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Abstract 

The feasibility of diagnostic reasoning in a Bayesian belief network, based on a genetic algorithm is demonstrated. The 
reasoning process described here is an example of approximate reasoning. Since exact abduction in a network modelling the 
"classical diagnostic problem" is NP-hard, inexact or approximate reasoning attracts much attention. The results of the 
present study indicate that in a given context of observed symptoms, a genetically generated population of possible solutions 
retains much of the diagnostic power contained in the full model: the disease probabilities as occuring in this population and 
as calculated from the full model are strongly rank-correlated. Moreover, the disease-symptom correlations are retained in 
the genetically generated population. This is important, since these probabilities and correlations are dynamic quantities 
which depend on the context of observed symptoms. The genetic algorithm may be seen as a procedure to dynamically 
generate diagnostic protocols. 

1. Introduction 

To determine the diagnosis in a patient based on 
the presenting symptoms is a daily occuring problem 
in medical practice. More often than not it is solved 
in a stepwise fashion. Ideally, an initial differential 
diagnosis is made, possibly based on a subset of  
symptoms, and as yet undetermined symptoms are 
selected which potentially may either confirm or 
eliminate one or more of  the remaining possibilities. 
In practice, however, such a next set of  symptoms is 
not always so carefully selected; rather, a whole 
battery of  new tests is ordered, even if not all of  the 
outcomes are potential discriminants. For the sake of 
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comfort to the patient and for economical reasons, a 
careful determination of  a diagnostic protocol has 
great advantages. 

The problem of determining the optimal next set 
of  symptoms is not an easy one. The reason is that 
the dependencies between diseases and symptoms 
are not static quantities, but depend on the context of  
the presence or absence of  other symptoms. For a 
clinician, it is impossible or at least impractical to 
keep track of  this dynamic behaviour of  the symp- 
tom-disease correlations as the diagnostic workup 
progresses. 

Computer assisted techniques have been proposed 
in the past to help solving the diagnostic problem. 
Initially, most of  these systems were based on a 
straightforward application of  Bayes '  theorem, con- 
verting a priori disease probabilities into a posteriori 
probabilities in the light of  additional evidence. Such 
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early systems commonly had at least three serious 
limitations. First, the symptoms were treated as inde- 
pendent. Second, it was assumed that only one dis- 
ease was present; the single disease with the highest 
a posteriori probability was selected. Finally, the 
disease-symptom correlations were treated as static 
quantities. For these reasons the simple Bayesian 
approach sometimes referred to as crude Bayesian or 
idiot Bayesian is now widely recognized as sub-opti- 
mal. 

Bayesian belief networks (BBN's, or causal net- 
works) have been proposed as an alternative. A 
Bayesian belief network modelling the diagnostic 
problem is a directed acyclic graph in which diseases 
and symptoms are graphically represented as nodes. 
The nodes may or may not be connected by directed 
arcs, depending on whether or not a causal relation- 
ship is believed to exist between them. An arc is 
directed from cause to effect. Absence of an arc 
between two nodes implies that no direct dependence 
between these nodes exists. The graphical part of a 
Bayesian belief network must be supplemented by 
tables of probabilities. For each root node, a priori 
probabilities for each of its possible states must be 
supplied. For non-root node states, a table specifying 
the probabilities, conditional on the states of all of 
this node's parent nodes is required. 

A special form of a Bayesian belief network is a 
network modelling the "classical diagnostic prob- 
lem" as shown in Fig. 1. It consists of a series of 
root nodes (d-nodes), modelling a set of diseases and 
a series of non-root nodes (s-nodes) modelling a set 
of symptoms. A d-node is connected to an s-node if 
the disease modelled by the d-node is believed to be 
a possible cause of the symptom modelled by the 

s-node. The absence of such a causal relationship 
between a disease d i and a symptom sj is repre- 
sented by the absence of an arc between their respec- 
tive node representations. Disease nodes are not 
directly interconnected, nor are symptom nodes. 

