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Abstract

Late diagnosis of lung cancer is still the main reason for high mortality rates in lung cancer. Lung cancer is a heterogeneous
disease which induces an immune response to different tumor antigens. Several methods for searching autoantibodies have
been described that are based on known purified antigen panels. The aim of our study is to find evidence that parts of the
antigen-binding-domain of antibodies are shared among lung cancer patients. This was investigated by a novel approach
based on sequencing antigen-binding-fragments (Fab) of immunoglobulins using proteomic techniques without the need
of previously known antigen panels. From serum of 93 participants of the NELSON trial IgG was isolated and subsequently
digested into Fab and Fc. Fab was purified from the digested mixture by SDS-PAGE. The Fab containing gel-bands were
excised, tryptic digested and measured on a nano-LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass
spectrometry data by linear canonical discriminant analysis combined with stepwise logistic regression resulted in a 12-
antibody-peptide model which was able to distinguish lung cancer patients from controls in a high risk population with a
sensitivity of 84% and specificity of 90%. With our Fab-purification combined Orbitrap-mass-spectrometry approach, we
found peptides from the variable-parts of antibodies which are shared among lung cancer patients.
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Introduction

Lung cancer is currently the most common cancer with the

highest mortality rate (28%) in the World due to diagnosis at an

advanced stage.[1,2] However, with the demonstration of a 20%

lung cancer mortality reduction by the NLST trial (National

Cancer Screening Trial) low dose CT screening for lung cancer is

receiving increasing interest.[3] The NELSON trial (Dutch-

Belgian lung cancer screening trial) showed that after three

screening rounds 3.6% of all participants of this study had a false-

positive screen result.[4] Although, still approximately 27% of the

participants were subjected to invasive procedures that revealed

benign lung diseases at baseline screening (first round NELSON

trial).[5] A good biomarker (panel) will reduce this number of

unnecessary invasive procedures. At the moment selection of high

risk individuals for screening is done by age and smoking history.

A biomarker or biomarker panel would be helpful in selecting high

risk individuals for CT screening as this may detect lung cancer at

an earlier stage than CT.

Antibodies can be interesting as markers for distinguishing lung

cancer patients from lung cancer-free individuals. These antibod-

ies are produced by the immune response that target specific

tumor-associated antigens (TAAs) during cancer development,

probably at an early stage.[6–12] Recently Liu et al. showed that

the concentration of circulating IgG autoantibodies against

ABCC3 transporter was significantly higher in female adenocar-

cinoma patients than in female controls [13].

Human antibodies consist of four chains, two identical heavy

chains and two identical light chains. Each light chain has a

variable (VL) and constant (CL) domain. The heavy chains have

three different constant domains (CH1, CH2 and CH3) and a

variable domain (VH). The first constant and variable parts form

the antigen binding fragment (Fab). The remaining two constant

parts of the heavy chain form the Fc region. Within the Fab six

complementarity determining regions (CDR1, CDR2 and CDR3)

are located between frameworks. These CDRs determine the

antigen specificity and form a surface complementary to a shape

that is part of the antigen. CDRs are hypervariable regions of the

antibody.[14] Antibodies, or immunoglobulins, are highly com-

plex molecules with large variation in their amino acid sequence.

The possible diversity in immunoglobulins is estimated between
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1013 and 1050 and therefore the finding of similar or even identical

sequences in different individuals by chance is in theory, highly

unlikely.[14,15] However, studies of different research groups

have recently demonstrated that despite this theoretical small

chance to have identical antibodies among individuals, it is

possible to identify similar or identical sequences.[16–19] A study

performed by us showed that in PNS (paraneoplastic neurological

syndrome) patients identical mutated primary amino acid

sequences of complementarity determining regions (CDRs) exist.

These CDRs are specific for known onconeural antigens, such as

HuD and Yo in PNS patients, and most interestingly were shared

between different PNS patients [20].

The aim of this study is to find evidence that specific antibody

peptides are shared between lung cancer patients in contrast to

lung cancer-free individuals. As lung cancer is a heterogeneous

disease and with the variability of an antibody it might be a

challenge to detect identical tumor-related antibodies in serum.

We experimentally test the hypothesis that specific highly variable

regions of an antibody including complementarity determining

regions (CDRs) can be shared between lung cancer patients. Our

experimental approach to verify this hypothesis is based on

sequencing antibody peptides by mass spectrometry. Measurement

of serum by a mass spectrometer might be too complex due to the

high variability as mentioned above. Purifying IgG Fab from

serum will reduce the complexity of the sample from a lung cancer

patient and will give the possibility to focus on pure antibody

fractions.

