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We consider in this paper the problem of identifying min 7{ f) and
max F{ f) of a positive (i.e., monotone) Boolean function f, by using
membership queries only, where min T( f) (max F{ f)) denotes the set of
minimal true vectors (maximal false vectors) of f. It is shown that the
existence of an incrementally polynomial algorithm for this problem is
equivalent to the existence of the following algorithms, where fand g
are positive Boolean functions:

(i} An incrementally polynomial algorithm to dualize f;

(ii)  An incrementally polynomial algorithm to self-dualize f;

(iii) A polynomial algorithm to decide if fand g are mutually dual:
{iv) A polynomial algorithm to decide if f is self-dual:

(v) A polynomial algorithm to decide if fis saturated;

(vi) A polynomial algorithm in [min T{ f)| + [max F( f}] to identify
min T( f) only.

Some of these are already well known open problems in the respective
fields. Other related topics, including various equivalent problems
encountered in hypergraph theory and theory of coteries (used in dis-
tributed systems), are also discussed. € 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper, we are interested in the problem of identify-
ing a given Boolean function (or a function in short) f by
asking membership queries to an oracle whether f(u) =0 or
1 holds for some selected vectors u. In the terminology of
computational learning theory [1, 3, 29], this is nothing
but the exact learning of a Boolean theory f'by membership
queries only. It is also a process of forming a theory that
explains a certain phenomenon by collecting positive and
negative data (in the sense of causing and not causing that
phenomenon) [ 11]. In this case, each membership query is
interpreted as conducting an experiment with a given
specification to observe its outcome.

We emphasize here that, by identification, we mean to
acquire explicit knowledge of hoth T( f) (set of true vectors
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of ) and F( f) (set of false vectors of /). Although this may
appear to be redundant, since F{ /') can be computed from
T(f) in principle, we consider obtaining both 7( f) and
F(f) to be essential. During the identification process,
which we shall consider in this paper, only partial
knowledge of T{ f'} and F( /') 1s available. In order to ensure
that this partial knowledge actually has become the full
knowledge, it is necessary to know both T( f) and F(f). In
this sense, maintaining both 71 /) and F{ /) is natural.

We also note in this regard that the complexity of
computing F(f) from T(f) is in general nontrivial. As an
example, consider that a function f,, is defined for a graph
G=(V,E)by

Jo(x)=11f x = x(e) for some e e E, and 0 otherwise,

where x(¢) for e =(v;, v,) € E is the vector with x,;=x;=1
and v, =0 for k # ., j. In other words, f,, is a representation
of graph G. Now it is not difficult to see that x e F{ f,;) if and
only if the set of vertices {v,e V' | x,=1} is an independent
set of G. Computing all maximal independent sets of a graph
G is not a trivial task, though it is known that it can be done
in incrementally polynomial time (e.g., [ 19, 22]).

If we do not assume any property for the function f'to be
identified, identification is not possible unless all values of

Sty for ve {0, 1}" are explicitly tested. To avoid this situa-

tion, we assume in this paper that fis known to be positive
(1.e., monotone), since this is the case in many applications.
{The definition of a positive functions and related concepts
will be given in subsequent sections.) For example, if f(x)
describes the result of diagnosing a disease from the given
data (ie., symptoms) x, e.g. x, denotes whether tem-
perature is high (x,=1) or not (x, =0), and x, denotes
whether blood presure is high (x, = 1) or not (x, =0), etc,,
it would be natural to assume that we somehow know the
direction of each variable that tends to cause the disease to
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appear. In this case, by adjusting the polarities of variables
if necessary, the function f(x) can be assumed to be positive
without loss of generality.

If /is a positive function, T{ ) and F{ '} can be compactly
represented by min 7 /) (set of minimal true vectors) and
max F{ [} (set of maximal false vectors). Therefore we want
to compute min 7( f) and max F(f) instead of 7(/) and
F(/) themselves in our identification process. The com-
plexity of this type of enumeration algorithm is usually
measured in its lengths of input and output. A particularly
interesting class from this view point is that of incrementally
polynomial algorithms [19]. An algorithm to enumerate
items . 4>, ..., a, is called incrementally polynomial (i) if it
iterates the following procedure for i =1, 2, ..., p: output the
ith item «, from the knowledge of its input and items «,,
d-, ..., a;_, and (i1) if the time required for the /th iteration
1s polynomial in the input length and the sum of the sizes of
dp, Uy .

In our problem of identification, the input is considered
to be an oracle of f, which answers the membership queries
given to it. We define its input length to be n (the number
of variables) since the set of variables on which f'is defined
must be explicitly specified. Given a membership query (i.e.,
a vector ue {0, 1}"), the oracle returns its answer (i.e., f(u))
in one unit of time.

Our main question is to know whether the identification
of a positive fhas an incrementally polynomial algorithm or
not. Unfortunately, we could not resolve this question in
this paper. However, we could relate the existence of such an
algorithm with many other interesting problems, discussed
not only in Boolean theory but also in different fields such
as hypergraph theory [ 12], theory of coteries (used in dis-
tributed systems) [ 15, 18, 21], database theory [12,24]
and artificial intelligence [12, 20, 27]. In particular, we
show that an incrementally polynomial identification algo-
rithm exists if and only if dualization of a positive function
has an incrementally polynomial algorithm. Also such algo-
rithms exist if and only if problems such as deciding if two
positive functions are mutually dual, deciding if a positive
function is self-dual, deciding if a simple hypergraph is
saturated and deciding if a coterie is nondominated, can be
solved in polynomial time. All these problems are polyno-
mially equivalent, but their complexity is still left open. It is
again noted here that our problem is different from that of
identifying only min 7( /) or only max F(f) since it is
known [ 1, 22] that no incrementally polynomial algorithm
exists for this problem.

It can be shown that the polynomial equivalence among
the problems stated above carries over to a subclass of
positive functions if the class satisfies some additional con-
ditions. For several special classes of positive functions, it is
known that some problems (e.g., dualization) in the above
list can be solved by incrementally polynomial algorithms.
Such classes include (i) the class of 2-monotonic positive

functions [ 3, 9, 10, 267, which include as a special case the
class of positive threshold functions [25], (ii) the class of
positive k-DNF (disjunctive normal form) [12], where a
positive function fis k-DNF if each minimal true vector has
at most k elements of 1, and (i} other classes (e.g.,
[12,23]). Based on these, it is possible in particular to show
that positive functions in all these special classes can be
identified by incrementally polynomial algorithms. Another
special class, called read-once functions, also deserve men-
tioning here, since it is shown in [ 2] that this class has an
algorithm to identify its read-once formula (i.e., an expres-
sion of 7( /)) in polynomial time in its formula length (note,
however, that the framework for identification is different
from that of this paper). Finally, although not discussed in
this paper, other classes different from that of positive func-
tions, such as general threshold functions, Horn functions,
and general k-DNF functions, may be fruitful to study.

Some other results related to our main question are also
included in this paper. It turns out that some relevant
problems are solvable in polynomial time, while others are
NP-complete. This may indicate that our problem is located
somewhere close to the border between polynomiality and
NP-hardness.

