ROLE OF TUMOR-DERIVED FIBROBLASTS IN THE GROWTH OF PRIMARY CULTURES OF HUMAN BREAST-CANCER CELLS: EFFECTS OF EPIDERMAL GROWTH FACTOR AND THE SOMATOSTATIN ANALOGUE OCTREOTIDE

Leo J. Hofland1,2, Bart van der Burg3, Casper H.J. van Eiick2, Diana M. Sprui1, Peter M. van Koetsveld1 and Steven W.J. Lamberts1

Departments of 1Internal Medicine III and 2Surgery, Erasmus University Rotterdam, Rotterdam; and 3Hubrecht Laboratory, Utrecht, The Netherlands.

In the present study we have investigated the role of human breast-cancer-derived fibroblasts in the proliferation of primary cultures of epithelial cells derived from the same tumor. For this purpose, a co-culture system, using Transwell tissue-culture inserts with microporous membranes was employed. Fibroblasts and epithelial cells were enriched according to differences in their density on Percoll density gradients. The culture system was first established using MCF-7 breast cancer cells and a human fibroblast line (HF cells). Insulin, 17β-estradiol, EGF and HF cells all significantly stimulated the growth of MCF-7 breast cancer cells. The stimulatory effects of insulin, E2 and EGF were additive to the stimulatory effect of HF cells. These data suggest that (unique) factor(s), other than the above-mentioned growth-promoting compounds, are responsible for the growth-promoting effects of fibroblasts. In half of the human breast cancers investigated, tumor-derived fibroblasts stimulated tumor-derived epithelial cell proliferation. EGF significantly stimulated epithelial cell proliferation in 4 out of 6 cultures. The stimulatory effects of fibroblasts and EGF were additive or synergistic, and were observed in the additional presence of FCS, again suggesting production of unique factor(s) by the fibroblasts. In one culture, the fibroblasts significantly inhibited epithelial tumor-cell proliferation. Conversely, the epithelial cells significantly stimulated proliferation of fibroblasts in 3 out of 3 cultures. The somatostatin analogue octreotide significantly inhibited epithelial cell proliferation by 46% in one tumor-cell culture in the absence, but not in the presence, of fibroblasts. In one culture, octreotide significantly inhibited the proliferation of fibroblasts co-cultured with epithelial cells.

Culturing primary human breast-cancer cells has proved to be difficult. The most successful method appears to be treatment of the tissue with collagenase, subsequent 1 g sedimentation of epithelial clumps and culture of the cells in media with specific substitutes (Band and Sager, 1989; Smith, 1991). One of the reasons underlying the difficulties of culturing such cells may be the dependence of individual cancer cells upon an intact autocrine and paracrine growth-regulatory apparatus which is proposed to exist in vivo (Lippman et al., 1986; Osborne and Arteaga, 1990). Recent laboratory studies also point to an important role of stromal cells in the development and growth of breast cancer. Conditioned media from human breast-cancer-derived fibroblasts have been shown to enhance the growth of several human breast-cancer cell lines via the secretion of (unknown) growth factors (Enami et al., 1983; Adams et al., 1988; van Roozendaal et al., 1992). This stimulatory effect of stromal cells on the growth of malignant breast epithelial cells has also been demonstrated in vivo (Horgan et al., 1987, 1988).

The importance of stromal-epithelial interactions in the growth of epithelial tumor cells led us to investigate the growth of primary cultures of human breast-cancer cells in the absence or presence of the corresponding tumor-derived fibroblasts. For this, we first separated the epithelial cells from the fibroblasts on discontinuous Percoll density gradients. This method of enrichment of breast cancer-cell populations has already been applied successfully (Sykes et al., 1970). Thereafter, we co-cultured both cell populations using Transwell tissue-culture inserts with microporous membranes. In addition, we also studied the effects of EGF and the somatostatin analogue octreotide in this co-culture system. A non-homogeneous distribution of receptors for somatostatin has been demonstrated by autoradiography (Reubi et al., 1990) in 46% of large tumor samples of human breast-cancer tissues, while in the same study 25% of the somatostatin-receptor-positive breast tumors were shown to contain EGF-receptors. These 2 receptor types were not topographically overlapping in the majority of the cases, however. The growth factor and the neuropeptide may be involved in positive and negative growth regulation of human breast cancer cells, respectively. More knowledge about the interrelationship between the direct and indirect effects of octreotide and EGF on the growth of human breast-cancer cells is of clinical importance in the light of recent clinical trials in which patients with advanced breast cancer have been treated with octreotide (Vennin et al., 1989). The co-culture system using Transwell tissue-culture inserts was first established using MCF-7 human breast cancer cells and human fibroblasts (HF cells).