Materials and Methods

Ethics and Legal Approval
The NELSON trial was approved by the Dutch Health

Council, the Minister of Health and by the Medical Ethical

Committees of all participating centers (clinical trial number

ISRCTN63545820). All participants for this study provided

written informed consent for the use of their serum samples.

The donor of the reference sample used throughout this study

provided written consent for the use of his/her serum for scientific

purposes according to the guidelines of the Blood Bank Sanquin,

Rotterdam, the Netherlands.

NELSON Trial
The NELSON (Dutch-Belgian Lung Cancer Screening trial)

trial has started recruitment in 2003 by sending questionnaires to

548,489 males and females between 50–75 years of age.

Participants had to be current or former smokers for at least 25

years, smoking at least 15 cigarettes per day or smoking at least 30

years, smoking at least 10 cigarettes per day. From the 548,489

males and females 15,822 participants were included in the trial.

These participants were randomized to a screen or control arm.

The screening arm received CT screening in years 1,2 and 4. The

control arm received no screening (usual care). Participants with a

positive test result were referred to a pulmonologist. If the

diagnosis lung cancer was established the patient was treated and

went off screening. Participants with an indeterminate test result

underwent a follow-up scan three months later. If a negative test

result was obtained the second-round CT scan was scheduled for

12 months later [5,21].

Study Population
For this study, we selected 44 lung cancer cases and 49 controls

(Supplementary Figure S1) from the NELSON lung cancer

screening trial.[5,21] For the cases of the discovery set, NELSON

1, only early stage (I and II) squamous cell (n = 4) or adenocar-

cinomas (n = 21) were selected. They were carefully matched to

the controls by age, gender, smoking status, duration and number

of cigarettes smoked per day, chronic obstructive pulmonary

disease (COPD) status, asbestos exposure and site of blood

sampling (Supplementary Table S1). The selection criteria for

the cases of the NELSON 2 (validation) set (n = 19) were similar,

except that all non-small cell histology’s and disease stages were

allowed (Supplementary Table S1) in order to challenge the results

of the discovery phase. On purpose the clinical characteristics of

the control patients are dissimilar with the NELSON 1 set in

respect to smoking and COPD. Therefore, this NELSON 2 set is

not matched with the NELSON 1 set. By using a validation

sample set (NELSON 2) chosen in this way, the robustness of the

method can be determined.

Serum samples were collected for both NELSON 1 and

NELSON 2 obtained from baseline CT screening (first round).

IgG Fab Purification and NanoLC Orbitrap MS Analyses
Prior to all sample preparation procedures, all samples were

blinded and the key for unblinding was put at the database

coordinator of the NELSON trial. IgG Fab purification and nano-

LC Orbitrap MS analyses were performed according to the

method described before.[22] For a more extended description we

refer to Supplementary Methods S1. In brief, IgG was isolated

from serum and digested into Fab and Fc (Figure 1). The Fab part

was isolated from the digested mixture by SDS-PAGE. The Fab

containing gel bands were excised and tryptic digested. A blank

piece of gel that was not loaded with protein was excised and

treated like the excised Fab bands for background assessment.

LCMS measurements were performed on an Ultimate 3000

nano LC system (Thermo Fisher Scientific/Dionex, Amsterdam,

the Netherlands) online coupled to a hybrid linear ion trap/

Orbitrap MS (LTQ Orbitrap XL; Thermo Fisher Scientific,

Bremen, Germany). 4 mL of the digested Fab was loaded onto the

system. For further settings and solutions we refer to Supplemen-

tary Methods S1 and previous published work.[22] All samples

were randomized before measurement and were measured in

batches of 11 samples including a reference sample. A reference

sample was used as a quality control for each measurement and

analysis step. A blank sample was run at the start and end of the

measurement to determine background and the existence of carry-

over during chromatography.

