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Beat-to-beat fluctuations in cardiovascular time series comprise different frequency compo-
nents which can be employed to describe autonomic regulatory processes. The Exponential
Distribution (ED) is presented here as a specific time-frequency distribution which has the
potential to describe the time-related changes in the frequency content of these cardiovascular
fluctuations. The ED has as advantage that it gives a good suppression of the cross terms, a
characteristic feature of bilinear time-frequency distributions. An implementation to apply
the ED to nonequidistantly sampled cardiovascular time series is provided. Applications of
the ED to various clinical and experimental human cardiovascular time series show that the
ED can be an important aid to describe and interpret time-varying frequency compo-
nents of cardiovascular signals such as heart rate, interbeat interval, blood pressure, and
respiration.  1996 Academic Press, Inc.

1. INTRODUCTION

The conventional method to study the dynamics of cardiovascular control
mechanisms is to estimate the variability spectra of the beat-to-beat fluctuations
in heart rate (HR) and blood pressure (BP). These fluctuations in HR and BP
are usually characterized by three spectral peaks in a frequency range of 0.01
to 0.50 Hz: a low frequency peak around 0.04 Hz, a mid frequency peak around
0.1 Hz, and a high frequency peak between 0.20–0.35 Hz. These peaks are
believed to contain differential information related to either sympathetic
and/or parasympathetic processes within the cardiovascular control system (1–4),
whereas respiratory-related high frequency fluctuations in HR particularly reflect
cardiac vagal (parasympathetic) tone, low, and mid frequency fluctuations in HR
and, especially, BP may reflect sympathetic processes.

To estimate HR spectra and spectra of other cardiovascular signals, several
methods have been developed. Most of these methods are based on equidistant
sampling of the cardiovascular signals, in order to produce various time series
of cardiovascular quantities such as interbeat intervals or systolic BP (SBP).
Spectra can then be calculated using a fast Fourier transform. However, HR is
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a frequency modulated signal (5), whereas SBP and diastolic BP (DBP) are
frequency and amplitude modulated signals (6). We recently presented a method
to compute spectra of cardiovascular time series by means of nonequidistant
sampling of the R-waves (7) based on the assumptions of Rompelman (5) and
Mulder (6). Nonequidistant sampling of the HR signal or other cardiovascular
signals guarantees that whenever time relationships between signals have to be
studied (such as between HR and SBP), there are no relative time shifts between
the time series or the relative time shifts are constant over time. Computation
of variability spectra and cross-spectra by means of nonequidistant sampling of
the cardiovascular signals have the advantage that these methods take into ac-
count both the frequency and amplitude modulation properties of these signals.

Spectral analysis is usually performed on consecutive time-segments ranging
from 2 to 5 min, under the assumption that these time-segments can be considered
stationary. But even on this time-scale, the spontaneous cardiovascular fluctua-
tions are, in general, not completely stationary. This makes the spectra of the
consecutive segments less appropriate to examine changes in frequency compo-
nents over time. For each segment, the time-varying frequency components
will accumulate into wide frequency bands within the overall power spectrum.
Furthermore, the high segment-to-segment variations in the power of the differ-
ent frequency components over time (8) suggest that a more detailed analysis
of time-frequency relationships is warranted. These relationships can be de-
scribed with a (joint) time-frequency distribution (TFD). A TFD describes the
frequency changes of the signal as a function of time, while allowing nonstationar-
ities. At each instant of time, a TFD shows the frequencies that exist at that
time. A well-known TFD is the Wigner–Ville Distribution (WVD; 9–14). Novak
and Novak (15) were the first to apply the WVD to cardiovascular time series.
In this paper, we will explore the possibilities of the exponential distribution
(ED; 16) to describe time-frequency relationships of various cardiovascular time
series. The ED is a modified WVD, which diminishes the effects of the so-called
cross terms. These cross terms are artefacts in a TFD due to the bilinearity of
the TFD; cross terms are considered to be a drawback of the WVD.

Our aim of this paper is to apply the exponential distribution to nonequidis-
tantly sampled cardiovascular time series. The implementation of the method into
a computer program is provided. Furthermore, the applicability of the method to
study details of cardiovascular time-frequency relationships is illustrated on both
clinical and experimental human data.