In concluding this section, we should add a recent impor-
tant result by Fredman and Khachiyan [ 13] showing that
the mutual duality between two positive functions f and g
can be tested in O(m"'*8 ")) time, where m7 is the number of
prime implicants in the DNFs of f'and g. This tells that the
problem of checking mutual duality (and hence all the
equivalent problems discussed in this paper) is unlikely to
be NP-hard. The above complexity is not polynomial,
however, and it is still open whether polynomial time algo-
rithms really exist or not.

2. IDENTIFICATION OF POSITIVE BOOLEAN
FUNCTIONS

2.1. Definitions and an Algorithm

A Boolean function, or a function in short, is a mapping

f:40.1}"—={0,1}, where ve {0, 1}" is called a Boolean

vector (a vector in short). If f(v) = 1 {resp. 0), then v is called
a true (resp. false) vector of f. The set of all true vectors
{false vectors) is denoted by T{ /) F(f)). Two special func-
tions with 7( f) = (J and F( /) = J are respectively denoted
by fix)=1 and f(x)=T.

A function fis positive if v < w always implies /() < f(w).
A positive function is also called monotone. (However, we
do not use the latter name since some people use it to imply
a function that is either monotone nonincreasing or
monotone nondecreasing.) A true vector v of /'is minimal if
there is no other true vector w such that w <o, and let
min 7 /) denote the set of all minimal true vectors of /. A
maximal false vector is symmetrically defined and max F{( f)



52

denotes the set of all maximal false vectors of /. Two vectors
u and v are incomparable if neither u > v nor v = u holds.
A set of vectors U< {0, 1} is called incomparable if every
pair of vectors u, ve U is incomparable. It is clear that the
sets min 7( /) and max F( /) are both incomparable.

If /'is positive, it is known [ 25, 30] that f has the unique
disjunctive normal form (DNF) consisting of all prime
implicants. There is one-to-one correspondence between
prime implicants and minimal true vectors. For example, a
positive function /=12 v 23 v 31, where 12 stands for x, x,
and so on, has prime implicants 12, 23, 31 which correspond
to minimal true vectors (110), (011), (101), respectively. In
other words, the input length to describe a positive function
fis O(njmin T(f)|) if it is represented in this manner.
Furthermore, the sets min 7(f) and max F( f) conversely
define 7( f) and F(f) by

T(f)={v | v=w for some wemin T(f)}
F(f)={v | v<w for some we max F(f)}.
Since |min 7( /)| < |T(f)| and |max F(f)| < |F(f)|, we ask
in our identification algorithm to compute min 7(f) and
max F( /) instead of T(f) and F(f). Thus our problem is

stated as follows, where the input length of an oracle for fis
considered to be n, as mentioned in the Introduction.

Problem IDENTIFICATION.

Input:
Output:

An oracle for a positive function f.
min 7{ f) and max F(f).

Now let MT and MF respectively denote the partial
knowledge of min T( /) and max F( f) currently at hand, i.e.,

MT<cmin T(f) and MFc<max F(f). (1

Define
T(MT)={v | v = w for some we MT}

2)
FIMF)y={v | v<wfor some we MF}. (
By assumption (1), T(MT)< T(f) and F(IMF)< F(f), and
hence

T(MT)NnFIMFy=( (3)

holds. A vector u is called an unknown vector if

uel0, 1}"\(T(MT) v F(MF)), (4)
since it is not known at the current stage whether u is a true
vector or a false vector of f. There is no unknown vector if
and only if T(MT)u F(MF)=1{0,1}"” holds; ie, MT=
min 7(f) and MF=max F(f) hold for some positive
function f.

The general procedure of identifying a positive function f
can now be described as follows.
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ALcoriTHM IDENTIFY.

Input:  An oracle for a positive function f.
Output: min 7( f) and max F( /).

1. Start with appropriate sets MT(<min 7(f)) and
MF(cmax F(f)) (eg, MT:= MF .= ).

2. Testif IMT)u F(MF)={0, 1}"holds. If so, output
MT and MF, and halt. Otherwise go to 3.

3. Find an unknown vector u, and ask an oracle if
fluy="1or f(u)=0.If f(u) =1, then compute a new mini-
mal true vector y from u and let MT := MT U { v}. On the
other hand, if f{u) =0, compute a new maximal false vector
v from u and let MF:= MFu { y}. Return to 2.

This IDENTIFY is more or less a standard algorithm dis-
cussed in the framework of learning theory. Among rich
variety of enumeration algorithms in discrete mathematics,
there are also many algorithms, such as those used in
[ 19, 22] and others to enumerate all maximal independent
sets, which have certain resemblance to IDENTIFY
(though there are nontrivial differences in details).

2.2. Analysis of Algorithm IDENTIFY

We are particularly interested in whether Algorithm
IDENTIFY can be incrementally polynomial or not. For
this, Step 2 is crucial, and we define:

Problem EQ.

Input: Incomparable sets MT, MF(<{0, 1}") such that
T(MT)~ FAIMF) = (.

Question: Does T(MT)u F(MF)={0,1}" (ie, no
unknown vector) hold?

Unfortunately the complexity of Problem EQ is not known
yet, but will be related to other well known problems, in
Section 3. We show below, however, that if Problem EQ
(which is a decision problem) is solved in time polynomial
in its input length #(| M T| 4+ | M F]), then finding an unknown
vector in Step 3 can also be done in polynomial time.

For this, introduce the following notations. Let
a=(ay, a, ...a;)e {0, 1}* for some k <n, and define
MT[a]=MinSet{(v, . ...v,) | veMT
and v;<a,, i=1,2, ., k}
min 7(f)[a] = MinSet{(v), |, .., ©,,) | ve min T(f)
and v, <q,,i=1,2, ., k}
(5)

MF[a]l=MaxSet{(v;_,..0,) | ve MF
and v, >a;,i=1,2, .., k}
max F(f)[a] =MaxSet{(vy, (, .. v,) | vemax F(f)

and v, 2a,, i=1,2, .., k},



IDENTIFICATION OF BOOLEAN FUNCTIONS 53

where MinSet(4) (MaxSet{A4)) denotes the set of minimal
(maximal) vectors in 4. Denote by £, the function obtained
from f by fixing variables x; to a, for i=1,2,...k. Then the
above min 7( f)[a] and max F(f}[ a] represent min 7{f,)
and max F(f, ), respectively.

Now, as noted previously, MT=min 7(f) and MF=
max F{ /) hold if and only if TNMT)u F(MF)={0,1}".
Furthermore, if MT<min T(f) and MFcmax F(f),
then MT[a]l<min T(f)[a] and MF[a] S max F(f)[«a]
for any a. Also MT[a]l=min T{f)[a] and MF[a] =
max F{ f)[«] hold if and only if

T(MT[a])u FIMF[a])={0,1}""* (6)
If the current MT[a] and MF[a] do not satisfy condition
(6), then it follows that at least one of a®=(a,0) and
a'=(a, 1) does not satisfy condition (6) (in which a is
replaced by @° and a', respectively), since

T(MT[al)=T({(0,w) | we MT[a"]})
UTH L w) | weMT[a']})
F(MF[a]l)=F({(0,w) | we MF[a"]})
UF({(1,w) | we MF[a']}),
by definition.
Based on this property, the following algorithm finds an
unknown vector u by systematically searching vectors a that

do not satisfy the above condition (6), by increasing the
dimension of « at each iteration.

