computerized semiautomated quantifica- 
tion of the lumen should be applied to the cineangio- 
grams. 18-24 

There are two principal approaches of computer- 
ized angiographic analysis: edge detection and vid- 
eodensitometry. Whereas edge detection is based on 
an automatic contour detection of the geometric ves- 
sel shape, videodensitometry is independent of lu- 
minal shape of the target stenosis and is based on the 
relation between the optical density of the contrast- 
enhanced lumen and the absolute vessel dimensions. 
In clinical practice edge detection is still considered 
the standard approach of quantitative angiographic 
analysis, whereas the value of videodensitometric 
assessments remains controversial. 2°, 22, 25-36 To gain 
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Table i. Edge detection before intervention, after rotational atherectomy, and after adjunctive balloon angioplasty 

Before 
intervention After RA After BA 

Reference diameter (ram) 2.68 _+ 0.52 2.68 ± 0.46 2.71 + 0.49 
Obstruction diameter (nun) 1.00 _+ 0.31" 1.35 ± 0.29* 1.74 ± 0.33* 
Diameter stenosis (%) 61.7 _+ 12.2" 49.38 ± 7.41" 35.4 +- 10.12" 

*p < 0.0o1 (before intervention vs after RA, before intervention vs after adjunctive BA, and after RA vs after adjunctive BA). 

i'nsight into the operative mechan i sm and  the post- 
procedural  luminal  geometry  after  RA and BA and  to 
s tudy  the  agreement  between the two quant i ta t ive  
angiographic methods  in measur ing  the  minimal  lu- 
minal  cross-sectional area, 37 edge detection and  vid- 
eodensi tometry  were applied to coronary angiograms 
that  were acquired before intervention,  after  RA, and 
after adjunctive BA. 

METHODS 
Study patients and qualitative lesion characteristics. 

Nineteen patients, 12 men and seven women with a mean 
age of 62.4 years (range, 48 to 73 years) who had 21 calci- 
fied American College of Cardiology/American Heart As- 
sociation (ACC/AHA) type B2 or C lesions 38, 39 that had 
been successfully treated by RA and adjunctive BA were 
studied. All lesions were nonostial and located in native 
coronary arteries , mostly with angiographic evidence of 
diffuse plaque calcification (18 of 21 lesions). Location of 
the lesion was right coronary artery (RCA) in 10 cases, left 
anterior descending coronary artery (LAD) in nine, and left 
circumflex coronary artery (LCX) in two. In two patients 
two distinct lesions were individually treated (lesions 9 
and 10 and lesions 13 and 14, respectively). The treated 
segments (Table I) are indicated according to the AHA 
grading system, 4° and coronary dissections are indicated 
according to the morphologic classification of the National 
Heart, Lung and Blood Institute (NHLBI).4~ 

Description of the interventional procedure. After pre- 
treatment was performed with 250 mg acetylsalicylic acid 
and 10,000 U heparin, the coronary artery ostium was in- 
tubated with 8F to 10F standard guiding catheters. Intra- 
coronary injection ofisosorbide dinitrate was performed to 
prevent possible coronary spasm, and a 0.009 inch Rotab- 
later guidewire (Heart Technology Inc., Bellevue, Wash.) 
was advanced distal to the lesion. The rotational ablation 
device, an air-turbine driven burr (Rotablator, Heart 
Technology Inc.) of different sizes (diameter, 1.25 to 2.5 
mm) with 10 ~m diamond chips on the distal portion, was 
tracked proximal to the lesion and then slowly advanced 
during high-speed rotation of the burr at 170,000 to 
200,000 rpm. 

Plaque material was thereby ablated and pulverized 
with the stepped-burr technique aiming at a maximal burr 
size of approximately 75% of the adjacent reference seg- 
ments. After successful high-speed RA was performed, the 
system was exchanged for a BA catheter. To improve the 

final result adjunctive balloon angioplasty 42 was per- 
formed at the site of the artery, which had been previously 

treated by RA. During the entire cardiac catheterization 
procedure the activated clotting time (ACT) was serially 
measured, and intravenous heparin was administered to 
maintain the ACT at 300 seconds. 