2. THEORY

2.1. Spectral Analysis of Nonequidistant Cardiovascular Time-Series

The estimation of HR variability (HRV) spectra based on nonequidistant
sampling of the R-wave incidences was first introduced by Rompelman (5). The
R-waves are detected and represented by Dirac delta pulses d(t 2 ti) at the
incidence times ti , i 5 1, 2, . . . , N. These delta pulses form the signal:
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p(t) 5 ON
i51

d(t 2 ti). [1]

Such a series of consecutive R-wave incidences is called a HR signal or HR
time series.

The Fourier transform of the function p(t) is:

Xc( fk) 5 Ey

2y
p(t) ? e22f jfktdt 5 ON

i51
e22f jfkti, [2]

in which fk 5 k/T, k 5 0, 1, . . . , and T is the total record time. The spectrum
PC of the function p(t) is (17):

PC( fk) 5
2
T

? XC( fk) ? X*C( fk) [3]

and is estimated using the right part of Eq. [2]. This spectrum is based on
nonequidistant sampling: the delta pulses are occurring at the R-wave incidences.
The spectrum PC is called the spectrum of counts (SOC).

Let p(t) be a HR time series of consecutive R-wave incidences at times ti ,
i 5 1, 2, . . . , N. The time-intervals Dti between the R-waves or interbeat
intervals Ii (IBIs) are defined by Ii 5 Dti 5 ti 2 ti21 for i 5 1, 2, . . . , N (the
first interval starts at R-wave incidence t0). The total record time T is ShDti , i 5
1, 2, . . . , N j. The mean sample interval Dt or mean IBI I is T/N. The ‘‘sample
frequency’’ is defined by fS 5 1/I 5 N/T (this is also called the ‘‘mean HR’’)
The ‘‘Nyquist frequency’’ is defined by fN 5 fS/2. The frequency resolution is
D f 5 1/T.

Prior to the calculation of the spectrum of a time series, it is customary to
subtract the DC of the time series. In case of a HR signal, DC-correction is
performed by subtracting a sequence of N delta functions from the original delta
series p(t) in Eq. [1]. These delta functions are placed at equal intervals I, the
mean IBI. The function p(t) then becomes (6):

p(t) 5 ON
i51

d(t 2 ti) 2 ON
i51

d(t 2 i ? I). [4]

At the R-wave incidences, samples of other cardiovascular signals can be
obtained: the SBP or DBP can be determined, the IBI since the last R-wave
incidence can be calculated, or a sample of the respiration (RSP) signal can be
taken. In this way, a collection of data points on a beat-to-beat basis is obtained.
Such a series is called a cardiovascular time series. Mulder (6) introduced a
method to calculate the spectrum of these nonequidistantly sampled signals (see
also van Steenis et al. (7)).

Let hxi , i 5 1, 2, . . . , N j be the samples of a cardiovascular signal taken at
the R-wave incidences ti , i 5 1, 2, . . . , N. The R-wave incidences are again
represented by the delta functions d(t 2 ti), but now they have weights xi ? Dti

in which Dti is the time interval ti 2 ti21 . Together they form the function p(t):
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p(t) 5 ON
i51

xi ? Dti ? d(t 2 ti) [5]

The Fourier transform of the function p(t) is:

X( fk) 5 Ey

2y
p(t) ? e22f jfkt dt 5 ON

i51
xi ? Dti ? e22f jfkti. [6]

The spectrum P of the function p(t) is:

P( fk) 5
2
T

? X( fk) ? X*( fk) [7]

and is estimated using the right part of Eq. [6].
DC- correction is applied by subtracting a weighted mean of the samples xi

from each sample. This weighted mean has the form:

xW 5
1
T

? ON
i51

xi ? Dti [8]

and Eq. [6] becomes:

X( fk) 5 ON
i51

(xi 2 xW) ? Dti ? e22f jfkti [9]

2.2. The Wigner–Ville Distribution

The traditional method to estimate the power spectrum of a stationary stochas-
tic process x(t) is the calculation of the Fourier transform of the autocorrelation
function (ACF) of x(t):

