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Abstract
Background: The ability to taste 6-n-propylthiouracil (PROP) may be associated with body composition, but previous findings from observational studies are conflicting and cannot be interpreted causally. The aim of this study was to estimate the causal association between PROP taster status and body composition in a population-based cohort study. 
Methods: The study was embedded in a population-based prospective birth cohort study. TAS2R38 genotype (rs713598) was used as an instrumental variable (IV) to obtain unbiased effect estimates of the relation between PROP taster status and body weight (n = 3778). Adiposity measures included body mass index and fat mass measured by DXA scan at the child’s age of 6 years. Associations were investigated using both ordinary linear regression (OLS) and two-stage least squares regression (2SLS). 
Results: Non-taster girls had higher BMI standard deviation scores (SDS) and higher body fat as compared to taster girls (results from linear regression BMI SDS: -0.09, P = 0.023, body fat mass (%): -0.49, P = 0.028). TAS2R38 genotype predicted PROP phenotype (F=240), indicating a strong IV. The 2SLS effect estimates were imprecise but similar to the observational estimates (-0.08 for BMI SDS and -0.46 for body fat mass %) and were not significantly different from the OLS results (Hausman test: P>0.10).  For boys there were no differences observed between tasters and non-tasters. 
Conclusions: Our findings suggest a causal relation between PROP taster status and body weight among 6 year-old girls; Mendelian Randomization were consistent with conventional estimates. In contrast, body weight among boys appeared to be independent of PROP taster status. Further research should focus on possible underlying pathways, such as dietary behaviour.
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Introduction

The ability to taste the bitter substance 6-n-propylthiouracil (PROP), which is chemically related to phenylthiocarbamide (PTC), is genetically determined 
 ADDIN EN.CITE 
(1)
. People who are genetically insensitive to the bitter taste of PROP have been termed “non-tasters” as compared to the PROP sensitive “tasters”. In the US, approximately 30% of the Caucasian population is insensitive to the bitter taste of PROP, but wide variation has been shown among different ethnic groups (2). 
In the past years, some studies 
 ADDIN EN.CITE 
(3-7)
 suggested a relationship between the ability to taste the bitter substance PROP and BMI, but results are inconsistent 
 ADDIN EN.CITE 
(8-12)
. Underlying mechanisms are unknown, but it has been speculated that as compared to tasters, non-tasters have an appetite for greater variety of foods, especially high-fat foods 
 ADDIN EN.CITE 
(13-14)
. As a result, non-tasters may consume more energy and develop higher body weights than tasters 
 ADDIN EN.CITE 
(15)
. However, previous studies have focused on BMI as an indicator of overweight and obesity whereas body fat mass measured by dual- energy X-ray absorptiometry (DXA) is a more sensitive measure; it discriminates between fat mass and lean body mass and, therefore, may better reflect nutritional status than BMI. Also, earlier studies were observational in design and inferring causality from observational studies is problematic 
 ADDIN EN.CITE 
(16-17)
. In addition, the association between phenotype and outcome might be due to residual confounding particular by socioeconomic position (SEP), ethnic or lifestyle factors, or due to reverse causation (16). 
A Mendelian randomization design, using gene(s) randomly allocated at conception as an instrumental variable, provides an alternative way to circumvent problems with causal inference in observational studies (18). The perception of bitter taste is mediated by G-protein coupled receptors, located in taste cells within taste bud of the tongue 
 ADDIN EN.CITE 
(19)
. Variants in TAS2R38, encoding a G-protein-coupled bitter receptor located on chromosome 7q, have been strongly associated with PROP/PTC sensitivity 
 ADDIN EN.CITE 
(1)
. Three common single nucleotide polymorphisms (SNPs), all of which result in amino acid changes in the protein (A49P, V262A and I296V), give rise to the two main haplotypes which are commonly found in human populations; the ‘taster’ haplotype PAV (proline-alanine-valine), and the ‘non-taster’ haplotype AVI (alanine-valine-isoleucine) 
 ADDIN EN.CITE 
(1)
. These variants explain 60%-70% of the variation in PROP taster status 
 ADDIN EN.CITE 
(1, 15)
. This makes these genetic variants very useful as instrumental variables since the method of Mendelian Randomization works better the stronger the association between gene and phenotype 
 ADDIN EN.CITE 
(18, 20)
. Therefore, we assessed in a large prospective birth cohort study whether PROP phenotype is causally related with BMI and body fat mass among 6-year-old children using TAS2R38 genotype as instrumental variable (IV) for PROP phenotype. 
Subjects and Methods
Study design