Angiographic image acquisition. Dur ing  in i t i a l  coro- 
nary  angiography three views with orthogonal projections 
and an angle of at least 40 degrees between each were ac- 
quired. The lesion characteristics were derived from these 
views. Quantitative angiographic analysis was performed 
after RA treatment and adjunctive BA in the single worst 
view. To allow a reliable off-line quantification of the 
luminal dimensions by videodensitometry, frames with a 
homogeneous and complete opacification of the coronary 
lumen at the segment of interest were selected for analy- 
sis. 

Quantitative coronary angiography. The minimal lu- 
minal area was determined by edge detection and vid- 
eodensitometry. The quantitative analysis of the cinean- 
giograms was performed off-line with the computer-as- 
sisted cardiovascular angiographic analysis system (CAAS, 
Pie Medical, Maastricht, The Netherlands), previously de- 
scribed in detail. 30, 32, 43, 44 First, an end-diastolic cine- 
frame was selected for off-line analysis. A 6.9 × 6.9 mm re- 
gion of interest comprising a chosen coronary segment was 
then selected from the 18 × 24 mm image area on the 35 
mm cineframe and was digitized into a 512 × 512 pixel 
matrix with 258 gray levels (8 bits) with the use of a high- 
fidelity CCD-camera. Edge detection and videodensitome- 
try were then performed. 

Edge detection. Based on the weighted sum of the first 
and second derivative functions applied to the digitized 
brightness silhouette, automatic detection of the coronary 
artery contours was performed. The diameter function of 
the coronary artery lumen was determined by computing 
the shortest distances between the edge points of the left 
and right contours. 43 The interpolated reference diameter 
was based on a computerized estimation of the original ar- 
terial dimension at the site of the obstruction. After the 
procedure was performed, the diameter of the guiding 
catheter was measured by an electronic precision mi- 
crometer (Mitotoyo OP-1HS Tokyo, Japan; accuracy 0.001 
mm). With the measured dimensions of the guiding cath- 
eter used for calibration, absolute values of the minimal 
diameter of the stenosis and reference vessel diameter 
were calculated after correction for pincushion distortion 
was performed. The minimal cross-sectional area of the 



Volume 130, Number 3, Part 1 

American Heart Journal y o n  Birgelen et al. 407 

Fig. 1. Representative quantitative angiographic assessment of lesion in proximal right coronary artery 
before intervention {A), after high-speed rotational atherectomy (B), and after adjunctive balloon angio- 
plasty (C). 

narrowest segment and the interpolated percent area 
stenosis were subsequently calculated assuming a circular 
model (~ r2). 

Videodensitometry. In contrast to edge detection, which 
considers only changes in pixel brightness, videodensito- 
metry makes use of the absolute pixel brightness values. 
To obtain a cross-sectional area function of the lumen along 
a segment of interest from a density silhouette of an opac- 
ified coronary artery, brightness levels have to be cali- 
brated in terms of the amount of x-ray absorption with 
Lambert Beer's law. Corrections for spatially variant 
responses in the imaging chain and processing of the cine- 
film were performed. The contours and diameter values of 
the analyzed coronary segment were obtained from the 
CAAS described previously. The profile of brightness of 
multiple scan-lines perpendicular to the local center-line 
direction of the coronary artery was then measured. Con- 
sequently this brightness profile was transformed by a 
logarithmic transfer function into an absorption profile 
(gross absorption). By computing the linear regression line 
through the background points directly right and left of the 
contours of the coronary silhouette, the background con- 
tribution was estimated and subtracted from the previous 
gross absorption profile to obtain the net cross-sectional 
absorption profile within the vessel contours. Thus a lumi- 
nal cross-sectional area function along the analyzed coro- 
nary artery segment was obtained. Calibration of the vid- 
eodensitometric area values was performed by comparing 
the luminal area of the reference calculated from the 
diameter measurements assuming a circular lumen con- 
figuration with the corresponding densitometric area val- 
ues of the reference. The whole process of measuring lumi- 
nal cross-sectional area by videodensitometry has previ- 
ously been assessed in vitro by perspex models of coronary 

artery obstructions 45 and in vivo with stenosis phantoms, 
which were introduced in porcine coronary arteries. 25 