Data Analyses
Raw data files were loaded into the software Progenesis

(Figure 1) (Version 3.1; Nonlineair Dynamics Ltd, New Castle,

UK) and processes as described previously.[22] In addition, we

performed a Progenesis analysis where instead of detecting

features (peptide masses (m/z)) in all the samples at the same

time by the software program, feature detection was performed

individually per sample. Features picked thereby were matched to

the Progenesis result table containing all samples with a mass

tolerance of 5 ppm. This was of advantage, since often features

occur with low intensities in one sample and are subsequently

matched by Progenesis in all other samples. This result in errors

related to background if one takes the respective mass spectra into

account. With this relative small adjustment it ensures that a

feature is detected more accurately throughout the samples. The

data acquired by this approach was filtered using the same default

settings.[22] A separate data matrix for every case and control was

generated consisting of all features with corresponding raw

abundance and retention time. To generate one large data matrix

that includes all cases and controls from these separate data

matrices, we searched masses from the separate data matrices per
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case or control in the complete data matrix generated from the

standard Progenesis analyses. Every mass had to meet three

criteria: 1) m/z (65 ppm), 2) retention time (61 min) and 3)

identical charge. If a mass met these three criteria the raw

abundance from the complete matrix (generated by a general

procedure[22] recommended by the manufacturer) was used. If a

mass did not meet these criteria a zero was generated for the raw

abundance.

MS/MS spectra were extracted from raw data files and

converted into Mascot compatible files using extract-msn (part of

Xcalibur version 2.0.7, Thermo Fisher Scientific Inc.). Mascot

(version 2.3.01; Matrix Science Inc., London, UK) was used to

perform database searches against the human subset NCBInr

database (version March 11th, 2009; Homo sapiens species

restriction; 222,066 sequences) of the extracted MS/MS data

(Figure 1). Database (NCBInr) dependent peptide identification

and de novo sequencing results (software PEAKS; Version 5.2;

Bioinformatics Solutions Inc., Waterloo, Canada) were also

included in the Progenesis provided matrix. For settings used for

the database search and de novo sequencing we refer to previous

published work and methods S1.[22] For de novo sequences so far

not known from a database, the Peaks software identifies a leucine

for the isobaric amino acids leucine and isoleucine. Database

dependent peptide identification results or de novo sequencing

results were included in the matrix based on the highest peptide

identity score (Data S1, Data S2 and Data S3). All peptide

sequences from the cases and controls identified by Mascot or

PEAKS were subsequently aligned to databases containing V, D, J

or C-region germline sequences derived from IMGT database

(IMGT, the international ImMunoGeneTics information system

http://www.imgt.org) using the BLAST algorithm (Figure 1).[23]

Peptides with sufficient match (bitscore $12.5 and alignment score

$70%) to the V-region database were assigned to a position on the

immunoglobulin molecule with varying CDR lengths (Data S1,

Data S2 and Data S3).

Raw data files of the reference samples of each data set were

separately loaded into the software Progenesis and followed the

standard procedures as mentioned above. To determine the

proportion of variation between the reference sample measure-

ments performed on different time points, median r-squares were

calculated for each sample. Each sample was compared to all the

other reference samples measured in that dataset and a median r-

square was calculated for each sample. The comparison was based

on the raw abundance of each feature. This was performed

separately for both independent datasets, NELSON 1 and

NELSON 2 (Table S2a and S2b).

To determine the proportion of variation (Figure 1) between the

samples (cases and controls) of the two separate datasets, the same

calculations were performed as described above for each case and

control sample. This analysis was performed separately for the two

datasets (Table S2c and S2d). Based on the distribution of the

median r-squares of each sample, we decided to set a cut-off at r-

square .0.70. The cases and controls that obtained a median r-

square below 0.70 were excluded from the dataset and further

analyses. Calculations were conducted using Microsoft Excel 2007.

Statistical Analysis
Two independent data sets have been used, NELSON 1 and

NELSON 2. The initial step in the statistical analysis consisted of

testing for normality using skewness and kurtosis distribution

characteristics on the intensity of the raw abundance of the

features [24].

Subsequently, univariate analysis was performed, applying

either an unpaired t-test (parametric) or a Mann-Whitney U-test

(non-parametric) to detect significant differences in raw abundance

between cases and controls in the NELSON 1 set.[25] The

significance limit was set at 0.05 (two-sided). All identified features

that were found significantly different were used for the selection of

features to distinguish lung cancer patients from controls.

Secondly, we used for multivariate analysis only the significantly

identified features that had $2 triggered MS spectra. We applied a

Figure 1. Flow-chart of the method and analysis used. In this flow-chart the different steps in Fab purification, Fab measurement and data
analysis are illustrated. In yellow the Fab purification is shown, in blue the mass spectrometry measurement, in green the data analysis and in pink the
statistical analysis.
doi:10.1371/journal.pone.0096029.g001
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multivariate analysis on features fulfilling these criteria with a

(logistic) stepwise regression model (y = a161 + a262 + a363….anxn+
c) in combination with canonical linear discriminant analysis

(Table S3a).[26,27] This resulted in a combination of features with

high sensitivity and specificity in the NELSON 1 dataset. This

combination of features was then tested in the NELSON 2 dataset

using the same methodology as described above.[26,27] Note that

for the NELSON 2 dataset it was necessary to optimize the

coefficients in the model equation in order (Table S3b) to optimize

the sensitivity and specificity in the NELSON 2 dataset.