MATERIAL AND METHODS

Cell dispersion and separation of cells according to differences in density

Fresh tissue from 6 malignant breast tumors was obtained within 30 min of surgical removal. Histological diagnosis of tumor tissue was confirmed by routine histo-pathological examination. Table I shows the tumor characteristics. The tissue was minced into pieces of approximately 1 mm³, washed twice with isolation medium (see below), centrifuged at 100 g for 5 min, and incubated overnight in culture medium containing 2 g/l collagenase. Thereafter, the remaining cell pellet was washed twice with isolation medium and incubated for another 1 hr at 37°C with a mixture of collagenase and dispase (1 g/l and 2.4 × 10⁵ U/l, respectively) to obtain a single-cell suspension. After this incubation period the cells were washed twice with isolation medium. The remaining cell suspension then consisted of single cells. An aliquot of this suspension was separated and the cells were counted and plated in multi-well plates (see below); these represent the original cell suspension. The remaining cells were layered on a discontinuous Percoll density gradient (1.04-1.05-1.06-1.07-1.08-1.10 g/ml) and centrifuged to isodensity for 20 min at 800 g. The cells

1995 Wiley-Liss, Inc.
present in the different fractions (interphases) were collected, washed twice with isolation medium, counted and cultured as described below. Percoll was obtained from Pharmacia (Uppsala, Sweden).

Cell culture

The human epithelial cells with equilibrium densities of >1.07 g/ml (Sykes et al., 1970), were resuspended in culture medium, counted and seeded in multi-well plates at a concentration of 25,000 cells per well. Fibroblasts with an equilibrium density of <1.05 g/ml (Sykes et al., 1970) were resuspended in culture medium, counted and seeded (25,000 cells per Transwell microporous membrane, 0.4 μm; Costar, Badhoevedorp, The Netherlands). The Transwells were transferred into wells containing 1 ml of culture medium with or without epithelial cells. Thereafter, the epithelial cells (with or without fibroblasts) were incubated with or without test substances for 5–7 days. During the last 24 hr, 3.7 × 10^4 Bq of [methyl-^3H]-thymidine were added to the wells. The medium was removed, then the cells were washed twice with ice-cold 0.15 mol/l NaCl, suspended in 1 mol/l NaOH and transferred to vials for scintillation counting of the incorporated radioactivity.

The isolation medium was Hank's balanced salt solution (HBSS) supplemented with 10 g/l human serum albumin, penicillin (10^5 U/l) and sodium bicarbonate (0.4 g/l). Culture medium consisted of DMEM/F-12 (1:1) supplemented with non-essential amino acids, FCS (10%), human transferrin (10 μg/l; Sigma, St Louis, MO), ascorbic acid (50 μM) and sodium selenite (6 pg/l). Media and supplements were obtained from Gibco-BRL (Paisley, UK). Human transferrin and ascorbic acid were obtained from Sigma, and sodium selenite from Merck (Darmstadt, Germany).

MCF-7 human breast cancer cells were kindly provided by Dr. C. Quirin-Stricker (Faculté de Médecine, Strasbourg, France). Fibroblasts isolated from human foreskins (HF cells) were kindly provided by Dr. M. Ponc (Leiden, The Netherlands). MCF-7 and HF cells were cultured in culture medium and passaged twice a week using trypsin (0.05%) and EDTA (0.02%). In the experimental incubations, the MCF-7 cells (25,000 cells seeded per well) were cultured in multi-well plates in 1 ml culture medium with or without HF cells (2 × 10^5 cells per Transwell). After 1 day of culture, the medium was replaced by serum-free culture medium. After another 1 day of incubation, this medium was replaced by medium containing 10% growth-factor-inactivated FCS and the cells were incubated for 2 days with or without test substances. Under these conditions optimal stimulation of MCF-7 cell proliferation by mitogens such as insulin or insulin-like growth factors is observed (van der Burg et al., 1988). At the end of the incubation the DNA content of the cells was measured using the bisbenzimide fluorescent dye (Behring, La Jolla, CA) as described previously (Hofland et al., 1990).