ALGORITHM UNKNOWN.

Input: Incomparable sets MT, MF( < {0, 1}") such that
TIMT)~n FOMF)= and  T(MT)u F(MF)# {0, 1}",
where n 2 2.

Output: An unknown vector u.

1. Leta®:=(0),a':=(l)andk:=1.Goto 2.

2. If k=n—1, then at least one of M,=1{0,1}\
(MT[a"]u MF[a"]) and M, ={0,1}\(MT[a']u MF[a'])
is nonempty. If M, # (¥ and be My, let u :=(a°, b) and halt.
Otherwise, let u:=(a', b), where be M, and halt. If k <
n—1,goto3.

3. Test if TIMT[a’])w FMF[a®])=140.1}" * holds
{(ie., solve Problem EQ). If “no,” let «°:={(a° 0),
a'=(d% 1) and k:=k+ 1. Return to 2. Otherwise (i.e.,
“yes”), let «®:=(a',0), a' :=(a', 1) and k :=k + 1. Return
to 2.

The running time of UNKNOWN is O(nTgo(n(|MT| +
IMFl))), where n(|MT|+ |MF|) is the input length to
problem EQ and 7, is the time to solve Problem EQ, if we
ignore the time for MinSet and MaxSet operations of (5) for
MT[a'] and MF[a'] in Steps 2 and 3, for the time being.

At this point, recall the two kinds of queries, restricted
equivalence query and equivalence query, well studied in
computational leaning theory (e.g., [ 1]). A restricted equiv-
alent query asks whether the current knowledge of f com-
pletely characterizes f or not, while an equivalence query
asks, in addition to that, to provide a counterexample if it
does not charactenize f. In our framework, a restricted
equivalence query is essentially equal to solving problem
EQ, since MT and MF completely characterize f'if and only
it T(MT)u F{MF)={0, 1}", while an equivalence query is
nothing but to solve problem EQ and then to execute Algo-
rithm UNKNOWN, since the latter provides a counter-
example when problem EQ has answer “no.” The above
time complexity of UNKNOWN says that a restricted
equivalence query and an equivalence query do not have an
essential difference (modulo polynomial time), in our
problem setting.

Now we consider the second half of Step 3 of IDENTIFY.
Asking an oracle if f{u)=0 or f(u)=1 is called a mem-
bership query. Computing a minimal true vector or a maxi-
mal false vector y from an unknown vector v can be done as
described in such papers as [1,14,29]. For example, if
Stu) =0, a maximal false vector y( = u) not in F{ MF) can be
computed as follows, where y[ y,=1] denotes the vector y
with its ith element y, fixed to 1.

ALGORITHM MAXIMAL.

Input:  An incomparable set MF < max F(f), a vector
ue F(f)\F{(MF), and an oracle for a positive function f.

Output: A maximal vector y such that y e F{ /)\FIMF).

l. yi=u

2. Fori=1,2.,nlet yi=y[y;=1]if fiy[y,=1])
= 0 (membership queries are used here).

3. Output y.

A minimal true vector can be analogously computed and
its algorithm is called MINIMAL. Both algorithms issue
O(n) membership queries before outputting the final y.
If each membership query in step 2 is answered in constant
time by an oracle, the running time of MAXIMAL or
MINIMAL is O(n).

The sum of the above running times in IDENTIFY
becomes

O((Jmin T( /)] + lmax F(f)) nTen(|{MT| + |MF])))
= O(mnTgq(mn)), (7
where m is defined by

m = |min T(f)| + [max F(f)[. (8)

Before proceeding further, recall that we have postponed
the discussion on the time complexity of MinSet and
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MaxSet operations of (5) required in Steps2 and 3 of
UNKNOWN. For simplicity, we explain how to facilitate
this computation only for M7, since M F can be analogously
treated. Prepare data PAIR(MT, k), k=1, 2, ..., n, defined
by (u,v)e PAIR(MT, kj if (a) u,ve MT, (b) (u;,,, ...
Uy < (Vg s vees Up)s OF (U iy ew Uy) ={Ug 1., U,) and
Num(u) < Num(v), where u is the Num(u)th vector stored in
the array of MT, and (¢) (u;, . ... u,,) and (v;, ,, ..., v,) are
incomparable for all i <k. PAIR(MT, k) forall k=1, 2, ..,
n can be constructed in O(n |MT|?) ( < O(nm?)) time. Using
this data, MinSet operation to obtain MT[a°] from
MT[ a] can be carried out as follows, where ¢° = (a4, 0) and
the dimension of ¢ is k. (The case of a'=(a,1) is
analogous.) First obtain M7’ ={v|veMT[a], v, =0}
from MT[a] in O(m) time. Then v e MT[«"] holds if and
only if veMT’' and there is no we MT' such that
{u, vy e PAIR(MT, k). If we use a data structure of MT",
with which vt e M7’ can be checked in constant time, then
MT[ a"] can be obtained from MT' in O(n |PAIR(MT, k)})
time. The overall time for all & is O(mn) for constructing
MT', and Y, O |PAIR(MT, ki) = On |MT|?) for
obtaining MT[a°] and MT[a']. Therefore, one execution
of UNKNOWN can be carried out in O(nm?)) time.

Since UNKNOWN 1s called at most m times in IDEN-
TIFY, the overall time needed for MinSet and MaxSet
operations is O{nm*)). This time bound is dominated by the
above time bound (7) if we assume Tpo(nm) = O(m?). For
this reason, we shall not consider explicitly the time for
MinSet and MaxSet operations in the subsequent discussion.

As a summary of the above discussion, we have the next
theorem.

THEOREM 2.1.  Problem IDENTIFICATION has an
incrementally polynomial algorithm if and only if problem EQ
can be solved in polynomial time.

Proof. The if-part 1s immediate from (7). To prove the
converse, execute the incrementally polynomial algorithm A
for Problem IDENTIFICATION (note that 4 may be quite
different from IDENTIFY), in which a positive function fis
given by min 7( f)= MT, until either (1) it halts or (i1) it
iterates |MT| + |MF|+1 times. In case (1), there is no
unknown vector if and only if the obtained max F(f)
satisfies max F(f)= MF. In case (i1), there is an unknown
vector since {max F{ f}| > |MF| holds. In any case, Problem
EQ is solved. Since a membership query for u can be
answered in time O(n |[MT]|) by directly checking the
property: f(u)=1<>uzv for some rveMT, without
resorting to an oracle, the time to reach (i) or (ii) is
O((|MT) + |MF|) p(n{|MT| + |MF|)) (n |MT)))., where
p(-) is the time for one iteration of Algorithm 4. The third
factor n |[MT| takes into account the time to answer mem-
bership queries (which is constant if an oracle is used).
The time bound is polynomial in the input length
n(|MT\| + |MF)) of problem EQ. |

The existence of an incrementally polynomial algorithm
for a problem implies that the problem can be solved in
polynomial total time [19], ie., polynomial time in the
length of input and output. Although the converse is not
generally true, we show below that it is true for Problem
IDENTIFICATION.

COROLLARY 2.1.  Problem IDENTIFICATION can be
solved in polvromial total time if and only if it has an
incrementally polynomial algorithm.