Statistics. Minimal luminal cross-sectional areas were 
measured by edge detection and videodensitometry in the 
single worst view. Mean and standard deviation of the be- 
tween-method differences were determined at each of the 
three distinct times of angiographic assessment. Analysis 
of variance was performed to compare minimal luminal 
area measurements obtained from edge detection and vid- 
eodensitometry before intervention, after rotational coro- 
nary atherectomy, and after adjunctive balloon angio- 
plasty. When differences were found, two-tailed paired t 
tests were applied, and a statistical probability <0.05 was 
considered significant. Correlation coefficients (r) were 
calculated for the three distinct times of angiographic as- 
sessment to assess the strength of the relation between 
edge detection and videodensitometry in determining the 
minimal luminal cross-sectional area. According to the 
statistical approach of Bland and Altman, 46 the agreement 
between both methods was assessed by determining the 
mean and standard deviation of the between-method dif- 
ferences (edge detection minus videodensitometry). This 
procedure was performed at each of the three distinct times 
of study by computing the sum of the individual between- 
method differences. The variances of the between-method 
differences before intervention, after RA, and after BA 
were tested against each other with Pitman's Test. 47 

RESULTS 

At the three distinct t imes of angiographic assess- 
men t  complete angiographic  perfusion was  found in 
all coronary arteries except one, which was initially 
occluded. The reference d iameter  of the analyzed 



September 1995 
4 0 8  yon Birgelen et al. American Heart Journal 

T a b l e  I I .  Minimal luminal cross-sectional area measurements (mm 2) by edge detection and videodensitometry 

Before intervention After RA After adjunctive BA 
Lesion Vessel 

no. segment ED VD Difference ED VD Difference ED " VD Difference 

1 7 0.79 0.04 0.75 2.66 1.42 1.24 3.14 3.63 -0.49 
2 1 0.49 -1.08 1.57 2.54 0.66 1.88 2.46 2.03 0.43 
3 13 0.93 0.73 0.20 1.56 1.84 -0.28 2.24 3.01 -0.77 
4 13 0.72 0.17 0.55 1.45 1.32 0.13 3.08 2.30 0.78 
5 1 0.71 0.51 0.20 1.11 1.16 -0.05 3.33 2.77 0.56 
6 6 0.87 1.04 -0.17 1.37 1.27 0.10 2.03 1.32 0.71 
7 6 0.92 1.10 -0.18 0.77 1.52 -0.75 2.80 2.29 0.51 
8 1 1:35 1.23 0.12 1.37 0.97 0.40 3.36 2.38 0.98 
9 7 1.63 -0.71 2.34 1.19 1.21 -0.02 3.02 2.81 0.21 

10 8 0.82 0.49 0.33 1.25 1.21 0.04 1.47 1.96 -0.49 
11 2 0.52 0.54 -0.02 1.25 0.88 0.37 1.57 1.96 -0.39 
12 1 - -*  - -  - -  0.55 0.95 -0.40 2.11 2.00 0.11 
13 2 1.47 0.44 1.03 1.58 1.06 0.52 1.47 0.45 1.02 
14 3 0.53 0.43 0.10 0.87 0.46 0.41 2.60 2.88 -0.28 
15 2 1.52 3.01 -1.49 3.70 5.84 -2.14 5.35 9.67 -4.32 
16 2 0.75 1.35 -0.60 1.61 1.59 0.02 2.32 1.58 0.74 
17 6 1.33 -0.56 1.89 1.25 1.18 0.07 1.77 0.53 1.24 
18 6 0.83 1.01 -0.18 1.37 1.67 -0.30 1.86 2.78 -0.92 
19 6 0.52 0.56 -0.04 1.63 1.19 0.44 1.65 1.51 0.14 
20 2 0.92 1.10 -0.18 1.39 1.59 -0.20 2.75 2.17 0.58 
21 7 0.49 -0.10 0.59 1.15 -0.05 1.20 1.11 -0.43 1.54 

Mean 0.90 0.57 ' 0.34 1.50 1.38 0.13 2.45 2.36 0.09 
SD 0.36 0.88 0.87 0.70 1.11 0.80 0.94 1.92 1.21 

ED, Edge detection; VD, videodensitometry. 
*Initially occluded coronary artery. 

coronary arteries was 2.68 _+ 0.52 mm (range, 2.09 to 
4.02 mm), and the lesion length was 7.45 _+ 2.81 mm 
(range, 4.30 to 13.46 mm). The obstruction diameter 
increased from 1.00 _+ 0.31 mm before intervention 
to 1.35 _+ 0.29 mm after RA (p < 0.001) (Table I). Af- 
ter adjunctive BA was performed, the obstruction 
diameter was further enlarged to 1.74 _+ 0.33 mm 
(p < 0.001). Interventional therapy reduced the di- 
ameter stenosis from 61.7% -+ 12.2% before therapy 
to 49.38% _+ 7.41% after RA '(p <0.001) and to 
35.4% _+ 10.12% after adjunctive BA (p < 0.001) (Fig. 
1). 

