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The philosophy, execution, and interpretation of how to
optimize signal/noise content in computerized electrocar-
diographic (ECG) devices has traditionally focused on the
fidelity of the record-playback loop, the accuracy of mea-
surements, and the characteristics of the editing and dis-
play human interface environments. In an era in which
derivation of computationally demanding continuous ECG
parameters and transforms is facile, and with the develop-
ment of integrated information systems in which ECG in-
formation overall is only a component of the total patient
data analyzed, conceptual expansion from signal/noise op-
timization to information content/noise optimization could
be useful. For continuous ST-segment data streams, this

conceptual expansion could help track the influence of

compromises in technical specifications or compromises in
data quality on parameters affecting interpretative state-
ments. The information content/noise focus could also be
a useful way to consider whether limitations in raw signal
recording or processing could be compensated for by statis-
tical strategies applied to the parameters derived from the
processed signal before they are actually interpreted for
clinical or research purposes.

Two fundamental areas of ST-segment recording and
analysis have received little explicit attention in the more
than 500 papers published using this methodology: the
definition of a baseline or reference ST level and the analy-
sis of continuous data in which gaps are created by artifact.
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We have previously detailed a self-referenced, continu-
ously updated approach to baseline/reference level defini-
tion for the noninvasive detection of failed reperfusion
using continuously updated ST-segment recovery analysis
in patients presenting with acute myocardial infarction.’
In the current discussion, considerations will be turned to
the management of data gaps in the context of continuous
ST-segment recovery analysis, also in patients suffering
acute infarction treated with thrombolytic therapy. The
methods proposed are considered of potential use for appli-
cation in randomized trial designs comparing treatment
regimens over populations but probably not for real-time
use in individualized patient care.

Overview of the Method

The application exampled will be a randomized clinical
trial comparing drug A versus drug B for the induction of
reperfusion during acute infarction. The measure of drug
activity is taken as the speed and stability of 50% or greater
ST-segment recovery, as a surrogate for angiographic re-
perfusion. The data from which the 50% ST-segment re-
covery variable is derived are taken from continuous ST-
segment monitoring devices that archive ECG wavetorm
measurements with the time and date of their acquisition.
These digital archives are then uploaded to an independent

computer analysis environment.

Using current standards for ST-segment analysis for such
data streams, some arbitrary limits on absent or artifact-
laden periods creating gaps in the data stream would be
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imposed. Patient studies falling within the set limits would
be included in the data analyzed for 50% or greater ST-
segment recovery. Studies outside these arbitrary limits
would be excluded from analysis as ““technical failures.”
Such technical failures are generally of two types: either
the data gap occurs at a crucial moment (eg, at the moment
when some other correlated endpoint is simultaneously
gathered) or the data gaps eliminate too great a portion of
the monitoring period to support therapy-based conclu-
sions (eg, artifact involving more than 50% of the total
monitoring period). The technical failure codes from the
Duke University Ischemia Monitoring Laboratory, used in

the TAMI, DUCCS, GUSTO, and currently in other trials,
are listed in Table 1.

Using such cutoffs, the whole study population denomi-
nator is thus divided into two groups: analyzable and tech-
nical failures. The analyzable data are used to produce pa-
rameters of interest, and an interpretative statistical
analysis is performed to assess drug A versus drug B effects.

Using this classical approach, many individual studies
included in the analysis contain substantial periods of arti-
fact or gaps. Parameters derived from these studies are ab-
sorbed into the analytic conclusions while the noise con-
tent of each study itself becomes completely transparent
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Table 1. Technical Failure Codes

Code
No. Code Definition
l Late hookup: >1 hour after lytics
2 Late hookup: >2 hours after lytics
3 Late hookup: >3 hours after lytics
4 Late hookup: >6 hours after lytics
5 Late hookup: >12 hours after lytics
6 No ST monitor hookup within 24 hours
7 Noise/artifact: >50% of monitoring time
8 Noise/artifact: >1 hour of first 3 hours
9 Noise/artifact: during catheterization or intervention
10 Noise/artifact: steady state indeterminate
| 1 Noise/artifact: other period of interest
12 Data gap: >50% of monitoring time
13 Data gap: >1 hour of first 3 hours
4 Data gap: during catheterization or intervention
15 Data gap: steady state indeterminate
16 Data gap: other period of interest
17 BBB/V-Pacer: >50% of monitoring time
1 8 BBB/V-Pacer: >1 hour of first 3 hours
19 BBB/V-Pacer: during catheterization or intervention
20 BBB/V-Pacer: steady state indeterminate
21 BBB/V-Pacer: other period of interest

