
Pergamon 3. Biomechanics, Vol. 29, No. 3, pp. 355-366. 1996 
ElsevinScicna Ltd 

Printed in Gnat Britain 
w21-92!xy94 515.00 + .oo 

A GRAPHIC ANALYSIS OF THE BIOMECHANICS OF THE 
MASSLESS BI-ARTICULAR CHAIN. APPLICATION TO THE 

PROXIMAL BI-ARTICULAR CHAIN OF THE HUMAN FINGER 
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Abstract-h this paper a model is presented which visual& the biomechanical functioning of the loaded and 
unloaded theree-tendon bi-articular chain. This model allows to graphically determine in any position of the chain 
(i) the exact ranges of loads which can be sustained by the different motors; (ii) the motors forces; (iii) the feasibility 
of the (unloaded) equilibrium; and (iv) the conditions for the good controllability of the bi-articular chain. These 
results are applied to the proximal three-motor bi-articular chain of the human finger, when controlled by the 
superficial flexor, interossens, and extensor only. It is shown that(i) the anatomic position of the superficial flexor 
and extensor is a prime determinant in the good functioning of this chain; (ii) the proximal bi-acticular chain of the 
human finger can well sustain certain flexion loads but is structurally weak for extension loads; and (iii) the chain is 
not optimally controllable. 
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NOMENCLATURE 

~ta~~phalang~l joint, proximal interpbalan- 
geal joint of the finger 
(force in the) flexor 
(force in the) extensor 
(force in the) interosseus 
angle of joint j (j = I,2 for MCP and PIP, respec- 
tively) 
moment arm of motor M at joint j 
moment arm of load vector K at joint j 
moment arm vector of motor M, with Cartesian 
coordinates (rylr rMZ) 
moment arm vector load K, with Cartesian coor- 
diantes (ux,, ux2) 
modulus and unit vector of load K = K. ux 
unit load vectors of the flexor, extensor and in- 
terossues, respectively 
length of first and second phalanx 
angle of the distal phalanx and the load vector uy 

Vector notations and expressions 

(a) The scalar value representing the magnitude and direction 
(positive or negative) of the vector product Ri x Rj is indicated 
between brackets: 

[R, xRj] = ril ‘rj2 - ri2+rjl. (1) 

(b) A ‘non-negative sum’ of two vectors a,.R1 + at-R2 is 
with aI, az 3 0; ‘positive sum’ is with a,,az > 0. 

The functio~ng of motors in a bi- or m~ti-~icular 
chain is difI%cult to analyse because the motors simulta- 
neously affect each joint they span. In 1955, Landsmeer 
provided a massiess and frictionless bi-articular model to 
explain the control of the unloaded proximal bi-articular 
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three-tendon chain of the human finger-iater math- 
ematically refo~u~ated by Spoor and Landsmeer (1976), 
and further discussed in Leijnse and Kalker (1995). The 
Landsmeer model considers as the basis of control of the 
bi-articular chain the combined actions of two motors 
(the extensor and the flexor, clinically called ‘extrinsic’ 
motors), which cause the chain to collapse irreversibly. 
A third motor able to reverse this collapse is sufficient for 
complete control of the chain. The Landsmeer model 
provides a useful theoretical explanation of clinical phe- 
nomena, such as the claw-hand and the swan-neck de- 
formity. However, it also presents some conceptual and 
practical limitations. Conceptually, it describes bi-articu- 
lar control as the balance of the actions of a motor pair 
(the extrinsics) with respect to a single third motor (the 
interosseus, clinically called an ‘intrinsic’ motor), i.e. the 
‘extrinsic-intrinsic balance’. However, a comprehensive 
control model should be symmetric, in the sense that 
where it is possible to distinguish an ‘intrinsic-extrinsic’ 
balance, for the same reasons an extensorjinteros- 
seus-flexor balance, or a flexor/interosseus-extensor bal- 
ance, or a mere three-tendon balance may also be distin- 
guished. Moreover, controllable bi-articular chains with- 
out ‘Landsmeer extrinsics’ exist, i.e. in which no two 
tendons cross two joints at opposite sides. In that case 
the model cannot he applied. Another limitation is that 
the model only describes the functioning of the unloaded 
chain. More practically, the Landsmeer model is a kin- 
ematic (dispI~ement) model, which implies that while its 
functioning is well demonstrable in physically moving 
models, it cannot he well visualised in a textbook, where 
the formulation of the results in mathematical expres- 
sions makes their appreciation by the clinician difficult. 

