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Abstract

Background: The use of alternative modeling techniques for predicting patient survival is complicated by the fact that some
alternative techniques cannot readily deal with censoring, which is essential for analyzing survival data. In the current study,
we aimed to demonstrate that pseudo values enable statistically appropriate analyses of survival outcomes when used in
seven alternative modeling techniques.

Methods: In this case study, we analyzed survival of 1282 Dutch patients with newly diagnosed Head and Neck Squamous
Cell Carcinoma (HNSCC) with conventional Kaplan-Meier and Cox regression analysis. We subsequently calculated pseudo
values to reflect the individual survival patterns. We used these pseudo values to compare recursive partitioning (RPART),
neural nets (NNET), logistic regression (LR) general linear models (GLM) and three variants of support vector machines (SVM)
with respect to dichotomous 60-month survival, and continuous pseudo values at 60 months or estimated survival time. We
used the area under the ROC curve (AUC) and the root of the mean squared error (RMSE) to compare the performance of
these models using bootstrap validation.

Results: Of a total of 1282 patients, 986 patients died during a median follow-up of 66 months (60-month survival: 52%
[95% CI: 50%255%]). The LR model had the highest optimism corrected AUC (0.791) to predict 60-month survival, followed
by the SVM model with a linear kernel (AUC 0.787). The GLM model had the smallest optimism corrected RMSE when
continuous pseudo values were considered for 60-month survival or the estimated survival time followed by SVM models
with a linear kernel. The estimated importance of predictors varied substantially by the specific aspect of survival studied
and modeling technique used.

Conclusions: The use of pseudo values makes it readily possible to apply alternative modeling techniques to survival
problems, to compare their performance and to search further for promising alternative modeling techniques to analyze
survival time.
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Introduction

Predicting the survival probability of patients is important for

various purposes in biomedical research, such as patient counsel-

ling, medical decision making, and benchmarking. The conven-

tional analysis of survival problems mainly relies on Kaplan-Meier

analysis and Cox regression modeling to predict the survival

probability in relation to predictor variables [1,2].

Alternative modeling techniques are available, such as support

vector machines and artificial neural networks [3–5], which might

possibly provide better predictions. For example, feed forward

neural networks were already used in 1998 for the analysis of

censored survival data [6]. In 2007, applications of random

survival forests were described [7]. In 2009, prognostic indexes

were compared using data mining techniques and Cox regression

analysis in breast cancer data [8].

In 2000, Schwarzer and Vach [9] reviewed the use of artificial

neural networks in medical research and found several problems.

A major problem was that some of the alternative techniques did

not deal adequately with censoring, which is essential for analyzing

survival data. The conventional analysis of survival outcomes

requires two variables: the status of the patient (e.g. dead or alive)

and the time point at which this status is measured. In 2008, Klein

et al. [10,11] proposed to predict the survival at particular time

points using pseudo values, which combine the variables status and

time point in one outcome variable. The use of these pseudo

values in generalized estimating equation modeling (GEE) using a

log-minus-log link function leads to statistically appropriate

analyses, which are in line with the results of Cox regression

modeling.

In the current study, we aimed to study the use of pseudo values

for analyses of survival outcomes with other modeling techniques,

including support vector machines (SVM), neural networks

(NNET), general linear models (GLM), recursive partitioning

(RPART) and logistic regression (LR). To compare the perfor-

mance, we applied these techniques and conventional regression
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analysis in the prediction of survival of 1282 Dutch patients with

Head and Neck Squamous Cell Carcinoma (HNSCC), using

predictors as described in earlier studies [12–14]. The survival of

this particular population of newly diagnosed patients with

HNSCC has already been studied by applying conventional

Kaplan-Meier analysis, Cox regression and random survival

forests (RSF) to 60-month survival and overall survival [15–17].