Insulin (bovine) was purchased from Sigma and epidermal growth factor from Bissendorf (Hanover, Germany).

**Immunocytochemical detection of keratin and BUdR**

For keratin and BUdR staining, the epithelial cells were cultured on glass coverslips. For keratin staining, the cells were fixed for 10 min with methanol at the end of the incubation period. Staining for keratin was done with a PAP Kit System (code KS18; DAKO, Glostrup, Denmark). For BUdR staining, the cells were incubated for 60 min with 5-bromo-2'-deoxyuridine, washed twice with PBS, and fixed for 20 min at −20°C in 70% ethanol in glycin buffer (50 mmol/l, pH 2.0). Staining for BUdR was done with a BUdR labelling and detection Kit II from Boehringer (cat. 1299 964; Boehringer Mannheim, Almere, The Netherlands). The cells were double-stained for keratin with the PAP Kit System, as described above.

**Statistical analysis of data**

All values are expressed as mean ± SE. n = 3 wells per treatment group. All data were analyzed using analysis of variance (ANOVA) to determine overall differences between treatment groups. When significant overall effects were found by ANOVA, a comparison between treatment groups was made using the Newman-Keuls test (Snedecor and Cochran, 1980). A value of p < 0.05 was considered to be statistically significant.

**RESULTS**

**Fibroblast-epithelial-cell interactions in cell lines**

We first established the co-culture system using Transwell tissue-culture inserts in MCF-7 human breast cancer cells co-cultured with human fibroblasts (HF cells). In initial experiments we determined the number of HF cells that were required to significantly stimulate MCF-7 cell proliferation. Figure 1 shows that a low number of HF cells (10,000–20,000 HF cells seeded per Transwell) only slightly stimulated MCF-7 cell proliferation, while a higher number (200,000 cells) stimulated MCF-7 cell proliferation by 76%. In the further co-culture studies we therefore used this higher number of HF cells. In Figure 2 the effects of 17β-estradiol (E2) and insulin on MCF-7 cell growth with or without co-culture with HF cells

**FIGURE 1** - Effect of human fibroblasts (HF cells) on the growth of MCF-7 breast-cancer cells. HF and MCF-7 cells were co-cultured for 4 days using Transwell tissue-culture inserts with microporous membranes as described in the text. □ MCF-7 cells without HF cells; ▪ MCF-7 cells with HF cells; *p < 0.01 and **p < 0.05 vs. MCF-7 cells without HF cells.

**TABLE I - CHARACTERISTICS OF TUMORS STUDIED**

<table>
<thead>
<tr>
<th>Tumor number</th>
<th>Age of patient (yr)</th>
<th>SBR (grade)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>Pathol. stage&lt;sup&gt;b&lt;/sup&gt;</th>
<th>ER status&lt;sup&gt;c&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>III</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;18</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>III</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>II</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;9</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>II</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;5</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>I</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;14</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>I</td>
<td>T&lt;sub&gt;N&lt;/sub&gt;19</td>
<td>+</td>
</tr>
</tbody>
</table>

<sup>a</sup> Scarff, Bloom and Richardson grade. <sup>b</sup> T<sub>N</sub>, tumor size < 2 cm; T<sub>2</sub>, tumor size between 2 and 5 cm; N<sub>a</sub>, no positive axillary lymph-nodes; N<sub>12</sub>, positive axillary lymph-nodes; N<sub>15</sub>, positive axillary top lymph-node. <sup>c</sup>Estrogen receptor assessed by immuno-histochemistry; −, negative; +, positive.
vs. MCF-7 cell proliferation. EGF (10 ng/ml) had, under these conditions, the effect of HF cells on MCF-7 cell growth (data not shown).

