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ORIGINAL ARTICLE

Medication-Wide Association Studies

PB Ryan', D Madigan?, PE Stang', MJ Schuemie'® and G Hripcsak*

Undiscovered side effects of drugs can have a profound effect on the health of the nation, and electronic health-care databases
offer opportunities to speed up the discovery of these side effects. We applied a “medication-wide association study” approach
that combined multivariate analysis with exploratory visualization to study four health outcomes of interest in an administrative
claims database of 46 million patients and a clinical database of 11 million patients. The technique had good predictive value,
but there was no threshold high enough to eliminate false-positive findings. The visualization not only highlighted the class
effects that strengthened the review of specific products but also underscored the challenges in confounding. These findings
suggest that observational databases are useful for identifying potential associations that warrant further consideration but are

unlikely to provide definitive evidence of causal effects.
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The increasing adoption of electronic health records (EHRs)'
and the availability of other data sources, such as administra-
tive claims data® and spontaneous adverse drug event report-
ing systems,® promise a new era of medical discovery.* One
areathat has shown concrete progress is pharmacovigilance.’
Adverse drug events represent a huge health and economic
cost to the nation.®# It is simply not possible to detect all pos-
sible drug side effects in the drug-approval process because
of small sample size, narrow study populations, and limited
time course. Postmarket surveillance of drug safety—that
is, pharmacovigilance—promises to detect important side
effects as soon as possible to minimize the damage.

Before regulatory approval, while a drug is in development,
randomized clinical trials represent the primary sources of
safety information. Such experiments are generally regarded
as the highest level of evidence, leading to an unbiased esti-
mate of the average treatment effect.® Unfortunately, most tri-
als suffer from insufficient sample size and lack of applicability
to reliably estimate the risk of other potential safety concerns
for the target population.'®'" As a result, new evidence about
safety is required even after a medical product is approved.

A number of techniques have been developed to infer drug
side effects from large databases in the postapproval setting.'?
Spontaneous adverse event reporting databases comprise
voluntary reports of a suspected relationship between adverse
effects following medical product exposure. As a result, these
spontaneous databases present challenges in analysis,
because there is no defined population from which to base
the denominator when estimating reporting rates. The reports
reflect a nonrandom sample from the total patients exposed
and the total patients who have experienced the adverse
event, but neither totals are reliably obtained. Disproportion-
ality analysis methods for spontaneous adverse event report-
ing data were established as an approach to account for the
lack of denominator by using the universe of all reports as a
proxy to estimate the expected number of events that could be

compared with the true observed count. Longitudinal obser-
vational health-care databases, such as administrative claims
and EHRs, offer opportunity to define a population over time,
enabling the estimation of background rates of events and
drug utilization patterns, which can then be used as denomi-
nators for evaluating the strength of association between
exposure and outcomes. However, retrospective observational
database analyses suffer from a multitude of potential sources
of bias due to the data capture process and heath-care deliv-
ery system. For example, it is common that the indication for
a drug may bias the estimated association if it is associated
with an increased risk of the outcome itself.'® Propensity score
adjustment, ' self-controlled designs,' and domain knowledge
(e.g., indications)'s are commonly used to reduce confound-
ing; however, health records have unreliable timing, and indi-
cations may be correlated so that a second indication may be
confused with a side effect. Pharmacovigilance also presents
the challenge of multiplicity, as there are >1,500 active ingredi-
ents in prescription medications and each requires monitoring
for thousands of potential side effects; however, simultaneous
evaluation of millions of statistical tests is likely to produce
many false-positive findings due to chance alone. A number of
techniques for addressing multiplicity, including false discovery
rate analysis,'® have been suggested.

