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Abst rac t .  Photodynamic therapy (PDT) has attracted at tention because it was considered to be a 
selective form of cancer t reatment  causing minimal damage to normal tissues. This is not exactly 
true, because the ratio between the photosensitizer concentrations in tumour and surrounding 
normal tissues is not always much more than one. Nevertheless, tumour destruction by PDT with 
relatively little damage to normal tissue is possible in many cases. This requires sophisticated light 
delivery and/or light dosimetry techniques. In this respect the limited penetration of light into 
biological tissues can sometimes be useful. In this paper a qualitative and sometimes quanti tat ive 
discussion is given of the physical phenomena determining the energy fluence in a biological tissue. 
Most important is light scattering, the contribution of which depends on the geometrical conditions. 
Finite beam surface irradiation, irradiation of hollow organs (bladder) and interstit ial  irradiation are 
discussed separately. The emphasis is on light 'dose' and light dose distribution. It is emphasized that  
PDT dosimetry in general is complicated by photosensitizer distribution (which is usually not 
known), by photobleaching of the sensitizer, by possible effects of hyperthermia,  and by changes in 
optical properties during and as a result of PDT. 

INTRODUCTION 

Photodynamic therapy (PDT) is a new form of 
cancer t reatment  that  is currently evaluated in 
clinical trials (1, 2, 3). PDT involves the syste- 
mic administration of a photosensitizer that  is 
more or less preferentially retained in malig- 
nant  tissues. A few days after administrat ion of 
the drug the tumour area is irradiated with a 
high light dose of suitable wavelength. This ex- 
cites the photosensitizer, which upon decay to 
its ground state may transform available oxy- 
gen into singlet oxygen, which is probably the 
most important cytotoxic agent in PDT (4). PDT 
destroys the (tumour-)tissue blood circulation 
(5), probably by damaging endothelial cells. 
Tumour necrosis is therefore most likely an in- 
direct effect and direct tumour cell kill by PDT 
is relatively unimportant  (6). 

The photosensitizer almost exclusively used 
in clinical PDT is haematoporphyrin derivative 
(HPD) or a substance derived from HPD, en- 
riched in the active fraction, with the trade 
name Photofrin II (PhII). HPD and PhII can be 
activated by light of various wavelengths, e.g. 
=400nm (violet), = 5 0 0 n m  (green) or 625- 
630 nm (red). Red light is least effective, but is 

preferred because it penetrates best into biolo- 
gical tissues. Lipson et al (7) demonstrated en- 
hanced fluorescence of HPD in transplantable 
tumours compared to surrounding sub- 
cutaneous normal tissue. This has led to the 
notion of PDT as a selective cancer t rea tment  
modality. Subsequent studies have shown, 
however, that  the ratio between photosensitizer 
concentrations in tumour and normal tissue is 
often not much larger than two or three. Furth- 
ermore, certain normal tissues (liver, spleen) 
retain more photosensitizer than tumours (8, 9). 
In the latter case, selective tumour t rea tment  
can still be realized by selective light delivery. 
In cases where the tumour does retain more 
photosensitizer than the surrounding normal 
tissue, it should be possible to destroy a superfi- 
cial tumour and spare the normal tissue, even 
though both are irradiated with the same dose 
of light. In all cases, successful application of 
PDT requires sophisticated light delivery and 
light dosimetry techniques. 

In the following sections the problems and 
achievements in light delivery and light 
dosimetry techniques will be il lustrated using 
examples from clinical practice or preclinical 
animal research. 
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LIGHT DOSE AND BIOLOGICAL EFFECT 

In most cases a laser is used as the light source 
for PDT. Laser light can be efficiently coupled 
into an optical fibre, facilitating endoscopic ap- 
plications. However, for external light delivery 
properly filtered incandescent light sources or 
arc lamps have also been successfully employed. 
The power of a light source is expressed in 
Watts (=Joules/second) and the energy 
del ivered-- i f  the power is constant-- is  thus 
power • irradiation time (s), expressed in 
Joules. 