Cultures of human breast-cancer cells were studied for their ability to proliferate in the presence of fibroblasts and EGF. MCF-7 cell proliferation by 76 and 75%, respectively, was significantly stimulated by fibroblasts and EGF when co-cultured with MCF-7 cells. Insulin (10 kg/ml) and EGF (10 ng/ml) alone significantly stimulated MCF-7 cell proliferation in 3 out of 6 cultures (numbers 1, 2 and 5), and inhibited MCF-7 cell proliferation in one (number 3). EGF (10 ng/ml) alone significantly stimulated MCF-7 cell proliferation in 4 out of 6 cultures (3, 4, 5, 6). The effects of fibroblasts and EGF were significantly synergistic in 2 cultures (1 and 4), and additive in another (5). In contrast, in the culture of tumor 3 the fibroblast fraction significantly inhibited EGF-stimulated MCF-7 cell proliferation.

In 2 cultures from histologically proven non-malignant tissues (1 blunt duct adenosis and 1 chronic granulomatous inflammation) we found that the fibroblast fraction inhibited epithelial cell growth, while in one the fibroblast fraction completely blocked EGF-induced stimulation of epithelial cell proliferation (data not shown).

The somatostatin analogue octreotide (1 nM) had no statistically significant effect on epithelial cell proliferation in the presence of fibroblasts in tumors 1, 2, 4, 5 and 6, whereas in tumors 1 and 3 octreotide significantly inhibited epithelial-cell proliferation by 46% (p < 0.01 vs. control) only in the absence of fibroblasts (data not shown).

In 3 cultures (tumors 2, 5, and 6) we also studied 3H-thymidine incorporation in fibroblasts cultured in the absence and in the presence of epithelial cells. In addition to the stimulatory effect of tumor-derived fibroblasts on epithelial cell proliferation, we found that the Percoll-enriched epithelial cells also significantly stimulated fibroblast proliferation. This is shown in Figure 5. In the presence of epithelial cells, EGF (10 ng/ml) significantly stimulated fibroblast proliferation in all cultures (Table II). In fibroblasts, co-cultured with epithelial cells, octreotide significantly inhibited 3H-thymidine incorporation in 1 out of 6 cultures (number 5). Insufficient stromal cells were obtained after Percoll-gradient separation to allow us to study the effects of EGF and octreotide on the growth of fibroblasts that were not co-cultured with tumor-derived epithelial cells.

DISCUSSION

Previous studies have demonstrated that human breast-cancer-derived stromal cells secrete factors capable of stimulating the proliferation of breast-cancer cell lines (Enami et al., 1983; Adams et al., 1988; van Roozendaal et al., 1992). While mammary tumor epithelial cell growth is regulated by steroid hormones and polypeptide growth factors (Lippman et al., 1986; Osborne and Arteaga, 1990; Rosen et al., 1991), the nature of the stromal factors responsible for stimulation of epithelial cell growth is still unclear. The present study employed a co-culture system using Transwell microporous membrane inserts to investigate the role of human breast-cancer-derived fibroblasts in the growth regulation of epithelial cells derived from the same corresponding tumors. This co-culture system was first established with MCF-7 breast-cancer cells co-cultured with a human fibroblast line (HF cells). In agreement with other studies (Adams et al., 1988; van der Burg et al., 1990; van Roozendaal et al., 1992) we found that fibroblasts are capable of stimulating the proliferation of MCF-7 breast-cancer cells.