Proof. The if-part is immediate from definition. The
only-if-part is proved by showing that EQ can be solved in
polynomial time if IDENTIFICATION can be solved by an
Algorithm B that runs in polynomial total time p(n, m),
where m =n(|min T{ )} + jmax F( f)|) is the output length.
(The rest follows immediately from Theorem 2.1.) Now,
given an instance of EQ with MT and MF, satisfying
(1), execute Algorithm B only p(n,m') time, where
m' =n((MT|+ [MF|} is the input length of EQ. If B halts
within this time bound, EQ has answer “yes” if and
only if min 7(f) and max F(f) computed by B satisfy
MT=min T(f) and MF=max F( f). On the other hand, if
B does not halt within this time bound, EQ has answer
“no,” since it implies |min 7(f)| + |max F( /)| > |MT| +
|MF|. In any case, EQ is solved in p(n, m') time, which is
polynomial in its input length m'. ||

3. DUAL FUNCTIONS AND RELATED PROBLEMS

3.1. Definitions

The dual of a Boolean function £, denoted /¢, is defined by
f9(x) =f¥), where fand ¥ denote the complements of fand
x, respectively. As is well known, the DNF expression of /¢
1s obtained from that of f by exchanging V (or) and - (and),
as well as constants 0 and 1, and then expanding the
resulting formula. (The symbol . of “and” is usually omitted
unless confusion occurs.) For example, the dual of
f=12v23v3lisfi=(1v2)(2v3)3v)=12v23v
31. As a special case, functions f = L and f = T are mutually
dual. Denote f < g if these functions satisfy f(v) < g(v) for all
ve{0,1}" It is immediate from definition that f=g%<«
fY=g, and f <g< /4= g% If fis positive, another charac-
terization of /< is given as follows: y € min 7( /) if and only
if y is a mimimal vector with property y A v #(00--.0) for
all vemin T(f), where yAv=(y, Aty, V2 A Uss .
¥, Anv,)and A is“and” operator. For this reason, the vec-
tors in 7(f¢) (min T(f)) are called the (minimal) transver-
sals of f.

A function f'is called dual-minor if f < f¢, dual-major if
f =14 and self-dual if f = {. For example, the above func-
tion /=12 v 23 v 31 is self-dual. These definitions have the
following characterizations [ 18]:
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(i) fis dual-minor if and only if at most one of v and
ris true for all e {0, 1}

(t1) fis dual-major if and only if at least one of v and ¢
is true for all ve {0, 1}

(iii) fis self-dual if and only if exactly one of v and 7 is
true for all ve {0, 1}".

In this paper, we mostly deal with positive functions. As
mentioned in Section 2, the length to input a positive func-
tion is O(n |min T\ f)]). The lengths of f and its dual f* may
be substantially different, however, as exemplified by the
following functions [ 1]:

S=x vy, v oo vy, (length Q(p))
fi=\ iz o et i= 102, L p)
(length Q(p27)). (9)
The definition of the dual, f%(x)=f(¥), implies that
T/ ={c|veF )}, ie, F(fy={i|veT(f)}. (10)
which then implies
min 71 /)
={7 | vemax F(f)}.ie.max F(f)={¢ | cemin T(/%)}.
(11)

Therefore the functions (9) tell that, for a positive function
/. the lengths of min 7(f}| and |max F( f)| can be very dif-
ferent. It also supports our claim in Section 1 that both
min 7( /) and max F(f) should be explicitly output in the
identification process. (Since the positive function fin (9) is
2-DNF. the results in Section 4.4 show that it can be iden-
tified in our sense by an incrementally polynomial algo-
rithm.)

Definition ( 10) of the dual indicates that an oracle of fcan
also be used as an oracle of /9. The following is a result of
this observation.

COROLLARY 3.1 Given an oracle for membership queries
to a positive function f, IDENTIFICATION fas an
incrementally polynomial algorithm if and only if min T(f')
can  be computed by an algorithm  polyvnomial in
|min T¢ /)| + |max F( f)].

Proof. The only-if part is obvious. To show the con-
verse, apply the latter algorithm to both fand /¢ to compute
min 7( /) and min 7( /), respectively. Then max £ f) is
obtained by (11). This is a polynomial total time algorithm
for IDENTIFICATION. Then apply Corollary 2.1. |}

The complexity of deciding if a given positive function fis
dual-major and/or self-dual will be discussed in the next

subsection. Here we note that it can be checked in polyno-
mial time whether f'1s dual-minor or not.

LeEMMA 3.1 [6,15,18,25].  Let f be a positive function,
and assume that [ is represented in DNF.

(1) f is dual-minor if and only if everv puir of prime
implicants m; and m; of f huas at least one literal in commion.

() The property in (i)
O(n |min T(f))*) time.

can  be checked in

3.2. Complexity of Positive Functions

We call problems 4 and B polynomially equivalent if 4
and B are mutually reducible [ 16]. This tells in particular
that, if one of them is solvable in polynomial time, then so
is the other. In relation with the notions introduced in the
previous subsection, we consider the following problems.

Problent MD.
Input: Positive functions /" and g of n variables, ie.,
min 7{( /) and min 7{g).

Question: Are fand g mutually dual, ie., f =g (hence

g=f
Problem SD.

Input: A positive function fof n variables, i.e., min 7 /).

Is fself-dual?
Problems EQ, MD, SD are polynomially

Question;
THEOREM 3.1.
equivalent.

Proof. (a) MD and SD. SD is a special case of MD, i.e.,
when g = £, and this shows that SD is reducible to MD. To
show the converse, given an instance of MD, consider
function

h=fxvgrvaxp (12)
where none of fand g contain x or y as a variable. Then
h=(fv x)g' vy)xvyi=gicv [ vy, (13)

and £ =h®holds (i.e., 4 is self-dual) if and only if fand g are
mutually dual; ie., /=g (hence f9=g).

(b) EQ and MD. Recall property (11}. Now, given MT
and MF of Problem EQ, define two functions f and g by

min 7{f)=MT (ie., T(f)=T(MT))

min T(g)={7 | ve MF).
Assumption T(MT)~ FIMF)= ¢ in problem EQ implies
F2FMF), ie, fi92g (hence f<g'). Therefore,

TIMTYyu FIMF)=1{0,1}" holds if and only if F(f)=
F(MF}; te., fand g are mutually dual. This shows that EQ
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is reducible to MD. To show the converse reduction, first
check if g® > f holds for given positive functions f and g of
MD. For this, consider again # and A9 of (12) and (13). It
is not difficult to show that g¢ > f(hence /¥ > g) holds if and
only if 4% > h; i.e., h is dual-minor. As noted in Lemma 3.1,
the last condition can be checked in polynomial time. If /2 is
not dual-minor (i.e., g¢ > f does not hold), then fand g are
not mutually dual. Therefore, assume that 4 is dual-minor.
In this case, define

MT=min T(f)
MF={v¢|vemin 7T(g)},

where T(MT)~ F(MF)= ¢ holds by property g*> f. By
an argument similar to the above, it is now straightforward

to see that T(MT) u F(MF)= {0, 1}” holds if and only if /

and g are mutually dual. Thus MD is reducible to EQ. |

The equivalence between Problems MD and SD was
already proved in [ 12] in hypergraph setting.