The consequence of dependencies, confounding, and other
“noise” is an unacceptably high false-positive rate. The state
of the art for pharmacovigilance on the Observational Medi-
cal Outcomes Partnership (OMOP)'” databases, which cover
140 million lives, produces areas under the receiver operating
characteristic curve of almost 0.8.'® Even with a high threshold
(relative risk > 2), which led to an average sensitivity of 0.28,
the average specificity was only 0.87 and the average positive-
predictive values reached only 0.51. Therefore, the discovery
of an adverse event association through mining even very
large databases cannot be used to directly infer actual risks.
At best, the method generates a smaller pool of hypotheses
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that warrant further study. The volume of hypotheses when
applied to all potential outcomes across the entire formulary
of drugs, however, is likely to be in the hundreds or thousands.
High-visibility drug market withdrawals, such as that of
rofecoxib,’® have led investigators to assess when its side
effects could have been discovered according to various
databases.?*?> Retrospective assessments of the early
appearance of a signal are common in the literature but are
misleading as the investigation focuses on a single “known”
signal rather than establishing the context of looking for these
signals across an entire set of exposures and outcomes: these
studies fail to account for the potential false-positive rate that
would occur if the same method were similarly applied to all
other drugs for the same outcome. Schuemie et al. have shown
substantial risk of both false-positives and false-negative
results when establishing decision thresholds near the effect
size where rofecoxib signaled.® Removing all drugs from the
market whose relative risk confidence interval exceeds one or
some other threshold is likely to cause more harm than good.
At this point in time, the only possible approach is to manu-
ally review and prioritize generated lists of hypotheses. Experts’
domain knowledge of pharmacology, physiology, and health care
may help in addressing issues such as confounding between
indications and side effects. In the past, we have used bar plots'
and forest plots® to better visualize and interpret pharmaco-
vigilance results, but those approaches fall short because they
convey no domain knowledge (indication and structure).
Genome-wide association studies identify relevant genetic
changes associated with disease states from among the thou-
sands to millions of potential sites. The typical visualization of
these associations shows the statistical significance (—log P
value) of the target sites compared with all others, where the
sites are organized by their placement in the genome (see
for example, lkram et al.).?* The organization places sites
within genes near each other and places sites that are geneti-
cally linked near each other. The visualization approach was
adopted for clinical associations in the so-called phenome-
wide association studies.?® These are an inverse of a genome-
wide study, in which a single genetic locus is compared with
all possible phenotypes. It is organized by clinical system,
often using the International Classification of Diseases, 9th
Revision, Clinical Modification®® for organizing the pheno-
types so that those affecting similar systems are colocated.
Using an approach based on genome- and phenome-wide
association studies, we propose a “medication-wide associa-
tion study” (MWAS), in which each side effect is compared
with all drugs available for comparison. We organize the drugs
by the Anatomical Therapeutic Chemical Classification Sys-
tem,?” which groups drugs both by the organ system on which
they act and by their therapeutic characteristics and chemical
structure. We applied a self-controlled case series (SCCS)
analysis to 6 years’ data from two observational health-care
databases—the Truven MarketScan Commercial Claims and
Encounters (CCAE) administrative claims database with 46.5
million lives, and the GE Centricity EHR database with 11.2
million lives'®—and four clinically important side effects: acute
myocardial infarction, acute liver failure, acute renal failure,
and upper gastrointestinal ulcer. We plotted drugs for which
we had ground truth of either known side effects or known lack
of side effects according to appropriately powered studies.
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RESULTS

Figure 1 shows the four side-effect plots for the Truven Mar-
ketScan CCAE database. For myocardial infarction, a number
of true associations (star markers) are above the threshold of
P < 0.05, but there appears to be a class-specific tendency to
display (e.g., anti-inflammatory) or not display (e.g., psychoa-
naleptics) an effect. Negative controls (circle markers) show
P values almost as extreme as the true associations. For
acute liver failure, the results are similar, with some classes
with known effects displaying it and others not, and with a
false-positive as high as the highest true-positives. Acute
renal failure is similar. Upper gastrointestinal ulcer performs
better with few notable false-positives.

Figure 2 displays the P-value plots across the negative
controls for each of the four outcomes. In all the cases, the
proportion of tests with P < 0.05 is substantially higher than
the 5% expected, indicating that these observational analy-
ses do not satisfy the standard assumptions of independent
and unbiased estimators.

Figure 3 compares the results for CCAE and the GE Cen-
tricity database. For each drug, a line connects the results for
the two databases, with the larger marker representing the
CCAE database. In general, the CCAE P values are lower in
value and therefore higher on the MWAS plots, likely because
the database has a larger sample size and more complete
data capture of health service utilization. The combination of
the two databases does not appear, however, to help distin-
guish between positive and negative controls.