This study is embedded within the Generation R Study, a population-based prospective cohort study from early pregnancy onwards described in detail elsewhere 
 ADDIN EN.CITE 
(21-23)
. Enrollment was aimed at early pregnancy, but was allowed until the birth of the child. All children were born between April 2002 and January 2006 and form a prenatally enrolled birth-cohort that is currently being followed-up until young adulthood. The study was conducted in accordance with the guidelines proposed in the World Medical Association of Helsinki and has been approved by the Medical Ethical Committee of the Erasmus MC, University Medical Centre Rotterdam. Written consent was obtained from all participating parents (24). 

Study group
Consent for postnatal follow-up was available for 7893 children. The participating children and their mothers were invited to a well-equipped and dedicated research center in the Erasmus Medical Center - Sophia Children’s Hospital between March 2008 and January 2012. Measurements were focused on several health outcomes including body composition, obesity, heart and vascular development and behaviour and cognition 
 ADDIN EN.CITE 
(23)
.  In total, 6690 children visited the research center. We excluded twins (n=167) and participants who lacked information on PROP taster status (n=629), leaving a study population of 5894 children (Supplementary Figure S1).
Genotyping
In the Generation R Study, cord blood for DNA isolation was available in 59% (n=5495) of all live-born participating children. Sex-mismatch rate between genome-based sex and midwife record-based sex was low (<0.5%), indicating that possible contamination of maternal DNA was extremely low. Missing cord blood samples were mainly due to logistical constraints at the delivery. Individual genotype data of TAS2R38 variants were extracted from the genome-wide Illumina 610 Quad Array for the vast majority of the population. Additional DNA of 314 children was isolated from peripheral blood which was collected at the research center and genotyped using the Illumina 660 Quad Array.
There are 3 common variants in the TAS2R38 gene that have been reported to be associated with bitter sensitivity. The A49P variant (rs713598) is in high linkage disequilibrium (LD) with the A262V variant (rs1726866) (r2=0.81 in our study population). The third variant I296V (rs10246939) is in almost perfect LD with the V262A variant (r2=0.92 in our study population). We present results for the A49P (rs713598) SNP only, since they are in strong linkage disequilibrium 
 ADDIN EN.CITE 
(1)
.The allele and genotype coding was based on the amino acid substitution alanine/proline substitution at position 49 of the protein (A49P) as reported in previous studies 
 ADDIN EN.CITE 
(4, 25)
. Children homozygous for the bitter-insensitive allele (GG) were classified as Ala/Ala (AA), children heterozygous (GC) for the bitter-insensitive allele as Ala/Pro (AP), and children homozygous (CC) for the bitter-sensitive allele as Pro/Pro (PP). Genotype data for the A49P polymorphisms was available for 3778 (64.1%) of the children with complete phenotypic information. 
PROP test
The PROP test was conducted around the age of six years (median 6.0, mid-90% range 5.8-6.8) by well-trained staff in the research center. PROP taster status was determined by using a method developed by Keller et al. (13) Children were classified as “tasters” or “non-tasters” by giving them 5 mL of 0.56mmol/l solution of PROP (6-propyl-2-thiouracil; pharmacy of Erasmus MC, Rotterdam) after which they were asked the question: ‘Do you taste anything?’ Children who reported “no” or “like water” were classified as non-tasters. Children who reported “no” or “water” but showed classic rejection sign, such as grimacing or frowning, were classified as tasters. Those who reported a taste for the solution were further questioned as to what the solution tasted like. Responses of “bad”, “bitter”, “sour”, “yucky” and “spicy” were all recorded as tasters. Children who reported that the solution tasted “good” were classified as non-tasters. Some children (n=118) gave discordant answers such as “good” and “bitter”. These children were classified as tasters. 
Body composition