Methods

Patients and Data
We considered a cohort of 1371 patients with Head and Neck

Squamous Cell Carcinoma (HNSCC) of the oral cavity, pharynx

or larynx, diagnosed at Leiden University Medical Centre. The

data were obtained from files used in an earlier study [16]. The

same data had been used before to derive a prediction model

based on the Cox regression modeling technique [15]. Predictors

in this model included Tumor location, Age at diagnosis, Gender,

T-N-M classification (T= the extent of the primary tumor, N= the

absence or presence and extent of regional lymph node metastasis,

M= the absence or presence of distant metastasis) and Prior

malignancies. In 2010, Datema et al. [16,17] published an

updated model including comorbidity according to the Adult

Comorbidity Evaluation, based on a 27-item comorbidity index

(ACE27) [18]. In our study, we excluded patients for whom

comorbidity was unknown, resulting in a total of 1282 patients.

Outcome Variables
We defined three outcome variables related to patient survival:

a) The 60-month survival (dichotomous, dead or alive, ignoring

censoring before 60 months)

b) The pseudo values at 60 months (continuous)

c) The estimated survival time (continuous)

We focused on 60-month survival, since this is a common time

point in cancer research. We subsequently calculated pseudo

values for the time points 12, 24,…, 288, and 300 months to reflect

the individual survival patterns of patients using the R-package

‘‘Pseudo’’. The pseudo values form a new set of observations to

allow for analysis as if we had time-to-event data without censoring

[10,11].

The estimated survival time was calculated as the sum of the

pseudo values at these time points, because this sum reflects the

area under the survival curve and can be interpreted as the mean

survival time. The choice for a time interval of 12 months was

motivated by the wish to have around 25 time intervals per subject

for sufficient accuracy in estimating the survival time. File S1

(appendix 1) gives a more detailed description of the calculation

and interpretation of the pseudo values and the estimated survival

time. For univariate analysis of 60-month survival and overall

survival we used Kaplan-Meier analysis and Cox regression

analysis.

Modeling Techniques
We considered the following modeling techniques: support

vector machines (SVM), neural networks (NNET), recursive

partitioning (RPART), general linear models (GLM) and logistic

regression (LR), with their implementations as available in the

software package R, version 2.14.1 [19]. The parameters of the

various modelling techniques are presented in Table 1.

File S2 (appendix 2) presents a more detailed description of the

various modeling techniques and their parameters, based on

previous literature [20–27].

Tuning of the Modeling Techniques
Before applying a modeling technique, we tuned that technique

by varying the parameters to create an optimal model fit. The

optimal parameter setting was based on the smallest prediction

error after 10-fold cross validation. The modeling technique SVM

was tuned using a simultaneous grid search for the parameters cost

and gamma when a radial or linear kernel was used and for the

parameters cost, gamma and degree when a polynomial kernel

was used. The modeling technique NNET was tuned using a

simultaneous grid search for the parameter size, and the modeling

technique RPART was tuned by varying the cp-value.

Validation and Performance of the Modeling Techniques
For all models, internal validation was done by bootstrap

resampling (200 bootstrap samples). From the original data set a

bootstrap sample was drawn (randomly and with replacement).

Then the modeling technique was tuned to create an optimal

model fit for this bootstrap sample. With the optimal setting

resulting from the tuning, we applied the modeling technique to

the bootstrap sample and calculated the performance of the

resulting model (bootstrap performance). We then applied the

model to the original data base and calculated the performance

(validated performance). This process was repeated 200 times. The

200 results were averaged to produce a single estimation of the

bootstrap performance and the validated performance [28]. The

difference of the mean bootstrap performance and the mean

validated performance indicated the optimism of a model. The

optimism corrected performance was calculated by subtracting the

optimism from the apparent performance estimate, i.e. when the

model was optimized and assessed for its performance on the

original data set. With respect to dichotomous 60-month survival,

the performance measure was the area under the ROC-curve

(AUC). With respect to continuous pseudo values at 60 months

and estimated survival time, the performance of the models was

calculated using the root of the mean squared error (RSME).

