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Abstract

Adaptive Polar Sampling (APS) algorithms are proposed for Bayesian analysis of mod-
els with nonelliptical, possibly, multimodal posterior distributions. A location-scale trans-
formation and a transformation to polar coordinates are used. After the transformation
to polar coordinates, a Metropolis-Hastings method or, alternatively, an importance sam-

pling method is applied to sample directions and, conditionally on these, distances are
generated by inverting the cumulative distribution function. A sequential procedure is
applied to update the initial location and scaling matrix in order to sample directions in
an eÆcient way.

Tested on a set of canonical mixture models that feature multimodality, strong correla-
tion, and skewness, the APS algorithms compare favourably with the standard Metropolis-
Hastings and importance samplers in terms of exibility and robustness. APS is applied to
several econometric and statistical examples. The empirical results for a regression model
with scale contamination, an ARMA-GARCH-Student t model with near cancellation of
roots and heavy tails, a mixture model for economic growth, and a nonlinear threshold
model for industrial production growth con�rm the practical exibility and robustness of
APS.

Keywords: Markov chain Monte Carlo, importance sampling, polar coordinates

JEL classi�cation: C11, C15, C63

1CORE and Department of Economics, Universit�e catholique de Louvain.
2Econometrics & O.R. Department, Free University of Amsterdam.
3Econometric Institute, Erasmus University Rotterdam.

Correspondence to H.K. van Dijk, Econometric Institute, Erasmus University Rotterdam, P.O Box 1738,

NL-3000 DR Rotterdam, The Netherlands. Email: hkvdijk@ect.few.eur.nl

We thank Michel Lubrano, Rodney Strachan, the associate editor, two anonymous referees, and participants of

several seminars at Cambridge University, CORE, Tinbergen Institute Rotterdam, ESEM and SCE meetings

for helpful comments on an earlier version of this paper (Bauwens, Bos, and Van Dijk (1999)). This led to a

substantial revision and extension of the original paper. Of course, responsibility for errors remains with the

authors.

Support from HCM grant ERBCHRXCT 940514 of the European Commission is gratefully acknowledged.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated

by the Belgian State, Prime Minister's OÆce, Science Policy Programming. The scienti�c responsability is

assumed by the authors.



1 Introduction

In recent decades Markov Chain Monte Carlo (MCMC) methods, in particular Metropolis-

Hastings (MH) and Gibbs sampling (GS) and, to a lesser extent, indirect sampling methods

like importance sampling (IS), have been applied extensively and successfully within Bayesian

analyses of statistical and econometric models. The theory of Markov chain samplers dates

back to Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and Hastings (1970).

A key technical reference on MCMC methods is Tierney (1994). Surveys oriented towards

econometrics are provided by Chib and Greenberg (1996) and Geweke (1999). Importance

sampling, see Hammersley and Handscomb (1964), was introduced in Bayesian analysis by

Kloek and Van Dijk (1978) and further developed by Van Dijk and Kloek (1980,1984), and

by Geweke (1989).

Although MC methods revolutionized the applicability of Bayesian inference, there is, in

practice, a substantial variation in their convergence behaviour. The special features of the

sampling method, the complex structure of the model, or the nature of the data may be

the culprit of such behaviour. Hobert and Casella (1996) show for instance that the Gibbs

sampler does not converge for the case of a hierarchical linear mixed model when the prior

is uniform. Other examples of complex models are the ones with reduced rank structures.

Kleibergen and Van Dijk (1994,1998) demonstrate near reducibility of MCMC methods when

there exists near nonidenti�ability and nonstationarity in econometric models with at priors.

Justel and Pe~na (1996) emphasize the convergence problems of the Gibbs sampler when there

are outliers in the data. The performance of the Gibbs sampler is also seriously hampered by

strong correlation in the target distribution. Convergence problems of importance sampling

using a simple normal or Student t candidate density have been documented by Van Dijk

and Kloek (1984) and Geweke (1989). A multimodal target density may pose problems to all

methods. If the MH candidate density is unimodal, with low probability of drawing candidate

values in one of the modes, this mode may be missed completely, even when the sample size is

large. More generally stated, the acceptance probability may be very low, as many candidate

values lying between the modes have to be rejected. With the Gibbs sampler, reducibility of

the chain may occur in this case. Using a unimodal normal or Student t candidate function the

method of importance sampling ends up with many drawings having only negligible weights.

A common diÆculty encountered in all samplers is the choice of a candidate or importance

density when little is known about the shape of the target density. In such a case, updating

the candidate density sequentially is a partial solution.1

In this paper we introduce the class of adaptive polar sampling (APS) methods to sample

from a target (posterior) distribution which is possibly multi-modal, skew, and exhibits strong

correlation, in summary it is nonelliptical. The APS algorithms feature two transformations

to induce a more regular shape of the target function in the transformed space than in the

original space. The key transformation is one where the m-dimensional space is transformed

into polar coordinates which consist of a distance measure and a (m� 1)-dimensional vector

of directions (or angles). A MH or an IS algorithm is applied to sample the directions. Next,

the distance is sampled conditionally on the directions, from the (transformed) target density,

by the inverse transformation method. A location-scale transformation is used prior to the

transformation to polar coordinates and is sequentially updated, using the posterior �rst and

1This corresponds to the experimental results obtained by local adaptive importance sampling when the

posterior is ill behaved, see e.g. Van Dijk and Kloek (1980), Oh and Berger (1992), and Givens and Raftery

(1996).
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second order moments obtained in successive rounds of the algorithm. The adaptive procedure

is intended to improve the acceptance rate within the MH step and to give a more uniform

distribution of the weights in the IS step.

The advantages of the APS algorithms are twofold. Firstly, the algorithms are exible and

parsimonious in their use of information on the shape of the target density. Only location

and scale need to be speci�ed as initial values. Secondly, the algorithm is robust: they can

handle a large variety of features of target distributions, in particular multimodality, strong

correlation, extreme skewness, and heavy tails. We claim that the APS algorithms avoid the

often time-consuming and diÆcult task, especially for non-experts, of choosing and tuning a

sampling algorithm for a speci�c application, such as computation of posterior moments in

Bayesian inference. They can be applied without the need to study in depth the shape of

the posterior density in order to design a sophisticated approximation to it. It can be argued

that for any speci�c model and data combination, a more eÆcient algorithm than APS may

be designed, but our viewpoint is that the extra e�ort (in research time) required to achieve

this may not be rewarding.

The APS algorithms extend earlier methods, that is, the mixed integration method by

Van Dijk, Kloek, and Boender (1985) and the spherical integration method by Monahan and

Genz (1997). In the APS framework one generates a set of (weighted) posterior drawings

and one can easily compute any function of the parameters. This in contrast to the earlier

methods where univariate integrals are generated, which are cumbersome to handle in fur-

ther posterior or predictive analysis. The APS methods also generalize Adaptive Direction

Sampling (ADS) algorithms proposed by Gilks, Roberts, and George (1994). ADS methods

are, in a certain sense, an extension of Gibbs sampling. In ADS, directions are sampled in the

original parameter space using only information on the shape of the target. In APS, a MH or

IS step is used comparing target and candidate densities in a transformed subspace where the

transformed target density is supposed to be more regular than in the original space. Further,

in APS, the distances are generated from the exact target.