To avoid a random-error effect in modeling, we verified the

statistical background of the combination of features in a

permutated dataset. The background evaluation consisted of the

same workflow as used for the model building, except that at the

beginning the assignment of cases and controls of NELSON 1

were permutated (Figure S2). This permutation was performed

twelve times and the results obtained were tested for significance

against the model outcome by z-test (one-sided; p,0.05). Since

model building was based on the data as provided in NELSON 1

after which validation of this model was done using the data in

NELSON 2, the same approach was taken after each individual

permutation. Also here, note that for NELSON 2 dataset the

coefficients in the model equation were optimized.

All analyses on model building, validation and background

evaluation were done using STATA, version 12 (StataCorp,

Texas, US). Throughout the study, using two-sided testing (except

for one-sided testing for Z-values), p-values of 0.05 or lower were

considered to be statistically significant. Statistical analyses of the

data shown in Table S1 were generated by SPSS (IBM SPSS

Statistics 20). The time to cancer was generated by calculating the

interval between blood sampling and diagnosis for each case.

Results

Clinical Characteristics of the Study Population
There was no significant difference in the clinical characteristics

between the cases and controls in the NELSON 1 set (Table S1).

In the NELSON 2 set, current or former smoker and COPD

status differed significantly between cases and controls (Table S1).

In 72% and 84% of the cases of the NELSON 1 set, and

NELSON 2 set, respectively, the time interval between blood

sampling and lung cancer diagnosis was between 0–1.5 years. The

median follow-up duration after blood sampling was for the

control population 1925 days (range 1075–2086 days) and 1861

days (range 347–2135) in the NELSON 1 set and NELSON 2 set,

respectively. None of the controls developed lung cancer during

the follow-up period.

Technical Variation
During the mass spectrometry measurements of the biological

samples we measured a reference sample at different time points.

R-square values were calculated from the abundances of identified

proteins in each reference measurement to show technical

reproducibility. The lowest r-square value observed in the different

measurements ranged between 0.84 and 0.93 (Figure 2).

We performed the same r-square calculation for 5 random

biological samples taken from the NELSON 1 set that were

measured on two different LC-columns (same batch) at different

time points. The technical reproducibility within each column

resulted in lowest r-square values ranging from 0.75–0.93, but the

technical reproducibility of the five biological samples measured

on two independent similar columns was lower. For the two

independent similar columns a median r-square of 0.52 was

observed. In Figure 3 the correlation between each sample and

between columns are shown.

In Figure 4A the retention times are shown for peptides

identified with high confidence (Mascot score .60) in the

Reference samples measured concurrently with both NELSON

1 and NELSON 2. This Figure shows that column performance

was comparable between the two different LC columns for these

abundant peptides (r-square 0.996). In addition, the abundances

observed for these peptide also correlated well (Figure 4B; r-square

0.995). This suggests that both chromatography and mass

spectrometry performed nominally, at least for peptides identified

with high confidence at relatively high abundance. Thus, the

technical variation we see primarily stems from peptides at lower

abundances, closer to the detection limits (Figure S3).

An estimation of the biological variation was performed and

resulted in a median r-square of 0.43. This result was much lower

than the lowest r-square (0.84) observed for the technical variation.

Therefore, the biological variation is higher compared to the

technical variation.

These results show that technical variation should be taken into

account and adjustment is needed for comparison of indepen-

dently measured sample sets since the NELSON 1 and NELSON

2 dataset were measured on two different columns at different time

points. To overcome this technical variation, we applied a number

of filters on the data before we could start a data analysis as

described in the Material & Methods section.

With this data we performed separate univariate analysis on all

peptides found in cases and controls from the separate NELSON 1

and NELSON 2 data set. We were able to observe 49 peptides

that were significantly different between cases and controls in the

NELSON 1 dataset. However, these peptides, with one exception,

did not show this difference in the NELSON 2 dataset. There was

no trend observed (r-square 0.004) in p-values for the two datasets.

Therefore, testing univariately in this manner was either not the

right analysis strategy or the process generated randomly selected

features (chance). Therefore, the significant peptides from

NELSON 1 were analyzed as a next step in a multivariate way.