In practice, designing the graphical representation 
of a given diagnostic problem (a set of disease nodes 
and a set of symptom nodes) is fairly straightfor- 
ward, using medical knowledge of the domain. How- 
ever, supplying the numerical part, especially all 
conditional probabilities of symptoms, given the par- 
ent disease states, is more problematic. The concept 
of causation events as suggested by Peng and Reggia 
(1987a,b) makes this task much easier. Instead of 
having to specify a complete table of conditional 
probabilities for each symptom node (2 ~ independent 
numbers if the states are all binary and where n is 
the number of parent d-nodes), only one "causation 
strength" has to be specified for each arc in the 
network. If the network contains an arc from d i to 
s~, the causation strength associated with the arc is 
the conditional probability that di causes sj, given 
that d~ is present. Apart from the fact that fewer 
probabilities have to be specified, the causation 
strengths are intuitively easier to estimate than the 
conditional probabilities of the symptoms given the 
states of the parent diseases. On the other hand, the 
tables of these latter conditional probabilities can be 
reconstructed from the causation strengths. 

Once the graphical representation has been sup- 
plemented by the numerical information, the 
Bayesian belief network contains a full description 
of the probability space: for any combination of 
states (present or absent) of the diseases and symp- 
toms, the probability of occurence of this configura- 
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Fig. 1. The Bayesian belief network modelling the "classical diagnostic problem".  The d-nodes model diseases, the s-nodes model 
symptoms. The prior disease probabilities are indicated in the top row. The arcs between nodes d i and sj model a causal dependence 
between disease di and symptom sj with a causation strength (see text) indicated along the arcs. 
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tion can be computed. If the network is initially 
uninstantiated (the presence/absence state of all 
nodes is unknown), this probability is the product of 
the prior probabilities of all disease states and the 
appropriate conditional probabilities of the symptom 
states. In partially instantiated networks, for compati- 
ble states this product yields the correct probability 
up to a scaling factor equal to the probability of that 
particular network instantiation. 

Exact methods of probability propagation in 
Bayesian belief networks exist. See, e.g., (Pearl, 
1988; Neapolitan, 1989) for a treatment of proba- 
bilistic reasoning. By probability propagation, the 
state probabilities of all nodes can be calculated, 
given the states of any subset of nodes. This does not 
yet constitute a full answer to the diagnostic prob- 
lem, if combinations of diseases are considered as 
valid explanations of the observed symptoms. In that 
case, abductive reasoning (reasoning from effects to 
causes) is required. It has been demonstrated that 
probability propagation (Cooper, 1990) as well as 
abductive reasoning (Shimony, 1994) in non-singly 
connected BBN's is NP-hard. In general, a network 
modelling the classical diagnostic problem is non- 
singly connected. As an alternative to extract solu- 
tions to the problem by exact reasoning, approximate 
methods have been proposed (Pearl, 1988). It has 
been shown that even such approximate methods 
may be NP-hard (Dagun and Luby, 1993). 

The operation of a genetic algorithm (Davis, 1991) 
in Bayesian belief networks, using the steady state 
variant with an elitist strategy was outlined in 
(Gelsema, 1995). Summarizing, a possible solution 
of the network (an individual) is represented as a 
chromosomal structure. Each gene in the chromo- 
some represents a node in the network and can take 
(in the network presented) one of two possible val- 
ues, representing the absence or presence of the 
disease or symptom modelled by the gene. It is 
straightforward to calculate the probability (fitness) 
of a chromosome thus completed as the product of n 
multipliers, one for each node in the network (see 
above). After having generated an initial population 
of np solutions, at each step of the algorithm, two 
chromosomes are selected for reproduction. The two 
parent individuals undergo cross-over and the off- 
spring is then possibly subjected to mutation. If a 
resulting individual is not already a member of the 

population, its fitness is calculated and if it is higher 
than the fitness of the least fit individual in the 
current population, it replaces this latter individual. 
Otherwise, the next reproduction step is initiated. 
This process is iterated until some stopping criterion 
is met. The resulting population of np individuals is 
called the genetically selected population. In 
(Gelsema, 1995), it was shown that genetic selection 
of possible solutions, using the calculated probability 
of such solutions (see above) as the fitness function, 
results in a subpopulation of solutions in which the 
MAP (maximum a posteriori) solutions appear with 
probabilities which may be orders of magnitude 
higher than when potential solutions were sampled at 
random. 