The outline of the paper is as follows. In Section 2 the algorithms are introduced. In

Section 3 canonical mixture models are used for experimenting with APS and for comparing

its performance with that of the standard Metropolis-Hastings, importance sampling and

Gibbs algorithms. The models include mixtures with multimodality, extreme correlation

and skewness. We also apply APS to several empirical examples to illustrate its practical

usefulness. In Section 4 we use a regression model with scale contamination in order to

investigate a study from Justel and Pe~na (1996) concerning the oxidation of ammonia to

nitric acid in a plant. Next, we investigate a study from Bos, Mahieu, and Van Dijk (2000)

on predictability of daily exchange rate data using an ARMA-GARCH Student t model which

has near cancellation of roots and heavy tails. Third, we analyze economic growth of the USA

using a mixture model. Finally, we make use of a threshold model to study the nonlinear time

series features of the industrial production in the USA. Conclusions are presented in Section

5 and technical details are given in the appendices.

2 Adaptive polar sampling

Most simulation algorithms for posterior distributions generate random drawings in the orig-

inal parameter space. Several researchers advocate to simulate in a transformed space, where

the simulation is more eÆcient in some sense, see e.g. Gilks and Roberts (1996). For example,
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if there exists a strong correlation between two random variables, an orthogonalising trans-

formation reduces serial dependence in a Gibbs sampling scheme. Another example arises

in the context of importance sampling: when an adequate transformation yields a distribu-

tion that is much closer to a symmetric one than the original one, an eÆcient importance

function is easier to construct. The adaptive polar sampling algorithms rely on this general

idea. They are based on a transformation to polar coordinates. Heuristically, the original

parameter space is transformed into a (m � 1)-dimensional space of angles or directions in

which the density is assumed to be more well behaved, and a unidimensional complementary

space in which most of the variation (or ill behavior) of the target density is concentrated.

We note that when the target or candidate density is a member of the elliptical family one

can make use of the following result. The density of the (m � 1)-dimensional directions or

angles is uniform on the unit sphere and this density is independent of the density of the

unidimensional distance which has a known analytical form (e.g. a member of the gamma

family when the candidate is normal); see e.g. Muirhead (1982) (section 1.5). This result is

the basis for the Box-Muller method of generating normal random variables; see below (3)

and (4) and Box and Muller (1958).

In this section, we concentrate on two members of the polar sampling algorithms, one is of

the Metropolis-Hastings type, and the second one is of the importance sampling type. These

variants will be referred to as adaptive polar Metropolis-Hastings (APMH) and adaptive polar

importance sampling (APIS), respectively. Since the signed polar transformation is at the

heart of the algorithms, we start with a description of this transformation and its relation to

the well-known standard polar transformation.

2.1 Signed polar transformation

2.1.1 2-dimensional signed polar transformation

In usual polar coordinates, the position of a point in R2 is described by the Euclidian distance

from the origin to the point and by the angle formed by the horizontal axis and the line from

the point to the origin. The distance is positive and the angle takes a value between 0 and 2�

(spanning a full circle). The standard polar transformation can be found in Muirhead (1982).

The signed polar transformation is a convenient modi�cation of the polar transformation: the

distance is positive if the point is on the right of the vertical axis, negative otherwise, and the

angle takes a value between [��=2; �=2] (spanning a half circle). The situation is illustrated

on Figure 1. For a point y = (y1; y2)
0
2 R

2, the signed polar transformation is de�ned by

�(y1; y2) = sgn(y1)

q
y
2
1 + y

2
2 2 R; (1)

�(y1; y2) = arcsin

�
y2

�(y1; y2)

�
2 [�

�

2
;
�

2
]; (2)

where sgn(y1) = 1 if y1 � 0 and = �1 if y1 < 0.

The inverse transformation is given by

y1(�; �) = � cos(�); (3)

y2(�; �) = � sin(�); (4)

and the Jacobian is given by

Jy1;y2(�; �) = �: (5)
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Figure 1: Signed polar coordinates.

2.1.2 m-dimensional signed polar transformation

In the m-dimensional case, the distance and m � 1 angles describe the position of a point

in R
m. The m-dimensional signed polar transformation from y = (y1; y2; : : : ; ym)

0
2 R

m to

(�; �1; : : : ; �m�1)
0
2 R� [��

2
;
�

2
]m�1 is de�ned by

�(y) = sgn(y1)
p
y0y ; (6)

�j(y) = arcsin

 
ym�j+1

�(y)
Q

j�1
i=1 cos(�i(y))

!
; j = 1; 2; : : : ;m� 1; (7)

where by convention,
Q0

i=1 cos(�i) = 1: It can be derived from (6) and (7) that the transfor-

mation, the other way around, is de�ned by

y1(�; �) = �

m�1Y
i=1

cos(�i); (8)

yj(�; �) = � sin(�m�j+1)

m�jY
i=1

cos(�i); j = 2; : : : ;m: (9)

The Jacobian of the transformation is given by

Jy(�; �) = �
m�1

m�2Y
i=1

cosm�i�1(�i) � Jy(�)Jy(�): (10)

We end this section with a remark. For expository purposes we make use of the polar

transformation. We note that one may also use a transformation using Stiefel manifolds. For

details we refer to Muirhead (1982) (see Chapters 1 and 2). The important point is that both

transformations induce independence between the directions and the distance in the class of

spherical distributions (see Theorems 1.5.5 and 1.5.6 in Muirhead), of which the normal is a

special case. The geometrical interpretation of polar coordinates may be easier to understand

than the more abstract analysis using Stiefel manifolds.
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2.2 Adaptive polar Metropolis-Hastings

We start by de�ning the polar Metropolis-Hastings algorithm (PMH), which is based on a

candidate generating density that is taken to be multivariate normal with parameters � and

�. Next, we illustrate the algorithm for a bimodal target density. Finally, we de�ne the

adaptive PMH algorithm (APMH), where � and � are updated using the sample of draws

from a previous round of the PMH algorithm.

2.2.1 De�nition of PMH

PMH is based on an independence chain MH algorithm. It uses draws from a N(�;�)

candidate where hopefully � and � provide good approximations to the unknown mean and

covariance matrix of the target distribution (see Subsection 2.2.3). We note that normality of

the candidate density is only relevant to the extent that drawings should be generated from a

member of the class of elliptical distributions; see also remark 1 below. In contrast with the

MH algorithm, the drawings are not used for construction of a Markov chain in the original

parameter space. Instead, two transformations are made.

The �rst transformation is a location-scale transformation, aiming at standardizing the

candidate density with respect to the location, scale, and correlations of the target (posterior)

density, denoted by p(x). The location-scale transformation is given by2

y = y(xj�;�) = ��1=2(x� �); (11)

with inverse transformation

x = x(yj�;�) = �+�1=2
y; (12)

and Jacobian

Jx(y) = det(�1=2): (13)

The second transformation is the signed polar transformation, which is de�ned by (6) and

(7), with Jacobian (10).

Combining the two transformations, one obtains the composite transformation0
@ �

�

1
A=

0
@ �(xj�;�)

�(xj�;�)

1
A=

0
@ �(y(xj�;�))

�(y(xj�;�))

1
A (14)

with inverse transformation

x = x(�; �j�;�) = x(y(�; �)j�;�) (15)

and Jacobian

Jx(�; �) = Jy(�; �)Jx(y) = Jy(�)Jy(�)det(�
1=2): (16)

Applying the two transformations to a candidate realization xi from � N(�;�) yields a

distance �
�

i
and a vector of angles ��

i
(referred to hereafter as a `direction').3 Ignoring the

2�1=2 denotes the Cholesky decomposition of �, and ��1=2 denotes the inverse matrix of �1=2.
3From here on, the index i (in x�i , �

�

i ...) does not indicate the i-th element of the corresponding vector,

but indicates the number of the draw in a sequence of successive draws.
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distance, the candidate direction is either accepted or rejected in a MH step, that is, the

direction becomes

�i =

8<
: �

�

i
with probability �(�i�1; �

�

i
)

�i�1 with probability 1� �(�i�1; �
�

i
)

(17)

for some acceptance probability �(�i�1; �
�

i
), which is given in Proposition 1 below. An itera-

tion of APMH is completed by drawing from the target distribution on the line de�ned by the

direction �i. This can be done as follows. First, one draws a distance �i from the transformed

target distribution for given direction �i using the numerical inverse transform method, see

Proposition 1. Next, �i and �i are transformed to the original space by inverting the signed

polar transformation and the location-scale transformation. In Table 1, we summarize the

steps of one iteration of PMH.