Figure 2. Technical reproducibility of replicate measurements
of the reference sample. Reference sample measured at different
time points during measurement of the NELSON 1 sample set. A
replicate of the reference sample (x-axis) was compared to each other
replicate sample based on the raw abundance of each feature. An r-
square value was calculated. Each dot represents an r-square (y-axis)
value for the comparison of that specific replicate with another
replicate. For each replicate the average r-square and standard
deviation (SD) is shown.
doi:10.1371/journal.pone.0096029.g002
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Figure 3. Technical reproducibility of five biological samples measured on two different columns at different time points. This
dendrogram shows the correlation between five different biological samples measured on two different columns from same batch, column 1 and
column 2 (y-axis). On the y-axis the five different samples are shown. Sample 1–5 are measured on column 1 and 6–10 are measured on column 2.
Sample 1 and 6 are from the same individual. This also applies for sample 2 and 7, 3 and 8, 4 and 9 and 5 and 10. On the x-axis the Euclidian distance
between each sample is shown. A strong correlation per column is found.
doi:10.1371/journal.pone.0096029.g003

Figure 4. LC-MS performance for high abundant peptides in Nelson 1 and Nelson 2. For Reference samples that were measured during
both NELSON 1 and NELSON 2, we compared peptides that were identified with high confidence by a Mascot search with a score of more than 60 in
both sets. For this subset of peptides, we compared the retention times observed in Nelson 1 and Nelson 2 (A) and also their abundance (B). For these
parameters we observed r-square values of 0.996 and 0.995, respectively.
doi:10.1371/journal.pone.0096029.g004
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Antibody Peptide Model
An optimal combination of 12 peptides was identified by the

multivariate statistics used on the NELSON 1 set (discovery set).

This combination of peptides could distinguish lung cancer

patients from controls with sensitivity and specificity of 96% and

100%, respectively. This antibody peptide model was able to

detect lung cancer 373 days on average (range 39–1193 days)

before the diagnosis was determined. In Figure 5 we show that the

combination of the 12 peptides was able to distinguish cases from

controls. The 12 peptides corresponded to 1 sequence overlapping

with the CDR2 region, 1 sequence overlapping CDR3 region, 7

sequences overlapping the Framework 1 region and 3 sequences

overlapping with the Framework 3 region according to the IMGT

database (Table 1).

We performed an external validation in the NELSON 2

(validation) set. When we applied the same 12 peptide model to

this set, cases and controls could no longer be distinguished.

However, with the same peptides but after re-optimization of the

model coefficients, we observed a sensitivity and specificity of 84%

and 90%, respectively. As the coefficients of the equation are

adjusted we had to check for the chance of overfitting of the data.

Therefore, a background evaluation was performed which will be

described later. Within the NELSON 2 validation set the

combination of peptides was able to detect lung cancer 281 days

on average (range 54–777 days) before the diagnosis of lung

cancer.

We compared the raw abundance of the 12 peptides between

the two NELSON datasets. We observed that the average raw

abundance of five peptides was higher in the cases compared to

the average abundance of the controls from the NELSON 1

dataset. These data were consistent with the findings from the

NELSON 2 dataset (Table S4). The other seven peptides had a

higher average raw abundance in the controls of the NELSON 1

dataset compared to the abundance in the cases of this dataset. For

only one of these seven peptides, this difference could be

confirmed in the NELSON 2 dataset (Table S4).

Background Evaluation of Antibody Peptide Model
In addition to the finding of the optimal combination of

peptides which significantly distinguished cases from controls, a

background analysis was performed. As the coefficients of the

equation of the model were adjusted for each dataset we verified

the results for a contribution of random selection of the data and

thereby the chance of finding a comparable model by chance. The

same workflow was applied for the model building except that at

the beginning of the workflow the cases and controls of NELSON

1 were permutated at random (Figure S2). Discovery was

performed in the 12 times permutated NELSON 1 datasets, each

time with 12 different peptides showing the lowest p-value (p,

0.05) in the NELSON 1 set for that particular permutation.

Validation of these models was performed in NELSON 2. The

performance of the multivariate model of the permutated

discovery sets (NELSON 1) is shown in Figure 6A (blue dots)

where the sensitivity is plotted against the specificity. The

corresponding power in the validation sets (NELSON 2) is shown

in Figure 6B (blue dots). Thus, each point in Figure 6A (blue dot)

corresponds with a point (blue dot) in Figure 6B. Also, the

performance found for the actual datasets in which the antibody

peptide model was found is plotted (red dot). It can be observed

that the multivariate fitting from the permutated datasets produces

reasonable models even for permutated data in the discovery set.