DISCUSSION

Observational health-care databases are commonly used
for evaluating specific hypotheses about potential drug
safety issues, but only recently has the research community
sought to systematically explore these data to proactively
identify safety signals. In 2007, the US Congress passed
the Food and Drug Administration Amendment Act, which
required the Food and Drug Administration to establish a
“postmarket risk identification and analysis system” with
access to >100 million lives of electronic health-care data.2®
In response, the Food and Drug Administration established
the Sentinel Initiative, which has made progress toward
developing a national data infrastructure, but has not yet
conducted medication-wide analyses to identify potential
safety concerns.?® Our work illustrates a proof-of-concept
approach for signal generation that can enable standardized
surveillance of specific health outcomes of interest across
all medical products.

Our MWAS visualizations demonstrate both the oppor-
tunity and challenge of pharmacovigilance in these large
health-care databases. Most of the signals identified in these
analyses were positive controls that we would hope a system
would detect, and the majority of negative controls failed to
yield statistically significant false-positive associations. This
performance reflects the previously documented predictive
value of up to 0.8."®

Nevertheless, for each outcome, we observed a large
number of drugs known not to have side effects that did have
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significant statistical associations. Conversely, many drugs
known to have effects do not signal despite the large size
of the database. All the four plots in Figure 1 contain false-
positives (circles) above the Bonferroni-corrected threshold
of ~0.0005, and three of the four have false-positives at the
most significant P values. Therefore, the false-positives are
not due to testing multiple hypotheses and we must consider
sources of error such as confounding. For example, the very
strong signal for hydrochlorothiazide causing acute renal
failure may be due to its common coprescription in patients
with renal impairment. The self-controlled design used in
this analysis is only one of several alternative approaches
that can be considered. While the SCCS explicitly addresses
time-invariant confounding factors, such as gender, race, and
genetics, it does not control for time-varying factors other
than concomitant medication exposure. Other study design
approaches include a new user cohort design, which uses
an active comparator as a referent and estimates event rates
during the time following initiation of treatment, and the case—
control design, which compares exposure rates during the
time before outcome incidence and compares with exposure
rates among matched patients who did not experience the
outcome. We present the results from the SCCS because
this design has been demonstrated in OMOP’s experiments
to have higher predictive accuracy and lower bias than these
alternative approaches.' Future work should be considered
to determine how best to combine results across multiple
analyses to improve our understanding of the effects of medi-
cal products.

If we group drugs by the organ system of their indications
for each of the four side effects (drugs grouped by color in
Figure 1), we found a tendency of the drugs to act similarly
within groups. We found 28 groups where all drugs in the
organ class were negative and no association was found
and 5 in which there were drugs with known side effects and
an association was found in more than half. Thus, 33 of 59
groups were handled well by the algorithm. In some cases,
such as the positive effects of nonsteroidal anti-inflammatory
drugs and acute myocardial infarction, the consistency of the
findings supports the observation of a potential effect. There
were 15 groups in which most or all of the known drugs with
true side effects were missed, 2 groups in which a significant
proportion of the drugs known not to have a side effect were
found to have an association, 7 groups with a single spurious
false-positive association, and 2 groups with a combination
of a spurious association and incomplete or nearly complete
identification of true side effects. For example, despite the
known increased risk of acute liver injury after exposure to
antivirals, the consistent lack of observed association could
falsely lead to a conclusion that there is no effect. The ten-
dency of drugs to act similarly within groups probably reflects
biases due to the health-care process, because in most
cases, the drugs within a group are not structurally similar.
Despite the presence of these patterns, no single pattern
appeared to reliably identify a drug as a true- or false-positive.

Medication-Wide Association Studies
Ryan et al.

For example, a single association within a group could be
spurious or true, and a preponderance of associations within
a group could represent accurate identification, a run of false-
positives, or a combination.

Three of the graphs are notable for a lack of obvious con-
founding by indication. Drugs with an indication that was
related to the side effects—cardiovascular for myocardial
infarction, urologic for renal failure, and alimentary track for
ulcer—did not produce false-positive associations, so the self-
controlled study appeared to work in these cases. For acute
liver failure, however, the false-positive findings observed for
alimentary track drugs may be due in some way to the effects
or treatment of liver failure.

One potential approach to addressing imperfect data is to
combine evidence from disparate sources. Figure 3 shows
two very different databases, derived from claims data and
EHR data. Combining the two does not appear to help dis-
criminate true signals from false ones; similar results were
found for the other three side effects. We performed addi-
tional experiments with two additional databases and found
that multiple approaches to synthesize evidence across data-
bases failed to improve discrimination. These results sug-
gest that different health-care databases may exhibit similar
biases, such that pharmacovigilance activities may require
information sources beyond observational data to support the
evaluation of safety signals.