Table 1: One iteration of PMH

1. Generate x�
i
from N(�;�)

2. Transform x
�

i
to y

�

i
= ��1=2(x�

i
� �)

3. Transform y
�

i
to �

�

i
and �

�

i
, using (6) and (7)

4. Apply MH step to �i, see (17)

5. Generate �i from p(�j�i) by inverting numerically its cdf

6. Transform �i and �i to yi, using (8) and (9)

7. Transform yi to xi = �+�1=2
yi

Note that steps 1 and 2 amount to generating y�i from N(0; Im). We want to

make explicit the dependence on � and �.

Step 4 of a PMH iteration requires the acceptance probability �(�i�1; �
�

i
), and step 5

requires the distribution of the distance � conditional on the direction �i. They are given in

the next proposition.

Proposition 1 The acceptance probability of step 3 of the PMH algorithm summarized in

Table 1 is given by

�(�i�1; �
�

i ) = min

(
I(��

i
)

I(�i�1)
; 1

)
; (18)

where

I(�) =

Z
1

�1

�(�j�) d�; (19)

where �(�j�) is a kernel of the the conditional density p(�j�) of step 4, which is de�ned by

p(�j�) / �(�j�) = p(x(�; �j�;�)) jJy(�)j: (20)

Proof: See Appendix 1. �

Remark 1: A noteworthy property is that the acceptance probability does not depend on

the functional form of the candidate density under the condition that this candidate density
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is of the form f
�
(x� �)0��1(x� �)

�
, i.e. an elliptically-contoured density. However, the

acceptance probability depends on the generated direction � and thus on the location and

scaling matrix of the candidate density.

Remark 2: In order to obtain the acceptance probability �(�i�1; �
�

i
), the integral I(�) de�ned

by (19) can be computed by a deterministic integration rule. Since the density of � conditional

on � is proportional to the integrand of I(�), evaluations of the integrand, gathered during the

deterministic integration phase, can be used in order to construct a grid for p(�j�). Using the

numerical inverse transform method, sampling the distance � conditional on the direction �,

that is, step 5 of a PMH iteration, is straightforward. One may interpret step 5 as a "Griddy

Gibbs" step

Remark 3: Theoretical convergence of PMH is quite intuitive. The usual suÆcient condition

for the MH algorithm may be adapted to the condition that q(�) > 0 for all � such that

p(�) > 0. Since q(�) / Jy(�) =
Q

m�2
i=1 cosm�i�1(�i) > 0 for all � 2 [��

2
;
�

2
]m�1, this condition

is satis�ed.

In practice we reduce the computational e�ort by generating several drawings of � for each

drawing of �, i.e. we capitalize on the construction of p(�j�) (see remark 2). Note that the

computed integrals (MC estimators) still converge to the theoretical integrals. The main point

is that although the generated drawings of y and x are dependent, the computed integrals

are consistent estimates of the theoretical values of the integrals that one is interested in, see

Geweke (1999) (p 44) and the references cited there.

2.2.2 Illustration

Figure 2 illustrates PMH for a bivariate bimodal target distribution. The upper two graphs

display the target density in the original space. A point, representing a realization from the

normal candidate distribution N(�;�), is visible in the contour plot. If � and � coincide

with the mean and the covariance matrix of the target distribution, then the location-scale

transformation leads to the target density that is depicted in the middle graphs. The gain

of the location-scale transformation is clear: the density mass is better located around the

origin in the sense that a line through the origin, de�ned by some direction �, `hits the density

mass' more easily. Since PMH precisely considers such lines, the location-scale transformation

may lead to a substantial improvement for appropriate � and �. The target density after

applying the signed polar transformation is depicted in the bottom two graphs. Although the

transformed target density is ill-behaved with respect to �, it is well-behaved with respect to

�.

Seven steps are distinguished in an iteration of APMH. In step 1, the point in the upper

contour plot is obtained from N(�;�) and this point is transformed in step 2 to the point

in the middle contour plot. Step 3 results in the point in the bottom contour plot. Now,

assume that the direction � is accepted in step 4, then step 5 consists of drawing a (or several)

distance(s) � along the vertical line. Step 6 can be represented by the transformation of points

generated on the line in the bottom contour plot to points generated on the line in the middle

contour plot. Similarly, step 7 results in points generated on the line in the upper contour

plot.
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Figure 2: Adaptive polar sampling: target density in original space (above), target density

after location-scale transformation (middle) and target density after signed polar transforma-

tion (below).
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2.2.3 Adaptive polar Metropolis-Hastings

The mean � and the covariance matrix � of the normal candidate distribution have to be

speci�ed. Good enough initial approximations are usually the posterior mode and minus

the inverse Hessian of the log posterior evaluated at the mode. Heuristically, convergence

of PMH should improve if � and � are close to, rather than far from, the target mean and

covariance matrix, respectively. APMH considers a sequential adaptive approach. Given a

generated sample x1; x2; : : : ; xn from a previous run of the algorithm, � and � are replaced

by the Monte Carlo estimates of E(x) and Cov(x), which are given by

�̂ =
1

n

nX
i=1

xi; (21)

�̂ =
1

n

nX
i=1

(xi � �̂)(xi � �̂)0; (22)

respectively. Using these estimates, one can proceed with a new sampling round. This process

can be repeated any number of times. The initial values of � and � should become less

relevant, as they are updated anyway. A danger of the adaptive approach is that information,

coming from a `wrong' sample, may have a misleading e�ect and may worsen convergence.

However, this is not very likely and convergence should be monitored by usual tools. Moreover,

since only the direction �, and not the distance �, depends on the candidate distribution, the

risk of collecting a `wrong' sample is reduced. PMH should be quite robust, as the distance

� conditional on the direction � immediately comes from the target distribution, that is,

sampling on a given line mimics exactly the target density.

2.3 Adaptive polar importance sampling

Polar importance sampling (PIS) replaces the MH step of PMH for the direction � by an

importance sampling step. Every sampled direction is kept, a signed distance is sampled

conditional on it, and the resulting polar coordinates are transformed to a draw x in the

original space, which is weighted according to the importance weight. A draw x in the

original space is a function of a draw (�; �) in the transformed space, see (15), implying that

the importance weight of (�; �) is also the importance weight of x. The importance function

of (�; �) is de�ned as

qimp(�; �) = q(�)p(�j�); (23)

where q(�) and p(�j�) are de�ned by (38) and (20) respectively. The corresponding importance

weight w(�; �) is given by

w(�; �) =
p(�; �)

qimp(�; �)
=

p(�)p(�j�)

q(�)p(�j�)
=

p(�)

q(�)
/ I(�) = w(�); (24)

where I(�) is given by (19). As in PMH, the ratio of the target to the candidate density does

not depend on � since an exact candidate is used for � given �.

An interpretation of PIS is that one samples from the target distribution on lines with

directions being derived from the candidate distribution. Each line receives a weight, indi-

cating the importance of the underlying direction. The weight of a line is carried over to any

realization on that line.
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Similar to APMH, the parameters � and � of the location-scale transformation can be

updated by replacing them by their Monte Carlo estimates. These estimates are given by

�̂w =

P
n

i=1 w(�i)xiP
n

i=1 w(�i)
; (25)

�̂w =

P
n

i=1 w(�i)(xi � �̂w)(xi � �̂w)
0P

n

i=1 w(�i)
; (26)

where x1; x2; : : : ; xn is the collected sample, and w(�1); w(�2); : : : ; w(�n) are the corresponding

importance weights.