Sx( f) 5 Ey

2y
Rx(t) ? e22f jft dt, [10]

in which Rx(t) 5 E[x*(t) ? x(t 1 t)] is the ACF of the process x(t) (* denotes
the complex conjugate) (17). For a stationary process x(t), the ACF Rx(t) is only
dependent on the time lag t and is not dependent on time t. This property does
not hold for nonstationary stochastic processes. In that case, the ACF of a
stochastic process x(t) becomes Rx(t, t) 5 E[x(t 1 t/2) ? x*(t 2 t/2)] (17).
Substituting this ACF in Eq. [10] yields a spectral representation of x(t), given by:

Sx(t, f) 5 Ey

2y
Rx(t, t) ? e22f jft dt. [11]

It follows that:

Sx(t, f) 5 E FEy

2y
x St 1

t

2D ? x* St 2
t

2D ? e22f jft dtG5 E[Wx(t, f)], [12]

in which:
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Wx(t, f) 5 Ey

2y
x St 1

t

2D ? x* St 2
t

2D ? e22f jft dt [13]

(13, 17). The function Wx(t, f) is called the Wigner distribution (WD) of the
stochastic process x(t) (9, 11, 13).

The discrete time equivalent of Eq. [13] for a random process x(t) is (18):

Wx(n Dt, f) 5 2 Dt ? Oy
i52y

x(n Dt 1 i Dt) ? x*(n Dt 2 i Dt) ? e24f j?i Dt?f [14]

(n 5 . . . , 22, 21, 0, 1, 2, . . .), in which Dt is the sample interval. fS 5 1/Dt
is the sample frequency. This function is periodic, with period f1 5 1/2 ? dt 5
fS/2. This means that frequency components of the signal outside the frequency
range [2f1/2, f1/2] will be folded within this region, i.e., aliasing will occur.
There are two methods to avoid this (12, 19): (1) make sure that the frequency
components outside [2f1/2, f1/2] are zero; this can be done by oversampling the
signal by, at least, a factor four of the Nyquist frequency, which is the highest
frequency in the signal, i.e., f1/2 $ fN and fS $ 4 ? fN; or (2) make sure that the
negative frequency components are zero; in this case the frequency components
in the region [ f1/2, f1] are zero and cannot disturb the frequency components in
the region [0, f1/2]; this can be done by using analytical signals. An analytical
signal is a signal without negative frequency components. It is the dual of causal
signals in the time domain (17). Analytical signals can be sampled at a rate which
is at least twice the Nyquist frequency, i.e., fS $ 2 ? fN. In fact, the sample
frequency is doubled by producing an imaginary part to the real nonanalytical
signal in order to get the analytical form (19). For an analytical stochastic process
z(t), the function Wz(t, f) is called the Wigner–Ville distribution (WVD; 10,
11, 13):

Wz(t, f) 5 Ey

2y
z St 1

t

2D ? z* St 2
t

2D ? e22f jft dt [15]

There is a second reason to use analytical signals (19): real nonanalytical
signals can produce low-frequency artefacts in the Wigner distribution. These
are a result of interactions between positive and negative frequency components.
Annihilation of the negative frequency components by using the analytical form
of a real signal prevents these interactions. The interactions between positive
and negative frequencies are comparable to the appearance of ‘‘ghost’’ curves
between two positive components.

2.3. Properties of TFDs

A TFD should reflect the energy distribution of the signal, both over time and
frequency. Therefore, a set of properties has been formulated which should apply
to an ideal TFD (13, 14, 20): (P1) the TFD is real-valued; (P2) integration over
both time and frequency yields the total energy of the signal; (P3) integration
over time yields the spectral density of the signal; (P4) integration over frequency
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yields the instantaneous power of the signal; (P5) averaging over frequency yields
the instantaneous frequency; (P6) averaging over time yields the group delay;
(P7) the TFD satisfies the weak finite time support: if the signal is zero outside
a time segment, then the TFD is zero outside this time segment; (P8) the TFD
satisfies the weak finite frequency support: if the signal is zero outside a frequency
segment, then the TFD is zero outside this frequency segment; (P9) the TFD is
positive. The short-time Fourier transform (STFT; 21) only satisfies P1 and P9;
the WVD satisfies all except P9 (13, 14).