The present paper attempts to remedy the limitations 
outlined above, and presents a model which (i) covers 
both the loaded and unloaded bi-articular chain, (ii) is 
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completely graphically representable, and (iii) describes 
motor functioning in a symmetric way, i.e. without any 
assumption about the position of tendons. The model is 
based on the static torque equilibrium equations of the 
two joints. For the unloaded chain, the torque equations 
and the Landsmeer displacement model contain the same 
parameters (the moment arms of the motors at the differ- 
ent joints) and are therefore equivalent, as discussed in 
Spoor and Landsmeer (1976). The force model. however, 
also includes loaded situations. Moreover, it can be 
graphically analysed from two two-dimensional vector 
diagrams. These diagrams are obtained by associating 
with each motor or load two two-dimensional vectors 
(the moment arm vector and the load vector) which to- 
gether completely describe the effects of the motor or 
load. Since vectors are abstract entities, this representa- 
tion effectively reveals the symmetry in the functioning of 
the motors. The diagrams are: (i) the moment arm vector 
diagram’, which allows determination of the motor forces 
and the feasibility of equilibrium, and (ii) the ‘load vector 
diagram’, from which the loads which can be balanced by 
any two motors can be obtained as a function of the 
finger position. The diagrams are further used to define 

the genera1 conditions on the loadability and the controt- 
lability of bi-articular chains. As an illustration. these 
conditions are investigated in the proximal hi-articular 
chain of the finger, when controlled by three motors: the 
interosseus, the extensor and the superficial flexor. For 
the reader with a theoretical interest the present model is 
discussed with respect to the results of Landsmeer (1955) 
and Spoor and Landsmeer (1976) in Appendix C. 

THE MODEL 

The torque equilibrium equations of the bi-articular 
three-tendon chain of Fig. l(a) are: 

E.[Ei] + I*[~~~] + F*[:i:] = - K.[zz:], &?a) 

00 > F, F, I, K 2 0. GW 

The motors are the extensor (E), the flexor (F) and the 
interosseus (I). The motors and their forces are denoted 
by the same letter; and meaning follows from the context. 
The moment arms of a motor M are denoted as rMi, those 

Fig. 1. (a) Bi-articular chain with three motors and unit load vector uX. (b) Graphic construction of the 
load vector diagram. Three lines intersect at the points Pr: (i) the tine tangential to the circles centred at the 
joint axes, and with radii equal to the moment arms of the considered motor at these joints, (ii) the line 

At-A, connecting both joints axes, and (iii) the load line of the load vector II%. 
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of the load K as vKi. They are positive when the motor or 
the load induces an extension torque in a joint, otherwise 
(flexion torque) they are negative. 

The moment arm vector diagram 

The moment arms of a motor or load can be con- 
sidered as the Cartesian coordinates of a vector, further 
called the moment arm vector R;m(rMr, rM2) or 
VK(vK1, vK2) of this motor or load. As such, expression (2) 
can be written as a vector equation: 

E.RE+I.R,+F.R~= --K.VK. (3) 

The forces E, I, F, K are now non-negative scalars of 
vector multiplication. The moment arm vectors can be 
represented in a vector diagram, further called the mo- 
ment arm vector diagram. This diagram allows us to 
graphically determine the motor forces from a force par- 
allelogram. For the unloaded chain (K = 0), this parallel- 
ogram is obtained by expressing the negative of the 
moment arm vector of one motor (e.g. the flexor F) as 
a non-negative sum of the moment arm vectors of the 
other motors [Fig. 2(a)]: 

E.RE + I.R, = - F.RF. (4) 

The forces E and I are then graphically obtained from the 
decomposition of the vector - RF on the vectors RE and 
R,: 

E 1 -= II P:;( - RF) II 
llR,/l ’ F= 

II P$( - RF) II 
F II RI II (5) 

[in which e.g. pk( - RF) is the projection of - RF on RE 
along the direction of R,]. For the loaded chain, the 
moment arm vector - VK of the load is decomposed as 
a non-negative sum of the moment arm vectors of the 
motors [from expression (3)] [Fig. 2(b)]. Since the vector 
diagram is two-dimensional, any load moment arm vec- 
tor - V, can be written as the sum of maximally two 
moment arm vectors, which means that any load in the 
bi-articular chain can be sustained by maximally two 
motors. When no motor moment arm vectors are col- 
linear, the motor forces in the unloaded (a) and loaded 
(b) case can be written as (see Appendix A) 

6-4 

Mi CRjxV,l -= 
K [RixRj]’ 

(W 

with Mi and M, the motor pair balancing the load K. 
These expressions illustrate that in this model mathemat- 
ically no difference exists between a motor and a load 
with the same moment arms. 

The load vector diagram 

Presently explained is a diagram [Fig. l(b)] which 
allows to graphically determine, in any position of the 
bi-articular chain, which motors balance a given load. 
For any motor M in the bi-articular chain, a load vector 
K, = KY. uy (with Us a unit vector) exists which can be 
balanced by this motor alone, without the help of any 
other motor. The moment arms of this load vector can be 
determined from the generic expression (3), (set all motor 
forces except the generic motor M to zero): 

V, = - uMK.R,,,, 
M 

aMK = F > 0. (7) 
M 

Expression (7) states that the moment arms vyi of the 
load us must be proportional to the moment arms rMi of 
the motor M, and of opposite sign. The load vector II,+, 
can be graphically constructed from a schematic drawing 
of the chain [Fig. l(b)]. In this figure, the intersections of 
the lines tangent to the circles centred at the joint axes, 
with radii equal to the moment arms of the motors, and 
the line connecting both joint axes provide the points PI, 
PE, PF. The load lines of the load vectors uI, uE, uF, of the 
motors I, E, F, respectively, are the lines connecting these 
points and the point of application of the load. This 
follows from the fact that (e.g. for the flexor F) 

Irpj( = AjP,sinB (j = 1,2). 