Whereas in the previous paper (Gelsema, 1995) 
the properties of individual solutions were studied, 
we will here concentrate on the diagnostic properties 
of the genetically generated populations. The ques- 
tion te be addressed in the present paper is: given 
that a genetic algorithm results in a subpopulation of 
high probability individuals, to what extent are the 
diagnostic clues reflected in this subpopulation? The 
answer to this question will be quantified on the 
basis of two sets of diagnostically important indica- 
tors. 

- In different contexts of observed symptoms, the 
probabilities of diseases (single or in combination 
with other diseases) are different. Such probabili- 
ties are called current disease probabilities, i.e. 
they are valid in the given context. The rank-orders 
of the current probabilities of the diseases may be 
calculated from the genetically selected subpopu- 
lation. 

- The disease-symptom correlations also depend on 
the given context. These correlations can also be 
calculated from the genetically generated subpop- 
ulation. 

Since any diagnostic process is a stepwise proce- 
dure in which after the determination of the presence 
or absence of a subset of symptoms, a differential 
diagnosis guides the further clinical workup, it is 
important to ascertain that at each step in this proce- 
dure, the current disease probabilities are at least 
ordered in the proper way. It is equally important to 
establish that at each step, high (positive or negative) 
disease-symptom correlations are properly reflected. 
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These correlations point the way to promising, dis- 
criminating symptoms of  which the state (absent or 
present) remains to be established. As was men- 
tioned earlier, these current probabilities and the 
disease-symptom correlations are dynamic quanti- 
ties: they depend on the state of  instantiation of  the 
network, or in diagnostic terms, on the states of  the 
symptoms thusfar observed to be present or absent. 

2. Methods 

2.1. The  e x p e r i m e n t s  

The graphical part of  the network used in the 
present study is the same as the one used in the third 
example in (Gelsema, 1995). It consists of  eight 
disease nodes (d~ through d 8) and seven symptom 
nodes (s  1 through s7), interconnected as shown in 
Fig. 1. The prior probabilities of the d-nodes (the 
disease prevalences) were slightly modified so as to 
avoid equal probabilities, making the rank correla- 
tion coefficient between the disease probabilities in 
the full model and in the selected subpopulations a 
more powerful indicator. The prior probabilities of  
the disease nodes and the causation strengths associ- 
ated with the disease-symptom dependencies are 
also given in Fig. 1. 

The total solution space of  the uninstantiated net- 
work (case 1) consists of  215= 32,768 states. The 
network was also studied in its state where the 
symptom corresponding to node s 1 was observed to 
be present (case 2). In the last case, the cardinality of  
the search space reduces to 16,384. 

In both cases, computational experiments consist- 
ing of  the following steps were performed 100 times: 
1. generation of  an initial population of  np solutions 

compatible with the given case instantiation and 
computation of  the corresponding probabilities of  
these solutions; 

2. application of  a genetic algorithm to the initial 
population until n c solutions (including the np 
initial ones) had been evaluated; 

3. calculation of  the current disease probabilities as 
occuring in the final population of  np solutions; 

4. establishing the rank-order correlation coefficients 
between the estimated current disease probabili- 
ties and the ones as computed from the full 
model; 

5. calculation of  the Spearman rank correlation coef- 
ficients between all disease-symptom pairs in the 
final subpopulation. 
After 100 runs of  the genetic algorithm, the means 

and standard deviations of  the correlation coeffi- 
cients as calculated in steps 4 and 5 were obtained. 

In each of  the cases described above, the experi- 
ments were performed for various combinations of  
np and n c. The values of  np and n c used are listed in 
Table 1. It is seen that within a case, going from one 
experiment to the next, populations of  which the size 
reduces by a factor of 2 are explored. Experiments 1, 
2 and 3 are comparable between the cases in the 
sense that an equal proportion of  the total search 
space is represented in the population (the fractions 
are 1 /128,  1 /256  and 1 /512  for experiments 1, 2 
and 3, respectively). In all experiments, in both 
cases, the population size np is one quarter of the 
number of  explored solutions n c. 