2.4. Cross Terms and the Exponential Distribution

A limitation of the WVD is the appearance of spectral cross terms, or ‘‘ghost’’
curves, in the time–frequency domain. These cross terms are artefacts, which
are due to the bilinear nature of the WVD (Eq. [15]) (13, 14). To understand
this notion we work out the WVD of the sum of two pure sine waves (14):

z(t) 5 A1 ? e2f jf1t 1 A2 ? e2f jf2 t. [16]

The WVD of this analytical function consists of two autoterms and a cross term
(d(?) is the Dirac delta function):

W(t, f) 5 A2
1 ? d( f 2 f1) 1 A2

2 ? d( f 2 f2) 1 cross term. [17]

The cross term has the following form:

cross term 5 2A1A2 ? d Sf 2
( f1 1 f2)

2 D ? cos(2f( f2 2 f1)t). [18]

The first two terms on the right hand side of Eq. [17] are the autoterms; they
are the expected components in the time-frequency plane at the frequencies f1

and f2 of the sine waves (compare this with the power spectrum of a sine wave).
The resulting cross term, given in Eq. [18], is located halfway between the two
autoterms and the form of the cross term is sinusoidal. The cross terms in the
WVD of a signal can also occur at the position of the autoterms; they obscure
the true time-frequency distribution and they hamper the interpretation of the
distribution.

An approach to diminish the cross terms is the use of the ED, or Choi–Williams
distribution, introduced by Choi and Williams (16). In comparison to the WVD,
the ED has lower cross terms amplitudes, but it contains the same information
in the autoterms as the WVD (13). This is achieved by convoluting the function
z(t 1 t/2) ? z*(t 2 t/2) in Eq. [15], as a function of t, with an exponential kernel
which has the form:

Ks (t, t) 5 ! s

4ft2 ? e2st2/4t2
, [19]

in which s is a parameter. For an analytical stochastic process z(t) the ED has
the form:
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Ez(t, f) 5 Ey

2y
HEy

2y
Ks (u 2 t, t) ? z Su 1

t

2D ? z* Su 2
t

2D duJ ? e22f jft dt. [20]

For large s, the ED is almost equal to the WVD. Smaller values of s will
suppress the cross terms. s 5 2 has been found to be a good compromise for
our applications. The ED satisfies the properties P1 through P6 (section 2.3). If
s is sufficiently large, the ED will also satisfy P7 and P8 (13, 14, 16).

2.5. The Discrete Exponential Distribution

The discrete exponential distribution (DED) of a discrete analytical time series
hz[n], n 5 1, 2, . . . , Nj is defined by (13, 16):

E(n, k) 5 2 ? OL1

i52L1

H OM1

m52M1

! s

4f i2? e2sm2/4i2 ? k[n 1 m, i]J ? e24f j?ik/L, [21]

in which the kernel function k[n, i] is defined by:

k[n, k] 5 v[i] ? z[n 1 i] ? v*[2i] ? z*[n 2 i], [22]

for n 5 1, 2, . . . , N, k 5 0, 1, . . . , L 2 1, and L 5 2L1 1 1, L must be odd.
L can be equal to N. v[i] is a window function of odd length L. v[i] is zero
outside the segment [2L1 , L1]. s is a parameter. M 5 2M1 1 1, M must be odd,
and M can be equal to L. The factor 4 in the exponent and the factor 2 before
the summation in Eq. [21] are the result of the transformation of the continuous
t/2 into the discrete variable i.