2.4 On related methods

The standard polar transformation is the basis of the well known Box and Muller (1958)

method for generating normal random variables. Consider equations (3) and (4), a direction

� is generated from a uniform distribution and a distance � is generated through a simple

inverse transformation from a uniform distribution, see e.g. Rubinstein (1981) (p. 86-87).

The APS methods extend the Box-Muller algorithm by generating � using an MH or IS

step, where the uniform candidate density is compared with a nonuniform target density.

Given a generated candidate �, distances � are generated from a very accurate numerical

approximation to the target distribution of the distances. Note that this exact distribution is

model speci�c. If the normal candidate density in the original space is a good approximation

to the target density in that space then the probability of acceptance in the MH step is close

to one and the weight in the IS step is relatively constant. Non-normality can be evaluated

using the weights computed in the one-dimensional integration step; see Hop and Van Dijk

(1992) and Monahan and Genz (1997).

We emphasize again that within APS one can make use of any candidate that belongs

to the family of elliptical distributions. The advantage of the normal is its simplicity and

parsimony of parameters: location and scale determine the distribution. A good estimate of

the location and scale is important for eÆcient generation of directions, that is, directions

that generate lines which cover the region where the target has substantial probability mass,

see e g. the line in Figure 2. We note that Monahan and Genz (1997) use the terminology

radial based integration in this context.

The APS class comprises several algorithms. Consider the case where one can distinguish

between rejection sampling, importance sampling and Metropolis-Hastings sampling. So far,

we have experimented with APMH and APIS. However, one may also de�ne a polar rejection

sampling algorithm (APRE): the sampled polar coordinate is accepted if w(�) > cu (and

rejected otherwise), where u is uniformly drawn in (0; 1), and c is a constant such that the

importance function envelopes the target function. For such an algorithm, formulas (21) and

(22) apply to the accepted transformed draws. Consider further the case where generating

random drawings of � is replaced by only evaluating the unidimensional integral. We name

this case deterministic integration with respect to �. One can combine this deterministic

integration with respect to � with rejection sampling, importance sampling or Metropolis-

Hastings sampling with respect to � and evaluate posterior moments and densities. For the

case of importance sampling this has been done in the so-called mixed integration methods

of Van Dijk, Kloek, and Boender (1985) and the similar spherical radial integration method

of Monahan and Genz (1997). Thus these methods are special cases of the APS class where

the step of generating random drawings of � is reduced to evaluating only aunidimensional
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integral. The limitation of deterministic integration with respect to � is that one has to

compute a di�erent unidimensional integral for each moment of the target distribution, see

Hop and Van Dijk (1992).

Apart from APMH ad APIS we have listed four other members of the APS class. It is also

of interest to compare APS with the class of adaptive direction sampling (ADS) algorithms,

see Gilks, Roberts, and George (1994). Two well known members of ADS are the hit and

run algorithm of Schmaiser and Chen (1991) and the snooker algorithm of Gilks, Roberts,

and George (1994). In ADS, directions are sampled in the original parameter space. Only

information on the shape of the target density is used. In APS, use is made of an MH or IS

step where candidate and target are compared. Further, in APS one generates a distance �

from a numerically very accurate approximation to the target distribution. This step is not

always spelled out ADS. We emphasize that APMH and APIS are members of the MH and IS

class of Monte Carlo methods. Convergence properties of these methods are well established.

This is not so transparant for the ADS methods.

3 Controlled comparisons of sampling methods

In this section, we compare the performances of APMH and APIS with those of the Metropolis-

Hastings algorithm (MH) and importance sampling (IS). We consider two experiments on two

12-dimensional distributions, which are given by

� � � N(�;�); � = (1; 2; : : : ; 12)0; � = 24 �12�
0

12 + I12;

� � � p1N(�1;�1) + p2N(�2;�2) + p3N(�3;�3); p1 = p2 = p3 = 1=3;

�1 = �12 �12; �2 =

0
@�12 �6

8 �6

1
A; �3 = 8 �12; �1 = �2 = �3 = 16I12;

where Im is the m � m identity matrix and �m is an m-vector consisting of ones. Note

that in this section we use the symbol � instead of x. The �rst distribution involves quite

high correlation, since the correlation is 0.96 for all pairs of components. Features of the

second distribution are multimodality (3 modes), skewness, and again high correlation. For

comparability, MH and IS are based on a normal candidate distribution and they are made

adaptive.

In the experiments, 8 sampling rounds are considered. In each round, APMH and APIS

collect 8000 directions and 10 distances in each direction, resulting in a �nal sample of size

80000. MH and IS are allowed to collect a larger sample of size 800000 in order to make the

running times of the four algorithms comparable.4 The initial mean and the initial covariance

matrix of the normal candidate distribution are set at

�init =

0
@ 4 �6

�4 �6

1
A; �init = 200I12

in each experiment. The scale of the covariance matrix is chosen quite large and the correla-

tions are all set to 0. The location of the candidate distribution is far from perfect. In APMH

4Using Ox (see Doornik 1999), running 8 sampling rounds consumes 20�25 minutes of computing time on

a 550 Mhz Pentium III.
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Table 2: Results concerning the high-correlation distribution

APMH APIS MH IS true

mean(�1) 0.91 0.86 -0.64 -4.13 1.00

mean(�2) 1.91 1.88 -1.55 -4.97 2.00

mean(�7) 6.91 6.88 4.15 1.09 7.00

mean(�8) 7.91 7.87 5.18 4.83 8.00

stdev(�1) 4.98 4.96 0.86 0.30 5.00

stdev(�2) 4.99 4.95 0.85 0.22 5.00

stdev(�7) 4.97 4.95 0.72 0.72 5.00

stdev(�8) 4.98 4.95 0.72 0.23 5.00

corr(�1,�2) 0.96 0.96 0.69 0.67 0.96

corr(�6,�7) 0.96 0.96 0.49 0.90 0.96

corr(�7,�8) 0.96 0.96 0.34 0.83 0.96

Mahalanobis 0.00 0.04 1.77 12.69

and APIS, the integral I(�) -see (19)- is evaluated using an adaptive Simpson's rule, starting

from 17 equidistant evaluation points. For all components of �, the minimum and maximum

values are set at -30 and 30 respectively.

Table 3: Results concerning the trimodal distribution

APMH APIS MH IS true

mean(�1) -5.91 -5.80 8.00 -12.00 -5.33

mean(�2) -5.85 -5.49 8.00 -12.01 -5.33

mean(�7) 1.33 1.13 8.00 -11.99 1.33

mean(�8) 1.42 1.23 8.00 -12.00 1.33

stdev(�1) 10.19 10.23 3.99 4.00 10.24

stdev(�2) 10.31 10.22 4.00 4.01 10.24

stdev(�7) 10.36 10.32 4.00 4.00 10.24

stdev(�8) 10.29 10.34 4.00 4.00 10.24

corr(�1,�2) 0.85 0.85 0.00 0.00 0.85

corr(�6,�7) 0.42 0.43 0.00 0.00 0.42

corr(�7,�8) 0.84 0.85 0.00 0.00 0.85

Mahalanobis 0.02 0.03 0.00 0.00

We emphasize that the numerical results reported below depend on the design of the

experiments and on the initial values. Di�erent initial values (seed of the random number

generator and starting values of the location and scale) may give di�erent numerical results.

However, when the sample size is increased, the reported results are robust.