Jvpjl = AjP,sin8*, 

from which it follows that 

(9) 

which defines the factor aMK in expression (7) in geomet- 
ric terms. Figure l(b) shows that the direction of the load 
vector changes with the point of application and the joint 
positions. With extended second joint (6, = 0), all load 
vectors are collinear with the line through the joint axes. 
This phenomenon is discussed further. 

In the following, all loads which can be balanced by 
two motors alone are called the ‘load range’ of this motor 
pair. This load range consists of all loads which can be 
decomposed as a positive sum of the load vectors of the 
motor pair, according to the generic expression (in which 
for each motor pair the third motor is put to zero) 

KE.uE + K,.uI + KF.uF = K.u, (10) 

with Ke, KI, KF 2 0. The load vector diagram thus 
straightforwardly provides the load ranges of the differ- 
ent motor pairs [Fig. 3(a)]. However, it does not allow 
determination of the exact motor forces. This is because 
the factors Ki in expression (10) are only proportional (by 
the factors CIM~) to the motor forces [expression (7)]. 
Moreover, the factors c(~x generally differ for each mo- 
tor, as they depend on unrelated quantities (the moment 
arms of motors and load). However, these factors ~LMK are 
positive, from which it follows that mathematically the 
motor forces M and the decomposition factors K,,, in 
Fig. 3(a) have the same sign. This means that the load 
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vector diagram and moment arm vector diagram are 
consistent. When in the moment arm vector diagram the 
negative moment arm vector - V, of a Ioad K is a posit- 
ive sum of two motor moment arm vectors Ri, R,, then in 
the load vector diagram the load K will also be a positive 
sum of the load vectors Ui and Uj of these motors M, and 
M,, and vice versa. 

Summary: the moment arm versus the load vector diagram 

Together, the moment arm vector and load vector 
diagrams visualise all information enclosed in the force 
model (2). 

(i) The moment arm vector diagram [expression (3)] 
allows to graphically determine the motor forces in the 

Fig. 2 (a,b). 
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Fig. 2. (a) Moment arm vector diagram of the unloaded proximal bi-articular chain of the human finger. 
Moment arm values from Table 1. Al, AZ: axes for the moment arms of the first and second joint. The 
motor forces follow from the force parallelogram: F = F; E/F = 1.57; I/F = 0.23. (b) The motor forces with 
load K as in Fig. 3(a). The moment arm vector Vx of the load is scaled down by a factor 10 to fit in the 
picture. The motor forces are l/K = 4.6; F/K = 5.9; E/K = 0. (c) Sensitivity analysis of the equilibrium of 
the proximal bi-articular chain of the human finger. When RP or RE are rotated so that they become 
collinear with Rs or RF, respectively (dashed vectors Rf or R$), the chain becomes uncontrollable. The 
dashed projection lines indicate the changes required. Changes of minimally 1.5 mm are required in one 
single moment arm to obtain an unstable chain, while these changes are somewhat greater for the moment 
arms of the first joint (AA, axis) than for the second joint (A, axis). However, with simultaneous changes in 
the moment arms of the first and second joint, e.g. along the vectors ARr or ARE, changes of kss than 1 mm 
will unbalance the chain. (d) Motor forces in the extended proximal chain of the human gnger ioaded at the 
tip. Ryp: moment arm vector of the volar plate of the PIP joint. The moment arms of the extension atrd 
flexion load fV;, V:) at the finger tip are scaled down by a factor 10 to fit in the pictum. With shack voIar 
plate the extension load (moment arm vector - V:) is balanced by the tlexor and extensor. Note the 
extremely large forces: E/K = 28.1; F/K = 10.6. With taut volar plate and relaxed flexor, the extensor force 
is more than hake& E/K = 12.8; VP/K = 3.1. A flexion load (moment arm vector - V:) is balanced by the 

flexor and the mterosseus with the forces: F/K = 7.3; l/K = 4.1. 



I 
(b) 

Fig. 3. (a) Load vector diagram of the proximd W-articular chain of thi: human finger. KF9 KI: mod&i of 
the dr?compr&tion of the load on the unit load vectors uF, u, of the motors F and I. (f;, E), (&I ), (F, E)z the 
laad rariges which can be lx&wed by these two motors alone. (b) Load uK as with carrying a bag with 
a bi-a&ukr &ger (8, = W, F# = 90’). This load is within the (F,E)-ioad ran& (c) The extension load at 
the finger tip of the extended fin&~ can be decomposed info a tang&al bad K2 with zero moment arms 

yV, = 8), and a normal load IL, with moment arms V, = fL, + L,, L2j. 
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loaded and in the unloaded chain. It is independent of the 
position of the chain to the degree that the moment arms 
of the motors are independent of the joint position. The 
position of the chain is only reflected in the moment arm 
vector of the load. 

(ii) The load vector diagram [expression (lO)] shows in 
any position of the chain which motors balance a given 
load, but it does not allow to graphic~ly derive the 
motor forces themselves. 

TKE CO~~IONS FOR UNLOADED ~QUI~BR~~, 

LOADABILITY AND CO~OLLAB~L~Y 

OF THE Bi-ARTICULAR CHAIN 

The conditions for unloaded equilibrium 

The equilibrium of the unloaded chain is feasible only 
when the motor forces in expression (2) (with K = 0) are 
non-negative and finite. From expressions (6a) it follows 
that the motor forces are strictly positive and finite when 

ER, x &I. CRe x &I > 0, 

(in Appendix B, equivalent conditions are derived for the 
load vector diagram). Conditions (11) can be interpreted 
in different ways from the vector diagram of Fig. 2(a). 