In Table II the individual data of the minimal lu- 
minal cross-sectional area measured by edge detec- 
tion and videodensitometry and the individual and 
mean between-method differences are presented for 
the three distinct times of angiographic measure- 
ment. The agreement between both diagnostic meth- 
ods before and after RA and after BA is illustrated in 
Fig. 2. At each of the three times of angiographic 
study, minimal luminal cross-sectional area was de- 
termined to be greater by edge detection than by 
videodensitometry. Mean difference was lower after 
RA and after adjunctive BA (0.13 mm 2 and 0.09 mm 2, 
respectively) compared with preintervention (0.34 
mm2). The standard deviation of the between-method 

differences, representing the variability, decreased 
from 0.87 mm 2 before intervention to 0.80 mm 2 after 
RA (not significant). After adjunctive BA was per- 
formed, the standard deviation of the between- 
method differences increased significantly to 1.21 
mm 2 (after RAvs after BA, p < 0.05). The correlation 
coefficient r of measurements by edge detection and 
videodensitometry increased from 0.22 before inter- 
vention to 0.70 after RA and to 0.86 after adjunctive 
BA. In all the cineangiograms no evidence of dissec- 
tion was seen after RA was performed, but after ad- 
junctive BA was performed, six (29%) of the previ- 
ously dilated coronary segments showed character- 
istics of coronary dissection (three NHLBI dissection- 
type A, two type B, and one type D). 

D I S C U S S I O N  

Two findings of this study should be emphasized. 
First, no significant difference of the mean between- 
method difference (edge detection minus videoden- 
sitometry) was seen after RA and after adjunctive BA 
were performed. Second, the standard deviation of 
the between-method differences increased signifi- 
cantly after BA was performed. These results may 
well reflect the operative mechanisms of the two de- 
vices, but the accuracy of the two quantitative 
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angiographic techniques cannot be determined and 
compared, because the true dimension of the vessels 
is unknown. 48, 49 

Limitations of videodensitometry. In some cases vid- 
eodensitometry provides negative values of the min- 
imal luminal cross-sectional area. Negative values 
are more frequently found in coronary angiograms 
with side-branches or other radiopaque structures, 
interfering with the densitometric measurements by 
increasing the brightness profile of the reference 
segment. This overestimation of the reference bright- 
ness profile results in an underestimation of the 
minimal luminal cross-sectional area. 26 In this study 
negative values were more frequently found during 
the angiographic assessment before intervention, 
explaining the positive value of the mean between- 
method difference (edge detection minus videoden- 
sitometry). This finding concurs with previous re- 
ports that  describe an increased incidence of nega- 
tive values of minimal luminal cross-sectional area 
obtained from videodensitometry in smaller luminal 
dimensions. 26 In this study only one negative value 
of the minimal luminal cross-sectional area was ob- 
tained after RA and after adjunctive BA, respec- 
tively. This limitation of videodensitometry should 
soon be overcome by the incorporation of a back- 
ground subtraction algorithm that  corrects for the 
contribution of side-branches to the brightness in- 
tensity. 5° 

Quantitative coronary angiography in complex le- 
sions. The low correlation of the quantitative anglo- 
graphic measurements before intervention was strik- 
ing. Several reasons such as the high rate of complex 
and narrow lesions in small, calcified, and tortuous 
coronary arteries and the higher incidence of nega- 
tive values of minimal luminal cross-sectional area 
before intervention might be responsible for this 
finding. 51 A new approach in quantitative coronary 
angiography is the gradient field transform. With 
the use of this new algorithm promising results in 
the quantification of complex coronary artery lesions 
have recently been reported. 52 