Table 1 
Experimental setup and correlations of current disease probabilities 

Case.exp no nc card/no Pnp c(P~) 

1.1 uninstantiated 256 1024 128 0.423 __. 0.038 0.957 4- 0.043 
1.2 uninstantiated 128 512 256 0.272 4- 0.053 0.855 + 0.139 
1.3 uninstantiated 64 256 512 0.155 + 0.050 0.736 + 0.210 
2.1 s I present 128 512 128 0.229 4- 0.035 0.844 + 0.117 
2.2 s I present 64 256 256 0.128 + 0.032 0.707 + 0.215 
2.3 sj present 32 128 512 0.059 __. 0.029 0.520 4- 0.281 

The table contains: the initial state of instantiation of the network (case.exp), the number of individuals in the genetically generated 
population (no), the number of explored individuals (no) , the reduction factor w.r.t, the cardinality of the search space (card/no), the 
average probability and its standard deviation accumulated in the f'mal population (Pnp) and the average (5:1 s.d.) rank order correlation 
coefficient between the current disease probabilities as calculated from the final population and as calculated from the full model (C(Pd)). 
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2.2. The genetic algorithm 

Initial populations were generated as follows: for 
each individual to be generated, a gene correspond- 
ing to an instantiated node in the network (if any) 
was given its corresponding value. Genes corre- 
sponding to a disease node were assigned states 
(present or absent) with equal probability. Genes 
corresponding to non-instantiated symptom nodes 
were assigned states (present or absent) with proba- 
bilities equal to the relevant conditional probabilities. 

In the present case, individuals were selected for 
reproduction by the roulette wheel technique, using 
the fitness as a selection criterion (in (Gelsema, 
1995), the rank orders of the fitnesses were used; no 
systematic difference was observed between the two 
selection criteria). After selection of two parent indi- 
viduals, cross-over was applied with a probability of 
100%. The probability of mutation was set at 0.2%. 
Genes corresponding to instantiated nodes were ex- 
cluded from mutation. 

As described above, the steady state variant with 
elitist strategy of generation transition was used. In 
this variant, the population is updated immediately 
after the generation of a new accepted offspring 
individual. This ensures that this individual takes 
part in the selection process as soon as it is accepted 
in the population. Using an elitist strategy, a new 
individual is accepted only if its fitness is better than 
that of the least fit individual in the current popula- 
tion. 

The stopping criterion was implemented as fol- 
lows: after n c - n p  reproductions, the genetic search 
was terminated. Thus, at termination, a maximum of 
n c - -  np new individuals were explored. 

After termination, the quantities mentioned in 
points 4 and 5 above were calculated on the basis of 
the final population of np individuals. 

2.3. Rank-order correlations of disease probabilities 

In order to verify the hypothesis that the popula- 
tion of individuals thus obtained contains sufficient 
diagnostic information to guide further clinical 
workup, the current disease probabilities were calcu- 
lated from the population and compared in rank 
order to the corresponding probabilities as calculated 
from the network. In the non-instantiated state of the 

network (case 1) these latter probabilities are the 
prior probabilities as shown in Fig. 1; in case 2, they 
can be calculated by probability propagation or by an 
exhaustive exploration of all compatible states. 

Both series of n (n = 8) disease probabilities are 
assigned rank orders (e.g., p; and qi, respectively, 
i = 1 . . . . .  n). Spearman's rank-order correlation co- 
efficient between the two series can then be ex- 
pressed as (Sachs, 1984): 

6 ~ ( Pi -- qi) 2 
i = 1  

r s = l -  
n (  n 2 - -  1) 

The Spearman rank-order correlation coefficient takes 
values between - 1 and + 1. After each application 
of the genetic algorithm, these coefficients were 
calculated. In each experiment, at the end of 100 
runs of the genetic algorithm, the mean and standard 
deviation were computed. 

2.4. Disease-symptom correlations 

For each disease and each symptom, the presence 
or absence in each of the np individuals in the final 
population can be determined. For each disease- 
symptom combination this leads to two series of np 
numbers: 

disease di: 0 1 1 0 1 1 1 0 . . . 1 0 0 1 ,  

symptoms sj: 0 0 1 0 1 1 1 0 . . .  1 0 0 1 .  

