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Summary

The chytrid fungi Piromyces sp. E2 and Neocallimastix

sp. L2 are obligatory amitochondriate anaerobes that

possesshydrogenosomes.Hydrogenosomesarehighly

specialized organelles engaged in anaerobic carbon

metabolism; they generate molecular hydrogen and

ATP. Here, we show for the ®rst time that chytrid

hydrogenosomes use pyruvate formate-lyase (PFL)

and not pyruvate:ferredoxin oxidoreductase (PFO) for

pyruvate catabolism, unlike all other hydrogenosomes

studied to date. Chytrid PFLs are encoded by a multi-

gene family and are abundantly expressed in Piro-

myces sp. E2 and Neocallimastix sp. L2. Western

blotting after cellular fractionation, proteinase K pro-

tection assays and determinations of enzyme activities

reveal that PFL is present in the hydrogenosomes of

Piromyces sp. E2. The main route of the hydrogenoso-

mal carbon metabolism involves PFL; the formation

of equimolar amounts of formate and acetate by iso-

lated hydrogenosomes excludes a signi®cant contri-

bution by PFO. Our data support the assumption that

chytrid hydrogenosomes are unique and argue for a

polyphyletic origin of these organelles.

Introduction

Hydrogenosomes are membrane-bound organelles found

in a wide variety of unicellular anaerobic eukaryotes. These

protists belong to phylogenetically rather unrelated groups,

and it is likely that their hydrogenosomes evolved several

times in different, phylogenetically disparate lineages (Emb-

ley et al., 1995; Martin and MuÈller, 1998). Hydrogenosomes

metabolize pyruvate or malate to hydrogen, acetate and

CO2, and they are characterized by their key enzymes

hydrogenase and pyruvate:ferredoxin oxidoreductase

(PFO) (Yarlett et al., 1986; O'Fallon et al., 1991; Marvin-

Sikkema et al., 1993a; MuÈ ller, 1993; Trinci et al., 1994).

However, our knowledge about hydrogenosomes is mainly

based on studies carried out over the last decade of the

hydrogenosomes of Trichomonas vaginalis and its rela-

tives, and it cannot be excluded that the hydrogenosomes

of the various protists have deviating properties (MuÈ ller,

1993; Coombs and Hackstein, 1995).

There is evidence that the hydrogenosomes of anaerobic

chytrids are different; their ultrastructure exhibits a number

of traits that discriminates them clearly from the hydro-

genosomes of Trichomonas (Yarlett et al., 1986; Marvin-

Sikkema et al., 1993a,b; Benchimol et al., 1996a,b).

Moreover, it has been claimed that ± in contrast to Tricho-

monas ± the hydrogenosomes of chytrids rely on malate

rather than pyruvate for their metabolism (Marvin-Sikkema

et al., 1994). Also, the evidence for PFO activity in the

hydrogenosomes of chytrids is poor. Notwithstanding that

hydrogenosomes of chytrids possess a highly active

hydrogenase, only low levels of PFO activity were

measured in the hydrogenosomal fraction of these cells

by Marvin-Sikkema et al. (1993a). Measurements of fer-

mentation products of isolated hydrogenosomes seemed

to support the assumption that PFO is a key enzyme in

the hydrogenosomes of the chytrid Neocallimastix, similar

to the situation in the hydrogenosomes of the parabasalid

Trichomonas. However, formation of CO2 by isolated

hydrogenosomes could not be detected, although the for-

mation of 2 mol of CO2 per mol of malate utilized had been

postulated (Marvin-Sikkema et al., 1994). Moreover, also

the formation of substantial amounts of formate by the

axenic cultures of the chytrids Neocallimastix sp. L2 and

Piromyces sp. E2 (Marvin-Sikkema et al., 1992; F. G. J.

Voncken, unpublished) was in con¯ict with the metabolic

scheme that had been postulated (Marvin-Sikkema et al.,

1993a; 1994). Because of these puzzling results, only an

alternative, molecular genetic approach in combination

with biochemical techniques promised a chance to unravel

the elusive metabolism of chytrid hydrogenosomes.
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Because intensive attempts to isolate chytrid genes

encoding PFO with the aid of PCR techniques have failed,

we constructed a cDNA library using mRNA from rapidly

growing, hydrogen-producing cultures of the anaerobic

chytrid Piromyces sp. E2. We anticipated that genes encod-

ing hydrogenosomal enzymes must be highly expressed

under conditions in which maximum hydrogen production

is observed (Teunissen et al., 1991). DNA sequencing

of 90 randomly chosen clones of this cDNA bank failed

to identify any PFO gene but 6 out of the 90 clones exhibited

a substantial homology to prokaryotic pyruvate formate-

lyase (PFL), another pyruvate-converting enzyme. Here,

we show that mRNAs encoding putative PFLs are abun-

dantly expressed, and that PFL activity can be detected

in the hydrogenosomes of Piromyces sp. E2. We show

also that the fermentation patterns of isolated hydrogeno-

somes support the assumption that PFL and not PFO

is one of the key enzymes of the hydrogenosomal meta-

bolism of anaerobic chytrids. We will discuss a potential

eubacterial origin of the PFL of anaerobic chytrid fungi

and its bearing for a potential polyphyletic origin of the

hydrogenosomes.