3. METHODS

3.1. Implementation of the Exponential Distribution

The ED can only be applied to equidistantly sampled analytical signals. HR
time series and cardiovascular time series are nonequidistant time series (both
series will be called cardiovascular time series from now on). In order to calculate
the DED of a cardiovascular time series, this series has to be transformed into
an equidistant analytical time series. Let p(t) be a cardiovascular time series,
according to section 2.1. The first step is to calculate the complex Fourier trans-
form, using Eq. [2] or [9], of this p(t). This results in an equidistant complex
series in the frequency domain. This series can be transformed back to the time
domain with the well-known inverse discrete Fourier transform (DFT). The
number of R-waves in p(t) and accordingly the number of complex data in the
frequency domain is generally not a power of two. Furthermore, it can be an
odd number. Therefore, a fast Fourier transform (FFT) cannot be used here.
An efficient method to calculate the DFT or the inverse DFT of an arbitrary
number of data is the chirp Z-transform (CZT) resp. inverse chirp Z-transform
(22). So, the second step is to apply the inverse CZT to the complex series in
the frequency domain in order to get the desired equidistant time series in the
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time domain. It guarantees the same time resolution as the original time series.
And the power spectrum of the equidistant series, calculated with the DFT, will
be equal to the power spectrum of the nonequidistant series, calculated with Eq.
[3] or [7]. The next step is to calculate the analytical form of the resulting
equidistant cardiovascular time series. One method, using the DFT, in this case
the CZT, is described by Boashash and Reilly (23). In short, this method calculates
the complex Fourier transform of the time series, annihilates the negative fre-
quency components and multiplies the positive frequency components by two,
and transforms the result back to the time domain. An alternative way to produce
the analytical form is to use the Hilbert transform (17). A FIR filter implementa-
tion of the Hilbert transform is discussed by Boashash and Black (18). The DED
of the resulting equidistant analytical cardiovascular time series can be calculated
as follows. Let hz[n], n 5 1, 2, . . . , Nj be a discrete equidistant analytical
cardiovascular time series and hv[i], i 5 2L1 , . . . , L1) a window function of
odd length L 5 2L1 1 1. T is the total measuring time and Dt 5 T/N is the
sample interval. T 9 is the duration of the window function, i.e., T 9 5 L ? Dt. Define:

kn[i] 5 OM1

m52M1

! s

4fi2 ? e2sm2/4i2 ? k[n 1 m, i] [23]

(see Eq. [22]) and

CL[a] 5 e2f j?a?L1/L. [24]

Define k9 5 2k and rewrite Eq. [21]:

E9(n, k9) 5 E(n, k9/2) 5 2 ? CL[k9] ? OL1

l50
kn[l 2 L1] ? e22f j?lk9/L, [25]

for k9 5 0, 1, . . . , L 2 1. Thus, the DED consists of the DFTs of the series
hkn[i], i 5 2L1 , . . . , L1j for each n 5 1, 2, . . . , N:

E9(n, k9) 5 2 ? CL[k9] ? DFThkn[i], i 5 2L1 , . . . , L1j. [26]

The negative frequency components are zero as a consequence of the fact that
z[n] is analytical; thus, the frequency resolution is doubled: instead of L1 1 1
positive frequency components at fk 5 k/T 9, k 5 0, 1, . . . , L1 , there are L
positive frequency components at the frequency points fk9 5 k9/(2 ? T 9), k9 5 0,
1, . . . , L 2 1, i.e., the frequency resolution of the DED is D f 9 5 1/(2 ? T 9).
Note that the spectrum of the original time series x[n] is defined at the frequency
points fk 5 k/T, k 5 0, 1, . . . , N/2, i.e., the frequency resolution is D f 5 1/T.
Equation [26] can easily be implemented in a computer program. One can use
the CZT to calculate the DFT of the odd number of data in Eq. [26]. Our CZT-
routine comes from MicroWay (387FFT, version 1.00, MicroWay Inc.). Equation
[26] has to be calculated for each n. Together the results form the DED of the
equidistant analytical cardiovascular time series. The DED can be visualized
graphically as a function of time and frequency by means of contour plots or
three-dimensional surface plots.
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3.2. Data Acquisition