(i) The left-hand members of expressions (6a) are the 
coefficients of the projections of the vector - RF on the 
vector R, and RI, as defined by expression (5). Condi- 
tions (11) state that these coefficients must be positive, i.e. 
that the vector - RF must be a positive sum of RE and 
R,. The conditions are symmetric: when the negative of 
one moment arm vector is expressible as a positive sum 
of the other two moment arm vectors, any of the three 
moment arm vectors is expressible as a positive sum of 
the other two moment arm vectors. 

(ii) Each vector product term [Ri x R,] is propor- 
tional to the sinus of the angle fiij, measured anticlock- 
wise between the vectors (Ri, Rj). AS such, conditions 
(11) express that the equilibrium of the three-tendon 
chain is feasible when the sinus functions of the cyclic 
angles PFr, /IrEt PEP between respectively (RF, R,), 
(Rr, Re), (Rs, RF) are all of the same sign, meaning 
that either 0 < BFI, BIEt BEF -Z 7~ or 7~ < PFIt PIEI 
fiEF < 2% 

(iii) An interpretation in Landsmeer’s model is given 
in Appendix C. 

~athematic~Iy, equilib~um may also be feasible with 
one or both conditions (11) equal to zero. This is explored 
in the next section. Note that a condition (11) is zero only 
when two moment arm vectors are collinear, i.e. 
[RI x Rj] = 0 if and only if 

Ri = a.Rj. (12) 

Exact ant~onism, we~Z-~o~ab~e and welt-controllable 
bi~articular chains 

Presently, the mono-articular concept of muscular ‘an- 
tagonism’ is generalised for multi-articular motors, and 

Et4 29-3-G 

the concepts of loadability and controllability of the 
multi-articular chain are defined. 

(Dl) Two motors Mi, M, with collinear moment arm 
vectors of opposite directions [a < 0 in expression (12)] 
are further called exact antagonists. Conversely, two mo- 
tors with collinear moment arms of the same direction 
{a > 0) are called exact ugonists. When the moment arm 
vectors Ri, Rj of two motors are collinear and opposite, 
their load vectors I+, Uj are also collinear and opposite. 
Contrary to the mono-articular antagonism, the concept 
of bi-articular exact antagonism is purely mathematic. In 
reality, moment arms change, however slightly, with joint 
position and motor force, which means that in the real 
bi-articular chain condition (12) cannot be consistently 
satisfied. 

(D2) A chain is loadable when it can balance any unit 
load uK with finite motor forces (Mi < co). When the 
chain is loadable, it is also controllable, since it can 
balance any ~rturbations of its equiIib~um with finite 
motor forces. 

(D3) The bi-articular chain is well ~o~abie when it can 
withstand any unit load uK with ‘reasonable* motor forces 
(Ml + co). When the chain is well loadable, it is also well 
controllable. 

The conditions for loadability and ~ontro~~abi~ity 
of the three-tendon bi-articular chain 

The concept of exact antagonism allows formulatation 
of the conditions for equilibrium, loadability and con- 
trollability in physical terms. 

(i) Two not exact ant~onistie motors cannot balance 
the unloaded bi-art~cular chain. They cannot sustain any 
load outside their load range, which is less than 180”. The 
first statement follows from the fact that their moment 
arm vectors cannot balance out [in the generic expres- 
sion (3) 3. The second can be immediately verified from 
a load vector diagram [Fig, 3(a)]. 

(ii) Two exact antugonists can mathematically baZance 
the unloaded bi-articular chain. However, they cannot sus- 
tain any load not collinear with their load vectors, and 
therefore cannot control the chain. Two exact antagonists 
Mi, Mj can keep the unloaded (massless) bi-articular 
chain in equilibrium [substitute expression (12) in the 
generic expression (3) with K = O]. The force in a third 
motor must then be zero, except when its moment arm 
vector is also collinear with those of the exact antagon- 
ists. In the loaded two-tendon chain, the forces in exact 
antagonists with load vectors not colhnear with the ex- 
ternal load vector are infinite (Mi, Mj = co): the vector 
product of the collinear moment arm vectors of the exact 
antagonists is zero ([ Rj x Rj] = [ - CI. RJ x RJ = 0) 
in expression (6b), while the product of these vectors 
with the moment arm vector of the load is not 
([RiXVk] = [ -a.RjXV,] # 0). 

(iii) Three motors satisfying expression (11) s@ice for 
complete control of the bi-art~cu~ar chain, in both the 
loaded and unloved situation. When expressions (11) are 
satisfied, no motor pair is exact antagonistic, and the 
three moment arm vectors can balance out with positive 
forces. The moment arm vector of any load can then be 
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written as a unique finite non-negative sum of two of the 
three moment arm vectors [Fig. 2(b)], meaning that the 
chain is fully loadable and controllable. 