Weight was measured in lightweight clothes and without shoes by using a mechanical personal scale (SECA) and height was measured in children by a Harpenden stadiometer (Holtain Limited) in standing position, which were both calibrated on a regular basis. BMI was calculated using the formula; weight (kg) / height (m)2. BMI was measured in 5887 children. Standard deviation scores (SDS) adjusted for age and gender were constructed for these growth measurements (height, weight and BMI) (26). The DXA scans provided quantifications of bone and soft tissue measurements for the total body and sub regions, including bone mineral content (g), fat mass (g), and lean mass (g) (iDXA; General Electric, formerly Lunar Corp., Madison, WI). Percentage body fat was calculated as total body fat mass divided by total body mass which were obtained from DXA scan (lean mass + fat mass + bone mass of total body) × 100. Children were scanned in a supine position with their feet together in a neutral position and hands flat by their sides. In total, DXA scans were performed in 5794 children. All scans were performed by well-trained and certified research staff who repositioned the regions of interest when appropriate. All DXA scans were obtained using the same device and software (enCORE2010). 
Confounding variables
Information on maternal educational level (highest education finished), net parental household income (<€1600, ≥ €1600) was obtained from the first questionnaire at enrollment in the study and were used as indicators of socioeconomic position. Caucasian ethnicity was defined as having principal components within four SD values of the CEU cluster (Northerwestern European ancestry) of HapMap 
 ADDIN EN.CITE 
(27)
, the others were classified as non Caucasian. Gender of the child was obtained from midwife and hospital registries. Maternal height and paternal weight and height were measured during visits at our research center. Pre-pregnancy weight was established at enrollment through a questionnaire. On the basis of height and pre-pregnancy weight (weight/height2), we calculated pre-pregnancy body mass index (BMI). Playing outside (≤ 2 days, > 2 days), as indicator of physical activity, was obtained from a questionnaire at the age of 5 years.
Statistical analysis
Chi-square tests, two-sample T-test and ANOVA were used to assess whether PROP phenotype and TAS2R38 genotype were associated with potential confounders, such as socio-demographic, lifestyle related and parental characteristics. We assessed the association of PROP taster status with BMI and body fat mass using linear regression models adjusted for all the potential confounders. Mendelian randomization analyses may avoid confounding or reverse causation that may bias conventional observational effect estimates, but MR is also less statistically efficient than conventional analyses (28). Therefore, if the conventional approach is unbiased, parameter estimates from conventional models are preferred.  We use the MR analysis to assess evidence for bias in the conventional effect estimates. For the Mendelian randomization based estimates, we used two-stage least squares analysis with TAS2R38 genotype (rs713598) as an instrumental variable using two indicator variables (AP and PP) (28). Two-stage least square estimation proceeds by first fitting the regression of PROP phenotype (exposure) on TAS2R38 genotype (instrument), and the second step assesses the association of PROP phenotype with BMI and body fat mass (outcome) on the fitted values from the first stage regression. Since the A49P variant and the V262A variant were in high, but not in perfect LD (r2=0.81), we investigated whether adding the V262A variant as ‘extra’ instrument would increase the explained variance and improve power, but results were similar as compared with using A49P only. To compare the estimates from the ordinal regression and the two-stage least squares regression the Durbin-Hausman test was used. The two-stage least squares regression was only adjusted for potential confounders associated with TAS2R38 genotype, since alleles of TAS2R38 genotype are randomly allocated at conception and unlikely to be confounded by SEP, lifestyle or other factors. Multiple imputation was used to deal with the missing values in the covariates (ranging from 6.6% to 35.9%). Five imputed datasets were created and analyzed together. Analyses were performed using the Statistical Package of Social Sciences version 17.0 for Windows (SPSS Inc, Chicago, IL, USA). For the Mendelian randomization approach STATA 12 (StataCorp LP, College Station, Texas) was used.
Results