The applications presented in the next section were selected from several
experiments in which cardiovascular parameters were studied during situations
of supine rest, orthostatic stress, and controlled breathing, in healthy subjects,
patients with major depressive disorder (24), and patients with autonomic dys-
functions (25). ECG, BP, and RSP were recorded continuously during supine
rest (10 min), controlled breathing by means of a metronome (16 cls/min) (3
min), orthostatic stress (8 min; passive 608 head-up tilt), controlled breathing (16
cls/min) during the 608 head-up tilt (3 min), and a 10 min-period of postorthostatic
supine rest. The ECG was derived using a precordial lead, amplified by means
of a polygraph (Nihon Kohden, Tokyo, Japan). BP was measured with a ser-
voplethysmographic finger transducer (Finapres 2300 NIBP monitor, Ohmeda,
Englewood, CO, USA). Thoracic RSP was measured with an impedance plethys-
mograph (Nihon Kohden, Tokyo, Japan). The signals were digitized on an IBM
compatible Personal Computer (Commodore PC 60-III) equipped with an A/D
converter (Advantech PC-LabCard model PCL-718). The sampling rate was
1024 Hz per channel. R-wave moments and R-R intervals were detected with
an accuracy of 1 ms; per R-R interval the SBP and DBP were detected with an
accuracy of 0.1 mmHg; and at each R-wave moment a sample of the RSP signal
was taken as explained in section 2.1, and these samples form the RSP time
series. The time series were divided in periods of 3 to 5 min corresponding to
the above mentioned experimental procedures. Of each period, the power spec-
trum and the DED, according to sections 2.1 and 3.1, were calculated.

4. APPLICATIONS

4.1. Spontaneous Cardiovascular Fluctuations during Supine Rest

Figures 1, 2, and 3 present typical DEDs, computed from the corresponding
HR, SBP, and RSP time series of a healthy subject during a 5-min period of
supine rest (mean HR 5 65.43 bpm, variation coefficient of the interbeat intervals:
cov 5 5.75%; mean SBP: 100.1 mmHg, cov 5 4.57%). The overall spectra of HR
and SBP (Figs. 1 and 2) illustrate the three relevant frequency components around
0.04 Hz (low), 0.1 Hz (mid), and around the dominant respiratory frequency at
0.3 Hz (high). The low frequencies (,0.06 Hz) of the DED of the HR and SBP
time series show nonstationary fluctuations in both amplitude and frequency
(Figs. 1 and 2). The mid frequency fluctuations around 0.1 Hz of the DED of
both the HR and SBP time series are very irregular in appearance; some isolated
areas of increased activity at corresponding time points are apparent, reflecting
the coherence between HR and BP fluctuations in the midfrequency range. The
nonstationary fluctuations of the DED of the RSP signal (Fig. 3) are reflected
at the corresponding frequencies of the DEDs of the HR and SBP time series
(Figs. 1 and 2, respectively) due to the respiratory modulation of vagal-mediated
cardiac control (HR) and/or due to the mechanical effects of breathing (SBP).
The DEDs of the HR, SBP, and RSP time series nicely reflect the different
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FIG. 1. DED of a nonequidistantly sampled HR time series (300 sec in length) of a healthy subject
during supine rest. The abcisses is the frequency axis and the ordinate is the time axis. Along the
ordinate, the raw IBI-series is shown in the time domain. Along the abcisses, the power spectral
density (spectrum) of the whole time series is presented. The scale of the spectrum, in this figure
and the next figures, is always equal to the maximal component in the spectrum; in this case the
scale is 0.12 sec22/Hz.

frequency components within short-term cardiovascular fluctuations, but they
also illustrate that even within a period of several minutes and during a ‘‘station-
ary’’ situation of supine rest, complex time-related changes do occur.

4.2. Clinical Example Illustrating Interference and Correction of Cross Terms

The necessity to correct for cross terms in order to interpret time-frequency
relationships accurately is illustrated by an example of a patient with pure auto-
nomic failure (PAF). Patients with PAF suffer from a complete or almost com-
plete failure of both the sympathetic and the parasympathetic nervous system,
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FIG. 2. DED of a nonequidistantly sampled SBP time series for the same subject and time segment
as presented in Fig. 1 (see the legend of Fig. 1 for explanation of abcisses and ordinate). The scale
of the spectrum is 2167.89 mmHg2/Hz.