If 0 stands for absent and 1 stands for present, then 
the sequences above express the fact that in the first 
individual of the population (first column), d i and s i 
are both absent, in the second d r is present, while sj 
is absent, etc. If the numbers represented by the dots 
in both sequences were the same, it is clear that 
disease d i and symptom s t are strongly positively 
correlated (almost perfect co-presence or co-absence). 
The correlation between sequences in which the 
same numbers occur frequently can be expressed by 
a modified Spearman rank-order correlation coeffi- 
cient: 

np 

6 E (elk--ejk)  2 

k = l  

rs, e = l -  ( n 3 p _ n p ) _ ( S i + S j )  ' 
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Table 2 
Efficiency of selection of the currently most probable disease 

c a s e , e x p  Njmax N3max 

1.1 un ins t an t i a t ed  95 100 

1.2 uninstantiated 82 98 
1.3 uninstantiated 58 90 
2.1 s I present 78 100 
2.2 s I present 58 100 
2.3 s~ present 46 82 

The table lists the number of times (out of 100 runs) that the most 
probable disease, given the context of observed symptoms, was 
selected (Nlmax) and the number of times the selected most 
probable disease was one of the three maximum probability 
diseases (N3max). 

where e;k and ejk (k = 1 . . . . .  np) are the entries in 
the first and the second sequence, respectively, and 

where S i and Sj are given by 

1 o 1 c 
-~ E (  3 _ . , . ) .  sj 3 E .jg) s , =  = - I 

g = l  g = l  

In these last expressions, G is the number of 
groups of different entries in the sequences. In the 

case above, there are two groups of entries (G = 2): 
one group of O's and one group of 1 's. The numbers 
n;g are the numbers of entries in group g contained 
in the first sequence; njg are the numbers of entries 
in group g contained in the second sequence. The 
corrected Spearman rank-order correlations also take 
values between - 1 and + 1. In the case illustrated 
above (with all entries represented by the dots as- 
sumed to be equal) this yields a corrected correlation 
coefficient very close to 1. 

3. Results 

The experiments and the results are summarized 
in Tables 1 through 4. The first three rows of Table 1 
summarize the experiments with the network in its 

uninstantiated state (case 1). Population sizes of 256, 
128 and 64 individuals were used, exploring a total 

number of individuals of 1024, 512 and 256 in these 

three experiments, respectively. While the ratio of 
the population size to the number of explored indi- 

viduals is kept constant (a factor of 1/4) ,  the ratio of 

the cardinality of the search space and the population 
size np increases by factors of 2 from 128 to 512. 

The column headed Pnp contains the means and 
standard deviations over 100 runs of the total proba- 
bility accumulated in the final population of np 
individuals. It is seen that even when the final popu- 

lation has only 64 individuals ( 1 / 5 1 2  times the 
cardinality of the search space), this population accu- 

mulates 15.5% of the total probability space. The 
means and standard deviations over 100 runs of the 
Spearman rank order coefficients c ( P  d) between the 
current disease probabilities as estimated from the 
final subpopulation and as calculated from the com- 
plete model are given in the last column of Table 1. 
The last three rows of Table 1 summarize the results 
of the experiments with the network in a state with 
symptom s t instantiated to state present. The ratios 
card /np  in these three experiments are the same as 
those for the experiments with the uninstantiated 
case. 

In each of the two cases, the disease with the 
highest current probability as calculated from the 

Table 3 
Average disease-symptom correlations (over 100 runs) for the uninstantiated network 

d I 

d2 
d3 
d4 
d5 
d6 

d7 

d8 

S 1 S 2 
+ + +  + + +  

+ + o  

S 3 S 4 S 5 S 6 S 7 

+ + +  + + +  - 0 0  
+ + +  + + +  + 0 0  

+ + +  + + +  
+ + +  
+ + +  + + +  

+ + +  + + +  

+ + +  + + 0  
+ + +  + + +  

For each (d i, sj) combination, the three entries correspond to the experiments 1, 2 and 3, respectively. A correlation is indicated with a + 
( - ) if the coefficient is larger (smaller) than 0 by more than one standard deviation. An entry is 0 if the coefficient is compatible with 0 at 
the 1 s.d. level. No entries for a (d i, sj) combination imply that all three entries are compatible with 0. 
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Table 4 
Average disease-symptom correlations (over 100 runs) for the network in the context of the presence of s 1 

1053 

d l 
d2 
d3 
d4 
d5 
d6 
d7 
ds 

$1 S 2 b'3 S4 $5 $6 
+ + 0  

+ + +  + + +  

+ + 0  + + +  
+ + +  + + 0  

+ + +  
+ + +  + + +  

+ + +  
+ + +  
+ + +  

$7 

+ + +  

+ + 0  
+ + +  

The same conventions as in Table 3 apply. The negative (D 2, s 2) correlations are noteworthy. 