Characteristics of the children grouped by PROP phenotype status are presented in Table 1. Overall, 77.4% of the children were classified as PROP “tasters”, and 22.6% were “non-tasters”. Boys were more frequently non-tasters (52.8%, N=702) as compared to girls (47.2%, N=628) (P = 0.014). No differences in the distribution of age, physical activity, ethnic background, socioeconomic position and parental BMI were found by PROP taster status (Table 1).  Table 2 shows that TAS2R38 genotype was not associated with gender, physical activity, socioeconomic position and parental BMI for both Caucasians and non Caucasians. 
The minor allele frequency (MAF) of the C allele (coding for Proline (P)) of TAS2R38 was found to be 0.43 in our study sample. Splitting the population in two ethnic groups showed some difference with MAF of 0.40 in Caucasian children and 0.48 in non Caucasian children (Table 2). Children who carried the PP or AP genotypes were much more likely to be PROP “tasters” by phenotype (OR: 19.1; 95% CI: 13.8, 26.6 and OR: 13.5; 95% CI: 11.0, 16.4). According to participants PROP taster status, 80.4% would have been classified the same status according to their TAS2R38 genotype. The overall contribution of genotype to phenotype was 35.6% (Nagelkerke R² = 0.356, P < 0.001). 
Multivariable regression analyses were performed with PROP phenotype being the independent variable and BMI (in SDS) and body fat mass (% of total body mass) the dependent variable (Table 3). A significant interaction between PROP phenotype and gender on BMI SDS was found (P=0.040). Therefore, the models were also calculated for boys and girls separately. All models were adjusted for parental BMI, socioeconomic position, ethnicity child and playing outside. The models for fat mass were additionally adjusted for exact age and height at measurement. Taster girls were found to have significantly lower BMI standard deviation scores (difference: -0.09 SDS; 95% CI: -0.17,-0.01; P=0.023) and a lower body fat mass (difference: -0.49%; 95% CI: -0.93,-0.05; P=0.028) as compared to non-taster girls. No association between PROP phenotype and BMI (difference: 0.01 SDS; 95% CI: -0.06, 0.09; P=0.340) or body fat mass (difference: -0.19%; 95% CI: -0.60, 0.21; P=0.355) was found in boys (Table 3). Maternal educational level, household income and ethnicity did not interact with PROP phenotype to influence BMI or body fat mass (P>0.05). A second linear regression was performed with TAS2R38 genotype being the independent variable. BMI and fat mass were not significantly different according to TAS2R38 genotype (P>0.10).
Table 4 shows the result of the Mendelian Randomization approach. The regression of the taster phenotype on TAS2R38 genotype (F=240) indicated the genotype provided a strong instrumental variable. The effect estimates derived from ordinary linear regression (OLS) (BMI difference: -0.04 SDS; 95% CI: -0.09, 0.02; P=0.163 and fat mass difference: -0.18%; 95% CI -0.51, 0.15; P=0.316) and 2SLS regressions (BMI difference: -0.01 SDS; 95% CI: -0.14, 0.12; P=0.930 and fat mass difference: -0.003%; 95% CI -0.79, 0.79; P=0.995)  were not significant in the overall population. For boys the results of the 2SLS regression were also not significant (BMI difference: 0.07 SDS; 95% CI: -0.11, 0.25; P=0.453 and fat mass difference: 0.11%; 95% CI -0.87, 1.09.15; P=0.822).  For girls, the OLS effect estimates were significant for both BMI SDS (P=0.023) and fat mass (P=0.028). The Hausman test indicated no significant differences between the OLS and 2SLS effect estimates (P>0.10), although the 2SLS effect estimates were imprecise and the CIs included the null (Table 4). Point estimates from OLS and 2SLS models were similar, providing no evidence of bias in the more efficient OLS models. 
Discussion
To the best of our knowledge, this is the first population-based study to use a Mendelian randomization (MR) approach regarding PROP phenotype and adiposity measures. This study suggests that PROP taster status is causally related to body composition measures in girls. We found non-taster girls to have a higher BMI and a higher body fat mass as compared to taster girls. For boys, no differences were observed in BMI and body fat mass between PROP tasters and non-tasters. 
Methodological considerations
The main strength of this study lies in the fact that we used a MR design which is less susceptible to confounding as compared to an observational design since the genes used as instrumental variables are unlikely to be systematically related to socio-demographic factors or lifestyle 
 ADDIN EN.CITE 
(17-18)
. Second, MR analysis rules out the possibility of reversed causation which can play a role in an observational study (17). This is particularly important in the association between PROP status and body composition, since there is evidence for altered taste sensitivity in obese subjects, but it is not clear whether this causes obesity or whether obesity secondarily alters taste 
 ADDIN EN.CITE 
(29-30)
. Furthermore, this is the first study showing a relation between PROP status and fat mass in girls measured by DXA scan. 
MR analyses can be used to estimate the causal effect of taster status on adiposity if three key assumptions are fulfilled 
 ADDIN EN.CITE 
(18, 31)
. First, there must be no unmeasured common causes of TAS2R38 genotype (A49P) and the adiposity measures. Our possible confounders and TAS2R38 were not associated, and generally there are few plausible causes of genotype other than parental genotype or population group. Second, we assume that TAS2R38 is associated with PROP taster status; this assumption was confirmed in our data. Third, we assume that there is no direct association between TAS2R38 and body composition and that every directed pathway from TAS2R38 to BMI and fat mass passes through PROP taster status. Pleiotropy would violate this assumption, but unfortunately this cannot be tested statistically (31). In the literature, however, the A49P variant of the TAS2R38 genotype has not been linked to other phenotypes which might be associated with adiposity measures. Eating behaviour disinhibition might be an exception, since this was found to be associated with the V262A variant in one study 
 ADDIN EN.CITE 
(32)
. Previous literature, however, showed that variation in taste function influences eating behaviour, suggesting that we fulfilled the third assumption of MR as well (33).
PROP phenotype, TAS2R38 genotype and body composition