(iv) The bi-articular chain is well loadable, and well 
controllable, when conditions (11) are satisjed, and no 
motor pair is too antagonistic. When two motors ap- 
proach exact antagonism, conditions (11) remaining 
satisfied, their forces required to balance loads in their 
common load range become very large, as [Ri x Rj] + 0 
in expression (6b). Therefore, by definition, the loadabil- 
ity and the controllability of the chain decrease. A similar 
argument is as follows. In the unloaded chain, with two 
quasi-exact antagonists, the equilibrium force in the third 
motor is quasi-zero, meaning that the ratio of the forces 
in the quasi-exact antagonists and the force in the third 
motor is quasi-infinite. Since motors are physiologically 
limited in their (control of) force, such disbalances in the 
motor forces do not allow good control. Note that ac- 
cording to the above definitions, the controllability and 
loadability are optimal when the moment arm vectors of 
the motors are at 120”-i.e. with all motors of equal 
degree of antagonism. 

PROPERTIES AND APPLICATIONS 

Parameter analysis: the eficts of changes in the moment 
arm vectors on motor force, loadability and 
controllability 

The vector diagrams allow easy validation of the ef- 
fects of changes in the motor moment arms on the motor 
forces, the feasibility of equilibrium, and the controllabil- 
ity and loadability of the bi-articular chain. Changes in 
moment arm vectors can be: (i) in the size of the moment 
arm vector, and (ii) and the direction of the moment arm 
vector. It holds that: 

(i) A change in the size of the moment arm vector of 
a motor merely changes the effectiveness of this motor to 
the same proportion, and does not change the equilib- 
rium forces in the other motors. 

This follows from: 

-T F;,Ri + (:)‘(a.Rj) = - K.Vx, (13) 

which shows that changing a moment arm vector Rj by 
a factor u > 0 changes the corresponding motor force by 
a factor l/u, while leaving all other forces unchanged. In 
the unloaded case (K = 0), the change of effectivity is 
with respect to the other motor forces: 

C F<.Ri + Fj.Rj = 0 

*C(N.Fi).Ri + Fj.(a.Rj) ~0, 

which means that the increase of the moment arm vector 
Rj of a motor is equivalent with a decrease in the relative 
effectivity of all other motors. 

(ii) A change in the direction of a moment arm vector 
changes the relative forces in other motors, the load 
ranges, the loadability and the controllability. A change 
in the direction of the moment arm vector of a motor also 
changes the direction of its load vector in the load vector 
diagram, which means that the load ranges which this 
motor together with the other motors can sustain also 
change. Consequently, loads in the original load range of 
this motor will be balanced by different motors, or by the 
same motors with different forces, or cannot be balanced 
at all. Similarly, in the unloaded chain the variation of 
a moment arm vector direction changes the equilibrium 
forces of the motors relative to each other [expression 
(6a)], and, most critically, may cause the violation of the 
positivity conditions (11) on the motor forces, resulting in 
an unbalanceable chain. 

To summarise, the feasibility of unloaded equilibrium, 
the loadability and the controllability of the chain de- 
pend essentially on the relative directions of the moment 
arm vectors of the motors, while the effectiveness of the 
force-torque relationship of the individual motor de- 
pends on the moment arm vector size. 

The moment arm vector and load vector diagrams of the 
bi-articular chain with extended second joint (0, = 0) 

(i) The moment arm vector diagram. In the chain with 
an extended second joint (0, = 0) [Fig. 3(c)], any load 
vector K can be decomposed in a tangential component 
K, (collinear with the phalanges) and a normal compon- 
ent K, (perpendicular to the phalanges): 

K = K, + K, = K.Icos$~I.u, + K.(sind,l.u,. (15) 

The moment arm vectors of II, and II, are V, and V,, 
respectively. The torque resulting from the tangential 
component u( is zero in both joints, since V, = 0. For all 
laods applied at the same point, the moment arms of the 
normal component II, are of equal length, while their sign 
depends only on whether the load is applied on the 
flexion (f) or the extension (e) side of the chain. In other 
words, 

v; = -v:, 11 V, I/ = constant. 06) 

From this it follows that in the extended chain all loads 
can be balanced by only two motor pairs, with one pair 
balancing all flexion loads and the other balancing all 
extension loads. The forces in these motor pairs are of 
a constant ratio, independent of the load direction, as 
from expression (6b) it follows that 

(17) 

since all vectors V,$ Vi, Ri, Rj are independent of the 
load direction. In other words, whereas in the flexed 
chain different load directions applied at the same point 
are balanced by different motor pairs or by the same 
motor pair with different forces, in the extended chain the 
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relative loading of the motors is constant for all flexion or 
extension loads. 