Most studies on stromal-epithelial interactions in human breast cancer have been performed using conditioned media...
FIGURE 3 – Immunocytochemical staining for keratin and/or BUdR of human primary breast-cancer cells co-cultured with stromal cells derived from the same tumors. (a) Breast-cancer-derived Percoll-enriched epithelial cells co-cultured with fibroblasts and EGF (10 ng/ml), keratin staining (red-brown); (b) cells as in (a), negative control (normal rabbit serum) keratin staining; (c) original cell suspension from breast-cancer specimen as in (a), cultured in the presence of EGF, double-stained for keratin (red-brown) and BUdR (blue nuclei); (d) epithelial enriched cells, co-cultured with fibroblasts and EGF as in (a), double-stained for keratin and BUdR. Scale bar, 50 μm.
from breast-cancer-derived stromal cells capable of stimulating human breast-cancer cell-line proliferation (Enami et al., 1983; Adams et al., 1988; van Roozendaal et al., 1992). In the present study we provide preliminary evidence of the existence of such an autocrine growth-stimulatory mechanism in a co-culture system of primary human breast-cancer cells and stromal cells derived from the same tumors, although the tumors varied considerably. In 50% of the human tumor-cell cultures we found that tumor-derived stromal cells stimulated the proliferation of epithelial cells derived from the same tumor. In one culture, however, the stromal cells even inhibited epithelial cell proliferation. In 2 tumor-cell cultures we showed that fibroblasts and EGF acted synergistically on epithelial-cell proliferation, while in 3 other cultures the EGF-stimulatory effect was only slightly additive and not synergistic to the fibroblast-stimulated epithelial proliferation. These data are partly in agreement with the results of a recent study by van Roozendaal et al. (1992), who suggested that fibroblasts and epithelial cells we also observed an inhibitory effect of fibroblasts on epithelial-cell proliferation. These data suggest that within human breast cancer, an autocrine growth-regulatory route exists in which fibroblasts stimulate epithelial cells and epithelial cells stimulate fibroblasts. Breast-cancer cells have been shown to secrete many growth factors (i.e., TGF-α, TGF-β and PDGF), while fibroblasts are also capable of secreting growth factors (Osborne and Arteaga, 1990), particularly IGFs (van der Burg et al., 1990). In the present study we did not investigate the nature of the epithelial-cell and fibroblast-derived factors responsible for the observed autocrine growth stimulation. However, our results indicate that fibroblasts and growth factors (i.e., insulin, EGF and E2) act additively or synergistically upon the proliferation of malignant breast-cancer cells. In addition, in the human primary-cell cultures we found that fibroblasts have a stimulatory effect on breast-cancer cells, even when both cell types are grown in the presence of EGF and serum. This suggests that

**Figure 4** - Effects of breast-cancer-derived fibroblasts (F) and 10 ng/ml epidermal growth factor (EGF) on 3H-thymidine incorporation by Percoll-enriched epithelial cells derived from the same tumors. Fibroblasts and epithelial cells were co-cultured using Transwell tissue-culture inserts as described in the text. *p < 0.01 and **p < 0.05 vs. control; †p < 0.01 vs. EGF alone. CON = control, EGF = 10 ng/ml EGF, F = fibroblasts.

**Figure 4** - Effects of breast-cancer-derived fibroblasts (F) and 10 ng/ml epidermal growth factor (EGF) on 3H-thymidine incorporation by Percoll-enriched epithelial cells derived from the same tumors. Fibroblasts and epithelial cells were co-cultured using Transwell tissue-culture inserts as described in the text. *p < 0.01 and **p < 0.05 vs. control; †p < 0.01 vs. EGF alone. CON = control, EGF = 10 ng/ml EGF, F = fibroblasts.
were the receptors for somatostatin have been demonstrated, while EGF-receptors were found in 25% of the samples containing et al., that tumor biology is influenced by a direct interaction of the ratios of growth-stimulatory and growth-inhibitory factors values.

induced by fibroblasts. The observed opposite effects of the somatostatin analogue octreotide in the treatment of breast cancer. In conclusion, our study emphasizes the need to investigate the role of stromal cells in breast-cancer epithelial-cell proliferation, as well as their role in interfering with drug-induced manipulation of breast-cancer cell growth.

ACKNOWLEDGEMENTS
This work was supported by a project grant (NKB-91-12) from the Dutch Cancer Society.

REFERENCES


FIGURE 5 – Effect of Percoll-enriched epithelial breast cancer cells on the growth of fibroblasts derived from the same tumors. Both cell types were co-cultured using Transwell tissue-culture inserts as described in the text. –, without epithelial cells; +, with epithelial cells; *p < 0.01 vs. fibroblasts without epithelial cells.