In PDT usually a surface is irradiated and one 
is therefore interested in the power per unit  
area, called the irradiance and expressed in W/ 
m 2 or mW/cm 2. For example, if an area of 5 x 
5 cm 2 is uniformly irradiated with I W power, 
the irradiance is 40 mW/cm 2. The energy deli- 
vered to the surface in 30 min is 72 J/cm 2. These 
are numbers (order of magnitude) tha t  are en- 
countered in PDT practice. (Note that  the power 
emitted by the laser must then be larger than  
lW,  in this example because the fibre causes 
loss of light (reflections and also some absorp- 
tion) and the fibre emits a beam of circular cross 
section, from which a square beam is obtained 
using a mask.) One can see that  to irradiate a 
large area several Watts of power are needed. 
Even with a laser, it is not always easy to obtain 
a high power (>3W) at the wavelength most 
suitable for PDT (625-630 nm). Non-laser light 
sources emit a broad spectrum of light which for 
PDT is filtered to obtain a band around the 
required wavelength. Since this light is not tru- 
ly monochromatic it is less efficient in exciting 
the photosensitizer and consequently more 
energy is needed than  with laser light to 
achieve the same biological effect. 

The biological effect in PDT is proportional to 
the amount  of light energy propagating in all 
directions multiplied by the absorption coeffi- 
cient of the photosensitizer in the tissue. The 
first is called the energy fluence rate qJ (W/m2). 
Multiplication with the irradiation time yields 
the energy fluence (j/m2). If the absorption 
coefficient t~p of the photosensitizer is expressed 
in m 1 (linear absorption coefficient), multi- 
plication with ~ yields the power absorbed per 
second and per unit  volume. (If instead of#p one 
uses the mass absorption coefficient, equal to 
(t%/density) and expressed in m2/kg, the energy 
absorbed by the photosensitizer is expressed in 
J/kg.) This is the 'dose' that  determines the 
biological effect of PDT in a well oxygenated 
tissue. However, since the distribution of photo- 

sensitizer concentration in a tissue treated by 
PDT is often not known, the same is true for the 
light dose absorbed by the photosensitizer. For 
simplicity one therefore assumes that  for a 
given dose ofphotosensitizer administered to an 
organism the tissue distribution is always the 
same. In that  case the energy fluence (rate) can 
be used as a measure of the absorbed light dose 
(rate). 

If the surface irradiance exceeds about 
200 mW/cm 2, hyperthermia may contribute sig- 
nificantly to (tumour-)tissue response (10). This 
may be useful, but is also a complicating factor 
in dosimetry. Avoiding hyperthermia may lead 
to long t reatment  times in interstitial PDT (see 
later section). 

Because of the poor penetration of visible 
light into biological tissues (at most I cm for red 
light and less for light of shorter wavelength), 
effective PDT of non-superficial tumours re- 
quires interstit ial  light delivery. Here, one or 
more so-called cylindrical diffusors are im- 
planted. These are optical fibres, modified so 
tha t  light is emitted more or less uniformly over 
a length of one or more centimetres (11). The 
power emitted by a cylindrical diffusor is often 
expressed in mW per cm of light emitting 
length. This quanti ty (like the surface irra- 
diance, above) is important with regard to a 
possible temperature rise due to the optical 
energy absorbed by the tissue, which may act 
synergistically with PDT (see later section). 
The radiant  energy applied in interstitial PDT 
is sometimes reported as J per cm of light emit- 
t ing fibre. This is not a useful quantity, because 
there is no fixed relationship with the actual 
fluence at any point in the tissue. One should 
always at tempt to either measure or calculate 
(12) a value for the fluence or fluence rate at 
critical points in the treated (tumour-)tissue. 

SCATTERING, ABSORPTION AND INTERNAL 
REFLECTION 

The irradiance of the incident beam--  
multiplied by the irradiation t ime-- is  often re- 
ported as the 'light dose' in superficial PDT. If 
all other circumstances remain the same (type 
of tissue, geometry, concentration of photosen- 
sitizer) the irradiance can be useful as a refer- 
ence value. It should be realized, however, that  
the energy fluence (rate) in the tissue does not 
have the same value, not even at the air- t issue 
boundary where the incident light enters the 
tissue. In fact, if a weakly pigmented tissue in 
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air is irradiated with a wide beam of red light 
(irradiance i W/m2), the energy fluence rate in 
the tissue at the a i r - t i s sue  interface may be 
3 -4W/m 2 (13). After a plateau of a few mil- 
limetres, the fluence rate decreases exponen- 
tially with increasing depth (13). This be- 
haviour is the result  of two phenomena. 