Results

Isolation of PFL-encoding cDNAs from the Piromyces

sp. E2 cDNA library

Ninety clones, randomly chosen from a Piromyces sp. E2

cDNA library that has been described earlier (Akhmanova et

al., 1998a), were partially sequenced. Among these cDNAs,

six clones (named pPFLh104, pPFLh112, pPFLh114,

pPFLh115, pPFLh140 and pPFLa12; see Fig. 1) displayed

a high degree of similarity to pyruvate formate-lyase

(PFL)-encoding genes from different eubacteria. The long-

est of these cDNAs (pPFLh115) was sequenced com-

pletely. It contained an open reading frame (ORF) of

2040 bp, which could be aligned over the whole length

with a p¯ gene of Clostridium pasteurianum (Weidner and

Sawers, 1996). However, the absence of an AT-rich 58

untranslated region (UTR) that is characteristic for genes

of anaerobic chytrids (Durand et al., 1995; Fanutti et al.,

1995; unpublished observations of the authors) and the

lack of a translation start codon indicated that the

pPFLh115 cDNA was incomplete.

To obtain the 58 part of this cDNA, we performed a 58

rapid ampli®cation of cDNA ends PCR (RACE±PCR)

with the primers PFLrev1 or PFLrev3 (see Fig. 1). With

the primer PFLrev1, three clones (pL1, pL2 and pL3)

were isolated. DNA sequence analysis of these clones

revealed an exact match with the clone pPFLh115 over a

contiguous stretch of 811 bp. Consequently, the clones

pL1, pL2, pL3 and pPFLh115 must be derived from the

same gene. Also, one of the clones (pL4) that were

obtained with the primer PFLrev3 must be derived from

this p¯ gene. However, the clones pL5, pL6 and pL7

(also obtained with the primer PFLrev3; see Fig. 1) dif-

fered in several positions and must be derived from differ-

ent p¯ genes.

A complete gene encoding a putative PFL (`PFL±L1')

was reconstructed from the clones pPFLh115 and pL1.

The gene contained an ORF encoding a protein of 805

amino acids with a predicted molecular mass of 89 kDa.

At the amino acid level, the predicted protein exhibited a

substantial similarity with the PFL of Clostridium pasteur-

ianum (77% similarity and 61% identity). The amino acids

that are involved in catalysis, for example the neighbour-

ing cysteines in the middle part of the protein (Knappe

and Sawers, 1990) and the glycine residue near the C-ter-

minus (Wagner et al., 1992; see Fig. 2B), are conserved.

Also, the C-terminus of PFL±L1 exhibits a high degree of

similarity to the C-terminus of the Clostridium pasteuria-

num PFL (Fig. 2B). The N-termini, in contrast, are rather

divergent.

Alignment of PFL±L1 with the deduced Clostridium pas-

teurianum PFL sequence revealed that the chytrid sequ-

ence possesses a N-terminal extension of 61 amino

acids (Fig. 2A). This N-terminal extension is enriched in

positively charged and hydroxylated amino acids. Because

such an amino acid composition is similar to that of mito-

chondrial transit peptides (Hendrick et al., 1989; von Heijne

et al., 1989), the N-terminal extension of PFL±L1 might
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Fig. 1. PFL-encoding cDNA clones from Piromyces sp. E2. The
scheme of the composite cDNA sequence PFL±L1 (assembled
from clones pL1 and pPFLh115) is shown at the top, with the black
box indicating the open reading frame. cDNA clones, identi®ed by
random screening (designated pPFL) or isolated by 58 RACE (the
rest of the clones) are shown by thick lines. Short thick arrows
indicate the position of the PFL-speci®c primers PFLrev1 to
PFLrev4 (marked 1±4) used in this study. Thin bent arrows indicate
the positions of the ®rst ATG codon, and the asterisks indicate the
position of the stop codon. Groups of clones, identical in the
overlapping regions, are marked with curly brackets.
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represent a hydrogenosomal targeting signal (see Brondijk

et al., 1996; van der Giezen et al., 1997; 1998).

The high similarity between PFL±L1 of Piromyces sp.

E2 and the PFL-encoding genes of the various eubacteria,

including Escherichia coli, Clostridium, Streptococcus and

Lactococcus (RoÈdel et al., 1988; Weidner and Sawers,

1996; Yamamoto et al., 1996; Arnau et al., 1997), sug-

gests a prokaryotic rather than an eukaryotic origin. A pair-

wise comparison of the C-terminal parts of different PFL

enzymes strongly supports this interpretation. Therefore,

it is not surprising that phylogenetic analyses using neigh-

bour-joining, parsimony or maximum likelihood methods

revealed that the two eukaryotic sequences known to date

(Piromyces sp. E2 and Chlamydomonas reinhardtii ) do

not form a separate clade (Fig. 3).