Table 2 and Table 3 contain the results of the experiments. A subset of the estimated

means, standard deviations and correlations between subsequent components are reported

(the results for the other elements of � are very similar). True values for the estimated

moments can be found in the last column of the tables. Further, the Mahalanobis distance

(see Appendix 2) at round 8, indicating convergence if close to 0, is shown.

Both Table 2 and Table 3 show a superior performance of APMH and APIS over MH

and IS. Let us consider the unimodal high-correlation distribution �rst. It is seen that the
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two polar algorithms have succeeded in obtaining good estimates, although a minor improve-

ment on the location is still possible. On the other hand, MH and IS have completely lost

the track. The location is incorrect and most of the correlations are much too low. More-

over, since the scale of the updated normal candidate distribution is too small by far, as all

standard deviations are smaller than 1 while they should equal 5, there is no perspective of

improvement.

The results concerning the trimodal distribution are even more striking. Although APMH

and APIS have not completely converged yet, their estimates are reasonably accurate. This

is quite in contrast with MH and IS. Both algorithms miss two of the three modes. MH

is completely stuck in the third mode, whereas IS is not able to escape from the �rst one.

For illustrative purposes, Figure 3 and Figure 4 display estimated marginal densities of the

trimodal distribution.

As the previous examples are perhaps too favourable to the adaptive polar algorithms, we

consider a wider range of experiments which di�er in the number of dimensions and modes

of the target density and in the distance between the modes. The object of the exercise is to

see which algorithms are able to sample from the target distribution without missing out a

mode, and which algorithms fail. In this set of experiments, we also consider the griddy-Gibbs

(GG) sampler as a competitor, see Bauwens and Lubrano (1998) for a presentation of the GG

sampler.

The target density of dimension k and distance parameter r has k modes at multiples

re1 = (r; 0; ::; 0)0 ; ::; rek = (0; ::; 0; r)0 of the unit vectors. It is the following normal mixture:

� �

kX
i=1

k
�1
N (rei; Ik): (27)

It is unimodal if k = 1, but as k increases, the number of modes increases, and also the modes

are ever harder to distinguish from the mass of the density around the origin.

Sampling is done in an automatic procedure, sampling 100,000 drawings which are dis-

tributed over 10,000 directions for the APMH and APIS algorithms. When using a Metropolis-

Hastings step, with APMH and with MH itself, both accepted and unaccepted drawings are

counted. The initial location estimate is the origin, with initial covariance matrix extremely

vague, �init = 100Ik. Location and scale estimates are updated after sampling, and when the

Mahalanobis distance improves by more than 50%, sampling is repeated.5

Before commenting on a set of sampling results in Table 4, �rst look at a selection of

choices of k and r, in Figure 5. The panels display the marginal densities of the elements

of � for four special cases. At a dimension of k = 4 and with a short distance between the

modes, with r = 4, the APIS and GG samples are displayed in the top row of the �gure.

Both algorithms (like APMH, MH and IS) have no trouble in locating both modes, and all

marginal densities are recovered neatly.

At a higher dimension, with more modes, getting the correct distributions is harder. The

bottom row displays results for the APMH and MH algorithms, at k = 8 and r = 16. The

APMH results show that for all elements of �, the bimodality is found by the sampler, though

the estimates are not too precise. Indeed, if sampling is continued, updating the location and

scale more often, full convergence to the correct densities does not seem to be guaranteed.

5Such an automated stopping rule works reasonably well over the experiments of this setup. In practice, it

is advisable to monitor convergence more carefully.
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Figure 3: Univariate marginal densities for the trimodal distribution. The plots in the �rst

column result from APMH, those in the second column result from APIS.
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Figure 4: Bivariate marginal densities for the trimodal distribution. The plots in the �rst

column result from APMH, those in the second column result from APIS.
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APIS
k=4, r=4

GG
k=4, r=4

APMH
k=8, r=16

MH
k=8, r=16

Figure 5: A selection of sampled marginal densities, for APIS (k = 4; r = 4, top left), GG

(k = 4; r = 4, top right), APMH (k = 8; r = 16, bottom left) and MH (k = 8; r = 16, bottom

right)

With the MH results on the right, only for two of the 8 elements of � the bimodality is

recognized. More detailed sampling results (not reported here) show that the MH algorithm

is not able to get a good initial sample from the target density in order to update the location

and scale of the candidate density. The �nal acceptance rate lies below 1%, a clear sign of

non-convergence. Making a larger sampling e�ort does not help in �nding the multimodality

of the target, but rather leads to convergence around the single mode at the origin.

Each block of Table 4 corresponds to a target density (a k; r combination). The �rst row

of each block reports the Euclidian length of the true mean vector � of the target density (in

column 2) and a summary measure of relative error on the estimated mean vector, for each

sampling method (in the next columns). This measure is the length of the di�erence between

the vectors of estimated and true means, divided by the length of the true mean vector (say

jx��j=j�j where x is the estimated mean vector and jaj denotes the length of a). The second

row gives the rank of each sampling method according to that criterion.

From the results in the table, we see that for the small distance of r = 4, all algorithms

give a small relative error, with the exception of MH and IS when k = 8. Not surprisingly,

when increasing r, the relative errors increase in all cases. When the modes lie at a distance of

r = 16, it really is hard to retrieve the modes. If there are only four modes, most algorithms

still deliver reasonable precision; with higher dimensional problems, even APMH and APIS
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Table 4: Comparison of sampling methods on normal mixtures

Model APMH APIS MH GG IS

r = 4

k = 4 2.00 0.02 0.03 0.03 0.02 0.09

1 3 3 1 5

k = 8 1.41 0.16 0.06 1.87 0.01 2.64

3 2 4 1 5

r = 8

k = 4 4.00 0.06 0.08 0.06 0.74 0.13

1 3 1 4 5

k = 8 2.83 0.46 0.58 2.68 0.86 2.08

1 2 5 3 4

r = 16

k = 4 8.00 0.08 0.13 0.15 1.74 0.18

1 2 3 5 4

k = 8 5.66 0.80 1.89 2.21 2.66 2.79

1 2 3 4 5

Global ranking 1 2 3 4 5
For each k; r combination, the �rst row gives j�j (in the column `Model'), the

length of the vector of true means of the target density. To the right of it, for

each sampling method one �nds jx � �j=j�j, the ratio of the length of x � �

to j�j, where x is the estimated mean vector. In the second row, one �nds

the rank of each method according to the relative error in the �rst row. The

target density is de�ned in eq (27).

start to miss the correct mean.

The last row of Table 4 gives a global ranking across a range of experiments which combine

r = 2; 4; 8; 12; 16 with k = 4; 6; 8 (the table reports the results only for a subset of these

combinations). The ranking is based on the addition of the ranks across all experiments. The

conclusion is that for this type of multimodal target densities, the adaptive polar algorithms

are the best methods.6

4 Application to econometric models

In this section, a set of models that we encountered in practice are used to illustrate the

versatility of the polar algorithms. We do not claim that the algorithms are necessarily the

most eÆcient ones for the analyzed models and data, since a careful analysis of the posterior

density may help to design a more eÆcient algorithm (actually, the polar algorithms can also

be useful in this perspective). For completeness, we also compare APMH and APIS to MH,

GG, and IS.