Codes are from the Ischemic Monitoring Laboratory, Duke Uni-
versity Medical Center.

within the analysis of the final parameters considered to
reflect drug effect. Conversely, many studies excluded as
technical failures may nonetheless have substantial infor-
mation content. The loss of such studies from the analysis
not only excludes the available information in the record-
ings but also reduces the overall denominator of patients
analyzed and so reduces the statistical power of the study to
detect more subtle differences or to characterize important
subgroups within the drug treatment effect analysis.
Most trials published using ST-segment monitoring end-
points do not even report either the exclusion criteria de-
fining technical failures or the number of patients excluded
based on such criteria. Many trials omit both, either in
the analytic process or in the reporting of the data. From
available information in acute infarction trials using any
ST-segment monitoring device, from 25 to 50% of patients
entering the trials may be excluded from at least one pri-
mary analysis if criteria are carefully defined and applied.
In Figure 1, a series of ST recordings during acute infarc-
tion is shown. In Figure 2A, the data stream shows an
uninterrupted depiction of the continuous surveillance
mode of the ST-100 12-lead ST monitor (Mortara Instru-
ment, Milwaukee, WI), as has been detailed previously.’
As can be seen Figure 1B, in some recordings the overall
profile of ST-segment recovery is so well preserved that
there is almost an intuitive impulse to ignore the gap or
“connect the dots”” and impute the missing ST values. In
other studies, such as in Figure 1C and D, the gaps get
larger, and even the subjectively perceived ability to impute
accurate information wanes. In other studies, the gap dura-
tion predominates over ST-segment values altogether. In
studies such as Figure 1E, despite the absence of data over-
all, the period in which data are recorded is highly active
and potentially informative. In other studies, such as Fig-
ure 1F, so little data are actually recorded over the monitor-
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Fig. 2. Interval censoring of reported time to 50% recovery
with data gaps in different locations. From top to bottom,
trends showing ideal absence of gaps, early gap, late gap,
and interval gap, which would be treated with no, left,
right, and interval censoring, respectively. As shown at the
right of each trend, this approach generates differentially
weighted parameter statements for time to 50% recovery:
precise number of N minutes (ideal), = number of N min-
utes (left), > number of N minutes (right), and > and =

number of N minutes (interval).

ing period that there is almost no impression as to the
status of the infarct artery or the effect of the drug being
measured.

An accurate method for imputing the missing data
would be the most ideal solution. Such a method could
even potentially be applied at the bedside in individual
patient care. However, as can be seen in Figure 1, the range
of potential ST-segment behavior even in short time pe-
riods is extremely variable, from no change at all to
hundreds of microvolts in only seconds. Given this hetero-
geneity, a method of imputation that would suffice for
these purposes seems remote, unless a large enough data-
base could be gathered to develop a robust probability of
activity in any definable time period around some index
event. If, for instance, the likelihood of coronary reocclu-
sion with ST-segment activity was far greater in the first
hour after thrombolytic therapy than in the twenty-first
hour after thrombolytic therapy as assessed in 1,000 pa-
tients with complete ST recordings, then a probability of
ST activity within a data gap might be imputed differently
in a data gap in the first hour compared with a gap of
similar duration in the twenty-first hour. The number of
assumptions incorporated into this approach and the data-
base that would be necessary to generate a robust basis for
imputation seem prohibitive.

The statistical treatment of data gaps within continuous
ECG streams as a part of the derivation of the endpoint
parameters themselves might be better considered as an
alternative to the standard approach of excluding studies
based on arbitrary thresholds. Such an approach might be
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accomplished through the use of parametric survival anal-
ysis with left, right, and/or interval censoring.?> In this
approach, data gaps are not imputed, and studies are not
excluded. Rather, the parameters of interest are defined
with reference to the gaps within each individual patient
recording, as illustrated in Figure 2 for the example of the
“time to first 50% ST-segment recovery’’ parameter in our
hypothetical thrombolytic trial.