However, especially in the validation datasets, the real data

(antibody peptide model) performed significantly better (p,0.05)

than the permutated datasets, suggesting that the immunoglobulin

peptides harbor information related to the disease state of the

patient. Thus, the results we obtained do not stem from an artifact

in the data processing.

CT Screening Result in NELSON 1 and NELSON 2 Dataset
In Figure 7A and 7B the screening results of the baseline CT

scans are shown for the NELSON 1 and NELSON 2 set,

respectively. According to the screening protocol of the NELSON

trial, a repeat CT scan was performed following an indeterminate

screening result, approximately 3 months later.

We observed that 68% of the cases had a positive screening

result in both the NELSON 1 and NELSON 2 set during the first

3 months of the screening program, the other lung cancers were

diagnosed following another repeat CT scan after 3 months or

during the second screening round. After on average 367 days

(range 39–1193 days) for NELSON 1 and 269 days (range 54–777

days) for NELSON 2, the screening result was positive, i.e. suspect

for lung cancer and resulting in clinical work-up by the

pulmonologist and eventually finally diagnosis of lung cancer.

Discussion

By mass spectrometry we found evidence that a proportion of

peptides of the variable part of antibodies differ between lung

cancer patients and controls. A combination of 12 different

peptides was able to distinguish lung cancer patients from controls

in a high risk population. A sensitivity of 96% and a specificity of

100% were observed in the discovery set. An external validation in

an independent case–control set was performed and generated a

sensitivity of 84% and a specificity of 90%. The background

evaluation showed that the 12 antibody peptide model performed

significantly better than a model generated based on permutated

data.

Recently, Arentz et al. published that uniquely mutated V

regions peptides could be used as a proxy for the detection of anti-

Ro52 autoantibodies in sera from primary Sjögren’s syndrome

patients by mass spectrometry.[28] Why these and other studies

were able to identify similar or identical sequences could be

explained by repertoire bias and the convergent evolution of

antibodies during somatic mutation and selection.[19,20] This

selection favors specific alleles and sequences of antibodies with the

optimal affinity towards the specific antigens during immune

response [18,29,30].

We were able to identify peptide sequences which were

distributed differently between lung cancer patients and controls.

The antibody peptide model consisted not only of peptide

sequences positioned at the CDR regions of an immunoglobulin

but also at the framework region surrounding the CDRs. It may

appear surprising that most of the peptides that are represented in

the antibody peptide model derive from framework regions of the

immunoglobulin, rather than from the hypervariable CDRs. This

may be explained by their abundance in the immunoglobulin

pool. Peptides carrying only few mutations relative to the germline

are more likely to occur in several antibody clones, and thus have a

higher abundance. This favors their detection by the mass

spectrometer, especially in samples of high complexity. While

technological advances may enable the reliable quantitation of also

lower abundant peptides, it may even be that hypermutated CDRs

are not as likely to be common among patients sharing an immune

response. But moderately mutated peptides strike the best balance

between specificity, abundance and sharing for the purposes of a

diagnostic marker. The large heterogeneity of lung cancer could

also contribute to the presence of fewer CDR peptides shared

between lung cancer patients.
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We observed that the average raw abundance of 6 from the 12

peptides was distributed differently in the cases versus controls

between the two datasets. The average raw abundance of these six

peptides was higher in the controls in the NELSON 1 set but in

the NELSON 2 set the average raw abundance was higher in the

cases. This may be due to the increased technical variation we

observed for lower abundance peptides between the sets that were

measured some time apart on different LC columns. While the

system operated nominally for abundant peptides, possibly the

performance close to the detection limit cannot be held constant

over time, affecting reliable detection and quantification of such

peptides.