6These �ndings are similar to the ones in Monahan (2001), who also notes that with the method of spherical-

radial integration, which is similar to the MIXIN algorithm of Van Dijk, Kloek, and Boender (1985), it is hard

to �nd modes far away from the origin.
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4.1 Scale contamination

In Justel and Pe~na (1996), the authors investigate a data set from Brownlee (1965, pp. 491{

500) concerning the oxidation of ammonia to nitric acid in a plant. The data set incorporates

21 daily observations on four variables. The uptake of nutrients y by the plant is related to

the amount of air ow, the temperature of the cooling water, and the concentration of acids

(taken up into the vector x). In several investigations it was found that several observations

might be classi�ed as outliers, and therefore care should be taken in the analysis to allow for

this. In a regression setting, it is suÆcient to allow for scale contamination, as in the model

yi = �
0
xi + �i

�i � N(0; �2i )

�i =

8<
: � with probability 1� �

�� with probability �

with the restrictions 0 � � � 1 and � � 1. The priors for �, �, and each element of � are

taken uniform on the intervals [1, 10], [0, 1], and [-30, 30], respectively. The conditional prior

�(�j�; �) is proportional to [(1� �)� + ���]�1 with � in the region (0, 10].

The sampling algorithms were initialized by searching for the mode of the posterior density.

A border solution with � = 0 was found, indicating that the scale contamination is not

immediately apparent from the posterior density. However, with the result of the optimization

procedure only serving as a starting point, the algorithms were started to �nd the posterior

density of the parameters. Table 5 reports the means and standard deviations of the �nal

samples. The lower panel contains statistics related to the �nal sample and other information

on each algorithm (see Appendix 2 for details on the sampling setup and on the reported

statistics).

The acceptance rate of directions � for APMH of 0.59 compares favourably to the ac-

ceptance rate for MH of 0.30. The result is a lower correlation in the sample of APMH (see

�max), while GG (griddy-Gibbs) displays a tremendous correlation of 0.994 between successive

drawings. The �nal value of the Mahalanobis measure, measuring the change in location with

respect to the previous candidate, is still rather high for MH and IS.

The estimated mean of � using MH di�ers slightly from the estimates using the other

algorithms. Looking at the posterior density of � and � in Figure 6, it seems that MH stumbles

over the long right tail of the density for � (top middle panel), and as a consequence, it

underestimates the posterior standard deviations of all the parameters. The other algorithms

�nd the heavy tail of the posterior density of �.

The posterior density of � displays a slight bimodality: the mass for interior values of

0 < � < 1 indicates that some evidence is found for the scale contamination, but both corner

solutions of � = 0 and � = 1 receive positive mass as well. In the case � � 0, the value of �

is not de�ned, which creates the long right tail of the density. This e�ect is clearly apparent

from the plots of the joint posterior density of � and �, in the lower panels of Figure 6.

4.2 Predictability in an exchange rate series

In Bos, Mahieu, and Van Dijk (2000) (and more elaborately in Bos (2001)) the daily German

mark-USA dollar exchange rate series7 is taken as the basis for providing a decision whether
7Daily data were extracted from Datastream, for the period 1/1/1982-31/12/1997.
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Table 5: Posterior results for scale contamination model
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Figure 6: Posterior densities of � and � for scale contamination model

or not to hedge the currency risk. For an optimal decision, one wants to make use of all

possible information on the predictability of the series. Essentially, the model used is

yt � c = �(yt�1 � c) + �t + ��t�1

�t � t

 
0;

r
� � 2

�
ht; �

!

ht = Æht�1 + (1� Æ � �) + ��
2
t�1

where yt = 100(log Yt � log Yt�1) is the percentage change in the exchange rate Yt and �t is

Student-t distributed with expectation 0, variance ht and � (> 2) degrees of freedom. For

the priors, we choose c � N(0; 0:0004), � and �� � N(0:8; 0:04), Æ and � jointly uniform on

the region (0 < Æ, 0 < � < 1, 0 < Æ + � < 1), � � inverted-gamma-1 with shape parameter

2.5 and scale parameter 1.333 (see Bauwens, Lubrano, and Richard (1999) for the de�nition),

and � proportional to a Cauchy density truncated to the region � > 2 (see Bos, Mahieu, and

Van Dijk (2000) for details). Note how a priori we do expect non-zero values for � and �, but

with very near root cancellation, inducing the type of slight autocorrelation seen in exchange

rate series.

Results of the simulations are presented in Table 6 and Figure 7. All samplers do converge,

provided many updates are performed. The curse of dimensionality hitting the griddy-Gibbs

sampler is clear from the number of function evaluations: the sampler needed 6 million

evaluations for constructing a sample of 10000 drawings. Again, the maximal �rst-order

serial correlation is lowest for APMH, with MH coming in at the second place and the GG

in the last position with very strong autocorrelation between successive drawings. The slow

mixing behaviour of the latter sampler is apparent from Figure 7: The parameters � and � are
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Table 6: Posterior results for ARMA-GARCH-Student t model
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Figure 7: Bivariate posterior density of � and � for the ARMA-GARCH-Student-t model,

and plots of the sampled values and cumulative/running means for APMH and GG

strongly correlated along the line � = �� of root cancellation, which implies that sampling

from e.g. �j�; ::: leaves only little freedom for obtaining a radically di�erent value of �. In

the bottom right panel this is seen clearly: � moves around the parameter space only very

slowly, while APMH does not have trouble at all (see the bottom left panel).

4.3 A mixture model for the USA GNP growth rate

In models for the growth rate of the gross national product, great advances have been made

by allowing for separate regimes in periods of recession and expansion. However, these models

give rise to diÆculties with respect to convergence of sampling methods due to multiple modes.

We make use of APMH and APIS, together with the more usual sampling methods, on three

implementations of the mixture model. For an other recent method we refer to Fr�uhwirth-

Schnatter (2001). We consider as data the growth rate of the real GNP of the USA (see

Figure 8).8

8Source: Gross national product in billions of dollars, seasonally adjusted at an annual rate, period 1959:I

until 2001:I, from Economagic. The growth rate is measured as 100 times the �rst di�erence of the logarithm.
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A bivariate mixture

The most simple model, useful to show the occurrence of multiple modes in models of this

kind, is a bivariate mixture model. It allows the growth rate to display two distinct mean

levels, modelled as

yt = �t +

8<
: �1 with probability p

�2 with probability 1� p

(28)

with �t � N(0; �2). For identi�cation we assume that �1 < �2, such that the �rst regime is

the low growth regime. Priors on the parameters �1; �2 and p are taken uniform, for � we use

the uninformative prior �(�) / 1=�, with � restricted to a �nite range to ensure existence of

all conditional posterior densities.

Results are in the top panel of Table 7. IS results in quite di�erent posterior moments for

p and �1. In Figure 9 this di�erence comes to light. The importance sampler seems not to

have converged, displaying several spikes in the density plot of p (and less strongly so for the

other parameters). This is caused by sampling in the tail of an importance density which did

not �t the posterior very well.

The results of the other samplers correspond quite well, especially GG and APMH. How-

ever, the GG algorithm took 12.5 million function evaluations, whereas the APMH (and

APIS) needed only 500 thousands. MH is even more eÆcient in terms of function evaluations

that are needed.

The probability of being in the low growth regime is estimated, rather imprecisely, to be

about one third for this data set. All sampling methods recognize that there is a probability

that �1 � �2 � 1, with p badly identi�ed (its posterior density has a long, at, right tail). IS

is not able to sample suÆciently from this region, leading to a wrong estimate of the posterior

density of �1.