PFL proteins of Piromyces sp. E2 are encoded by a

multigene family

All six cDNA clones obtained by random sequencing of the

cDNA library (i.e. pPFLh104, pPFLh112, pPFLh114,

pPFLh115, pPFLh140 and pPFLa12; see Fig. 1) were

different (Fig. 4B). Also, the clones pL5, pL6 and pL7

(see Fig. 1), representing the 58 part of PFL cDNAs, dif-

fered at multiple positions from the PFL±L1 sequence

(Fig. 4A). The majority of the sequence differences were
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Fig. 2. Multiple alignments of the deduced N-terminal (A) and C-terminal (B) sequences of different putative PFL enzymes. Amino acids
identical in all sequences are in bold and shaded with dark grey. Amino acids similar in more than 70% of the sequences are shaded with
light grey. For database accession numbers, see legend to Fig. 3. Glycine residue, involved in catalysis (Wagner et al., 1992) is underlined.
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observed in the non-coding 58 and 38 UTRs (Fig. 4). In the

coding regions, many synonymous, but also a few non-

synonymous, substitutions were present (Figs 2A and

4). Our data strongly suggest that the genome of Piro-

myces sp. E2 possesses multiple, non-identical genes

that encode several putative PFL isoforms. This assump-

tion has been con®rmed by Southern blotting of genomic

DNA from Piromyces sp. E2 (Fig. 5). Because the PFL

probe that was hybridized to the blot did not contain

restriction sites for the enzymes that had been used for

the digestion of the genomic DNA, the multiple bands

observed on the blot argue for the presence of multiple

copies of p¯ genes. It is unlikely that restriction sites in

introns contributed signi®cantly to the complex pattern of

restriction fragments because introns in the genome of Pir-

omyces sp. E2 are rare and small (F. Voncken and H. Har-

hangi, unpublished).

Because the p¯±l1 gene of Piromyces sp. E2 encodes

an N-terminal extension that might function as a hydro-

genosomal import and targeting signal, the question arose

as to whether all p¯ genes encode such an N-terminal exten-

sion or whether some of the p¯ genes lack such an N-ter-

minus. The latter ones might encode a cytoplasmic PFL,

which has been postulated by Marvin-Sikkema et al.

(1993a). Therefore, we performed a 58 RACE±PCR with

the primer PFLrev2 (see Fig. 1) to identify genes with and

without an N-terminal extension. In addition to clones iden-

tical to pL1 (possessing the N-terminal extension), two

shorter clones (pS1 and pS2) were identi®ed that lacked

the ®rst 74 N-terminal amino acids encoded by pL1 (Fig.

2A). Moreover, they differed from each other by four nucleo-

tide substitutions (one of them non-synonymous) (Figs 2A

and 4A). Comparison of the pS1 clone as a representative

of the `short'-type PFL with the pL1 clone (a representative

of the `long'-type PFL) revealed a 58.2% identity at the

protein level. Thus, it has to be concluded that a multigene

family, encoding two types of PFL (e.g. `short'- and `long'-

type PFL), is present in the genome of Piromyces sp. E2.

Here, we have identi®ed two clones coding for the `short'-

type PFLs, which differed from each other by one amino

acid substitution, and three clones encoding the `long'-

type PFLs, which differed from each other by several

amino acid substitutions and insertions/deletions (see

Fig. 2A).