Mechanism of rotational atherectomy. Edge detection 
is a quantitative angiographic method that  is based 
on a computerized detection of the geometric con- 
tours of the vessel lumen, whereas videodensitome- 
try operates independently of the geometric stenosis 
profile by using the optical density of the opacified 
coronary artery. 27, 29, 30, 32, 35, 50 Differences between 
the results obtained by the two methods are less 
likely to be expected in a circular symmetric lumen, 
because luminal circularity is an elementary as- 
sumption in the calculation of minimal luminal 
cross-sectional area by edge detection in a single 
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Fig. 2. Agreement of edge detection (ED) and videodensi- 
tometry (VD) in measuring minimal luminal cross-sec- 
tional area (MLCA). Mean between-method difference (ED 
minus VD) was lower after rotational atherectomy (B) and 
adjunctive balloon angioplasty (C) (0.13 mm 2 and 0.09 
mm 2, respectively) compared with before intervention (A) 
(0.34 mm2). Standard deviation (SD) of between-method 
differences after rotational atherectomy remained similar 
to before intervention (0.80 mm 2 and 0.87 mm 2, respec- 
tively), whereas significant increase (p < 0.05) was found 
after adjunctive balloon angioplasty (1.21 mm2). 

view. Thus less discrepancy between edge detection 
and videodensitometry was expected after plaque 
ablation by RA, and accordingly, good agreement of 
the two quantitative angiographic methods was 
found after RA. The presumption that  the good 
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Fig. 3. Example of stenotic, circumferentially calcified proximal segment of left anterior descending cor- 
onary artery treated by rotational atherectomy and adjunctive balloon angioplasty. Intravascular ultra- 
sound (IVUS) study reflects operative mechanism of both interventional techniques. Positions of 
mid-stenotic (A) and proximal (B) cross-sections, displayed in mid and lower panels, are indicated in 
three-dimensional IVUS lumen cast (upper panel), reconstructed from images acquired during motorized 
pull-back of IVUS catheter after rotational atherectomy. In cross-sectional images and in lumen cast, rel- 
atively smooth and circular lumen shape was found, whereas adjunctive balloon dilatation resulted in 
plaque rupture and dissection (large arrowheads) and intimal flaps (small arrowheads). 

agreement resulted from plaque ablation providing 
a circular lumen shape with a smooth surface, 53 as 
confirmed by intracoronary ultrasonography 7,54 
(Fig. 3), is supported by our previous observations 
describing increased agreement and correlation of 
the two angiographic techniques after coronary stent- 
ing. 32 

Mechanism of adjunctive balloon dilatation. In this 
study the incidence of angiographically detected dis- 
section after adjunctive BA was similar to that  
observed after primary BA. 55, 56 Dissections are less 
frequent after RA than after BA, 11 and in the Rota- 
tional Atherectomy Multicenter Registry of 709 pa- 
tients, dissections were found in 10.5% of cases. 12 
Adjunctive BA increases the incidence of dissections 

after RA, 57 but on the other hand BA can be used for 
management of coronary dissections after RA. 9 Be- 
cause the main operative mechanism of BA is rup- 
ture and dissection of the atherosclerotic plaque, a 
less circular and less smooth vessel shape would be 
expected after balloon dilatation, thus explaining the 
increased standard deviation of the between-method 
differences found after adjunctive BA. This increased 
variability of the between-method differences after 
adjunctive BA is in accordance with our previous 
studies performed after BA. 3°, 32 

Conclusions. When the immediate results after RA 
and adjunctive BA are assessed, edge detection and 
videodensitometry provide equivalent information. 
As with previous clinical studies investigating the 
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dimension of coronary lesions, the true absolute size 
of the coronary vessels is unknown, and it is thus not 
possible to define whether the accuracy of one of the 
techniques is superior to the other. Good agreement 
of edge detection and videodensitometry was found 
after RA, reflecting the operative mechanism of RA, 
which provides a circular lumen shape with a smooth 
surface by ablation and pulverization of noncompli- 
ant plaque material. Adjunctive BA further enlarged 
the minimal luminal cross-sectional area but also 
increased the variability of the differences between 
the measurements provided by edge detection and 
videodensitometry. This increase is believed to result 
from dissections, plaque ruptures, and loss of lumi- 
nal smoothness produced by balloon angioplasty. 
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