For our validation set, NELSON 2, we used all disease stages in

contrast to NELSON 1. In NELSON 1 we only used early stage I

and II. Using different stages of lung cancer could also contribute

to the average raw abundance discrepancies between NELSON 1

Figure 5. Distribution of the antibody peptide model outcome of the NELSON 1 and NELSON 2 sets. The raw abundances are filled-in in
the model equation (y = a161 + a262 + a363….anxn+ c) of the relevant sample set. On the y-axis (in arbitrary units) the figures generated by the
equation are shown.
doi:10.1371/journal.pone.0096029.g005

Figure 6. Background determination in NELSON 1 and NELSON 2 datasets. Twelve times a permutation (Background) was performed on
the NELSON 1 and NELSON 2 dataset. The sensitivity and specificity of the antibody peptide model are shown in red. Background assessment: A)
Twelve permutation runs are shown with the corresponding sensitivity and specificity of the NELSON 1 dataset (blue). The same 12 peptides found in
the background evaluation of NELSON 1 were tested in NELSON 2. B) The 12 runs are shown with the corresponding sensitivity and specificity of
NELSON 2 dataset (blue). Note, as some results of the background analysis occurred more than once, a random number between -1 and 1 were
added to each sensitivity and specificity number to make sure each analysis (blue dot) can be seen in the figure.
doi:10.1371/journal.pone.0096029.g006
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and NELSON 2. It could be that tumor-specific antibodies are

more abundant in sera from early stage lung cancer patients

compared to late stage lung cancer patients. We repeated our data

analysis for cohorts that were a mixture of Nelson 1 and -2 data.

While this reduced the clinical differences between the Discovery

and Validation sets, advantages from this improvement were

outweighed by the technical differences between the samples.

While similar trends were observed, they were not as strong as

those shown in Figure 6 (Figure S4).

We also have to cope with the high variability of immunoglob-

ulins, which make the samples probably too complex for the mass

spectrometer. A solution to this problem could be reduction of the

complexity of the sample before it is measured on the mass

spectrometer. This reduction could be established by fractionation

into smaller protein fragments such as Fab-k and Fab-l, or by

producing immunoglobulin fragments containing just the variable

domains of the IgG molecule.

It was our aim to offset biological variation by including a

relatively large number of patients in this study, but unfortunately

large sample numbers translate to extended measurement times of

up to 8 weeks for a dataset. These measurement times introduce

Figure 7. CT scan results of the NELSON 1 and NELSON 2 sample set. CT scan results of the A) NELSON 1 and B) NELSON 2 sample sets are
shown at time of blood sampling (Baseline). Also, CT results are shown of the follow-up CT scan after approximately three months (Follow-up). For
one case from the NELSON 1 set no Follow-up CT scan result was available. The last row represents the numbers of positive, indeterminate and
negative CT scan results of baseline including follow-up results.
doi:10.1371/journal.pone.0096029.g007
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technical variation that counteracts the advantage gained from the

number of included patients.

We were not able to distinguish lung cancer cases from controls

univariately by one peptide. Instead we needed a panel of

different peptides to discriminate significantly between cases and

controls. Lung cancer is a very heterogeneous disease which

results in high variability between patients and cancer types. This

might induce various immune responses to different tumor

antigens.[6–12] Therefore, finding only one antibody that is

shared between all lung cancer patients is highly unlikely.

Brichory et al. for instance showed for PGP 9.5, annexin I and

II a sensitivity of only 14%, 30% and 33%, respectively.[31,32]

Chapman et al. tested a panel of seven TAAs and found a

sensitivity of 41% and a specificity of 93%. Validation of this

panel in an independent sample set showed a sensitivity and

specificity of 47% and 90%, respectively.[33] Koziol et al. were

able to distinguish lung cancer patients from normal individuals

with a panel of seven TAAs. A sensitivity of 80% and a specificity

of 90% were observed, but no validation was performed.[34]

Moreover, Khattar et al. and Zhong et al. were able to identify

validated autoantibody peptide panels for lung cancer screening

with sensitivity and specificity ranging from 84%–91% and 73%–

91%, respectively.[35,36] It is therefore not surprising that no

single peptide could be found in the current data set that

distinguishes cases from controls.

Using a multivariate model, we were able to distinguish lung

cancer patients from controls. However, due to the experimental

and biological variation, it was necessary that we recalibrated our

model for each group of patients. This limits the current

applicability of the method in the clinical practice, at least until

significant technical advances enable a more robust quantifica-

tion and identification of peptides in such complex samples. Still,

we conclude from our data that differences exist between the

immunoglobulin-derived peptides from early lung cancer patients

and controls. This is corroborated by data from earlier studies in

our own group as well as in other research groups that showed

conservation and sharing of rearranged immunoglobulin se-

quences in immunoglobulins against a particular antigen

[19,20,28].