Light scattering 

In biological tissues the scattering coefficient t~s 
for red light is much larger than the absorption 
coefficient ~a (to be distinguished from the 
absorption coefficient t~, of the photosensitizer). 
In practice ~t a ~ ~p SO that  the light distribution 
is largely determined by the tissue optical prop- 
erties. However, the possibility tha t  adminis- 
t rat ion of a photosensitizer may affect the light 
distribution should be kept in mind. Typical 
values for t~s are 2 0 - 6 0 m m  -1 (14-16). Values 
of ~a may be 100-1000 times less. As a result, 
optical photons entering a tissue are scattered 
many times before they are ei ther  absorbed or 
diffuse out of the medium. The photons 'stay 
around' for a longer time than if they were not 
scattered. This increases the energy fluence 
rate close to the tissue surface. Another  con- 
sequence of light scattering is tha t  the fluence 
rate in tissue depends on the diameter  of the 
incident beam (13). This is because by increas- 
ing the beam diameter  more tissue is i rradiated 
from which scattered light can reach a given 
point within the beam. 

Internal reflection 

The refractive index n of biological tissues is 
about 1.41 (17). I f a  light beam in air strikes an 
a i r - t i ssue  interface, it is therefore part ial ly re- 
flected. The reflection coefficient is only a few 
percent, however (18). When light within the 
tissue strikes the t i s sue-a i r  boundary, it will be 
totally reflected back into the tissue if the angle 
of incidence is larger than the critical angle, 
defined by arcsin(1/n) -- 45 ~ On the average, for 
diffuse light in the tissue str iking the boundary, 
the reflection coefficient can be approximated 
by [cos{arcsin(1/n)}] 2 = 0.50 (19). Light tha t  
would otherwise have been scattered back can- 
not leave the tissue, causing an additional in- 
crease of the energy fluence rate in tissue at the 
a i r - t i ssue  interface. If the tissue were embed- 
ded in water this effect would be much less. The 
refractive index of water is 1.33 so that  the 

Lasers in Medical Science 1990 ~ Bailliere Tindall 

diffuse internal  reflection coefficient is approx- 
imately [cos{arcsin(1.33/1.41)}] '~ = 0.11. This 
difference can be important  if localized tumours  
in a water-filled bladder are t reated by PDT 
using focal i rradiat ion (see later  section). 

NARROW BEAM SURFACE IRRADIATION 

Malignant  tumours  often arise at a tissue sur- 
face, ei ther  in the skin or at a surface in a body 
cavity (oral mucosa, gastrointest inal  tract,  
lung, bladder). If the tumour  to be t reated is 
superficial, surface irradiat ion can be adequate. 

Laser light can easily be coupled into an 
optical fibre. This facilitates irradiat ion of sur- 
faces in body cavities by passing the fibre 
through an endoscope. The light intensi ty in a 
cross-section of the beam emitted by an optical 
fibre usually decreases as a function of the ra- 
dial distance from the optical axis. The beam 
profile is bell shaped, whereas a ' rectangular '  
shape is preferred, i.e. the same irradiance at 
each point in a cross-section of the beam. 
McKenzie (20) has proposed a trick to manipu- 
late this profile. A more elegant way is the use 
of a microlens (21), which can be small enough 
to pass through an endoscope. A somewhat 
more bulky device using a microscope objective 
lens has been proposed by Allen et al (22). This 
can be easily manufactured  and emits a near ly  
perfectly uniform beam, but can only be used 
outside the body. 

Even though the profile of the incident light 
beam may be rectangular ,  inside the tissue it 
becomes bell shaped again, due to scattering. 
This effect becomes more pronounced with in- 
creasing depth in the tissue. When irradiat ing a 
tissue for PDT it is therefore important  to in- 
clude a margin of normal tissue in the treat-  
ment  field. 