The prevalence of non-tasters in our study population is somewhat lower compared to the prevalence found in the Caucasian population in the U.S. 
 ADDIN EN.CITE 
(2, 34)
 and that found in other studies 
 ADDIN EN.CITE 
(4, 15, 35)
. The allele frequencies found in our population were comparable with previously reported frequencies for both the Caucasian and non Caucasian population (36). The ability to taste PROP was more common in girls than in boys, which is in line with previous research 
 ADDIN EN.CITE 
(2, 37)
. TAS2R38 genotype explained 35.6% of the variation in PROP phenotype. This is comparable with the study of Feeney et al. but lower then found in other studies (36). Since the method used to classify PROP taster status in this study was a simple-screening procedure which lacked the sensitivity of standard threshold techniques, part of the non-explained phenotypic variation in PROP tasting may be due to phenotypic misclassification. Furthermore, environmental factors, modifying genes or unknown genes that have yet to be identified may also play a role 
 ADDIN EN.CITE 
(7, 38-40)
. 
Prior findings regarding the association of PROP phenotype and body weight have been inconsistent 
 ADDIN EN.CITE 
(3, 6, 8-9, 12, 15)
. Some studies showed a higher BMI among tasters 
 ADDIN EN.CITE 
(8, 12)
. Other studies found non-taster females to have higher body weights as compared to taster females 
 ADDIN EN.CITE 
(5-6, 15, 36)
, while other studies have not found any relationship between PROP status and body weight 
 ADDIN EN.CITE 
(9, 11)
. Furthermore, our findings were in contrast with the findings of Keller et al. 
 ADDIN EN.CITE 
(3-4)
, which showed non-taster boys to have higher body weights than taster boys. The reports of association between BMI and PROP phenotype may be due to chance associations, since there is no replication of consistent findings. Furthermore, the discrepancies could be due to failure to adjust fully for confounding factors, such as socioeconomic position, lifestyle and family dietary habits, which are associated with body weight and are difficult to assess comprehensively. Another explanation might be that the impact of PROP taster status on body composition depends on the typical diet of a population. Thus, perhaps there is true heterogeneity of the effect of PROP taster status on body composition, depending on dietary ‘environment’. 