To illustrate the difference between the standard non-
parametric approach and a parametric survival model
using data censoring, consider a patient recording with a
gap of 40 minutes before the first recorded ST level connot-
Ing 50% recovery (Fig. 2 “Interval’’). In a standard nonpar-
ametric model, this patient recording would be categorized
either as analyzable or as a technical failure based on the
arbitrary cutoffs. If the predefined rules state that a 50-
minute gap connotes a technical failure, analysis of this
study would be included in the overall data set. How the
variable ““time to first 50% recovery”” would be reported
In minutes from therapy, however, would remain arbi-
trary, as either the first real value at the end of the gap, as
the last real value at the beginning of the gap, or as some
Intermediate value between those two. In every case, such
a value would include some imputed estimation of the
real timing of 50% ST recovery. Once assigned a value in
minutes, however, the value would enter the database and
be included in the final analysis of drug effect without dis-
tinction from more precise values generated from truly
continuous studies. Thus, in the final database, each study
deemed technically analyzable would produce a time as-
signed (in minutes) to the moment of 50% recovery. The
amount of imputed information incorporated in the deri-
vation of any of these values would be completely invisible
when they were matched to drug treatment assignments to
address the primary investigational hypothesis. In a well-
designed trial, this problem might be solved by randomiza-
tion per se, producing an equivalent amount of imputed

ECG STUDY DATA
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Fig. 3. Dilemma of the greater than standard method and
censored model, yielding different analytic statements with
no referee as to whether a smaller denominator (standard)
or highly fit censored model gives more Insight into relative
drug effects.

information within each drug arm’s ST recovery parame-
ter; however, there is no systematic way to ensure that
such was the case for any given trial. In smaller trials or
nonrandomized trials, the problem could be even more
pronounced.

Interval censoring and a parametric modeling approach
could be adopted as a statistical attempt to circumvent both
the necessity of excluding studies from the denomina-
tor—all studies would be included—and the necessity to
Impute or assign values that were any more specific than
the actual recorded data allow. Thus, for the study in Figure
2 “Interval”, the value (in minutes)assigned to 50% ST
recovery would correspond to the duration of the interval
between the last recorded ST level (showing less than 50%
recovery) and the onset of recording after the gap (showing
more than 50% recovery). If the time of onset of the gap
Is X minutes from the time of therapy and the duration of
the gap is 40 minutes, the value assigned to the time to
50% recovery parameter would be “>X minutes and =X
+ 40 minutes.” In an ideal parametric model, when values
for 50% recovery were correlated to treatment assignments
to address the primary investigational hypothesis, this cen-
sored statement would be incorporated with less weight
than the more precise values (in minutes) derived from
truly continuous patient recordings but with more welght
than statements from other studies with even longer gaps.
Thus, at least conceptually, this approach to analysis of ST
recordings would be an attempt to combine the preserva-
tion of the overall denominator with a censoring of noise/
gaps information instead of an invisible incorporation of
noise/gap information.

Although conceptually intriguing, the actual perfor-
mance of this approach in an acute myocardial infarction
ST-segment data set would itself have to be tested. Theo-
retical assumptions within parametric survival models
using data censoring might be inappropriate for such non-
normally distributed, nonlinear data. “Forcing”’ the appli-
cation if such a mismatch is substantial could lead to total
nonsense rather than to the intended improvement in ana-
lytic capabilities. For example, as illustrated in Figure 3,
say a data set of 1,000 patients is collected for our random-
ized trial of thrombolytic therapy. In the standard ap-
proach, the technical failure rate based on predefined rules
1S 43%. Of the remaining 570 patients, randomized across
the two therapies, time to 50% recovery suggests that there
Is no difference between drug A and drug B. Using the
parametric model, however, including precise and cen-
sored statements to described 50% recovery in all 1,000
patients, time to 50% recovery suggests that drug A is more
cffective than drug B. On a theoretical basis, it is Impossible
lo predict which conclusion is actually correct. In the final
section of this discussion, we consider at least one ap-
proach to the assessment of the strengths or weaknesses
ol parametric modeling in ST-segment data stream infor-
mation.