The complexity of Problem SD has been one of the
important topics in distributed system theory. To explain
this, note that a positive function /. can be used as a con-
venient tool to represent an incomparable family 4 of sub-
sets S< {1, 2, .., n}, by letting w e min 7 f,) if and only if
w = y(S) for some S e %, where y = () 1s the characteristic
vector of S defined by y, = 1if i € § and 0 otherwise. A family
% i1s said to be incomparable if no two S, S’ € ¢ satisfy S §’
or 8§’ = S. An incomparable family is also called a 1-Sperner
Sfamily or an antichain. Let € be an incomparable family. It
is a coterie if it also satisfies the intersecting property :

SnS' #¢ forall S, S'e%.

Coteries have been studied in conjunction with mutual
exclusion in a distributed system [ 15, 1§, 21]. A coterie € is
nondominated if there is no coterie €' £ ¢ such that, for each
Se4%, there is a subset '€ ¢’ with S’ =.S. Nondominated
coteries are important in practical applications, and are
closely related to Problem SD, as shown in the next lemma.

LemMma 3.2 [18]. Let f, be the positive function repre-
senting an incomparable family € of subsets in {1,2, ... n}.
Then,

(1) € is a coterie if and only if [, is dual-minor, and
(1)
dual.

€ is a nondominated coterie if and only if f is self-

Further properties of positive self-dual functions are
found in [7].

In concluding this subsection, we point out that the
following problem, closely related to problem SD, is
NP-complete.

Problem NDMAIJOR.
Input: A positive function f'of n variables, i.e., min 77 f).
Question:
THEOREM 3.2.  Problem NDMAIJOR is NP-complete.

Proof. We reduce the following problem, which is
known to be NP-complete [ 16], to NDMAJOR.

Problem SET SPLITTING.

A family 4 of subsets of V'={1, 2, ..., n}.

Question: s there a partition of V into two subsets V,
and ¥V, such that no subset in % is entirely contained in
either V, or V,?

Is f not dual-major?

Input:

First note that we can assume without loss of generality
that % is incomparable. This 1s because, if S, $’ € ¢ satisfy
S §’, then S’ can be deleted without changing the result
since $" < V;(i=1 or 2) implies S< V,. Then consider the
positive function f, defined after Theorem 3.1. In view of
characterization (i1) in Section 3.1, f is not dual-major if
and only if there is a pair of vectors w and w both belonging
to F( f,); Le, there is a partition of V as stated in problem
SET SPLITTING (define ¥, and V, by x(V,)=w and
x(V3)=1w). Since NDMAJOR is obviously in class NP, this
proves the lemma. |

Essentially the same proofs are also found in [ 12, 15} and
possibly others, though they are stated in different ter-
minologies (i.e., coteries and hypergraphs). If fact, the
equivalence between NDMAJOR and SET SPLITTING
was already stated in [25].

It may be worth noting at this point that problem SD is
asking whether a dual-minor positive function f is at the
same time dual-major. The restriction that f is dual-minor
may make it easier to decide. However, we do not know yet
whether this is in fact the case or not.

3.3. Complexity of General Functions

In this section, we consider the problems associated with
dual functions of general Boolean functions. In order to deal
with general functions, we first discuss how to represent
them, since the DNF expression with prime implicants is not
unique in this case. Here, we assume that a general function
is represented either by a DNF (disjunctive normal form) of
implicants (monomials, i.e., conjunctions of literals), or by a
CNF (conjunctive normal form) of clauses (i.e., disjunctions
of literals). In the former case, we use letters £, g, # and so on,
while in the latter case we use ¢. For example,

f=134v134v123v123v 123 v 134
=13v23v34v 134,
d=(1v3)H2v3)HBvaTv3ivi,

where 7 and 7 stands for x; and x,. respectively.
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For the subsequent discussion, we introduce some more
definitions. The contra-dual f* of fis defined by f*(x) = f(¥)
[6.7,17]. For example, the contra-dual of f =12 v 23 v 31
is f*=12v 23 v 3l. A function f is called anti-dual if
f*=f For example, f=12v 13 v 12 v 13 is anti-dual.
Functions such as ff*, f¢fand /v f* are all anti-dual.

LEMMA 3.3.(1) f is dual-minor if and only if ff* = 1 (ie.,
NHNTf*) =)

(1) [fis anti-dual if and only if there is a dual-minor func-
tion g such that f=g v g*.

Proof. (i) Note that T(f*)=F(f*) by (10) and the
definition of f* Therefore, f< /¢ implies T(f)n
F /%=, e, U HINT(f*)= . The converse is also
similar.

(i1) The if-part follows from

S*=74=g% (by(g*)*=g)=g v g*(bygi=g*)=7.
To show the converse, represent f by

f=fx v /X,

for a variable x. Then g = fx is dual-minor since

and g* =f*x* = /¥ (by the anti-duality of /). |

Now Lemma 3.1 for positive functions can be extended to
general functions.

THEOREM 3.3. (i) Let a function f be given by

S=my v, v oo vm,,
where m, are implicants of f. Then f'is dual-minor if and only
if every pair of implicants m; and m; has at least one literal in
COMNMOn.

(it)

Proof. () ff*=(V,m)V,;m¥) =V, ;mm}, where if
m,; = 235 then m}* = 235, and so on. Therefore, ff* = 1 (ie.,
t'is dual-minor by Lemma 3.3 (i)) if and only if m,m}* = L
for all i and j, which holds if and only if every pair of
implicants m; and m; has a common literal.

(i)

Now we cite the following well known NP-complete
problems [ 16, 28].

Problem SAT (Satisfiability).

The property in (i) can be checked in O(np?) time.

Immediate from (i). |

Input: A general function ¢ of n variables in CNF.

Question: Is¢# L?

Problemt NAE-SAT (Not-All-Equal SAT).

Input: A general function ¢ of n variables in CNF.
Question: Is there a vector ve{O,l}" such that

dv)y=¢(F)=1 (ie., pp* # L)?

The problem NDMAJOR for a general function f is
NP-complete, since it is already NP-complete for positive
functions (Theorem 3.2). However, we repeat this result
below since its proof reveals an interesting equivalence with
NAE-SAT.

THEOREM 3.4.  The problem of deciding if a given function
fis not dual-major is NP-complete.

Proof. Given an instance ¢ of NAE-SAT, consider the
corresponding f= ¢ in DNF. fis obtained from ¢ by simply
interchanging v (or) and - (and). Obviously ¢ =9 and
¢*=f. This ¢ is NAE-satisfiable if and only if ¢¢* £ 1.
Then

pp* # LY # L[ L f(ie., fis not dual-major).

Since our problem is obviously in class NP, this proves the
theorem. |

Up to this point, the complexity for positive functions
and general functions do not differ. However, the next result
may indicate a difference between them.

THEOREM 3.5. The problem of deciding if a dual-minor
SJunction [ is not dual-major (ie., f is not self-dual) is
NP-complete.