We build importantly on prior work by strengthening evidence for a causal effect of PROP phenotype on body composition measures among females. We found a similar magnitude and direction of both effect estimates derived from 2 complementary study designs which were not significantly different when confirmed by the Hausman test. However, the effect estimates of the 2 SLS regression among girls were imprecise and not statistically significant at conventional thresholds. MR models have advantages with respect to reducing bias but are nearly always less efficient, i.e., require larger sample sizes, than conventional models because the genotype does not perfectly predict the phenotype. This loss of efficiency was exacerbated here because our MR analyses excluded over 1000 individuals who were not genotyped. For this reason, conventional estimates are generally preferred if they are unbiased. We therefore used the MR effect estimates to evaluate the plausibility of substantial bias in the conventional effect estimates and found no evidence for bias in the Hausman tests comparing the MR to the OLS effect estimates. However, this should be interpreted cautiously because the Hausman test also may be underpowered to detect bias. This means that replication in diverse samples, along with meta-analyses to maximize effective sample sizes, will be valuable to confirm these findings.  
The reason PROP phenotype is only associated with BMI and body fat mass among girls is unknown. An interaction between PROP phenotype, gender and diet could possibly explain the different influence of PROP phenotype on BMI in females since studies show differences in diets between boys and girls 
 ADDIN EN.CITE 
(41-42)
. It has been suggested that non-taster phenotype and female gender contribute to higher fat intake and ultimately to greater weight gain as compared to boys 
 ADDIN EN.CITE 
(13, 15)
. Another study found that more than 20% of the variation in food preferences could be contributed to taster status and this influence was found to vary with gender (36). Also, a recent study demonstrated that girls have a greater sensitivity to disliked foods (43) suggesting that PROP status may be better captured in girls than in boys since girls may be more sensitive to taste. 
Study limitations

A potential limitation in our study is the method that we used to classify PROP phenotype could only distinguish tasters from non-tasters. Previous studies showed that tasters consist of two subgroups; medium tasters, who show moderate taste sensitivity to PROP, and supertasters, who are highly sensitive 
 ADDIN EN.CITE 
(37, 44)
. The association with BMI and fat mass could be different for these two groups. The method, however, used to make this PROP classification is probably too complicated for 6-year-old children and may have given unreliable results. Also, no information on parental feeding factors was available which might act as a confounder in the association between PROP status and body composition. Furthermore, we did not have comprehensive data on dietary intake and dietary behaviour such as restraint and disinhibition at the age of 6 years. One of the underlying causal pathways in the relationship between PROP status and body composition that has been hypothesized is related to dietary behaviour (33). Therefore, further studies on the underlying mechanisms including dietary behaviour are necessary.  