Expression of p¯ genes at the mRNA level

The transcription of the p¯ genes of Piromyces sp. E2 was

investigated by Northern blotting (Fig. 6). Two transcripts

of 2800 and 3000 nucleotides, respectively, were observed

on the Northern blot when the clone pPFLh115 was used

as a probe (Fig. 6A). To investigate whether the two tran-

scripts correspond to the `long' and `short' type of PFL, the

probes derived from the 58 terminal parts of the clones pL1

(`long' type) and pS2 (`short' type) were hybridized to the

same Northern blot lanes. The `long'-type probe hybrid-

ized to both transcripts, obviously as a result of a length

polymorphism at the 38 end (see Fig. 4B). The `short'-

type probe hybridized only to the 2800 nt long mRNA

(Fig. 6B and C). Consequently, it must be concluded that

both the `long' and the `short' types of p¯ genes are abun-

dantly expressed.
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Fig. 3. Phylogenetic analysis of the C-terminal parts of the
deduced PFL sequences by using the maximum likelihood method.
C-terminal parts of the PFL sequences, corresponding to the
sequence fragment available for Chlamydomonas reinhardtii
(starting from amino acid residue 612 of Piromyces sp. E2 PFL±
L1) were aligned with the program PILEUP and the alignment was
re®ned by visual inspection. The best tree obtained by an
exhaustive search using the PROTML program is shown. A tree with
a similar topology was obtained with the neighbour-joining method.
The numbers between brackets indicate the bootstrap values
obtained for the same clades by using the neighbour-joining
method. Database accession numbers are: Clostridium
pasteurianum, Q46267 (Weidner and Sawers, 1996);
Chlamydomonas reinhardtii, P37836 (Dumont et al., 1993); E. coli
PFLB, P09373 (RoÈdel et al., 1988); E. coli PFL3, P42632 (Blattner
et al., 1997; Hesslinger et al., 1998); E. coli PFLD, P32674
(Blattner et al., 1993; Reizer et al., 1995); Haemophilus in¯uenzae,
P43753 (Fleischmann et al., 1995); Streptococcus mutans, Q59934
(Yamamoto et al., 1996); Lactococcus lactis, AJ000326 (Arnau
et al., 1997).

Fig. 4. Multiple alignments of the 58 terminal (A) and the 38 terminal (B) nucleotide sequences of different putative PFL-encoding cDNA
fragments from Piromyces sp. E2. Coding sequences are shown in bold. The numbering corresponds to the nucleotide positions in the
composite cDNA sequence PFL±L1. Nucleotides identical in all sequences are shaded with dark grey. Additionally, nucleotides conserved in
more than 60% of the sequences are shaded with light grey in A. In B, the encoded amino acids (derived from the clone pPFLh115) are
shown above the nucleotide alignment. The amino acids encoded by clones pPFLa12, pPFLh112 and pPFLh140, which are different from
those encoded by pPFLh115, are also indicated. The start codon (ATG) is marked by a bent arrow, whereas the stop codon is marked with an
asterisk. The sequence data have been submitted to the DDBJ/EMBL/GenBank databases under the accession numbers Y16739 (composite
cDNA PFL±L1); Y16738 (clone pS2); Y16740 (clone pPFLh104); Y16741 (clone pL7); Y16742 (clone pPFLh114); Y16744 (clone pS1);
Y16745 (clone pPFLh112); Y16746 (clone pPFLa12); Y16749 (clone pPFLh140); and Y16750 (clone pL3).
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Also, on Northern blots with RNA from a related anaero-

bic chytrid species, Neocallimastix sp. L2, two different

transcripts could be readily detected using a Piromyces

sp. E2 PFL probe (Fig. 6D). This suggests that abundant

expression of p¯ genes is a general feature of anaerobic

chytrids.

Expression of PFL at the protein level

The subcellular localization of PFL in Piromyces sp. E2

was investigated by cellular fractionation followed by

Western blotting with an antiserum raised against pyruvate

formate-lyase (PFLB) from E. coli (Conradt et al., 1984;

RoÈdel et al., 1988). In both the hydrogenosomal and

the cytosolic fraction of a homogenate of the mycelium,

a double protein band with a molecular mass of <80±

82 kDa was recognized by the antiserum (Fig. 7A). Such

a doublet is characteristic for bacterial PFLs. It is the con-

sequence of a speci®c fragmentation of the activated (free

radical bearing) form of PFL in the presence of oxygen

(Wagner et al., 1992). The observed molecular mass of

the hydrogenosomal PFL of Piromyces sp. E2 is 7 kDa

lower than the predicted molecular mass of the `long'-

type PFL from Piromyces sp. E2 (89 kDa). This difference

might be the consequence of a proteolytic processing of

the `long'-type PFL upon import into the hydrogenosomes

because a removal of the putative N-terminal import signal

from this isoform could account precisely for the observed

difference. However, because we cannot exclude that the

`short'-type (`cytoplasmic') PFLs could also account for a

cross-reacting protein with a molecular mass of <81 kDa

(if the C-terminal part of the `short' PFLs does not contain

signi®cant deletions or insertions), a con®rmation of the

hydrogenosomal localization is required.

Also in Neocallimastix sp. L2, a cross-reacting protein

of the same size could be detected by Western blotting

in both the cytosolic and the hydrogenosomal fractions

(Fig. 7B). Also, in this chytrid species, part of the hydro-

genosomal PFL appears to be membrane bound.

A proteinase K protection assay with isolated hydro-

genosomes revealed that, in the absence of Triton X-100

(when the hydrogenosomal membranes are intact), PFL

Q 1999 Blackwell Science Ltd, Molecular Microbiology, 32, 1103±1114

Fig. 5. Southern blot of genomic DNA from Piromyces sp. E2. Ten
micrograms of genomic DNA digested with BamHI (B), ClaI (C),
EcoRI (E), Kpn I (K) and XbaI (X) was loaded per lane. cDNA
clone pPFLa12, containing the 38 terminal part of the PFL-encoding
gene, was used as probe. This probe does not contain restriction
sites for the enzymes used for genomic DNA digestion.

Fig. 6. Analysis of PFL expression by Northern blotting.
A. Northern blot with 10 mg of total RNA from Piromyces sp. E2,
probed with the pPFLh115 clone.
B. The same lane as in A, probed with the 58 part of the pL1 clone
(`long'-type speci®c probe).
C. The same lane as in A, probed with the 58 part of the pS2 clone
(`short'-type speci®c probe).
D. Northern blot with 1 mg of poly(A)� RNA from Neocallimastix sp.
L2, probed with the pPFLh115 clone.