If a tumour  is superficial and contains more 
photosensitizer than the surrounding normal 
tissue, selective PDT by surface irradiat ion is 
possible. The energy fluence rate in a tissue 
decreases with increasing depth. Thus, when 
the thickness of a tumour  increases the surface 
light dose must  be increased to achieve a tumor- 
icidal dose at the deepest tumour  boundary. 
Eventual ly,  the required surface dose will cause 
necrosis of the superficial normal tissue as well. 
The limit of selective PDT is thus determined by 
the difference between tumour  and normal tis- 
sue in retent ion of the photosensitizer and by 
the penetrat ion depth of the activating light. 
But even when the conditions are not fulfilled, 
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for a well circumscribed tumour selective PDT 
is often still possible by selective irradiation: 
laterally by limiting the beam diameter and at 
depth by the natural  limit of light penetration. 

As mentioned earlier, the energy fluence 
(rate) in a tissue depends on the diameter of the 
incident beam (13), in particular if this dia- 
meter is small (of the order I cm). This has never 
been taken into account. In fact, little is known 
about the energy fluence rate in tissues for a 
given irradiance as a function of depth and 
beam diameter. Therefore, experience obtained 
with a given tissue cannot be transferred to 
different tissues, but can only be used as a 
guideline. Care must be taken that  the geomet- 
ry is the same. This will be illustrated with 
clinical experience obtained from PDT of blad- 
der cancer in the next section. 

PDT IN HOLLOW ORGANS: THE BLADDER 

PDT in the ur inary bladder has been applied in 
two different ways, viz. by focal irradiation of a 
limited area of a few centimetres diameter and 
by irradiation of the whole bladder wall. 

For focal irradiation a fibre is entered into the 
bladder and light is applied to the target area 
under cystoscopic control. To control the 
amount  of delivered light it is important  to 
know the distance from the fibre to the surface 
and to keep it fixed. Up to 300 J/cm 2 incident 
fluence has been applied (23). Benson (24) re- 
ports using 100-150 J/cm 2. As disussed earlier, 
the energy fluence in the bladder mucosa will be 
larger due to light scattering. The effect of in- 
ternal reflection is of minor importance here if 
the irradiated bladder is filled with water. We 
have estimated (25) that  the energy fluence in 
the mucosa is twice the incident fluence, so that  
Benson effectively delivers 200-300 J/cm ~ with 
focal irradiation. It is interesting to compare 
this with a typical light dose applied to skin 
lesions, e.g. 72 J/cm 2. The actual fluence in the 
skin (in air) is estimated to be 3.5 • 72 = 250J/ 
cm 2 [see earlier and (13)]. The tissue light dose 
values for bladder and skin, derived from clini- 
cal practice, thus appear to be quite similar. The 
real meaning of this similarity is determined by 
the photosensitizer concentrations retained in 
these tissues. 

Bladder cancer often occurs multifocally and 
carcinoma in situ in particular is not easy to 
detect cystoscopically. Consequently, local 
t rea tment  by e.g. t ransurethral  resection does 
not yield satisfactory results. Even after treat- 

ing the whole bladder, by instillation with che- 
motherapeutic drugs or BCG, recurrencies 
practically always occur after some time. 
Therefore, PDT has been proposed as a possible 
alternative. By irradiating the whole bladder 
wall, it may be possible to destroy visible and 
invisible tumour, and spare normal mucosa. 
Obviously, it is important to irradiate the blad- 
der wall as uniformly as possible. For this pur- 
pose, Jocham et al (26) use a light scattering 
suspension in the bladder. A practical advan- 
tage of this method is that  a fiat cut fibre can be 
used. Most other investigators use a fibre with a 
diffusing bulb (24, 26-30), emitting light isotro- 
pically, and water in the bladder. If the bladder 
approximates a sphere, both methods can yield 
a uniform light distribution, if the fibre tip is 
properly centred. It has been shown (25) that  
with a light scattering medium the uniformity 
of the light distribution across the bladder wall 
is much more sensitive to the position of the 
light source than with water in the bladder. 
Therefore, an alternative for the light scatter- 
ing suspension is being studied (31). But even 
with water in the bladder in a clinical situation 
it is difficult to achieve and maintain a uniform 
light distribution (28). It is therefore not justi- 
fled to draw conclusions on possible complica- 
tions of whole bladder wall PDT (32) if no data 
can be given on the light distribution. 