Conclusion

This study adds to the small body of literature that showed non-taster females to have higher body weights and fat mass than taster females. We provide novel evidence from a Mendelian Randomization design on the validity of the effect estimates; using TAS2R38 genotype as a natural experiment, we find no evidence of confounding in the observational estimates of the effect of PROP status on adiposity measures. PROP status may play a role in the aetiology of obesity in girls and may be useful for prevention and intervention strategies in the future. Further research should focus on possible underlying pathways, such as dietary behaviour. Also, larger MR studies are necessary to confirm our findings. 
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Table 1. Socio-demographic characteristics by PROP taster status
	
	N


	Non-tasters

(N = 1330)
	Tasters

(N = 4564)

	Age (years)
	5894
	6.2 (0.5)
	6.2 (0.5)

	Gender ( %)* 
	
	
	

	Boys 
	2936
	52.8 
	48.9

	Girls 
	2958
	47.2
	51.1

	Child’s ethnicity (%)
	
	
	

	Caucasian 
	2007
	54.6
	52.7

	Non Caucasian 
	1772
	45.4
	47.3

	Playing outside (%)
	
	
	

	≤ 2 days/week 
	351
	9.3
	8.1

	> 2 days/week 
	3848
	90.7
	91.9

	Maternal education (%)
	
	
	

	High 
	1344
	26.0
	24.8

	Mid high 
	1141
	20.4
	21.6

	Mid low 
	1675
	30.2
	31.5

	Low 
	1201
	23.4
	22.1

	Household income (%)
	
	
	

	Low income 
	1191
	27.4
	26.6

	Higher income 
	3257
	72.6
	73.4

	Maternal BMI (kg/m2) 
	4404
	23.6(4.3)
	23.6(4.2)

	Paternal BMI (kg/m2) 
	4065
	25.3(3.5)
	25.3(3.4)


* P<0.05
Values are percentages or mean (SD). P-values are for Chi-square test for categorical variables, and two-sample T test for continuous variables. 
Table 2. Socio-demographic characteristics by TAS2R38 genotype stratified on Caucasian and non Caucasian background
	
	
	Caucasian
	
	Non Caucasian

	TAS2R38 genotype 
	N


	AA

(N = 299)
	AP

(N = 997)
	PP

(N = 707)
	N


	AA

(N = 412)
	AP

(N = 861)
	PP

(N = 497)

	Prop taster status*
	
	
	
	
	
	

	Non-tasters (%)
	471
	55.6
	6.7
	3.7
	392
	54.7
	10.2
	7.8

	Tasters (%)
	1532
	44.4
	93.3
	96.3
	1378
	45.3
	89.8
	92.2

	Age (years)
	2003
	6.1 (0.4)
	6.1 (0.4)
	6.1 (0.4)
	1770
	6.3 (0.6)
	6.3 (0.6)
	6.3 (0.6)

	Gender (%)
	
	
	
	
	
	
	
	

	Boys 
	994
	52.6
	47.1
	50.8
	882
	49.3
	50.2
	49.8

	Girls 
	1009
	47.4
	52.9
	49.2
	888
	50.7
	49.8
	50.2

	Playing outside (%)
	
	
	
	
	
	
	
	

	≤ 2 days/week 
	70
	3.8
	4.5
	3.4
	160
	12.3
	12.9
	16.8

	> 2 days/week 
	1634
	96.2
	95.5
	96.6
	1012
	87.7
	66.1
	83.2

	Maternal education (%)
	
	
	
	
	
	
	
	

	High 
	745
	40.5
	34.8
	41.8
	178
	10.7
	11.0
	12.1

	Mid high 
	547
	27.7
	28.4
	26.0
	259
	15.8
	17.1
	15.1

	Mid low 
	469
	21.6
	26.1
	21.2
	597
	38.5
	36.8
	37.6

	Low 
	208
	10.2
	10.7
	11.0
	559
	35.0
	35.1
	35.2

	Household income (%)
	
	
	
	
	
	
	
	

	Low income 
	149
	8.3
	8.1
	8.1
	651
	49.0
	49.6
	47.2

	Higher income 
	1670
	91.7
	91.9
	91.9
	680
	51.0
	50.4
	52.8

	Maternal BMI (kg/m2) 
	1690
	23.6 (3.6)
	23.0 (3.6)
	23.0 (3.7)
	1395
	23.8 (4.5)
	24.0 (4.2)
	23.6 (4.7)