Fig. 7. Western blot analysis of the subcellular distribution of PFL.
Western blotting of different subcellular fractions from Piromyces
sp. E2 (A) and Neocallimastix sp. L2 (B). Cyt, cytosolic fraction.
Hydrogenosomal fractions (Hdg) are indicated as follows: Ma,
hydrogenosomal matrix; PM, peripheral membrane bound; and IM,
integral membrane protein fraction. The antiserum used was
directed against PFLB protein from E. coli.
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was protected against digestion by proteinase K (Fig. 8).

Addition of Triton X-100 to the hydrogenosomal fraction

resulted in a complete digestion of the cross-reacting pro-

tein (Fig. 8). Consequently, PFL proteins must be located

inside the hydrogenosome.

PFL activities in the hydrogenosomal and cytosolic

fractions

Cellular fractionation and Western blotting revealed the

presence of PFL in both the hydrogenosomes and the

cytoplasm of Piromyces sp. E2 and Neocallimastix sp. L2.

This subcellular localization has been con®rmed by enzy-

matic measurements of PFL activity (Table 1). In the hydro-

genosomes, PFL activity exceeded the activity in the

cytoplasm by a factor of two. The speci®city of the PFL

assay has been tested; it was possible to inhibit the reaction

completely by hypophosphite, a structural analogue of for-

mate that acts as a suicide substrate (Plaga et al., 1988).

Incubation of the hydrogenosomal fraction with pyruvate

or malate, respectively, con®rmed that the hydrogenosomes

used malate, but not pyruvate for hydrogen formation. How-

ever, in contrast to the observations of Marvin-Sikkema et

al. (1994), our measurements revealed that <1 mol of

hydrogen was formed per 1 mol of malate utilized (Fig. 9;

see also Marvin-Sikkema et al., 1994). Because acetate

and formate were also produced in equimolar amounts,

a signi®cant PFO activity in the hydrogenosomes could

be excluded. However, only 0.7 mol of acetate and formate

was formed per 1 mol of malate consumed. As a concomitant

accumulation of pyruvate (<0.3 mol per 1 mol of con-

sumed malate) has been observed (Fig. 9), the low product

levels can be explained by the assumption that the PFL

activity is rate limiting in isolated hydrogenosomes. Conse-

quently, all data strongly support the assumption that PFL

and not PFO is one of the key enzymes of the hydrogeno-

somal metabolism of chytrids.

Discussion

In this study, we have demonstrated for the ®rst time that

hydrogenosomes of anaerobic chytrids exhibit PFL activity,

in contrast to all other hydrogenosomes that have been

studied to date (MuÈ ller, 1993; Embley et al., 1995; Biagini

et al., 1997). The presence of PFL in the hydrogenosomes

of Piromyces sp. E2 and Neocallimastix sp. L2 has clearly

been demonstrated by subcellular fractionation, Western

blotting (Fig. 7), proteinase K protection assay (Fig. 8),

measurements of enzyme activities (Table 1) and the fer-

mentation patterns (Fig. 9). Northern and Western blotting

have revealed that PFL genes are highly expressed in both

species. We have shown that the p¯ genes of Piromyces

sp. E2 constitute a multigene family, which encodes

`long'- and `short'-type PFLs. Both types are abundantly

expressed, and it is likely that it is the `long' type that

encodes the hydrogenosomal PFLs. It remains to be

shown that the N-terminal extension of 61 amino acids

that is encoded by the `long' PFL genes represents a

hydrogenosomal targeting signal because the evidence

that the extension might be cleaved off after import into
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Fig. 8. Proteinase K protection assay with isolated hydrogenosomes.
Hydrogenosomes were incubated in the absence (ÿ) or presence
of 0.2 (�) or 20 (��) mg mlÿ1 proteinase K and in the presence (�)
or absence (ÿ) of detergent (0.1% Triton X-100 and 0.1%
deoxycholate). The Western blot was incubated with antiserum
against PFL from E. coli.

Table 1. PFL activities in the cytosolic and hydrogenosomal fractions
of Piromyces sp. E2.

Enzyme activity (mmol mgÿ1 protein)

Cytosol Hydrogenosomes

PFL 0.111 0.235
PFL� hypophosphite ND ND

PFL activity was measured by formate production after 60 min incu-
bation at 398C. Hypophosphite, a specific inhibitor of PFL activity,
was added to a final concentration of 10 mM. ND, not detectable.