Initially, light doses of 60-70 J/cm 2 (incident, 
unscattered light) to the bladder wall were 
given in whole bladder PDT (26, 27). Complica- 
tions indicated that  this was too much. Current- 
ly, 20-25 J/cm 2 is recommended (24, 33). Due to 
scattering, the actual fluence at the bladder 
wall is five to six times larger (25, 28). This 
should be compared with the factor of three to 
four for surface irradiation (see earlier). The 
difference is caused by the fact that  during sur- 
face irradiation some back scattered light is 
lost. In whole bladder PDT back scattered light 
re-enters the bladder wall elsewhere. Thus, the 
true fluence in a bladder irradiated with 20- 
25 J/cm 2 is approximately 100-150 J/cm 2. This 
is less than, but approaches the value estimated 
above, for focal irradiation. In this context it 
should be realized that  a small area (volume) of 
tissue usually tolerates a larger does than large 
area (volume). 

The preceding discussion illustrates the ira- 
portance of adequate light delivery and light 
dosimetry techniques both for safe PDT- 
t reatments  and for the understanding of PDT- 
t rea tment  results. 
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INTERSTITIAL PHOTODYNAMIC THERAPY 

It has been shown that  experimental non- 
superficial tumours can be effectively treated 
by PDT in a single session of interstitial irradia- 
tion (34, 35). In principle, the amount of light 
energy to be administered can be determined by 
measuring (13, 34, 36) or calculating (12, 36) 
optical isofluence curves (or 'optical isodoses') 
and combining these for multiple fibre inser- 
tions (36, 37). Subsequently, one estimates the 
energy fluence rate at the tumour boundary for 
the given geometry and fibre output to pre- 
scribe the t reatment  time. There are a number 
of complicating factors. 

1. For calculations one needs the optical con- 
stants of the tissue and a suitable mathema- 
tical model. The Monte Carlo model can in 
principle be used for calculations in an arbit- 
rary geometry, but the optical constants are 
generally not known. 

2. The photosensitizer in the tissue affects the 
light distribution (34). 

3. During interstitial irradiation, the light 
penetration may change due to PDT-induced 
changes in the optical properties (13). 

4. Tissue heating may occur if more than about 
100 mW per cm of light emitt ing length is 
applied to a cylindrical diffusor (35). A syner- 
gistic effect of interstitial PDT combined 
with interstitial hyperthermia has been de- 
monstrated (38), of which one can take 
advantage. However, if uncontrolled hyper- 
thermia occurs, this complicates relating 
light dose to response. 

Practically the only reported clinical applica- 
tions of interstitial PDT are for palliative treat- 
ments of obstructing oesophageal (39, 40) and 
lung tumours (40, 41). Usually one cylindrical 
diffusor is inserted into the tumour and the 
amount of delivered light energy is reported as 
Joules per cm. It appears from the l i terature 
that  the power limit for hyperthermia has been 
exceeded in many cases. Avoiding hyperther- 
mia in interstitial PDT may lead to long treat- 
ment times [1 h or more (35)]. I fhyper thermia  is 
avoided, J/cm is still not a good measure ofeffec- 
tive light dose, because the latter depends on 
the tumour volume and on the distribution of 
the implanted cylindrical diffusors over this 
volume. In our opinion, the only way to apply 
interstitial PDT in a controlled fashion is to use 
an in situ light dosimetry probe (13, 34). This is 
only feasible for accessible tumours. For ap- 
plications in the lung or oesophagus there 

appears to be no other possibility than to rely on 
clinical experience. 

OTHER GEOMETRIES 

In the foregoing sections the factors determin- 
ing light dosimetry have been discussed for the 
most common geometries in which PDT is ap- 
plied. A few other applications should be men- 
tioned. Wilson et al [42] have published a study 
on light delivery and light dosimetry for in- 
traoperative PDT of brain tumours [43]. A bal- 
loon with a light scattering medium is used to 
distribute the light as evenly as possibly over 
the tumour bed that  is to be irradiated. 