	Paternal BMI (kg/m2) 
	1812
	25.0 (3.2)
	25.1 (3.3)
	25.2 (3.4)
	1095
	25.3 (3.8)
	25.4 (3.5)
	25.4 (3.5)


* P<0.001
Values are percentages or mean (S.D.). P-values are for Chi-square test for categorical variables, and ANOVA for continuous variables. A is coding for the G allele, P is coding for the C allele.
Table 3. Association between adiposity measures and PROP phenotype derived from multivariable linear regressiona

	
	
	Unadjusted
	
	Adjustedb
	
	Unadjusted
	
	Adjustedb
	
	Unadjusted
	
	Adjustedb

	
	N
	ß
	P value
	
	ß
	P value
	N
	ß
	P value
	
	ß
	P value
	N
	ß
	P value
	
	ß
	P value

	BMI SDS
	
	Overall
	
	Boys
	
	Girls

	PROP taster

Taster

Non-taster
	1329

4558
	-0.04

Ref
	0.177


	
	-0.04
Ref
	0.163

	702

2232
	0.02

Ref
	0.621
	
	0.01
Ref
	0.340
	627

2326
	-0.10

Ref
	0.019
	
	-0.09

Ref
	0.023

	Fat mass (%)c
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	PROP taster

Taster

Non-taster
	1313

4481
	-0.20
Ref
	0.255

	
	-0.18
Ref
	0.278

	690

2188
	-0.19
Ref
	0.384
	
	-0.19
Ref
	0.355
	623

2293
	-0.53
Ref
	0.025
	
	-0.49
Ref
	0.028


SDS = standard deviation score
aValues reflect the effect estimates (ß) and their p-values
bAdjusted for parental BMI, maternal education, household income, ethnicity child and playing outside.
cAll models for fat mass are also adjusted for exact age and height at measurement. 

Table 4. Association of adiposity measures with PROP phenotype in a Mendelian Randomization Design in the overall population and among boys and girls separately
	
	Ordinary Linear Regression

	
	2-Stage Least Square


	Hausman

P valuea

	
	N
	ß (95% CI)
	P value
	
	N
	ß (95% CI)
	P value
	

	Overall
	
	
	
	
	
	
	
	

	BMI SDSb
	5887
	-0.04 (-0.09,0.02)
	0.163
	
	3773
	-0.01 (-0.14,0.12)
	0.930
	0.649

	Fat mass (%)c
	5794
	-0.18(-0.51,0.15)
	0.278
	
	3716
	-0.003 (-0.79,0.79)
	0.995
	0.686

	Boys
	
	
	
	
	
	
	
	


	BMI SDSb
	2953
	0.01 (-0.06,0.09)
	0.340
	
	1876
	0.07 (-0.11,0.25)
	0.453
	0.575

	Fat mass (%)c
	2878
	-0.19(-0.60,0.21)
	0.355
	
	1841
	0.11(-0.87,1.09)
	0.822
	0.580

	Girls
	
	
	
	
	
	
	
	

	BMI SDSb
	2934
	-0.09(-0.17,-0.01)
	0.023
	
	1897
	-0.08(-0.27,0.11)
	0.390
	0.933

	Fat mass (%)c
	2916
	-0.49 (-0.93,-0.05)
	0.028
	
	1875
	-0.46(-1.53,0.60)
	0.394
	0.965


SDS = standard deviation score
aThe Hausman P value indicates whether the 2-stage least squares and fully adjusted ordinary linear regression estimates differ. Results are presented as standardized regression coefficients (ß) along with 95% confidence intervals (CI). The 2-stage least square analysis is adjusted for ethnicity child and derived from non-imputed data.
bAdjusted for parental BMI, maternal education, household income, ethnicity child and playing outside in the ordinary linear regression.
cAdjusted for parental BMI, maternal education, household income, ethnicity child, playing outside, exact age and height at measurement in the ordinary linear regression.
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