Table 1. Parameters required for the modeling techniques.

Modeling technique Parameters

NNET size and decay

RPART cp-value

SVM LINEAR cost and gamma

SVM POLYNOMIAL cost, gamma and degree

SVM RADIAL cost and gamma

doi:10.1371/journal.pone.0100234.t001
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Variable Importance
We calculated the relative importance of each of the eight

predictor variables in a model by calculating the difference

between the validated performance of the full model with all eight

predictor variables and the validated performance of the model

with seven predictor variables, leaving out each predictor variable

in turn.

Figure 1. Survival pattern 1282 patients with newly diagnosed HNSCC.
doi:10.1371/journal.pone.0100234.g001

Figure 2. Censoring pattern 1282 patients with newly diagnosed HNSCC.
doi:10.1371/journal.pone.0100234.g002
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Ethics Statement
Patient data were used that had been collected prospectively

and anonymously between 1981–1998. According to Dutch

regulations, neither medical nor ethical approval was required to

conduct the study, as no interventions were initiated and the study

had no influence on medical care nor on decision making. The

data was anonymised. The study was not supported financially in

any way.

Results

Patients and Data
Of the 1371 patients included originally, we dropped 89

patients for whom the comorbidity was unknown. As a result, we

included 1282 patients in our analysis. Of these, 986 patients died

during a median follow-up of 66 months (60-month survival: 52%

[95% CI: 50%255%], Figure 1). The censoring pattern of the

patients (censoring rate before 60 months: 4%) is presented in

Figure 2.

Table 2 shows the overall number of events and the survival

probabilities for each category of the predictor variables with

respect to the Kaplan-Meier estimated 60-month survival. Several

characteristics were associated with a poor 60-month survival:

Tumor location in the Hypopharynx, Oral cavity and Orophar-

ynx (60-month survival 0.33, 0.36 and 0.37 respectively), cancer

stages T3, T4, and N3 (60-month survival 0.38, 0.27, 0.11

respectively), higher age (Age .=70, 60-month survival 0.40) and

severe comorbidity (Grade 3 of ACE27, 60-month survival 0.25).

Model Performance and Optimism
We evaluated the performance of the various models with

respect to the three survival related outcome variables.

For the outcome ‘dead or alive at 60 months’, the LR model

had the highest optimism corrected AUC (0.791, Table 3) followed

by the SVM model with linear kernel (AUC 0.787, Table 3). The

NNET model performed slightly poorer (AUC 0.785, Table 3).

The RPART model had the lowest AUC (0.725, Table 3).

Considering the outcome ‘pseudo values at 60 months’, the

GLM model had the highest optimism corrected RMSE (0.436,

Table 4). The SVM model with polynomial kernel and the NNET

model performed poorly (RMSE 0.482 and 0.486 respectively,

Table 4).

Analyzing the outcome ‘estimated survival time’, the GLM

model had the lowest optimism corrected RMSE (77.7, Table 5),

followed by the SVM model with a linear kernel (79.2, Table 5).

The NNET model had the worst RMSE (83.7, Table 5).

The regression based models (LR and GLM) had relatively

small optimism. This small optimism was also noted for the SVM

models with a linear kernel. The bootstrap-estimated optimism

was substantial for NNET and the more complex SVM models

with polynomial and radial kernels (Table 3 to Table 5).

Variable Importance
For each model and for each outcome we calculated the

variable importance (Figure 3). We chose the parameter settings of

the modeling techniques based on the highest frequency (mode)

resulting from the bootstrap procedure (Table 6).

Figure 3 shows the variable importance for each model and for

each outcome with these parameter settings.

Overall, the variables Tumor location, T-class and N-class were

the most important predictor variables for predicting the

dichotomous and continuous 60-months survival (Figure 3).