A P-value plot can be a useful test when each test can be
considered as independent and unbiased.® You can deter-
mine whether the number of significance tests is consistent
with the unbiased, independence assumption by assessing
whether the range of tests does not deviate from the 45% line.
In the context of observational studies, we expect that results
may be biased, and studies of the same outcome are likely
correlated insofar as the sources of bias for a given outcome
may be consistent across multiple drugs. This can be seen
from the P-value plots of the negative controls (Figure 2),
which show a disproportionate number of significant findings.
For this reason, we argue that statistical significance using tra-
ditional P values or multiplicity-adjusted thresholds are insuf-
ficient, and instead rank-ordering effects based on P value,
as we display in the MWAS plots, may be a more principled
approach to triaging potential drug safety concerns.

The MWAS approach of systematic exploration of struc-
tured observational health-care claims and EHR databases is
only one tool to complement other recent innovations toward
improving the evidence base about the safety profile of medi-
cal products. LePendu et al. have demonstrated how natural
language processing of free text in medical records can be
used to draw inferences about potential drug—side effect rela-
tionships.3' Harpaz et al. recently measured the performance
of new algorithms for data mining in spontaneous adverse
event reporting data and demonstrated that disparate data
may have differential performance across health outcomes
of interest.® Tatonetti et al.**%* and Duke et al.** have suc-
cessfully demonstrated the potential to go beyond studying

Figure 1 Medication-wide association study (MWAS) analyses in Commercial Claims and Encounters (CCAE) database for (a) acute
myocardial infarction, (b) acute liver injury, (c) acute kidney injury, and (d) upper gastrointestinal bleeding. Y-axis displays P values on the
negative log scale. X-axis displays all the drugs studied for a given outcome, grouped by the Anatomical Therapeutic Chemical classification

system. OMOP, Observational Medical Outcomes Partnership.
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Figure 2 P-value plots for negative controls, trellised by outcome. Y-axis lists the P value for each drug—outcome pair and X-axis shows the
percentile of the negative control drugs which have a Pvalue at or below that Pvalue. The black dashed line indicates the 45° line, which should
approximate the P-value curves if the statistical tests were independent and unbiased. CCAE, Commercial Claims and Encounters; OMOP,

Observational Medical Outcomes Partnership.

the main effects to also explore drug—drug interactions in the
same data, and to integrate the results of observational anal-
ysis with other information sources, such as the published lit-
erature and chemical structure ontologies.

MWASs provide a structured approach for evaluating
potential drug safety concerns across all products in a way
that provides the necessary context for interpreting any one
drug-safety question of interest. While these illustrations
focus on a defined set of negative and positive control test
cases for methodological purposes, we believe this graphical
representation provides a consistent framework that can be
applied to all drugs and outcomes as a means to assess the
drug—outcome pairs for which we are still uncertain about the
true extent of the potential relationship. That context involves
understanding how unique a particular observation is by see-
ing how many other drugs yielded similar effects, and also
involves seeing how consistent findings are with medical
products that share similar characteristics. Further context
is provided by evaluating an association through replication
within two or more data sources. In this regard, the MWAS
visualization using an SCCS analysis across multiple data-
bases provides a framework that embodies several of the
elements required for evaluating a potential causal effect,
including strength of association, consistency, temporality,
specificity, and coherence.® Observational health-care data
alone may not be sufficient to provide definitive evidence of
any purported effect; however, systematic analysis of these
data offers tremendous potential in providing credible evi-
dence for advancing our understanding of the effects of medi-
cal products across large populations and a wide variety of
products.

METHODS

We conducted this analysis in two observational health-care
databases, the Truven MarketScan CCAE administrative
claims database and the GE Centricity EHR database.'®
CCAE represents a privately insured population and captures
inpatient and outpatient medical claims and pharmacy claims
of multiple insurance plans. The database used in this analy-
sis contained 46.5 million lives with >97.6 million patient-
years of observation from 2003 to 2009. We defined periods
of drug exposure based on pharmacy dispensing records and
procedural administrations. The GE MQIC (Medical Quality
Improvement Consortium) represents the group of provid-
ers who use the GE Centricity Electronic Medical Record
and who contribute their data for secondary analytic use.
The GE MQIC database reflects events in usual care, includ-
ing patient problem lists, prescribing patterns and over-the-
counter use of medications, and other clinical observations as
experienced in the ambulatory care setting. GE contains 11.2
million lives with data from 1996 to 2008. Drug exposures
were inferred from medication history and prescriptions writ-
ten. For both databases, we applied standardized algorithms
to define acute myocardial infarction, acute liver failure, acute

renal failure, and upper gastrointestinal bleeding based on
diagnosis codes on patient and outpatient medical claims.?”