TABLE II – EFFECTS OF EGF AND SOMATOSTATIN ANALOGUE OCTREOTIDE ON THYMIDINE INCORPORATION BY FIBROBLASTS CO-CULTURED WITH PRIMARY BREAST-CANCER CELLS

<table>
<thead>
<tr>
<th>Tumor number</th>
<th>Control</th>
<th>EGF (10 ng/ml)</th>
<th>Octreotide (1 nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>428 ± 110</td>
<td>1450 ± 153 (339)</td>
<td>685 ± 279</td>
</tr>
<tr>
<td>2</td>
<td>457 ± 70</td>
<td>1417 ± 86 (310)</td>
<td>349 ± 23</td>
</tr>
<tr>
<td>3</td>
<td>29 ± 2</td>
<td>58 ± 5* (200)</td>
<td>33 ± 3</td>
</tr>
<tr>
<td>4</td>
<td>77 ± 11</td>
<td>177 ± 7* (230)</td>
<td>56 ± 5</td>
</tr>
<tr>
<td>5</td>
<td>90 ± 7</td>
<td>126 ± 6* (140)</td>
<td>58 ± 1* (64)</td>
</tr>
<tr>
<td>6</td>
<td>114 ± 19</td>
<td>235 ± 20* (206)</td>
<td>138 ± 31</td>
</tr>
</tbody>
</table>

*p < 0.01 vs. control; values are mean ± SE, control = fibroblasts co-cultured with primary breast-cancer cells. Numbers in parentheses represent the percentage of treatment vs. control values.

(Unique) factors, other than the above growth-promoting compounds, are responsible for the growth-promoting effects induced by fibroblasts. The observed opposite effects of "non-malignant breast tissue"- and "breast-tumor tissue"-derived fibroblasts on epithelial cell proliferation suggest that the ratios of growth-stimulatory and growth-inhibitory factors secreted may differ between "normal" and "tumor" fibroblasts, since it is unlikely that fibroblasts produce one specific growth factor only.

In approximately 50% of human breast-cancer specimens, receptors for somatostatin have been demonstrated, while EGF-receptors were found in 25% of the samples containing somatostatin receptors. However, in only 8% of these cases were the 2 receptor types topographically overlapping (Reubi et al., 1990). On the basis of these data Reubi et al. (1990) suggested that, in the majority of breast tumors, it is unlikely that tumor biology is influenced by a direct interaction of somatostatin and EGF through specific receptors in a particular cell. In a wide variety of experimental tumor models, including breast cancer, growth-inhibitory effects of long-acting somatostatin analogues have been demonstrated in vivo and in vitro (Schally, 1988; Lamberts et al., 1991). The in vivo tumor-growth-inhibitory effects of somatostatin analogues may act indirectly via the inhibition of angiogenesis, immune modulatory effects and inhibition of the secretion of "endo-"" growth factors such as growth hormone, prolactin and IGF-I, as well as via direct effects on tumor cells via specific somatostatin receptors. These last-named effects include inhibition of EGF-receptor activity via the stimulation of a tyrosine phosphatase or inhibition of the secretion of autocrine and paracrine growth factors (Lamberts et al., 1991). Because our study showed clear evidence of the existence of a paracrine growth-regulatory mechanism, we also studied the effect of the somatostatin analogue octreotide on epithelial-cell and fibroblast proliferation with or without co-culture. We found that octreotide had no effect on basal and fibroblast-stimulated epithelial cell proliferation in 5 of 6 tumors, while in one tumor octreotide inhibited epithelial-cell proliferation in the absence of fibroblasts only. Surprisingly, we found in one culture that octreotide significantly inhibited the proliferation of fibroblasts co-cultured with epithelial cells. Although we did not investigate the somatostatin-receptor status of the tumors, it can be speculated that octreotide inhibits the secretion of growth factors by the epithelial tumor cells, thereby indirectly inhibiting growth of the co-cultured fibroblasts. In the 7-day co-culture period used in our study, this growth-inhibitory effect of octreotide upon fibroblast proliferation did not result in an indirect growth inhibition of epithelial cells. Therefore, more studies are clearly needed to evaluate the potential role of the somatostatin analogue octreotide in the treatment of breast cancer.