Fig. 9. Consumption of malate and production of hydrogen,
acetate, formate and pyruvate by isolated Piromyces sp. E2
hydrogenosomes. Suspensions of isolated hydrogenosomes
(aliquots containing <0.55 mg protein) were incubated anaerobically
in the assay mixture (see Experimental procedures ) at 398C. Liquid
samples (excreted products plus hydrogenosomal contents) were
analysed for malate, pyruvate, acetate and formate. Gas samples
were analysed by gas chromatography for the determination of
the hydrogen concentration. The following symbols are used:
B pyruvate; O acetate; W formate; ´ hydrogen; l malate.
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the hydrogenosome is circumstantial (Fig. 7). However, it

has been shown that similar, albeit considerably shorter,

N-terminal leader sequences have been described for

other hydrogenosomal enzymes such as malic enzyme

and succinyl-CoA synthetase (Brondijk et al., 1996; van

der Giezen et al., 1997). These N-terminal extensions

are cleaved upon import into the hydrogenosomes (van

der Giezen et al., 1997; 1998).

The fermentation pattern measured after incubation of

isolated hydrogenosomes with malate as a substrate is

in agreement with the assumption that the main carbon

¯ow in the hydrogenosomes of chytrids occurs via PFL

(Fig. 9). The formation of equimolar amounts of formate

and acetate de®nitely excludes a signi®cant PFO activity

being present in chytrid hydrogenosomes (Fig. 9). Thus,

all available evidence consistently shows that PFL, and

not PFO, is one of the key enzymes in the hydrogenosomes

of anaerobic chytrids. This discriminates the chytrid hydro-

genosomes clearly from the hydrogenosomes of the para-

basalids Trichomonas vaginalis and Tritrichomonas foetus

(SteinbuÈchel and MuÈller, 1986; MuÈller, 1993) and the ciliate

Dasytricha ruminantium (Yarlett et al., 1982), the only other

organisms in which the hydrogenosomal metabolism has

been studied in more detail. Because there is no simple

answer to the question as to why hydrogenosomes of chy-

trids use a PFL instead of a PFO, one might speculate

whether the descent and the evolutionary history of the

anaerobic chytrids can provide arguments to understand

the reasons for this important difference.

These anaerobic chytridiomycete fungi are unrelated to

trichomonads and ciliates; phylogenetic analysis of their

rRNA genes and biochemical and morphological evidence

has shown unequivocally that they belong to the `crown

group' of eukaryotic microorganisms that secondarily

adapted to an anoxic environment (Ragan and Chapman,

1978; Dore and Stahl, 1991; Sogin, 1991; Bowman et al.,

1992; Knoll, 1992; Li and Heath, 1992; Li et al., 1993). Evi-

dence has been presented that this adaptation involved a

retargeting of mitochondrial enzymes such as the tricar-

boxylic acid cycle enzymes malate dehydrogenase and

aconitase to the cytoplasm (Akhmanova et al., 1998a;

Fig. 10). As the acetohydroxyacid reductoisomerase is

also located in the cytoplasm, one might even speculate

as to whether anaerobic chytrids lost their mitochondria

during their adaptation to anaerobic environments.

Phylogenetic analysis strongly suggests that Piromyces
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Fig. 10. Scheme of the glucose catabolic pathway in anaerobic chytrids (Piromyces sp. E2 and Neocallimastix sp. L2), based on the studies
described previously by Marvin-Sikkema et al. (1993a; 1994), Akhmanova et al. (1998a) and present study. Box represents the
hydrogenosome. Question marks indicate enzymes and transporters, the existence of which is uncertain. Abbreviations: PEP,
phosphoenolpyruvate; OAA, oxaloacetate; PEPCK, phosphoenolpyruvate carboxykinase; malate DHM, malate dehydrogenase (of
mitochondrial origin; also, for aconitase, superscript M indicates mitochondrial origin); succinate DH, succinate dehydrohenase; IDHM?,
isocitrate dehydrogenase (origin uncertain); PK, pyruvate kinase; LDH, lactate dehydrogenase; PFL, pyruvate formate-lyase; ACDH,
acetaldehyde dehydrogenase; ADH, alcohol dehydrogenase; AST, acetate:succinate CoA transferase; STK, succinate thiokinase; AAC,
ATP/ADP carrier; (I), putative mitochondrial complex I-homologous hydrogenase subunits, which would allow direct NAD(P)H oxidation by
the hydrogenase (Akhmanova et al., 1998b)
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sp. E2 acquired PFL from a prokaryotic source, perhaps

from a Clostridium-like eubacterium (Fig. 3). Such a PFL

enables the chytrid to avoid the generation of reduction

equivalents during the metabolism of pyruvate (Fig. 10).

However, the formation (and excretion) of formate and

acetate only allows the generation of one ATP molecule

by substrate level phosphorylation. Compartmentalization

of the pyruvate catabolism, i.e. the evolution of hydrogeno-

somes, might allow the generation of extra ATP molecules

by the generation of a proton motive force.