Survival probability was considerably lower for patients with

cancer stages T4 and N3 (File S3 (appendix 3), Table 7, Table 8).

Table 3. Performance of models for the outcome ‘dead or alive at 60 months’.

Dead or alive at 60 months

Modeling technique AUC bootstrap AUC validated AUC-apparent Optimism Optimism-corrected-AUC

LR 0.809 0.797 0.803 0.012 0.791

NNET 0.880 0.810 0.855 0.070 0.785

RPART 0.769 0.741 0.753 0.028 0.725

SVM LINEAR 0.807 0.794 0.800 0.013 0.787

SVM POLYNOMIAL 0.861 0.811 0.821 0.050 0.771

SVM RADIAL 0.872 0.813 0.825 0.059 0.766

doi:10.1371/journal.pone.0100234.t003

Table 4. Performance of models for the outcome ‘pseudo values at 60 months’.

Pseudo values at 60 months

Modeling technique RMSE bootstrap RMSE validated RMSE-apparent Optimism Optimism-corrected-RMSE

GLM 0.427 0.433 0.430 0.006 0.436

NNET 0.388 0.457 0.417 0.069 0.486

RPART 0.430 0.448 0.448 0.018 0.466

SVM LINEAR 0.461 0.470 0.460 0.009 0.469

SVM POLYNOMIAL 0.409 0.445 0.446 0.036 0.482

SVM RADIAL 0.428 0.446 0.442 0.018 0.460

doi:10.1371/journal.pone.0100234.t004

Prediction of Survival with Pseudo Values
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For the estimated survival time, age at diagnosis was the most

important predictor variable (Figure 3). Cancer stages T1 and N0

indicated a relatively good survival probability (File S3 (appendix

3), Table 9). The relative importance of each predictor variable

varied substantially by the specific aspect of survival studied and

modeling technique used.

The variable plots with observed 60-month survival (dichoto-

mous) proved to be very similar to the variable plots with pseudo

values at 60 months (continuous), except for the NNET model

(Figure 3).

*Cox regression was added as reference technique.

Discussion

In this study, we demonstrated that pseudo values as described

by Klein et al. [10,11] enable statistically appropriate analyses of

survival outcomes when used in in three variants of support vector

machines (SVM), neural networks (NNET), general linear models

(GLM), recursive partitioning (RPART) and logistic regression

(LR). We showed that pseudo values enabled us to apply these

techniques to predict survival in a case study of 1282 Dutch

patients with newly diagnosed HNSCC, and to compare the

performance of the resulting models.

Our analysis showed that conventional regression analysis

approaches (logistic regression and the generalized linear model)

outperformed the performance of relatively modern modeling

techniques. However, the SVM model with an optimal setting and

a linear kernel performed only slightly worse with respect to our

outcomes. The NNET model and the RPART model performed

relatively poorly.

We compared the performance of the alternative modeling

techniques in predicting three variants of survival outcome for our

case study. The first, admittedly rather simplistic, outcome

variable was based on the 60-month survival in terms of dead or

Table 5. Performance of models for the outcome ‘estimated survival time’.

Estimated survival time

Modeling technique RMSE bootstrap RMSE validated RMSE-apparent Optimism Optimism-corrected-RMSE

GLM 76.0 77.1 76.6 1.1 77.7

NNET 80.3 83.0 81.0 2.7 83.7

RPART 76.7 80.1 79.8 3.4 83.1

SVM LINEAR 77.4 78.7 77.9 1.3 79.2

SVM POLYNOMIAL 69.7 76.3 76.3 6.6 82.9

SVM RADIAL 69.7 76.4 76.8 6.7 83.4

doi:10.1371/journal.pone.0100234.t005

Figure 3. Variable importance of the models per outcome.
doi:10.1371/journal.pone.0100234.g003
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alive. This outcome may produce bias unless the censoring rate is

small (4% in our study). The other two outcome variables were

defined by means of pseudo values, which were derived from the

Kaplan Meier survival function.