(ii) The load vector diagram. With extended second 
joint (0, = 0), the load vector diagram is undefined. 
When 112 -+ 0, the load vectors uy of all motors M be- 
come collinear with the joint axes [Fig. 4(a)]. Since their 
moment arms are then zero [V, = 0, and aMK = 0 in 
expression (7)], they cannot balance any motor force 
anymore. Therefore, for the extended chain the load 
ranges of the motors cannot be straigh~o~ardly deter- 

mined in the load vector diagram. Graphically, however, 
this problem can be circumvented by taking the limit of 
the load ranges for f12 -+ 0. For instance, in Fig. 4(a) it is 
clear that when the second joint extends, the (F, E)-load 
range converges to the 180” range of all extension loads; 
the (F, I)-load range converges to the 180” range of all 
flexion loads; and the (E, I)-load range converges to zero. 
From the corresponding moment arm vector diagram of 
Fig. 2(d) it can be verified that the motor pair (F, E) 
indeed balances the unique moment arm vector Vz of all 

(‘4 

Fig. 4. (a) Load vector diagram of the extending proximal bi-articular chain of the human finger. Three 
PIP positions (0, = 9445, 10’) are drawn to demonstrate the changes in the load vector directions with 
PIP position. With extending PIP joint (0, +O), the (F,E)-load range increases to the 180” range 
comprising all extension loads, the (F&load range converges to the 180” load range comprising all flexion 
loads, and the (&I)-load range conveges to zero. (b) Same as Fig. 4(a), but with an elongated second 
phalanx. With extending PIP joint (#, -to), the (E&load range converges to all extension loads, the 

(F,f)-load range converges to all flexion loads, and the (F,E )-load range converges to zero. 
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extension loads, and the motor pair (F, I) balances the MCP in combination with (dorsal) swelling of the PIP 
unique moment arm vector V’, of all flexion loads. joint), may well be caused by rheumatoid arthritis. 

The controllability and loadability of the proximal 
three-tendon bi-articular chain of the human jinger 

The proximal bi-articular chain of the human finger 
with the superficial flexor (F), extensor (E) and interos- 
seus (I) is given in Fig. 3(a), and the moment arm vector 
diagram in Fig. 2(a) (from the values of Table 1). From 
the above it follows that the feasibility of equilibrium, the 
loadability and the controllability are determined by the 
two most antagonistic motors. These are the extensor 
and flexor, which are almost exact antagonists. From this 
fact the following conclusions can be formulated: 

(i) The proximal three-tendon bi-articular chain of the 
human finger is weak for loads in the load range of the 
extensor and flexor. In other words, the forces in extensor 
and flexor required to sustain unit loads in their load 
range will be high. 

(ii) The controllability of the chain is not very good. 
This follows by definition from (i). 

(iii) The functioning of the chain is not ‘safe’ with 
respect to small changes in the moment arms of extensor 
or flexor. 

From expression (C3, Appendix C) or Fig. 2(c) it can be 
verified that the changes in the moment arms which 
result in unfeasible equilibrium [corresponding to the 
dashed vectors R$ or Rf in Fig. 2(c)] are relatively small. 
For instance, for changes in the moment arms at the 
MCP joint, equilibrium is unfeasible when: 

which is a change of less than 2 mm and little more than 
3 mm for the extensor and flexor, respectively. Clinically, 
such changes would correspond to extensor subluxation 
(rEl 1) or rupture of the flexor pulleys (rF1 1) at the 
MCP. Figure 2(c) also shows that simultaneous changes 
of only about 1 mm in the extensor or flexor moment 
arms, e.g. along the vectors ARE or ARr, may result in an 
unbalanceable chain. Notice that such changes, espe- 
cially in the extensor (subluxation of the tendon at the 

Table 1. Moment arms of the motors of the proximal bi-articu- 
lar chain of the human finger (in mm) 

Moment arm Value 

Motor MCP PIP MCP PIP 

F rE1 rF2 - 13 -9 
E rE1 rE2 9 5 
I rI1 r12 -5 5 

Length first and second phalanx: 52,30 

From Spoor (1983). 

(iv) Loads as may occur when carrying a bag, i.e. with 
(b = 90” and 0, = 90” [Fig. 3(b)], are within the 
flexor-extensor load range, and therefore cannot be well 
sustained. The reader may notice that this is well against 
intuition. 

(v) The most efficient load range is of the flexor and 
interosseus [Fig. 3(a)]. This follows immediately from the 
fact that the angle between Rr and RF is the smallest of all 
angles of the moment arm vectors. Note that this load 
range comprises the pinch grip loads. 

To summarise, the proximal three-tendon bi-articular 
chain of the finger in itself cannot be considered as an 
optimal design: it cannot well sustain all physiologically 
occurring load situations, and is not especially adapted 
for good control. This indicates that in the real three- 
articular finger the other motors (deep flexor, lumbrical) 
will have to substantially improve upon the general load 
bearing capacity and the controllability. 

The forces in the extended proximal three-tendon 
bi-articular chain of the human jinger 

In the above it is shown that with extended second 
joint (0, = 0), all loads of flexion and extension, respec- 
tively, can be balanced by motor pairs with forces in 
a constant ratio. The question presently investigated is 
which motors and with what forces sustain these loads in 
the proximal bi-articular chain of the human finger. The 
parametric exploration of this question will illustrate the 
close relationship between geometry and function in the 
bi-articular chain, and the peculiar weakness for exten- 
sion loads in the proximal bi-articular chain of the hu- 
man finger. 