The focus of an approach to this methodologic validation
s well served by returning to the concept of signal/noise
content of the ST data streams, and therefore of any param-
cters derived from ST data streams. In that sense, the stan-
dard approach of predefining technical failures is similar
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Fig. 4. Incremental testing scheme to determine the perfor-
mance of the censoring model over progressively poorer
Information content studies.

to a bandpass filter threshold. All information beyond the
threshold is simply eliminated on the presumption that
that information contains more obscuring noise than use-
ful signal. From this perspective, the goal of data censoring
within a parametric model could be regarded as a shift
from a fixed bandpass filter to a statistical filter executing
an attempt to enhance the quality of data around the
threshold level and even to recover information and ana-
lytic power from studies that are well beyond that thresh-
old (ie, studies that are heavily polluted with noise or
gaps). The test of such a statistical filter’'s performance
would thus need to be a test of how much power versus
how much pollution was incorporated by its use.

There are many possible approaches to such validation
testing. One might be to look at the conclusions reached
compared with other markers within the same clinical trial,
such as angiographic information, and see if they are con-
sistent. If the angiographic data implied that drug A and
drug B, for instance, were no different, one might suspect
that the modeling process created a nonsense statement if
It suggests that drug B was better. However, it would be
impossible to discriminate this conclusion from the possi-
bility that the modeled ST data was, in fact, elucidating
some component of the disease and its response to therapy
that was not captured by the angiogram.

A more potentially robust approach to validation would
be to establish a known relationship between the marker
and some outcome of interest and then observe the perfor-
mance of the modeling process as more and more ““pol-
luted”” studies were added in a stepwise fashion. This vali-
dation approach is illustrated in Figure 4. An essentially
qualitative grading scale for the early and late content of

ST monitoring studies recorded from acute myocardial in-
larction trials is first established according to the timing
and duration of data gaps and noise levels relative to pri-
mary study parameters. This scale provides a crude but
useful index of the “’pollution”” level of any given study.
As shown in Figure 4, the validation approach would first
seek to define a correlation between the most optimal ST
studies (qualitative scores of 9—10) and an outcome of in-
terest, such as survival after infarction. If such a correlation
could be established, then studies of a ““more polluted”’
nature (scores 6—7) would be added in, and the correlation
reanalyzed. If the ““filter”” works effectively, the correlation
should be sustained, with an increase in the information
content by virtue of the increased size of the denominator
analyzed. This process could be repeated in a stepwise fash-
lon, adding in the studies scored at 5, 4, and so on, with
the parametric modeling reanalyzed at each step. When
addition of a certain noise level caused the correlation to
deteriorate, the limit of the modeling process to improve
iInformation content would essentially have been defined.
[f that limit occurred very early, one might interpret it to
mean that the assumptions of the model about the nature
of the data are being violated in too primary a manner
to use the strengths of the censoring process. If that limit
occurred late or not at all, however, then one might be
more comfortable concluding that the standard nonpara-
metric approach showed no difference between drugs A
and B because the analysis became underpowered after
eliminating more than 30% of the denominator and that
the suggestion that drug B was better using the parametric
approach to left, right, and interval censoring was, in fact,
a statistically sound conclusion.

Thus, parametric modeling using left, right, and interval
censoring suggests a unique and innovative approach to
the analysis of continuous ECG data streams for investiga-
tional applications. This method does not impute data into
data gaps or otherwise reactivity noise and so is not pro-
posed as a solution to individual patient study problems for
real-time clinical management per se. Rather, this method
appears to have potential to optimize the information con-
tent of analyses performed on parameters derived from ST-
segment data streams with gaps by including the entire
population but creating differential weighting of analyzed
variables based on the actual continuity of each individual
data stream from which the variable is derived. Before ap-
plying such a model to comparisons of unknowns, such
as therapeutic effects, the modeling process will need vali-
dation of its ability to actually distill information out of
noisy ST studies. This validation could be established by
showing incremental information gain from the enhanced
denominator more than information loss from data charac-
teristics that do not precisely fit the underlying assumptions
of the model itself. In this proposal, the salient theme re-
mains, in an era of tools that allow us to pursue truly
unique analytic approaches to all levels of data manage-
ment, to broaden the theme of signal/noise content to one
of information/noise content.