Note the small mode in the posterior density of p at about 0.9. This value corresponds

to a situation where most observations come from a `low' growth regime (of around 1% per

quarter), with a small probability of observing a high growth rate (greater than 1%). The

importance of this bimodality in p could be investigated by allowing for a third regime, thus

allowing for periods of negative, low, and high growth.
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Table 7: Posterior results for the mixture models for GNP growth
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Figure 9: Posterior densities of p and �1 in the two-regime mixture model for GNP growth

Adding a third regime

The bimodality of the posterior density of �1 in the right panel of Figure 9 could indicate a

misspeci�cation of the model. With a three regime model, allowing for periods of recession,

normal growth and rapid expansion, possibly a clearer distinction between regimes could be

found. We model this as

yt = �t +

8>>><
>>>:

�1 with probability p1

�2 with probability p2

�3 with probability 1� p2 � p1:

(29)

For identi�cation, we use the the restriction �1 < �2 < �3.
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Figure 10: Posterior densities of p2, � and �2 in the three-regime mixture model for GNP

growth

The second panel of Table 7 gives the results for this enlarged model. Figure 10 displays

the marginal posterior densities of p2, �, and �2. From the leftmost panel it is clear that the

methods based on importance sampling (APIS and IS) seemingly do not give correct results

on this model{data combination. The other three methods agree, mostly on the message that

it is diÆcult to discriminate between the regimes. The data set contains only 42 years of

quarterly data, which has to be spread over the three regimes. Therefore, it is no wonder

that it is hard to identify clearly three regimes.

Contrasting the two and three regime models is best done by comparing the marginal

likelihoods of the model (see Aitkin 1991, Kass and Raftery 1995). Rows indicated with
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log(ML) in Table 7 report the logarithm of the marginal likelihood of the model.9 The line

indicated with log(BF) provides the logarithm of the Bayes factor, which is the di�erence

between the log-marginal likelihoods. According to the classi�cation of Kass and Raftery

(1995), a value of about 16 can be considered `very strong evidence' in favour of the model

containing three regimes.

Adding time dependence in the bivariate mixture

The mixture models have no time dependence in them. The model which Fr�uhwirth-Schnatter

(2001) uses is a mixture model with two regimes, and with AR(1) within both regimes:10

yt = �t +

8<
: �1 + �1yt�1 with probability p

�2 + �2yt�1 with probability 1� p

(30)

The third panel in Table 7 shows the posterior moments and other statistics for this third

model.
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Figure 11: Posterior density of the parameter p in the bivariate mixture with AR-components-

model, for the APMH, MH and GG samplers, plotted against the density of �1 for APMH

and GG.

For this model, the simulation methods do not agree closely as far as the posterior moments

are concerned. The general impression from the plot of the estimated posterior density of p (in

the leftmost panel of Figure 11) is that the sampling methods judge the relative importance

of both regimes di�erently, with APMH placing less weight on the second regime.

The �fteen-fold larger computational e�ort for the Griddy Gibbs sampler leads to a

smoother estimate of the marginal joint posterior density of p and �1, than for the APMH

sampler. The dependence structure between these two parameters however looks the same.

The lower lines of Table 7 report the log-marginal likelihood and the log-Bayes factor.

Evidence is strong that the two regime model with AR-components is better in explaining

the data than the two-regime static model presented before, but the three regime static model

�ts the data even better.

9The marginal likelihood is calculated as the di�erence between the log-posterior density at the posterior

mean of the sample and the logarithm of an approximating kernel density at the same location, see Bos (2002)

for a comparison of this and other methods . This measure is suÆciently stable in models of low dimension,

and is easily computed.
10Actually, Fr�uhwirth-Schnatter (2001) also allows for the variances to di�er between regimes.
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4.4 A TAR model for the growth rate of USA industrial production

In growth rate models of industrial production, a common assumption is to allow for di�erent

regimes depending on the state of the economy. One of the structures arranging for such

behavior is the smooth transition autoregressive (or STAR) model, which presumes that the

growth rate follows a weighted average of two autoregressive processes, with weights depending

on the current state of the economy.

The model is

yt = �
(p)

A

0

y
(p)
t
F (st; ; c) + �

(p)

B

0

y
(p)
t
(1� F (st; ; c)) + �t (31)

with �
(p)
i

= (�i0; �i1; ::; �ip)
0 (i = A;B) the AR parameters of regime i, and y

(p)
t

= (1;

yt�1; ::; yt�p)
0. The error terms ut are assumed to be white noise, with mean 0 and variance

�
2.

Instead of �i0, the constant in the AR equation, a parameter �i0 = �i0=(1 �
P

j
�ij) is

used. This parameter �i0 displays less correlation with the AR parameters than �i0 itself.

Also, it is more straightforward to devise a sensible prior for the mean of the regime, than

for the constant parameter in the AR polynomial.

For the weighting or transition function F (st; ; c) a common choice is the logistic function

F (st; ; c) =
1

1 + e�(st�c)
; with  > 0: (32)

The parameter  is restricted to be positive, otherwise it would not be identi�ed. The variable

st triggers the transition from one regime to the other. Possible implementations use yt�d for

a �xed number of lags d, or �yt�d.

A preliminary analysis indicated that the transition from one regime to the other is swift,

such that the threshold autoregressive (TAR) model (with  ! 1) works better. As the

threshold variable, the sum of the growth rate over the previous three months is used.

As data, we use the industrial production index in the USA as provided by the Federal

Reserve Board, over the period 1961:1{1998:12, see Figure 12.11 Hence, yt in (31) is the �rst

di�erence of the logarithm of the industrial production index, multiplied by 100.

Parametrization and the prior

As growth of the industrial production is a stable process (in the sense that explosive be-

haviour is very unlikely), we would like to put most of the prior weight for the parameters

on the stationary region. However, for (S)TAR models of autoregressive order p > 1, little is

known about the conditions on the parameters to attain stationarity (see Chan, Petrucelli,

Tong, and Woodford 1985, Enders and Granger 1998). Therefore, we `encourage' each of

the regimes to have stationary roots in the lag polynomial. This is implemented by using a

prior �(ri1; ::; rip) � N (0; 0:45�Ip) on the inverse roots rij of the polynomial, such that each

inverse root lies within the unit circle with probability 0.86.

Each of the regimes has a separate mean governed by the parameter �i0 in relation to the

other autoregressive parameters �i1; ::; �ip. Instead of putting a prior on the constant in the

11The series is series number B50001 from the Federal Reserve Board, on Industrial Production: Market

Groups and Industry Groups, group G17, seasonally adjusted.
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Figure 12: Industrial production in the USA, 1961:1{1998:12

AR-polynomial directly, we instead put it on

�i0 =

8<
:

�i0

1��i1�::��ip
if the regime is stable

�i0 otherwise.
(33)

The prior on �i0 is

�(�i0) �

8<
: N (3:5; 1:42) if the regime is stable

N (0:5; 0:52) otherwise.
(34)

The prior for c is data-based, as the meaning of the parameter depends entirely on the

underlying trigger variable. We use a normal prior, with mean equal to the mean of the

trigger st and corresponding variance. Note that with a TAR model, the precise value of

c is not important, it is its relation to the order statistics of the trigger variable st which

counts. Instead of this continuous distribution for c, a second option would be to use a

discrete distribution with support at all the order statistics of st.

Sampling results

Numerical results are given in Table 8 for a TAR(3) model. From the estimated standard

deviations it can be seen that the parameters for regime A are harder to estimate than

those of regime B. Indeed, the threshold c of around -2.4 implies that less than 5% of

the observations are classi�ed as coming from the �rst regime, leaving most observations to

estimate the parameters in regime B.