model can be identified. In case 1 this is obviously 
d 8 ( P  = 0.45); in case 2 this is d 2 (P  = 0.50), with 
as close competitors d I ( P = 0 . 4 9 )  and d 8 ( P =  
0.45). For each run of the genetic algorithm, the 
disease with the highest accumulated probability in 
the final population was recorded and compared to 
the disease with the highest probability as calculated 
from the network. The number of runs (out of 100) 
in which the genetic algorithm resulted in the correct 
maximum probability disease is indicated in Table 2 
(column Nlmax). The number of runs in which the 
genetic algorithm selected one of the three most 
probable diseases (d 8, d 7 or d 6 in case l; d 2, d I or 
d s in case 2) as the maximum probability one is 
listed in Table 2 (column Namax). 

Tables 3 and 4 summarize the results for the 
disease-symptom correlations. For each of the ex- 
periments, the means and standard deviations were 
obtained over 100 runs of the genetic algorithm. For 
each disease-symptom combination, the three en- 
tries in Tables 3 and 4 relate to the situations with 
card/np = 128, 256 and 512, respectively. Table 3 
represents the uninstantiated network, Table 4 the 
network with s 1 instantiated to state present. The 
correlation coefficients are represented by the sym- 
bols + ,  0 and - .  An entry is + ( - )  if the mean 
correlation coefficient is positive (negative) and at 
least one standard deviation from the value 0. An 
entry is 0 if the mean value is within one standard 
deviation from the value 0. When there are no entries 
for a disease-symptom combination, this implies 
that all three entries were equal to 0. Table 4 has no 
entries for ( d  i, s l) combinations, since all individu- 
als in the genetically generated population have s 1 
instantiated to present, rendering correlations with s t 

meaningless. It is seen that even in unfavourable 
situations (card/np = 512), Table 3 reproduces most 
of the causation strengths as implemented in the 
model: in the final subgroup of genetically selected 
individuals, the causation strengths are retained as 
correlation coefficients different from 0 (at the one 
standard deviation level). It is interesting to observe 
that in Table 4, the (dE, S 2) correlations become 
negative. It will be explained in the next section that 
this must indeed be the case and that this is a 
reflection of the dynamic behaviour of the disease- 
symptom correlations. 

4. Discussion 

An approximate method for diagnostic reasoning 
on the basis of a Bayesian belief network, using a 
genetic algorithm, has been described. In a previous 
article (Gelsema, 1995), the efficiency of this method 
to determine maximum a posteriori individual solu- 
tions was presented. In order to study the diagnostic 
properties of the entire genetically selected subpopu- 
lation of solutions, two cases were considered. In 
case 1, the network was in its a priori state, i.e., no 
nodes were instantiated; in case 2, the node corre- 
sponding to symptom s I was instantiated to present. 
Thus, case 2 corresponds to making a diagnosis in a 
patient in which symptom s I is observed to be 
present. For both cases, the experiments 1, 2 and 3 
are comparable in the sense that the ratio of the 
cardinality of the search space and the population 
size is the same for corresponding experiments. From 
Table 1 it may be observed that the results for the 
case with the higher cardinality (case 1) are more 
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favourable than those for case 2: the accumulated 
probability in the final population Pnp is higher. 
Also, the rank order correlation coefficients c (P  d) 
between the current disease probabilities as com- 
puted from the final population and as computed 
from the model are higher. This behaviour of in- 
creasing performance with increasing complexity of 
the search space was also observed in (Gelsema, 
1995), where under otherwise comparable condi- 
tions, genetic selection was shown to operate better 
in more complex situations. The results presented in 
Table 2 show that the currently most probable dis- 
ease is contained in the genetically selected popula- 
tion with a high probability. 