A drawback of outcome definitions for 60 months is that they

only consider survival at a particular point in time rather than the

full survival curve. By contrast, the approach with the estimated

survival time is attractive, because it considers the full survival

Table 6. Mode of the parameter settings identified as optimal in bootstrap samples.

Outcome

Modeling technique Dead or alive at 60 months Pseudo values at 60 months Estimated survival time

LR 2 2 2

NNET size = 40 size = 30 size = 40

RPART cp = 0.01 cp = 0.01 cp = 0.01

SVM LINEAR cost = 0.5, gamma= 0.001 cost = 0.5, gamma= 0.001 cost = 0.5, gamma= 0.001

SVM POLYNOMIAL cost = 50, gamma= 0.05, degree = 3 cost = 25, gamma=0.05, degree = 3 cost = 50, gamma= 0.05, degree = 3

SVM RADIAL cost = 50, gamma= 0.05 cost = 0.5, gamma= 0.05 cost = 50, gamma= 0.05

doi:10.1371/journal.pone.0100234.t006

Table 7. Logistic regression model for the outcome ‘dead or alive at 60 months’.

Logistic regression

Variable Value B SE P-value OR 95% CI

Tumor location Glottic larynx (ref) 0.00 2 2 1.00 2

Lip 0.04 0.31 0.89 1.05 [0.5721.91]

Oral cavity 1.00 0.21 0.00 2.73 [1.8324.07]

Oropharynx 0.76 0.25 0.00 2.15 [1.3223.50]

Nasopharynx 20.09 0.41 0.82 0.91 [0.4122.03]

Hypopharynx 0.80 0.26 0.00 2.21 [1.3323.68]

Supraglottic larynx 0.39 0.22 0.07 1.48 [0.9722.26]

ACE27 Grade 0 (ref) 0.00 2 2 1.00 2

Grade 1 0.04 0.18 0.82 1.04 [0.7421.47]

Grade 2 0.36 0.19 0.06 1.43 [0.9922.08]

Grade 3 1.09 0.31 0.00 2.97 [1.6225.45]

T-class T1 (ref) 0.00 2 2 1.00 2

T2 0.67 0.17 0.00 1.95 [1.3822.74]

T3 0.90 0.21 0.00 2.47 [1.6223.76]

T4 1.30 0.21 0.00 3.68 [2.4425.55]

N-class N0 (ref) 0.00 2 2 1.00 2

N1 0.73 0.22 0.00 2.08 [1.3423.22]

N2 1.02 0.22 0.00 2.76 [1.8124.22]

N3 2.13 0.38 0.00 8.40 [3.98217.72]

M-class M0 (ref) 0.00 2 2 1.00 2

M1 1.65 0.85 0.05 5.23 [0.99227.63]

Prior malignancies No (ref) 0.00 2 2 1.00 2

Yes 1.04 0.24 0.00 2.83 [1.7824.50]

Gender Male (ref) 0.00 2 2 1.00 2

Female 20.05 0.17 0.77 0.95 [0.6821.33]

Age at diagnosis per decade 0.49 0.06 0.00 1.63 [1.4421.84]

Constant 24.79 0.44 0.00 0.01 2

B: Regression coefficient.
SE: Standard error regression coefficient.
OR: Odds ratio.
CI: Confidence interval.
doi:10.1371/journal.pone.0100234.t007
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curve. We consider the total expected survival time the most

relevant to inform patients about their prognosis and to support

decision making.

In our study, SVM models with a linear kernel and optimal

settings performed slightly worse than conventional regression

modeling. These findings are in line with other studies that used

support vector machines for analyzing survival [3–6]. On the other

hand, our findings also support the results of previous studies that

relied on Cox regression modeling to predict the five year

mortality and the overall mortality of newly diagnosed patients

with HNSCC [15–17].