Proof. Let ¢ be an instance of problem SAT. Let f = ¢¢
(hence f* =¢), where f and f* are in DNF. Introduce
h=ff*, which is anti-dual as easily shown from definition.
An expression of 4 in DNF can be computed in O(np?) time
if f (and hence f*) has p implicants. By Lemma 3.3 (ii), A
can be represented as h =g v g* for a dual-minor function
g- Then

¢#L<h#T (sincef#Tandf*#Tifand onlyif¢ # 1)
=gvgr#TegiLy,
i.e., ¢ is satisfiable if and only if a dual-minor function g is

not dual-major. Since our problem is obviously in class NP,
this completes the proof. |

4. INCREMENTALLY POLYNOMIAL ALGORITHMS

4:1, Problems

We return to positive functions. In conjunction with
duality and self-duality, consider the following problems.
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Problem DUALIZATION.

A positive function f of n variables, i.e., min T(f').
Output: Its dual g=/9, ie., min T(f9).

Problem SELF-DUALIZATION.

Input:

Input: A positive dual-minor function f of n variables,
e, min 7(f).

Output: A positive self-dual function g (i.e., min 7(g))
such that f<g </

Recall that the inputs to these problems are described by
min T f} (ie., prime implicants of /), and outputs are also
given by min T(g). Therefore, algorithms to solve these
problems are enumerative in nature, i.e., have to enumerate
all vectors in min 7{g). This means that, since the length
of /¥ can be exponential in the length of £, as noted in
Section 3.1, such enumeration algorithms cannot be poly-
nomial in the length of the input. In other words, what is
interesting is the incremental polynomiality as explained in
Section 1.

We show in this section that incrementally polynomial
algorithms for DUALIZATION and SELF-DUALIZA-
TION exist if and only if the corresponding problems MD
and SD can be solved in polynomial time, respectively.
The relation of these results with the original problem of
IDENTIFICATION will also become clear.

4.2. Algorithm for DUALIZATION

We first consider Problem DUALIZATION. Assume
that a set TD (<min 7(f¢)) has been enumerated so far,
and define a positive function g by

min 7(g)=TD. (14)

Then g < f9 by 7D = min 7(f9), and g =/ holds if and
only if fand g are mutually dual. This mutual duality can be
checked by solving problem MD for f'and g. Furthermore,
if g#f4 (ie, g<f9), we can resort to algorithm
UNKNOWN of Section 1 with

MT=min T(f) and MF={¢|veTD},

where T(MT)NF(IMF)= @ by g</f¢ (recall relation
(10)), to obtain an unknown vector ue {0, 1} "\(T(MT) u
F(MF)). This u satisfies u¢ TIMT) (ie, ueF(f)) and
u¢ FIMF). From u, compute a maximal false vector
vemax F(f) by algorithm MAXIMAL and let w := y. Then
y € max F(f) implies w € min 7( ), and u ¢ F{ MF) implies
vé¢max F(MF), ie., w¢ TD. From these observations, we
see that the following algorithm can be used to solve the
Problem DUALIZATION.

ArGoriTHM DUALIZE.

Input: A positive function f, i.e., min 7(f).
Output: min T( /).
1. Start with M7 :=min 7( /) and TD := .

2. Solve problem MD with fand g, where g is defined by
(14). If fand g are mutually dual, then output 7D and halt.
Otherwise go to 3.

3. Let MF:=4{i|veTD}. Execute Algorithm
UNKNOWN with MT and MF to obtain an unknown vec-
tor ue F( ). Then compute a maximal vector y satisfying
vzu and ye F(f) by Algorithm MAXIMAL, and let
w:=p. Let TD :=TD v {w} and return to 2.

The time to solve problem MD in Step2 is
Tt |MT| + {MF)), as obvious from the reduction of
MD into EQ in the proof (b) of Theorem 3.1. In Step 3,
Algorithm UNKNOWN requires O(nTgo(n(|MT|+|MF|)))
time, as discussed in Section 2. Algorithm MAXIMAL then
requires Q(n” |[MT}) time, since instead of using member-
ship queries, we directly compute the value of f{y[ v,=1])
by the property: f(y[ y,=1])=1 if there is ve MT such
that ¢ <y[ y,=1] and 0 otherwise. The time for checking
the last condition is O(n [MT). Consequently, one iteration
of Steps 2 and 3 is done in O(nTgo(n(|MT| + |[MF]))) time
(assuming  Tpeon(|MT) 4+ |MF)) 2 On(|MT| + |MF|))),
and the total time of DUALIZE is

O(n |min T( /)| Tyo(a([min T(f)| + [min T(f4)))).

Therefore, DUALIZE is incrementally polynomial if
Problem MD (i.e., Problem EQ) can be solved in polyno-
mial time.

THEOREM 4.1.  Problem DUALIZATION has an incre-
mentally polynomial algorithm if and only if problem MD can
be solved in polynomial time.

Proof. The if-part was already proved above. To prove
the converse, apply the incrementally polynomial Algo-
rithm A for DUALIZATION to funtil either (1) it halts or
(i) it outputs |min 7{g)| + 1 vectors, in order to solve
Problem MD with input data f and g. In case of (i), we
obtain min 7( f¢) and hence we can directly check if g = /¢
holds or not. In case of (ii), g #f is immediately concluded.
In any case, Problem MD is solved. The time required for
this is O(!min T{g)| p(n(|min T( /)| + |min T(g)|))), where
p(-) is the time for one iteration of Algorithm A. This is
polynomial in the input length »(jmin 7( /)| + [min T(g)[)
of Problem MD. |

Since problem DUALIZATION is a fundamental topic
in Boolean theory [4], its relation with Problem MD has
been recognized in various papers including [ 10, 12, 26].
The above argument may be interesting in the sense that
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it reveals a similarity between Algorithms DUALIZE

and IDENTIFY. Although DUALIZE starts with
MT:=min T{f) and MF(={¢|veTD}):= ., IDEN-
TIFY starts with MT:= MF:={J. DUALIZE then

computes the final MF=max F(f) from the knowledge
of MT=min 7(f}, but IDENTIFY computes both
MT=min T(f) and MF=max F{f) by issuing mem-
bership queries to the oracle of £ The iteration of both algo-
rithms to {ind a new vector is based on essentially the same
idea, as evident from the above discussion.

4.3. Algorithm for SELF-DUALIZATION

For a dual-minor function f, the whole set {0 1}"is pdrti-
tioned into three disjoint sets, T( /'), T( f TUfNT(f
and F( /). Furthermore. T(f) and Ffd) are related by
(10). Therefore, (a) v e T(f) if and only if s € F{ £°), and (b)
ve T(f9f) if and only if e 7( /). Also condition (10)
implies

max F( /Yy ={c| vemin T(f)}. (15)
Without loss of generality, we assume f'# L in this sec-
tion, since otherwise any self-dual function can be output.

For a dual-minor function f, a vector v is called a coun-

terexample to fif f(v) = f(¢) =0, since this indicates that f

is not self-dual (see the characterizations (i) and (i) in
Section 3.1). The self-duality can be checked by solving
Problem SD. If fis not self-dual, i.e.. /' < /¢, then a vector u
satisfying

e {0, L}"\(T(f) v F(S9)) (16)

can be found by Algorithm UNKNOWN executed with

MT=min T(f) and MF={i|vemin T(f)},
where TIMT)AFIMFY=T(f)n F(f%)={ by assump-
tion f < f9. This u is a counterexample, i.e., f(u) = fla) =0,
because weT(f%) by (16) and hence e T(fY) by
property (b) above.