The values of the disease-symptom correlation 
coefficients cannot be compared between corre- 
sponding experiments in the two cases. These corre- 
lations are dynamic quantities which depend on the 
instantiation, i.e., the symptoms for which the pres- 
ence or absence has been determined so far. How- 
ever, an interesting phenomenon is observed in Table 
4, representing the disease-symptom correlations in 
the network with sj instantiated to state present. In 
all three experiments, the correlation coefficient be- 
tween d 2 and s 2 becomes significantly (at the one 
standard deviation level) negative, implying that the 
presence of s 2 is an indication for the absence of d 2 
and conversely. It can easily be understood that this 
must indeed be the case. Symptom s I being instanti- 
ated to present, only solutions with s I present are 
allowed. Possible causes of sj are d~, d2 or  d 3 or 
combinations thereof. If either dl or  d 3 is the cause, 
the presence of s 2 is also fairly probable (causation 
strengths of 0.4 and 0.6, respectively) but at the 
same time solutions with d 2 also being present have 
low probability, due to the multiplicative effect of 
the prior probabilities. On the other hand, if d 2 is the 
cause of s l, the co-presence of d I and/or  d 3 and /or  
d 4 is improbable. Since only d 1, d 3 or  d4 (or 
combinations thereof) can cause s 2, the presence of 
sz is improbable. Indeed, probability propagation in 
this network with s~ instantiated to present and s 2 
alternatively instantiated to present and absent re- 
veals that the posterior probability of d 2 is 0.30 
(making it the least probable disease) and 0.61 (mak- 
ing it the most probable disease), respectively. This 
is an expression of the dynamic behaviour of dis- 
ease-symptom correlations discussed in the intro- 

duction. This example shows that such behaviour is 
reflected in the genetically generated populations, 
even if the population size is small compared to the 
cardinality of the search space. 

It may be argued that in a practical situation, in 
which the genetic algorithm would be run only once, 
the standard deviations of the coefficients c(d i, sj) 
will not be available. It is then impossible to select 
the coefficients which are significantly different from 
0. Therefore, for case 1, the average coefficients 
c(d~, s i) corresponding to an arc in the network were 
compared to those not corresponding to an arc. Of 
those corresponding to an arc, only two are smaller 
than 0.10 in absolute value (c(d  3, s I ) and c(d 4, s4), 
both corresponding to a causation strength of 0.1). 
On the other hand, all coefficients for combinations 
not corresponding to an arc are smaller than 0.10 in 
average absolute value. These observations apply to 
all three experiments in case 1. Thus, selection of 
correlation coefficients with large absolute values 
seems to result in those disease-symptom combina- 
tions which are linked by a high causation strength. 
The average values of c(d i, sj) show very little 
sensitivity to the degrading conditions going from 
experiment 1 to experiment 3: between experiments, 
the average values of corresponding coefficients 
c(d i, sj) differ less than 10%. 

In practice, a diagnostic reasoning system might 
be implemented as follows: given a network describ- 
ing the medical diagnostic problem at hand, for any 
patient, the initial subset of symptoms observed to be 
present or absent defines a partial instantiation of the 
network. A genetic algorithm may then select a 
subpopulation consistent with this initial instantia- 
tion, giving a ranking of the current disease probabil- 
ities and even a list of the most probable individual 
solutions with the corresponding probabilities. It will 
also report estimates of the disease-symptom corre- 
lations which are valid in that particular context of 
observed symptoms. The disease probabilities and 
the list of most probable solutions will guide the 
definition of further diagnostic goals (which disease 
to confirm or to exclude), whereas the disease- 
symptom correlations will help in defining the best 
set of as yet unobserved symptoms (i.e., the diagnos- 
tic workup) to reach that goal. Also, symptom- 
symptom correlations (not discussed in the present 
article) may be reported, to avoid the observation of 



E.S. Gelsema / Pattern Recognition Letters 17 (1996) 1047-1055 1055 

both members  of  highly correlated pairs of symp- 
toms. Having established the p resence /absence  of  
the next set of  symptoms,  the non-compatible solu- 
tions may be removed from the genetically generated 
population and replaced by randomly selected com- 
patible ones. A new round of the genetic algorithm 
may then be initiated. Thus, the solutions of the first 
round as far as they are compatible are preserved and 
better compatible ones may be generated in the new 
context. This process may be repeated as long as the 
final diagnosis has not yet  been reached and symp- 
toms remain to be observed. The advantage of  this 
reasoning process is that no diagnostic protocol needs 
to be established beforehand for various subgroups 
of patients with various subsets of observed symp- 
toms, The genetic algorithm generates the protocol  
dynamically,  at each step adapting to the new 
context. 
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