The AR-parameters of the second regime indicate stable behaviour, with an average

growth rate of about 0.3% per quarter (which corresponds to the mean growth of the se-

ries itself). Only the griddy-Gibbs results di�er strongly: close examination of the posterior

density of the parameters for the griddy-Gibbs algorithm shows that the algorithm continues

to select values of c � 6, which would place all observations in the A-regime. This seems

to indicate non-convergence of the Gibbs algorithm, with the algorithm getting stuck in a

`corner-solution'.
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Table 8: Posterior results for TAR model
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The behaviour of the economy in the `recession' regime A, which occurs in approximately

5% of the observations for most models, can be judged from the relation between the mean

of the regime with the largest inverse-root of the AR polynomial. Figure 13 displays �A

versus maxi j�
�1
Ai
j, using the sample from the APMH algorithm. Results for APIS, MH and

IS are similar. For the GG sampler the possibility of a non-stationary regime is given very

low posterior mass.
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Figure 13: Relation between the mean and the largest inverse root of the AR-process of regime

A, for the APMH sample

The acceptance rate which is reached in the APMH algorithm is reasonable: With �� �

0:34, a suÆcient number of directions is accepted to ensure reasonable mixing. The acceptance

rate for the MH algorithm is low and the value of the Mahalanobis measure is found to jump

up and down, even after apparent convergence of the algorithm. The last value of this

Mahalanobis distance is indeed good for both APMH and APIS methods, but not so good

for the MH and IS sampling methods.

The number of function evaluations that were used for sampling are interesting as well.

For this model, computing a univariate integral is hard due to the non-continuous behaviour

of the parameter c (as only the relation of c to the order statistics of the trigger variable

st is of importance) and of the parameters �A; �B (taking on di�erent meanings and priors

depending on the stability of the AR-polynomial). The e�ect is that the griddy-Gibbs sampler

needs a total of 36 million function evaluations, compared to 1.9 million for the APMH

sampler. Though the MH sampler seems to be more eÆcient in the sense that only one

million evaluations were used, its posterior sample shows higher correlation and less convincing

convergence judging from the Mahalanobis measure. The APIS algorithm needs less function

evaluations; however the posterior sample contains many observations with very low weight.

5 Conclusions

We have extended the Metropolis-Hastings and importance sampling methods by applying

a polar transformation to the parameter space of the posterior (or target) density. Sam-

pling does not take place in the m-dimensional parameter space directly, but in an (m� 1)-

dimensional subspace of directions. The last dimension, which corresponds to a distance

measure, is sampled exactly from the target density (conditional on the directions), using the
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inverse transform method. In this way the shape of the posterior density is taken into account

perfectly along the sampled directions. For a given number of draws, this approach requires

more functional evaluations of the posterior density than a traditional MH or IS algorithm.

The usual type of tradeo� occurs: with a more sophisticated algorithm, one can hope to

get `correct' results with less draws than with a less sophisticated algorithm. It may also

happen that a simple method cannot deliver reliable results. It would however be surprising

when APS cannot deliver good results while the simpler, less computer intensive methods,

can. Using several empirical illustrations in Section 4, this is con�rmed. The examples were

chosen to illustrate the possibility of using the APS algorithms successfully on a cocktail of

econometric models that are of current interest and use. Moreover, a possible use of the APS

algorithms is as a preliminary step to explore the posterior distribution and prepare a more

sophisticated method.

Let us emphasize that there is no claim that APS algorithms are superior in theory to other

kinds of algorithms (such a claim would make no sense). We believe that for any model/data

combination, a suÆcient research e�ort will usually allow to �nd a speci�c algorithm that

performs better than APS or other algorithms. However, this is not necessarily guaranteed,

and the speci�c algorithm may not be better even for a di�erent data set (with the same

model).

An interesting extension of this paper would be to embed a polar sampling algorithm in

a Gibbs algorithm, where a subset of the parameters can be directly simulated from their

conditional distribution, while the remaining parameters cannot. In this framework, special

care should be given to start polar sampling with suÆciently good initial guesses of the

location and scale of the conditional distribution to be simulated (since at each iteration of

the Gibbs sampler, location and scale have in principle to be updated using the last draw

of the other parameters). An example where such an algorithm may be of great potential

eÆciency is in the Bayesian analysis of the linear simultaneous equation model, where the

so-called simultaneity parameters induce a very nonelliptical shape of the posterior. Other

examples are a cointegration model or some limited dependent variable models.

Appendix 1: Proof of Proposition 1

First, given (15) and (16), the target density p(x) in terms of � and � is given by

p(�; �) = p(x(�; �j�;�)) jJx(�; �)j = p(x(�; �j�;�)) jJy(�)j Jy(�) det(�
1=2); (35)

implying that

p(�) =

Z
1

�1

p(�; �) d� =

Z
1

�1

p(x(�; �j�;�)) jJy(�)j Jy(�) det(�
1=2) d�

/ Jy(�)

Z
1

�1

p(x(�; �j�;�)) jJy(�)j d� (36)

(the last expression being a kernel of the marginal target density of �). Second, the normal

candidate density, denoted by q(x), becomes the following function in terms of � and �:

q(�; �) = q(x(y(�; �)j�;�)) jJx(�; �)j

/ exp

�
�

1

2
�
2

�
jJy(�)j Jy(�); (37)
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so that12

q(�) / Jy(�): (38)

It follows from (36) and (38) that the acceptance probability �(�i�1; �
�

i
), de�ned for an

independence chain as

�(�i�1; �
�

i ) = min

(
p(��

i
)q(�i�1)

p(�i�1)q(�
�

i
)
; 1

)
; (39)

simpli�es to the expression in (18). Further, it follows from (35) and (36) that the density of

� conditional on � is given by (20).

Appendix 2: Sampling setup

Table 9 reports the sampling setup. In total, we run the algorithms at least 4 times with

di�erent sample sizes, in order to update the location and scale parameters of the candidate

density. After each update, the Mahalanobis distance between the newly sampled location

and the previous location is computed as

Mahalanobis =
�
�
(j)
� �

(j�1)
�
0
h
�(j)

i
�1 �

�
(j)
� �

(j�1)
�
; (40)

where �
(j) is the estimate of the mean after update j, with �(j) the corresponding scale

estimate.13 When the Mahalanobis distance is small and no longer changing, this is a sign

that no further updating is necessary. However care should be taken that the location and

scale estimates are correct: it may happen that the algorithms get trapped in some region, and

therefore a low and constant value of the Mahalanobis distance is only a sign of convergence,

not a proof. When the Mahalanobis measure drops by more than 50%, we take this as a sign

that the location changes considerably, and therefore we update the candidate another time.

Table 9: Sampling setup

Update 1 2 3 � 4

Repetitions 1000 1000 5000 10000

Directions 100 200 500 1000

Maximum rejections 3 5 100 200

The second row (`Repetitions') of Table 9 reports the number of parameter vectors �

that are collected, for APMH or APIS, divided over a number of directions � as indicated in

the third row of the table (for example, in update 1, for each sampled direction, we sample

1000/100 distances). In APMH and MH, sampling is only terminated when the number of

accepted drawings is equal to the number of repetitions given in Table 9 and the �nal sample

12If the candidate is elliptically contoured, � and � stay independent and the marginal distribution of � is

the same as in (38), but the distribution of � is di�erent from what appears in (37).
13In the griddy-Gibbs algorithm, no updating is performed, and the Mahalanobis distance is not reported

since it is irrelevant.
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size is equal to the number of repetitions divided by the acceptance rate. The acceptance rate

is called �� when rejection is on the direction (APMH) and �� when it is on the parameter

directly (MH) (see the tables of Section 4). The acceptance rate should be preferably not too

low (under e.g. 25%), otherwise a strong serial correlation can be expected in the chain of

sampled values. This correlation is monitored by the value of �max, the maximum value of

the �rst order serial correlation between sampled parameter values. For the methods based

on importance sampling, no correlation is introduced into the sample.

In the earlier updates, when the location/scale estimates are not precise yet, APMH and

MH tend to get stuck for a long time at the same parameter vector � or direction �. In order

to force the algorithm to move on, a maximum number of consecutive rejections is introduced

(see the last line of Table 9), which ensures that the earlier updates give a rapid but rough

improvement for the location and scale parameters. In the last update, this procedure is not

used.
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