For each outcome, we identified a set of negative and
positive controls. Ground truth was established based on sys-
tematic literature review and natural language processing of
structured product labeling, with positive controls identified as
drugs with Boxed Warnings or Precautions that are supported
by published evidence with no conflicting published studies,
and negative controls defined as drugs with no evidence sug-
gesting an association in either labeling or literature.®® Drugs
with inconsistent evidence were excluded. The MWAS plots
shown in Figure 1 display the full set of negative and posi-
tive controls for each outcome that were tested as part of the
OMOP experiment. The specific number of drugs varies by
outcome; 118 drugs were studied for acute liver injury, 102
for acute myocardial infarction, 88 for acute renal failure, and
91 for gastrointestinal bleeding. Analyses were performed on
RxNorm ingredient concepts. RxNorm concepts were clas-
sified using the Anatomical Therapeutic Chemical hierarchy
only for presentation purposes, but this classification does
not affect the effect estimation procedure. The RxNorm-to-
Anatomical Therapeutic Chemical mapping is part of the
OMOP vocabulary model and was created by and licensed
from FirstDataBank. The entire OMOP vocabulary is publicly
available online (http://omop.org/CDMvocabV4).

For each drug—outcome pair, we performed an SCCS
analysis,®**° which compares the event rate during time-at-
risk with the rate during the time unexposed among patients
who had at least one exposure and one outcome record. We
defined time-at-risk as the all-time postexposure start, includ-
ing the index date when treatment was initiated and continuing
through the end of the patient’s observation period. All time
before starting the drug exposure is considered as the unex-
posed period. We included all occurrences of outcome. We
applied a regularized implementation of the SCCS model,*!
with the regularization parameter determined by crossvalida-
tion, and we did multivariate adjustment for time-varying con-
comitant medications. The multivariate SCCS implementation
uses all RxNorm ingredients as potential covariates in the
model. Only those RxNorm ingredients which are observed
in patients with exposure to the target drug and an occur-
rence of the event are actually fit within each model. Each
analysis produced an incidence rate ratio, 95% confidence
interval, and P value. The MWAS plot displays the P value on
the negative log scale across all drugs for the same outcome.
Drugs are grouped according to the Anatomical Therapeu-
tic Chemical classification system. The source code of the
SCCS implementation used to produce this analysis is pub-
licly available online (http://omop.org/MethodsLibrary). The
entire result set of all methods executions across a network
of observational databases for all drug-outcome test cases is
also publicly available online (http://omop.org/Research).

Only fully deidentified data sets were used in the study and
only aggregate-level data are reported, so the review by Insti-
tutional Review Board was not required.

www.nature.com/psp
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Figure 3 Comparison between Commercial Claims and Encounters (CCAE) and GE databases of medication-wide association study (MWAS)
analyses for acute myocardial infarction. Y-axis displays P values on the negative log scale. X-axis displays all the drugs studied for a given
outcome, grouped by the Anatomical Therapeutic Chemical classification system. OMOP, Observational Medical Outcomes Partnership.
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WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

v/ Undiscovered drug side effects can have a pro-
found effect on the health of the nation, and
electronic health-care databases offer opportu-
nities to speed up the discovery of these effects.

WHAT QUESTION THIS STUDY ADDRESSED?

v/ How can we better visualize and interpret the
results of large-scale association studies of
drug side effects using claims and clinical da-
tabases?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE?

v/ We created a “medication-wide association
study”, which combined statistical association
with hierarchical information about the structure
and function of drugs. The visualization high-
lighted class effects, which not only strength-
ened the review of specific products but also
underscored the challenges in confounding.

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS?

v/ These findings confirm that observational data-
base analyses are useful for identifying potential
associations that warrant further consideration
but are unlikely to provide definitive evidence of
causal effects.
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