The moment arm vector diagram of Fig. 2(d) or the 
load vector diagram of Fig. 4(a) show that a load applied 
at the flexion side to the tip of the extended chain is 
balanced by the flexor and the interosseus, while a load 
applied at the extension side is balanced by the extensor 
and the jlexor ( ! ). The latter fact is somewhat against 
intuition. Indeed, the extensors of the two joints are the 
extensor (MCP, PIP) and the interosseus (PIP). There- 
fore it could be expected that the extensor and the in- 
terosseus would balance extension loads. This may be 
compared with Fig. 4(b), where a bi-articular chain with 
a longer distal phalanx is considered. In this chain exten- 
sion loads with O2 = 0 are indeed balanced by the exten- 
sor and the interosseus [the (E, I)-load range converges 
to the hemisphere of the extension loads]. The only 
difference between Fig. 4(a) and (b) is the length of the 
distal phalanx, which determines the direction 
vK2/vKI = L2/(L, + L,)ofthemoment arm vector - Vz 
in the moment arm vector diagram of Fig. 2(d). From this 
diagram it is clear that: 

(i) when [ - Vi x RE] > 0, extension load is balanced 
by the extensor and flexor; 

(ii) when [ - Vz x RE] < 0, extension load is balanced 
by the extensor and interosseus; 

(iii) when [ - Vz x RE] = 0, extension load is bal- 
anced by the extensor alone; 
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(iv) when [RF x - V’,] > 0, flexion load is balanced joint and the other finger motors (deep flexor and lumb- 
by the flexor and the extensor. rical) play an important role in improving finger control. 

With extension loads at the end of the second phalanx 
of the proximal bi-articular chain of the human finger 
[case (i) of the above] [Fig. 4(a)], the extensor force is 
quite large, while the flexor force is about a third of the 
extensor force [Fig. 2(d)], even if - Vz is almost col- 
linear with the extensor moment arm vector RE. When 
the load is applied closer to the second joint (i.e. when Lz 
decreases). the vector - Vz is shifted towards the middle 
of the (F, E)-load range [Fig. 2(d)], and the extensor and 
flexor forces still increase considerably. This weakness for 
extension loads in the proximal finger can be self-verified 
by applying an extension load close and distal to the PIP 
joint of ones own fingers (hereby the PIP joint must be 
kept slightly flexed, so that the palmar joint ligaments, i.e. 
the volar plate, remain slack). One will experience that 
even small loads are difficult to balance, and that the PIP 
will tend to extend completely. Also it can be observed 
that when the PIP is fully extended and the volar plate is 
taut, much greater extension loads can be sustained. The 
taut volar plate effectively functions as a mono-articular 
flexor of the PIP, with a moment arm vector RVP as in 
Fig. 4(d). This ‘flexor’ force of the volar plate may com- 
pletely substitute the superfical flexor, and creates a more 
efficient load range in which the extensor requires less 
than half of the force with a slack volar plate. 

The two-dimensional vector diagrams here presented 
cannot be extended to the n-articular chain, with n > 2. 
In the vector diagrams the moment arms of each inde- 
pendent joint axis are represented at an independent 
Cartesian axis, which means that an n-articular chain 
requires a n-dimensional vector representation. More- 
over, for the n-articular chain (with n > 2), the load 
vectors of the motors generally do not exist, since their 
load line must be tangential to all circles, centred at the 
joint axes, and of which the radii are in a fixed proportion 
[by the constant CITY in expression (7)] to the moment 
arms of their motors at these joints. Generally, this condi- 
tion is not satisfied for n > 2. 

CONCLUSION 

A model is presented which allows to graphically in- 
vestigate the equilibrium conditions, the loadability and 
the controllability of the bi-articular chain. To allow 
a concise formulation of the results, the concept of exact 
antagonism of bi- (or multi-) articular motors is intro- 
duced. It is shown that: 

(i) Two not exact antagonistic motors cannot keep the 
chain in equilibrium, and cannot sustain all loads. 

DISCUSSION 

(ii) Two exact antagonists can mathematically balance 
the chain, but cannot control it. 

In the present paper a model is introduced which 
visualises the relationship between morphology and 
function in the bi-articular chain, and which allows us to 
graphically analyse the motor forces in the unloaded and 
loaded chain, the load ranges of the motors, the ranges of 
preferential loading (i.e. the loads which can be sustained 
with minimal force), the feasibility of equilibrium and the 
condition of control. The present model generalises the 
results of Landsmeer (1955) and Spoor and Landsmeer 
(1976), who investigated the control of the unloaded 
bi-articular chain in morphological terms. The graphic 
representation of the present model is possible because 
the kinematics and statics of the massless frictionless 
bi-articular chain depend entirely upon its geometry, i.e. 
the lengths of the moment arms of motors and loads. 

(iii) The bi-articular chain with three motors is fully 
controllable and loadable when no two motors are exact 
antagonists, and no moment arm vector can be written as 
a positive sum of the others. The bi-articular chain with 
n motors is fully loadable and controllable when a motor 
triplet exists which satisfies this criterion. 

(iv) All loads can be sustained by maximally two mo- 
tors. 

(v) When two motors approach exact antagonism, the 
three-motor chain cannot be well controlled. Moreover, 
the common load range of these quasi-exact antagonists 
is structurally weak. 

(vi) With extended second joint, all loads of extension 
can be balanced by the same motor pair with forces in 
a fixed ratio. Similarly, a (different) motor pair will bal- 
ance all flexion loads with fixed force ratio. 