Given a counterexample u, we then obtain a minimal vec-
tor ¥ <u such that ye 7(/¢) by applying MINIMAL, in
which condition y'( =3[ 3,=0])e T( /) in Step 2 of MINI-
MAL is checked by condition ' ¢ F( ) (ie.. there is no
vector r e max F( ) such that v>)') in O(n |MT]) time,
since max F( f9) is provided by (13) instead of the explicit
data of min T(f%). We then define a new function g
satisfying [ < g <f9 by

yu{rh).

min 7(g)= MinSet(min 7{ f

We claim that this g is positive and dual-minor. The
positivity is an immediate consequence from definition. To

show that g is dual-minor, assume otherwise, i.e., there is a
pair of vectors w and w such that g(w)=g(1w) = 1. These
vectors belong to 7( /%) by the above properties (a) and
{(b), and hence satisfy w > y and w > y by the above defini-
tion of g. But this implies y =(00...0), i.e., g =T, which is
a contradiction to assumption f'# L. Therefore, g is positive
and dual-minor.

The following algorithm repeats the above procedure
until a self-dual function is obtained.

ALGORITHM SELF-DUALIZE.

Input: A positive dual-minor function £, i.e., min 7( /).

Output: A positive self-dual function g, 1.e., min T(g).
such that f < g< /4

1. Start with M7 :=min 7(/) and g := /.

2. Solve Problem SD with g. If g is self-dual, then output
MT and halt. Otherwise go to 3.

3. Let MF:={¢|veMT}. Execute Algorithm
UNKNOWN with MT and MF to obtain an unknown vec-
tor ue{0,1}"\(T(g) v Flg*)). Then compute a minimal
vector ) such that y<w and ye T(g9)\T(g) by algorithm
MINIMAL, and let MT := MmSet(MTu { ¥}). Define the
function g by mun 7(g) = MT. Return to 2.

First note that, by their minimality with respect to 7( f9),
all the y’s generated in Step 3 will remain in the final output,
e, min 7(g). Hence we may regard that such y is suc-
cessively output in each iteration, and the rest, ie.,
min 7{f}~min 7{g), are output in the last iteration.
Similarly to Steps 2 and 3 of DUALIZE, SELF-DUALIZE
requires

OnTeg(n IMT))N <OnTgo(n(|min 71 )] + | Y1)
time in each iteration, where Y is the set of y’s generated by
then. Therefore, this is an incrementally polynomial algo-
rithm if problem SD (i.e., problem EQ) can be solved in
polynomial time. The total time is

O(n Imin T(g)| Tro(n(|min 7( f)| + |min T(g)|))).
where g in this formula is the last g computed by SELF-
DUALIZE.

THEOREM 4.2.  Problem SELF-DUALIZATION has an
incrementally polynomial algorithm if and onlv if problem SD
can be solved in polynomial time.

Proof. The if-part follows from the above argument. To
prove the only-if-part, first check if f is dual-minor (which
can be done in polynomial time by Lemma 3.1). If £ is not
dual-minor, it is not self-dual. If f is dual-minor, apply
the incrementally polynomial Algorithm A4 for SELF-
DUALIZATION until either (i) it halts or (i) it iterates
|min T(f)| + 1 times. In case (i), f'is self-dual if and only if
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the obtained function g satisfies g = f. In case (i1), f'1s not
self-dual, since each vector y generated by A belongs to
min 7(g). In any case, problem SD is solved. The time
required for this is O(|min 7 f}| p(n Imin T(f)|)), where
p(-) is the time for one iteration of Algorithm A. This is
polynomial in the input length #(jmin 7(f)|) of problem
SD. 1|

For a given dual-minor function f, there are in general
many self-dual functions g satisfying f < g < f°. The above
Algorithm SELF-DUALIZE obtains only one of them. If
other unknown vectors are used in Step 3 (e.g., & instead of
u), the resulting function g may become different.

Combining Theorems 4.1 and 4.2 with Theorem 3.1, we
obtain the next result.

COROLLARY 4.1.  Three problems, IDENTIFICATION,
DUALIZATION, and SELF-DUALIZATION, are equiv-
alent in the sense that, if one of them has an incrementally
polynomial algorithm, then so do the rest of them.

4.4. Special Classes of Positive Functions

It is often known that, for special classes of positive func-
tions, some of the above problems IDENTIFICATION,
DUALIZATION, and SELF-DUALIZATION are poly-
nomially solvable. However, it does not automatically mean
that the rest of the problems are also polynomially solvable
for such special classes, since technical details used to show
the equivalence in Corollary 4.1 must be checked. For
simplicity, we concentrate here on problem IDENTIFICA-
TION, and give some sufficient conditions for a subclass C
of positive functions to have an incrementally polynomial
algorithm. We say that a class C of positive functions is
closed under fixing of variables if f € C implies f, € C for any
a=(a,, as, .., a.).

(A) Forany MT=min 7T /) and MF<max F(f) of a
function f e C, Problem EQ can be solved in polynomial
time, and, if T(MT)u FIMF)# {0, 1}”, an unknown vec-
tor u can be computed in polynomial time. (In this case, it
is immediate to see that Steps 2 and 3 of IDENDIFY can be
executed in polynomial time.)

(B) C is closed under fixing of variables, and it can be
determined in polynomial time whether /'€ C holds or not.
Also Problem DUALIZATION for f € C has an incremen-
tally polynomial algorithm. (In this case, in Step 2 of IDEN-
TIFY, define /" by min T( f') = MT. If " ¢ C, then EQ has
answer “no,” and if /” € C, compute ( f”) to solve EQ in the
manner of Theorem 3.1(b) and Theorem 4.1. This can be
done in polynomial time. Step 3 of IDENTIFY can also be
executed similarly in polynomial time.)

(C) C is closed under fixing of variables, and it can be
determined in polynomial time whether e C holds or not.
Also Problem MD for fand g, one of which belongs to class

C, can be solved in polynomial time. (In this case, Algo-
rithm DUALIZE is incrementally polynomial. Then apply
(B).)

For example, there are incrementally polynomial
DUALIZATION algorithms for such classes as positive
threshold functions and regular functions [26, 10, 5],
positive k-DNF functions {12], and matroid functions
[23]. These classes are closed under fixing of variables, and
it can be determined in polynomial time whether f € C holds
or not. Therefore, by (B), IDENTIFICATION for these
classes has incrementally polynomial algorithms.

5. SATURATED POSITIVE FUNCTIONS

In the course of investigating the complexity of Problems
MD and SD, some other problems have been found to be
polynomially equivalent. We list one problem, extensively
studied in [ 12] in the hypergraph setting. A family % of sub-
sets of V'={1,2, ..., n} is sometimes referred to as a hyper-
graph H=(V, %), where each Se% is called a hyperedge.
A hypergraph H is simple if € is incomparable.

Problem SIMPLE-H-SAT (Simple Hypergraph Satura-
tion).

Input: A simple hypergraph H=(V, é).
Question: Is there no subset S of V such that H' =
(V,% v {S})is also a simple hypergraph?