The presence of PFL instead of PFO in the hydrogeno-

somes of anaerobic chytrids has at least one obvious

consequence, i.e. these hydrogenosomes cannot rely on

pyruvate for hydrogen formation (see Marvin-Sikkema et

al., 1994; K. Hosea, unpublished). The formation of mole-

cular hydrogen requires reduction equivalents that, in the

hydrogenosomes of chytrids, seem to be provided by a

hydrogenosomal malic enzyme that catalyses the oxidative

decarboxylation of malate to pyruvate (Fig. 10). This also

implies that the NAD(P)H that is generated by the hydro-

genosomal malic enzyme must be reoxidized by the hydro-

genase, either directly or indirectly. For anaerobic chytrids,

we do not know yet how NAD(P)H is reoxidized, but

recently we were able to provide evidence for a new type

of `iron-only' hydrogenase in anaerobic ciliates that might

be capable of binding and reoxidizing NAD(P)H directly

(Akhmanova et al., 1998b).

These observations might lead to the conclusion that the

presence of PFL in a hydrogenosome is less favourable

than a hydrogenosomal PFO because a hydrogenosomal

PFL requires import machinery for malate and a hydro-

genosomal malic enzyme (Fig. 10). Naturally, we cannot

exclude that the presence of PFL in anaerobic chytrids

is purely accidental and is due to the particular evolution-

ary history of the anaerobic chytrids. However, the potential

secondary loss of mitochondria (Akhmanova et al., 1998a)

and the presence of PFL in both the cytoplasm and the

hydrogenosomes of anaerobic chytrids might support a

hypothetical scenario for the adaptation of the ancestral,

mitochondriate chytrids to anaerobic environments.

Our data suggest that the chytrid PFL has been acquired

by lateral gene transfer (Fig. 3). However, lateral gene

transfer seems to be a rare event in eukaryotes (Syvanen,

1994), and the assumption of independent acquisitions of

either two different PFLs or one PFL and one PFO appear

unlikely. The generation of hydrogenosomal p¯ genes by

duplication of the genes encoding the cytoplasmic isoforms

seems to be the most straightforward way to evolve

a hydrogenosomal PFL because gene duplication is an

important evolutionary process in eukaryotes, and is more

frequent than lateral gene transfer or the transfer of orga-

nellar genes to the nucleus (Ohno, 1970; Mewes et al.,

1997; Martin and Herrmann, 1998). Notably, the presence

of multiple copies of PFL genes provides direct evidence

for gene duplications in the chytrids (Figs 2, 4 and 6).

Therefore, a scenario that assumes: (1) an acquisition

of a cytoplasmic PFL by lateral gene transfer; (2) gene

duplication events that create the multigene family of

PFLs; and (3) compartmentalization of a subfamily of

PFLs in the hydrogenosomes might provide an explana-

tion as to why PFL and not PFO is present in the hydro-

genosomes of anaerobic chytrids. Consequently, the

evolution of PFL-possessing hydrogenosomes by gene

duplication and compartmentalization might be a possible

consequence of the adaptation of chytrids to anoxic envir-

onments, after the loss of their ancestral mitochondria and

an acquisition of PFL by lateral gene transfer.

Experimental procedures

Organisms and growth conditions

The axenic cultures of the chytrids Piromyces sp. E2 and
Neocallimastix sp. L2 were grown anaerobically (N2/CO2 gas
phase) in medium M2, supplemented with 0.5% fructose
(Marvin-Sikkema et al., 1990; Teunissen et al., 1991). Biomass
was harvested after 40±48 h of growth at 398C.

Random screening of the cDNA library and sequence

analysis

The Piromyces sp. E2 cDNA library in the vector l ZAPII was
constructed as described previously (Akhmanova et al.,
1998a). cDNA clones were picked at random and were
sequenced with the M13 reverse primer to determine the
sequence of the 58 part of these cDNAs. The sequences of
interesting cDNAs were completed by generating shorter sub-
clones in pUC18 and by using internal sequencing primers.
To obtain 58 terminal cDNA sequences, RACE±PCR was per-
formed with Piromyces sp. E2 cDNA ligated into the l ZAPII
vector. The used RACE±PCR primers are: the universal
M13 reverse primer; PFLrev1, 58-GTCTTGGTAACTAAGG-
TACGAC-38; PFLrev2, 58-TA(AG)TCACCAATAATACGAC-
CACG-38; PFLrev3, 58-TCAAGGTAACCTGGCTTGTG-38;
PFLrev4, 58-AGAACCATCACCTTCGTATG-38 (see Fig. 1).
The resulting RACE±PCR products were subcloned into
pCR 2.1 (Invitrogen) and were sequenced. Sequencing was
performed with the ABI Prism Model 310 automatic sequen-
cer using a dRhodamine terminator cycle sequencing ready
reaction DNA sequencing kit (Perkin Elmer Applied Biosys-
tems). Sequences were analysed with the GCG Sequence
Analysis package (Devereux et al., 1984). Phylogenetic ana-
lysis was performed with the programs PHYLIP V3.5c (Felsen-
stein, 1993) and PROTML (Adachi and Hasegawa, 1992).