Superficial tumours in tube-like organs such 
as the oesophagus are not easily irradiated with 
a flat-cut fibre fitted with a microlens. Van den 
Berg [44] reports the construction of a cylindric- 
al diffusor of 5 cm light emitt ing length which is 
kept centred using a t ransparent  cylinder of 
20 mm diameter. Here too, one must take into 
account that  the energy fluence at the surface in 
the tissue is larger than the irradiance of un- 
scattered light. The multiplication factor will 
be somewhere between three (for wide beam 
surface irradiation) and six (for whole bladder 
wall irradiation). 

DISCUSSION 

Light delivery and light dosimetry for PDT are 
complicated by the strong scattering of light in 
tissues and by the strong attenuation,  leading 
to small penetration depths and high gradients 
of the energy fluence rate. With a few excep- 
tions (28, 43) light dosimetry in clinical PDT 
has been rather  primitive. This situation should 
improve, because without proper knowledge of 
the light dose it will not be possible to establish 
the factors that  determine success or failure of 
PDT. Complications or failures of PDT should 
not be attr ibuted to the modality when the light 
dose data to correlate response with dose are 
lacking (32). Otherwise, possible applications of 
PDT could be rejected for the wrong reasons. If 
for any reason sophisticated light dosimetry is 
not possible, the least one can do is detailed 
recording and reporting of the t rea tment  para- 
meters, to allow other investigators to repro- 
duce and compare the results. 

The strong light scattering in tissues is some- 
times an advantage, for example in whole blad- 
der wall PDT. If only light absorption would 
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play a role, the energy fluence rate  at the blad- 
der surface would vary as R-2,  where R is the 
distance from the isotropic light source to the 
bladder surface. Instead, due to the strong scat- 
tering, the energy fluence rate at the bladder 
surface varies approximately as R -1. This 
means smaller deviations from uniform light 
distribution if the light source is displaced from 
the centre. 

One phenomenon that  may play a role in all 
PDT applications (depending on the type of 
photosensitizer used) is photobleaching (45). 
Due to the destructive effect of the activating 
light on the photosensitizer, a minimum tissue 
concentration is necessary to achieve tissue 
necrosis; otherwise stated, the level of tissue 
damage that  can be achieved depends on the 
tissue concentration of the photosensitizer. If a 
superficial tumour  retains more photosensitizer 
than  the surrounding normal tissue, it may be 
possible to administer  a drug dose that  will 
allow destruction of the tumour  with a certain 
min imum light dose, whereas at the same time 
it will not be possible to cause normal tissue 
necrosis, no mat te r  how large the applied light 
dose. In such a si tuation light dosimetry becom- 
es less critical. However, it could be tha t  the 
required reduction of the photosensitizer con- 
centrat ion leads to longer t r ea tment  times that  
are undesirable for certain applications (e.g. 
bladder). More research is needed before a more 
detailed discussion is justified. 
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DISCUSSION 

P. Muller: 

W.M. Star: 

The relationship between penetration depth for PDT and wavelength has been well 
demonstrated. Is there a relationship between penetration depth and (a) power density; 
(b) dose rate; (c) other? 
Power density and dose rate have no effect on penetration depth. If a beam with finite 
diameter is used, penetration depth may depend on beam diameter and is smallest for 
the smallest beam. Beyond a certain diameter, penetration depth is constant. The size of 
this 'critical' beam diameter depends on tissue optical properties. 

G. Jori: 

W.M. Star: 

Light scattering from a tissue depends on the size of the tissular constituents (e.g. size 
and shape of cells, or type of organelles-ribosomes, etc.). Would these details be impor- 
tant enough to require a specific consideration when one needs to estimate the amount 
of light scattered by a tissue under different physiological, metabolic conditions? 
Most likely, the differences in optical properties among various tissues are much larger 
than the differences that might be caused by different physiological conditions. So, one 
should be satisfied with a reasonably accurate set of optical constants for a given tissue. 
The effect of photosensitizer in the tissue on the optical properties can be quite impor- 
tant, however. 
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