In [12], it is shown that this problem is polynomially
equivalent to Problem SD. It also contains interesting
applications found in such fields as artificial intelligence and
database theory. In this section, we define the same problem
in Boolean terminology and again show its polynomial
equivalence with SD. As the methods of Boolean algebra
become available in this way, the proof is much simplified
and easy to understand. Some new characterizations such as
Lemma 5.1(i11) below are also derived. Furthermore, some
concepts introduced in its proof turn out to be very useful to
understand properties of self-dual functions, as will be dis-
cussed in a companion paper [ 8].

For a positive function £, call a vector we {0, 1}" incom-
parable with fif w £ v and w 2 v hold for all v e min 71 f).
A positive function f i1s saturated if there is no vector w
incomparable with f.

Problem ST.
Input: A positive function f of n variables, i.e., min 7( f).
Question: Is f'saturated?

Before proving the polynomial equivalence of ST and SD,
we introduce two positive functions f° and f, associated
with f. First f, is defined by

min T( f,) = {¢F|vemin T(f)}. (17)
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The DNF expression of f, by prime implicants is

fo=\ {m | vemin T(f)}, (18)

where m,, for w e {0, 1}" denotes the conjunction of literals
x, satisfying w,=1; eg., if w=(01011) then m, =245
(abbreviation of x,x4xs). For example,
f=12v 234, ie, minT(f)= {(1100), (Olll)} 19
f.=34v1, ie, min 7(f.,)={(0011), (1000}}.
Next, let L(w) denote the set of vectors obtained from w
by changing one element w,=0 to w,= 1. For example, for

w=(01001), L(w)= {(11001), (01101), (01011)}. Function
/*, which is called the subdual of f, is then defined by

min 7(f°) = MinSet <U {L(f)|vemin T(f)}). (20)

Its DNF expression is given by

=V {mmdlvemin T(f)}, (21)

where m9 denotes the dual of m,; e.g., if m, = 235 then m! =
(2 v 3 v 5). For the example of (19), we have

f=341v2)vI12v3iv4)=234v12vI3vid

min 7( /*)=MinSet{ (1011),(0111),(1100),{1010),(1001)}
={(0111), (1100), (1010), (1001)}. (22)
Now recall property (15) that holds between max F( /)
and min 7(f). Then the definition of /_ implies min 7( f,) =
max F(f9). Since any wemin 7(/*) is larger than some

yemax F(f%), by definitions (17) and (20), it satisfies w & =
for all e max F(f9), implying w e T( /). This proves

o< ie, (f)=f (23)
It is also clear from definitions (18) and (21) that
< (24)

Therefore < f4f.. The converse is also true since
d
d
re= VoV m)
cemin T( /) wemin T(f})

=\/ m, </\ mff)
r W

<\ momi=fs,
.

which proves

f=ri. (25)
LEMMA 5.1.  For a positive function [, the following condi-
tions are equivalent

(1) [fis saturated.

(i) fo<fe

(iii) 5= [

Proof. A vector w is incomparable with /if and only if
(a) we T(f), and (b) w A T5#(00...0) (i.e., w £ v) for all
vemin T(f). However, condition (b) is equal to saying that
we T((f.)?) (see definition (17) of £, and the transversality

of a dual function, mentioned in Section 3.1). Therefore,
such an incomparable w does not exists if and only if

TN2TWS )Y = 2 () = i< [

This proves the equivalence of (i) and (ii). The equivalence
of (ii) and (iii) is then obvious from property {(25). ||

For example, function f of (19) is not saturated, since
fi=(1v2)¥2v3v4)=2v 13 v 14 is not equal to f* of
(22). In fact, a vector (1011) is incomparable with f.

COROLLARY 5.1. If fis a saturated positive function of n
variables, its dual 9 satisfies |min T(f°)| <n |min T(f)],
and min T(f¢) can be computed (i.e., DUALIZATION can
be solved ) in polynomial time.

Proof. Tmmediate from property f*= 9 in Lemma
5.1(ii1), and expression (21) of f*. |

However, this does not say that Problem ST can be
solved in polynomial time. It is in fact polynomially equiv-
alent to Problem SD, as noted in the next theorem. Other
problems such as EQ and IDENTIFICATION for
saturated positive functions can also be shown to have the
same complexity as those for general positive functions.

THEOREM 5.1.  Problems ST and SD are polynomially
equivalent.
Proof. (a) Reduction from ST to SD. Let f be a

positive function, and x, y be variables not contained in f.
From this f, construct the following /:
h=fxv f*yv v xy,;
ie., by (13),
h=(£9)9x v fIy v xp.
Then (23) shows that 4 is dual-minor, ie., A <hd, and

furthermore A=A holds if and only if f*= f Thus, 4 is
self-dual if and only if f'is saturated.
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(b} Reduction from SD to ST. Assume that f'is positive
and dual-minor (dual-minority can be checked in polyno-
mial time by Lemma 3.1). From /, define

g=/1v foxp (26)
where x and y are variables not contained in /. Then
min 7{g) = {(v00), (r11)]vemin T(f)}, (27)

where the last two elements of vectors respectively
correspond to x and y, because f < [ implies v A w #
(00-.-0) for any v,wemin 7(f) (by Lemma 3.1), and
hence v € for any v, w e min 7( /). Property (27) says that
wemin T(g)<>wemin 7(g), and hence g = g.. Therefore,

g issaturated < g < g.  (by Lemma 5.1(ii))

<=g'<yg

< S vy v v fix
The last inequality implies /¢ < f(take x =1 and y =0); i.e.
f¢= f(self-dual) by assumption f < f“. On the other hand,
since < g (i.e., g < f9) follows from (26), /< f implies
g < i< f<g=g.; ie, g is saturated by Lemma 5.1(ii).
Consequently, g is saturated if and only if /is self-dual. |

6. CONCLUSION

We have shown in this paper that all the following ques-
tions are equivalent in the sense that either all hold true or
none:

(1) EQeP,
(2) MDeP,
(3) SDeP,
(4) STeP,

(5) IDENTIFICATION € fncrP,
(6) IDENTIFICATION € TotulP,
(7) DUALIZATION € IncrP,

(8) SELF-DUALIZATION € IncrP.

Here P stands for the class of problems solvable in polyno-
mial time, Iner P the class solvable by incrementally polyno-
mial time algorithms, and Tota/P the class solvable by poly-
nomial total time algorithms. Although some important
steps have been made [13], their complexity is still left
open.

As noted in Section 4.4, there are several special classes of
positive functions, for which polynomial (or incrementally
polynomial) algorithms are known. One of our companion
papers [ 23] investigates this direction by using a new tool
called the maximum latency. which is a complexity measure

for finding an unknown vector, and provides some polyno-
mially solvable classes. Another possible avenue would be
to introduce approximate concepts of dual, self-dual,
saturation and so forth, so that they become computa-
tionally tractable. The concept of subdual introduced in
Section 5 is interesting in this respect, since it is a subfunc-
tion of the dual and is polynomially computable for all
positive functions. The concept of almost self -duality, which
1s a close approximation of the self-duality defined in terms
of subduality (hence is polynomially testable), and related
topics are extensively studied in another companion paper

[8].
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