Southern and Northern blotting

Genomic DNA was prepared from Piromyces sp. E2 biomass
according to the protocol of Brownlee (1994). DNA digested
with different restriction enzymes was separated on 0.7%
agarose gels. Total RNA was prepared by the guanidinium
chloride method (Chirgwin et al., 1979). For preparation of

Q 1999 Blackwell Science Ltd, Molecular Microbiology, 32, 1103±1114

Pyruvate formate-lyase in chytrid hydrogenosomes 1111



poly(A)� RNA, an mRNA puri®cation kit (Pharmacia) was
used. RNA was separated on 1.2% agarose±formaldehyde
gels. Gels were blotted to Hybond N� membrane (Amersham).
DNA probes were labelled by PCR with a-[32P]-dATP. To make
probes from the pPFLa12 and pPFLh115 cDNA clones, the
universal M13 forward and reverse primers were used for
PCR. To generate probes speci®c for the `long'- or `short'-
type PFL, PCR was performed with the M13 reverse primer
and the primer PFLrev4 using the clones pL1 (`long'-type
PFL) or pS2 (`short'-type PFL) as a template. Hybridization
was performed in 0.5 M sodium phosphate buffer, pH 7.0, 7%
SDS, 1% BSA and 1 mM EDTA at 608C. Filters were washed
stringently with 50 mM sodium phosphate buffer, pH 7.0, and
0.5% SDS at 608C.

Subcellular fractionation and Western blotting

Hydrogenosomal and cytosolic fractions were prepared from
Piromyces sp. E2 biomass, essentially as described by Mar-
vin-Sikkema et al. (1993a) with the following modi®cation:
the potassium phosphate (KPi) buffer in the homogenization
medium was substituted for 20 mM K-HEPES buffer, pH 7.4.
The hydrogenosomal fraction was subfractionated by carbo-
nate extraction as described previously by Elgersma et al.
(1996). Proteins were separated on 7.5% polyacrylamide
gels with 0.1% SDS and were blotted to polyvinylidenedi¯uor-
ide membrane by semidry transfer (Bio-Rad) according to the
manufacturer's protocol. Rabbit antiserum raised against PFL
protein of Escherichia coli was kindly provided by Dr D. Kess-
ler. It was used in a dilution of 1:250. Detection was performed
using goat anti-rabbit antibodies conjugated to peroxidase
(Boehringer Mannheim).

Proteinase K protection assay

Isolated hydrogenosomes (about 0.8 mg of protein) were incu-
bated anaerobically (N2 gas phase) in 1 ml digestion buffer con-
taining: 20 mM K-HEPES, pH 7.4, 250 mM sucrose, 2 mM DTT
with proteinase K (0.0, 0.2 and 20.0 mg mlÿ1) and detergent
(0.1% Triton X-100 and 0.1% deoxycholate) in all possible
combinations. After 30 min incubation on ice, the proteinase
K digestion was stopped by the addition of 1 ml 15% (w/v) tri-
chloracetic acid. Protein was recovered by centrifugation.

Enzyme assays

To measure PFL activity, 0.5 ml of the cytosolic or hydrogeno-
somal fraction (0.5 mg protein) was added to 4.5 ml of assay
mix, containing: 20 mM K-HEPES, pH 7.5, 2 mM KPi, 100 mM
succinate, 5 mM magnesium ADP, 2 mM DTT, 1.3 mM ferri-
ammonium sulphate, 0.12 mM CoA and 30 mM pyruvate.
The incubation was stopped after 60 min by heating (5 min,
1008C). Formation of formate was determined with formate
dehydrogenase (Boehringer Mannheim). Samples, heated
(5 min, 1008C) before addition to the assay mix, were used
as controls to correct for internal formate pools. Hypophos-
phite, a speci®c inhibitor of PFL activity (Plaga et al., 1988),
was added to a ®nal concentration of 10 mM. For enzyme
assays with the hydrogenosomal fraction, Triton X-100 was
added to a ®nal concentration of 0.2% (v/v) to permeabilize

the organelles. All enzyme assays were performed anaerobi-
cally (N2 gas phase) at 398C.

Analysis of hydrogenosomal fermentation products

Isolated hydrogenosomes were resuspended in 20 mM
K-HEPES buffer, pH 7.4, supplemented with 250 mM sucrose
and 2 mM DTT. From this suspension, 0.2 ml (about 0.55 mg
protein) was added to 2 ml of assay mixture, containing 20 mM
K-HEPES buffer, pH 7.4, 250 mM sucrose, 2 mM DTT, 2 mM
KPi buffer, 100 mM succinate, 5 mM magnesium ADP, and
5 mM L-malate. Incubations were performed anaerobically
(N2 gas phase) at 398C in 15 ml vials. Liquid samples were ana-
lysed for malate, pyruvate, acetate and formate with the help of
Test Combinations purchased from Boehringer Mannheim.
Gas samples were analysed by gas chromatography for the
determination of the hydrogen concentration (Teunissen
et al., 1991).
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