The present model may be valuably applied to investi- 
gate the functioning of bi-articular chains in which the 
motor forces and loads are large as compared to the 
masses of the phalanges, as is the case in fingers or toes, 
or to investigate the statics of chains in the horizontal 
plane, i.e. with the gravity forces parallel to the joint axes. 
Hereby the moment arms may well be functions of the 
joint position, since at any given position of the chain 
they have a fixed value, and the model is valid. In the text 
the model is applied to investigate the properties of the 
proximal three-tendon bi-articular chain of the human 
finger. It clearly emerges that this chain is especially 
designed to sustain (certain) ‘flexion’ loads, that it is 
structurally weak for extension loads, and that its con- 
trollability is not optimal. This indicates that the third 

With respect to the proximal three-tendon bi-articular 
chain of the human finger, it holds that the loadability 
and controllability of the chain of the proximal finger is 
critically determined by the pronounced antagonism of 
the extensor and superficial flexor. The other motor pairs 
are not at all antagonistic. The chain is structurally weak 
in the extensor-flexor load range, and is not well condi- 
tioned for good control. Moreover, relatively small cha- 
nges in the moment arms of extensor and/or flexor may 
result in an uncontrollable chain. 
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APPENDIX A 

MOTOR FORCES IN TERMS OF MOMENT ARM VECTORS 

Assume that no moment arm vectors are collinear. Expres- 
sions (6) are obtained by taking the vector product of the motor 
moment arms and the vector equation (3). For instance, the 
vector product of the extensor moment arm vector RE with 
expression (3) is 

E.[RExRE] + I.[R*xR,] +F.[R,xRp] 

= -K.[R,xV,]. (Al) 

It holds that RE x R, = 0. Therefore, for the unloaded case 
(K = O), the relationship I/F of expression (6) is obtained: 

i. = - CREXRFI _ CWRd, 
F 1% x &I I% x %I 

642) 

The other forces can be derived similarly. 

APPENDIX B 

CONDITIONS FOR EQUILIBRIUM IN THE LOAD 
VECTOR DIAGRAM 

The maasless chain is in equilibrium with a motor and its load 
vector. Therefore, the superposition of all motors and their load 
vectors also results in a chain in equilibrium. This equilibrium is 
not disturbed when, for any motor, the motor force and its load 
vector are multiplied by the same positive number I&. The 
vector sum of all load vectors is the effective load with which the 
chain with the given motor forces is in equilibrium. When this 
sum is zero (the load vectors, themselves not zero, balance out), 
an unloaded chain is obtained. From this it follows that the 
motors can keep the chain in equilibrium, when the vector sum 
of their load vectors can be put to zero: 

&.a, + K,.u, + KE.uE = 0 WI 

with K,, K,, KE > 0, and not all of them zero. This expression is 
similar to expression (3) and leads, similarly to expression (11). 
to the conditions that co > KF, K,, K, > 0 when 

cu, x bl CUE x kl > 03 

Cb X&l CUE x sl > 0. (B2) 

Conditions (B2) and (11) are consistent: expressions (B2) hold if 
and only if expressions (11) hold [except in the extended chain 
(0, = 0) where the vectors ui are undefined], while also the 
graphic interpretation is similar to expression (11). 

APPENDIX C 

LANDSMEER CONDITIONS FOR EQUILIBRIUM OF THE 
PROXIMAL BI-ARTICULAR CHAIN OF THE HUMAN FINGER 

With expression (I), conditions (11) can be written as 

C fk.r12 -rE2-r,,l.Cr,,.r,,-r,,.r,,l 70, 
CrEI r12 - rE2 - bl1 CrFl rE2 - %Z %I 1 > 0. (Cl) 

For the proximal bi-articular chain of the human finger it holds 
that rri, rEz, rr2 > 0 and rli, rF1, rF2 i 0 [see Table 1 or Fig. 
l(a)]. With these values, the inequalities (Cl) can be written as: 

[ 
lrrzl lb21 (- IhI) Irr21 --- . 

(- Ikl) lhl I[ 0-m <O, 1 

[ 
Irf2l lb21 --- 

(- IkI) IrEI I[ 

IrEd (- IrF20 > o, tc2j . --__ 
’ lhl (--rF1I) 1 

Each term between square brackets is the difference of the 
directions rMZ/rM1 of the moment arm vectors RY of two mo- 
tors, and therefore provides a measure for their degree of antag- 
onism. For exact antagonists (or agonists) the term is zero. In 
expression (C2) two terms are ‘safe’, that is, not likely to change 
in sign with small variations in the ratios rMZ/rMI . These are the 
(&I)-term, which is the sum of two negative ratios, and the 
(F&term, which is the sum of two positive ratios. These terms 
express that the (FJ) and (&I) motor pairs are not at all 
antagonistic. However, the (F&term is the sum of two ratios of 
di$krent sign, and its sign may well change with small variations 
in the moment arm ratios. Therefore, this term (which expresses 
the antagonism of the F and E) critically determines the feasibil- 
ity of equilibrium of the chain. When the term is negative, the 
chain is controllable; when it is positive, the chain cannot be 
balanced. In Landsmeer (1955) and Spoor and Landsmeer 
(1976), the terms of (FJ) and (E,I ) were not considered (they are 
not critical) and the controllability condition of the chain was 
derived in the form 

Ir,,l-Ir,,l>o, (C3) 
hl IhI 