resulting in dramatic reductions of both HR and BP variability (25). Figure 4
presents the uncorrected discrete WVD (DWVD), based on an IBI sequence of
a patient with PAF during a 5-min period of supine rest (mean HR 5 67.3 bpm,
cov 5 0.66%). Although the total power of the overall spectrum of the IBI
sequence is low (Fig. 4), two frequency bands still are apparent: one peaks at
about 0.03 Hz, the other peaks at the respiratory frequency at about 0.2 Hz. The
fluctuations at about 0.4 Hz are harmonic frequencies of the respiratory fre-
quency. Frequencies at 0.1 Hz are completely absent, due to the strongly dimin-
ished sympathetic tone in these patients. The DWVD does show the frequencies
at 0.03, 0.2, and 0.4 Hz, but halfway the low and respiratory peaks and halfway
the respiratory peak and the peak of the harmonic frequencies, two highly
irregular bands are visible: the ghost curves or cross terms (section 2.4). Notice
that there is no activity at the corresponding frequencies in the overall spectrum.
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FIG. 3. DED of a nonequidistantly sampled RSP time series of the same subject and time segment
as presented in Fig. 1.

Figure 5 presents the DED computed from the same IBI sequence: most of
the cross terms are disappeared due to the procedures as described in section
2.4. The relevant frequency bands are now clearly represented in the time-
frequency distribution. Especially in subjects with autonomic failure, where eval-
uation of minimal fluctuations in cardiovascular signals may have clinical rele-
vance, adequate suppression of cross terms is an essential feature of a time-
frequency distribution.

4.3. Specific Examples of Nonstationary Time-Frequency Relationships

1a. Respiratory modulation of HR variability. In certain situations, interpreta-
tion of overall spectra of HR (and BP) variability may lead to erroneous conclu-
sions if there is no information available of the respiratory signal. Figures 6 and
7 illustrate the DEDs from corresponding HR and RSP time series of a depressed
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FIG. 4. DWVD of a nonequidistantly sampled IBI time series of a patient with PAF during 5 min
of supine rest. The scale of the spectrum is 0.0011 sec2/Hz. The figure is very irregular due to the
cross terms. Note the two striking cross term bands.

patient during a 4-min period of supine rest. The overall spectrum of the HR
time series (Fig. 6; mean HR 5 68.38 bpm, cov 5 13.1%) shows two clear
broad-band frequencies: one around 0.1 Hz, a possible reflection of sympathetic-
mediated processes, and one around 0.25 Hz, reflecting respiratory-linked varia-
tions due to vagal-mediated cardiac control. The corresponding DED illustrates
a sudden shift from slow to faster frequencies, suggesting a dramatic change in
sympathetic modulation. However, as can be observed in Fig. 7, the correspond-
ing respiratory signal shows a change from a slow breathing frequency (about
0.1 Hz) to a faster breathing frequency (0.18–0.22 Hz). This time-related change
is evident in the DED, whereas the overall spectrum shows the two broad-band
peaks corresponding to the change in breathing frequency. Therefore, in this
example, both peaks in the HR spectrum primarily reflect respiratory-linked
vagal activity.
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FIG. 5. DED of the same IBI time series as described in the legend of Fig. 4. The cross terms are
almost disappeared due to the smoothing effect of the ED.

1b. Cardiac arrhythmia’s. The DED of an IBI sequence of a depressed patient
treated with the tricyclic antidepressant imipramine is presented in Fig. 8 (mean
HR 5 79.74 bpm, cov 5 2.7%). The IBI sequence was derived from a 4-min
period of supine rest and reflects a brief episode of supraventricular cardiac
arrhythmia’s. This brief period of arrhythmia’s affects all frequency components
in the DED due to the rapid fluctuations in the successive IBI lengths. Further-
more, there appears a high peak around the Nyquist frequency in the DED.
This peak is also visible in the overall spectrum of the IBI sequence and interferes
greatly with the respiratory-related high frequencies. Just before and during the
arrhythmic period, there is a slow trend in the IBI sequence. In the DED, this
trend appears as a high peak in the low frequency range. In the spectrum, the
low frequency peak is primarily caused by this temporary change. Notice the
effect of the isolated arrhythmic artefacts later on in the IBI sequence. The delta-
like peaks affect all frequency components in the DED. At the crosspoints
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FIG. 6. DED of a nonequidistantly sampled HR time series of a depressed patient during 4 min
of supine rest. The scale of the spectrum is 0.49 sec22/Hz.

with the respiratory-related frequencies, the two components are superponated.
Cardiac arrhythmia’s have a major impact on homeostatic cardiovascular pro-
cesses as reflected in HR and BP variability; this example illustrates the extent
to which isolated grouped arrhythmia’s disturb time-frequency distributions.