So far, only age and smoking history have been used as selection

criteria for enrolment in screening trials, but it is well known that

even though over 80% of all lung cancer cases are directly related

to smoking, only 11% of female smokers and 17% of male smokers

will be diagnosed with lung cancer during their lifetimes.[37,38]

Therefore, additional diagnostic tests might select high risk

individuals more precise when combined with the selection criteria

age and smoking history in screening trials. The cases and controls

we used for this study were selected based on their diagnosis of

lung cancer within three years (range 39–1193 days) after the

baseline CT scan. Therefore, calculation of sensitivity and

specificity of CT screening in our subset of cases and controls

from the NELSON trial are not applicable in this retrospective

study. However, in this study we have demonstrated that 68% of

the cases were detectable for lung cancer by CT screening. At the

same time point the CT scan was performed, the antibody peptide

model was able to detect lung cancer in 96% and 84% of the cases

in the NELSON 1 and NELSON 2 set, respectively. Eventually

after approximately 1 year the screening result of all cases were

positive by CT screening.

In the high risk population of the NELSON trial still

approximately 27% of the participants are subjected to invasive

and expensive follow-up studies that revealed in benign disease at

baseline CT screening.[5] The performance of CT improves after

follow-up scans, but only after an amount of time has passed, on

average a year for the sets in this study. Thus, there is need for

additional diagnostic capabilities that can improve the perfor-

mance of the current testing at baseline. For example, the group of

Massion recently published their results on a combination of a

serum proteomic biomarker panel with clinical and CT data.[39]

In the current study, we were able to detect lung cancer with an

antibody peptide model in the NELSON 1 and NELSON 2 set

with sensitivities of 96% and 84% and specificities of 100% and

90%, respectively at an early stage. This indicates that specific

antibodies are present at an early disease stage and that such a

panel of antibodies is able to detect lung cancer at an earlier stage

than CT. Auto-antibody profiling has the potential to be a tool for

early detection when incorporated into a comprehensive screening

strategy if technical challenges described in this study can be

overcome.

In conclusion, a panel of antibody peptides is identified that

discriminates samples of lung cancer patients from controls. This is a

first indication that peptides generated from the variable part of

antibodies are shared between lung cancer patients and can be used

to discriminate lung cancer patients and control groups. More

quantitative work is still needed to assess the use of these peptides in

clinical settings.

Supporting Information

Figure S1 Study Flow-chart. A flow-chart diagram of the

samples used in this study. NSCLC: Non-small cell lung

carcinoma.

(TIF)

Figure S2 Statistical analysis flow-chart. Before back-

ground analysis is performed, cases and controls of the NELSON

1 dataset are shuffled randomly.

(TIF)

Figure S3 Variation at different abundances. The abun-

dances of all peptides in the reference sample compared in data

from the Nelson-1 and Nelson-2 datasets. Superimposed, the

subset of peptides that was identified with high confidence, as

plotted in Figure 4B, has been superimposed in red.

(TIF)

Figure S4 The performance of the prediction model was
tested in Training and Testing sets, for both real data,
and data in which the assignment of cases and
controls had been randomized. This approach is the

same as in Figure 6, except that each set was composed of

samples drawn from a combination of both the Nelson-1 and

Nelson-2 sets. We assessed three such combinations, and four

permutations.

(TIF)

Table S1 Clinical characteristics of the NELSON 1 and
NELSON 2 sample sets.

(XLS)

Table S2 A–D. R-square of all reference and clinical
samples of NELSON 1 and NELSON 2.

(XLS)

Table S3 A–B. Regression and canonical discriminant
analyses of NELSON 1 and NELSON 2 datasets.

(XLS)

Table S4 Raw abundance of the 12 antibody peptides in
the NELSON 1 and NELSON 2 dataset.

(XLS)
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Data S1 Data matrix consisting of peptide features
detected by the Progenesis analysis software, the
abundances of these features in the serum samples,
annotation with peptide sequences and alignment
results with an immunoglobulin sequence database.
The data was divided into three segments to improve tractability,

this is segment one.

(ZIP)

Data S2 Data matrix consisting of peptide features
detected by the Progenesis analysis software, the
abundances of these features in the serum samples,
annotation with peptide sequences and alignment
results with an immunoglobulin sequence database.
The data was divided into three segments to improve tractability,

this is segment two.

(ZIP)

Data S3 Data matrix consisting of peptide features
detected by the Progenesis analysis software, the
abundances of these features in the serum samples,
annotation with peptide sequences and alignment
results with an immunoglobulin sequence database.

The data was divided into three segments to improve tractability,

this is segment three.

(ZIP)

Methods S1 Additional detail on sample collection, the study

population, IgG Fab Purification, NanoLC Orbitrap MS analyses

and de novo sequencing.

(DOCX)
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