None of the investigated models showed a very satisfactory

performance. This may possibly be explained by the low signal-to-

noise ratio in our data. In 1998, Ennis et al. discussed the

predictive performance of adaptive non-linear algorithms versus

conventional statistical techniques. Based on their quite negative

findings for the more modern algorithms, they postulated that

adaptive non-linear methods may be most useful in problems with

high signal-to-noise ratios, which sometimes occur in engineering

and physical science. Since the signal-to-noise ratio is often quite

low in medical prediction studies, they concluded that modern

methods may have less to offer [24].

A limitation of this study is that the results were based on a

single cohort of 1282 Dutch patients, diagnosed at a single center

[16]. We had to rely on bootstrap validation to estimate the

performance of alternative modeling techniques. On the other

hand, the number of events was more than sufficient to allow for

detailed statistical modeling with modern techniques for the

relatively small set of candidate predictors.

We showed that the use of pseudo values opens new possibilities

for analyzing survival problems with techniques other than

conventional regression techniques. The validity of the pseudo

value approach is supported by the concordance between Cox

regression modeling for censored survival time and Generalized

Estimating Equation modeling (GEE) using a log-minus-log link

function [11]. Therefore, this approach deserves a central role in

the ongoing search for improved prediction models for survival.

On the other hand, our results also show that it may be hard to

find modeling approaches that are superior to conventional

regression analysis in terms of performance, applicability and

simplicity.

Table 8. General linear model for the outcome ‘pseudo values at 60 months’.

General linear model

Variable Value B SE 95% CI P-value

Tumor location Glottic larynx (ref) 0.00 2 2 2

Lip 0.00 0.05 [20.1120.10] 0.93

Oral cavity 20.19 0.04 [20.26–20.11] 0.00

Oropharynx 20.14 0.05 [20.23–20.05] 0.00

Nasopharynx 20.06 0.08 [20.2120.09] 0.44

Hypopharynx 20.15 0.05 [20.25–20.06] 0.00

Supraglottic larynx 20.07 0.04 [20.1520.01] 0.08

ACE27 Grade 0 (ref) 0.00 2 2 2

Grade 1 0.00 0.03 [20.0620.06] 0.99

Grade 2 20.07 0.04 [20.1420.00] 0.06

Grade 3 20.19 0.05 [20.29–20.09] 0.00

T-class T1 (ref) 0.00 2 2 2

T2 20.13 0.03 [20.20–20.07] 0.00

T3 20.19 0.04 [20.27–20.11] 0.00

T4 20.27 0.04 [20.34–20.19] 0.00

N-class N0 (ref) 0.00 2 2 2

N1 20.16 0.04 [20.25–20.08] 0.00

N2 20.22 0.04 [20.29–20.14] 0.00

N3 20.37 0.05 [20.47–20.26] 0.00

M-class M0 (ref) 0.00 2 2 2

M1 20.27 0.11 [20.49–20.05] 0.02

Prior malignancies No (ref) 0.00 2 2 2

Yes 20.20 0.04 [20.28–20.12] 0.00

Gender Male (ref) 0.00 2 2 2

Female 0.01 0.03 [20.0520.07] 0.69

Age at diagnosis per decade 20.09 0.01 [20.11–20.07] 0.00

Constant 1.38 0.07 [1.2421.52] 0.00

B: Regression coefficient.
SE: Standard error regression coefficient.
CI: Confidence interval.
doi:10.1371/journal.pone.0100234.t008
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In conclusion, the use of pseudo values makes it readily possible

to analyze survival time with alternative modeling techniques, to

compare their performance and to search further for promising

alternative modeling techniques to analyze survival time. In our

case study on patients with newly diagnosed HNSCC, none of the

alternative modeling techniques provided better predictions for

survival than conventional regression modeling techniques. The

estimated importance of predictors depends on the specific aspect

of survival studied and the modeling technique used.
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