1c. Adjustments to sudden situational changes. In Fig. 9, the SBP sequence of
a depressed subject reflects the initial cardiovascular reaction to the 608 head-
up tilt procedure (mean SBP 5 127.2 mmHg, cov 5 4.20%). In the DED, the
respiratory-related high frequencies are apparent throughout the entire proce-
dure. However, the transition from supine posture to passive standing causes a
momentary increase in activity around 0.1 Hz, as an indication of an increase in
sympathetic tone, which is evident also in the DED. However, its reflection in the
overall spectrum erroneously suggests a sustained presence of these periodicities
during the entire period. The DED illustrates that the patient gets accustomed
to the standing position: the activity around 0.1 Hz diminishes rapidly and after



CARDIOVASCULAR TIME FREQUENCY ANALYSIS 189

FIG. 7. DED of the RSP time series of the same subject and time segment as presented in Fig. 6.
Note the sudden shift from slow to faster frequencies.

that the DED shows some isolated moments of activity at these frequencies.
This example shows that initial cardiovascular adjustments to sudden situational
changes can be visualized in detail by means of a DED.

5. DISCUSSION

In this paper, an implementation to apply the Exponential Distribution to
nonequidistantly sampled cardiovascular time series has been given. We used
the methods of Rompelman (5) and Mulder (6) to transform the nonequidistantly
sampled cardiovascular time series into equidistant time series. This enabled us
to calculate the DED of HR as well as IBI time series. Furthermore, using the
CZT enabled us to calculate the Fourier transform of time series with lengths
not necessarily equal to a power of two.

The ED is a modified WVD. Implementations of the DWVD and/or DED



VAN STEENIS AND TULEN190

FIG. 8. DED of an IBI time series of a depressed patient during 4 min of supine rest. The scale
of the spectrum is 0.0095 sec2/Hz.

have been discussed previously by Martin and Flandrin (26), Chester (27),
Boashash and Black (18), Sun et al. (28), Boashash and Reilly (23). A method
to suppress cross terms in a DWVD has been discussed by Martin and Flandrin
(26). They used a symmetric normalized time window and a time smoothing
function. The effect of the time window is smoothing of the WVD in the frequency
direction; thus, it will also spread out the autoterms. The effect of the smoothing
function is a reduction of the cross terms, but it has also a smoothing effect on
the autoterms in the time direction. Therefore, the implementation of the DWVD
by Martin and Flandrin does not satisfy the properties P3–P8 (section 2.3). Novak
and Novak (15) applied the DWVD, using FFT techniques, to IBI, SBP, DBP,
and RSP time series, each time series linearly interpolated to an equidistant time
series. They implemented the method of Martin and Flandrin to correct for cross
terms, using a computation algorithm of Peyrin and Prost (29). We employed
the ED because it has certain advantages over the aforementioned method: the
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FIG. 9. DED of a SBP time series of a depressed patient during 4 min of head up tilt. The scale
of the spectrum is 767.11 mmHg2/Hz. The initial cardiovascular reaction to the head up tilt is most
prominent in the frequency components around 0.1 Hz.

ED satisfies the advocated properties P1–P6 (section 2.3) for TFDs, for all values
of s. When the smoothing effect is too large, i.e., small s (s # 1; 16), the
autoterms and the components in the time direction will be spread noticeably.
Thus, P7 and P8 will not be satisfied. If s is sufficiently large (s . 1) then
the ED will approximately satisfy properties P7 and P8 (14). Furthermore, for
increasing s, the ED will become approximately equal to the WVD. According
to Choi and Williams, a good choice of s will be found between 0.1 and 10. Our
DED examples of cardiovascular time series, with s 5 2, show that the cross
term suppression by the ED is satisfactory without disturbing the autoterms too
much. Our applications illustrated the potential of the ED to study time–
frequency relationships of and between cardiovascular time series. Complex



VAN STEENIS AND TULEN192

time-varying aspects of the relevant cardiovascular frequency components of
HR, IBI, BP, and RSP time series could be made visible by means of the ED.
Therefore, the ED can be an important aid to describe and interpret the complex
dynamics of autonomic regulatory processes.
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