Uptake of Triiodothyronine Sulfate and Suppression of Thyrotropin Secretion in Cultured Anterior Pituitary Cells

To investigate the uptake of triiodothyronine sulfate (T$_3$S) and its effect on thyrotropin-releasing hormone (TRH)-induced thyrotropin (TSH) secretion, anterior pituitary cells were isolated from euthyroid rats and cultured for 3 days in medium containing 10% fetal calf serum. Incubation was performed at 37°C in medium containing 0.5% bovine serum albumin (BSA). Exposure of the pituitary cells to 1H(T (0.1 µmol/L) for 2 hours stimulated TSH secretion by 176%. This effect was reduced by approximately 45% after a 2-hour preincubation with T$_3$ (0.001 to 1 µmol/L). A significant inhibitory effect of T$_3$S on TRH-induced TSH release was only observed at a concentration of 1 µmol/L. The uptake of [125I]T$_3$ after 1 hour of incubation was reduced by 40% ± 4% (P < .001) by simultaneous addition of 10 nmol/L unlabeled T$_3$, whereas 1 µmol/L T$_3$S was required to obtain a reduction of the [125I]T$_3$ uptake by 34% ± 2% (P < .001). The amount of T$_3$ present in the unlabeled T$_3$S preparation was 0.25% as determined by radioimmunoassay. When pituitary cells were incubated for 1 hour with [125I]T$_3$S or [125I]T$_3$ (both 50,000 cpm/0.25 mL), the uptake of [125I]T$_3$S expressed as a percentage of the dose was 0.04% ± 0.02% (mean ± SE, n = 4), whereas that of [125I]T$_3$ amounted to 3.9% ± 0.4% (n = 4). In contrast, when hepatocytes were incubated for 1 hour with [125I]T$_3$S, the uptake amounted to 5.1% ± 0.8% (n = 9), whereas that of [125I]T$_3$ was 22.1% ± 1.7% (n = 9). Furthermore, [125I]T$_3$S was as rapidly deiodinated (iodide production, 14.9% ± 2.6%; n = 9) as [125I]T$_3$ (12.1% ± 0.8%, n = 9) by hepatocytes. It is concluded that (1) T$_3$S is poorly taken up by pituitary cells, and (2) the suppressive effect of high concentrations of T$_3$S on TRH-induced TSH secretion and on [125I]T$_3$ uptake can be explained by slight contamination with T$_3$. Thus, it appears that T$_3$S has only a minor biological effect, if any, on the pituitary.

Copyright © 1994 by W.B. Saunders Company

SULFATION plays a significant role in the metabolism of iodothyronines in both man and animals, although it is probably more important for triiodothyronine (T$_3$) than for thyroxine, at least in rats and dogs. However, during nonthyroidal illness (NTI) the contribution of the different pathways, i.e., deiodination, glucuronidation, and sulfation, to thyroid hormone metabolism might change considerably. Measurements of the hormone levels in sera of NTI patients showed that the reduction in serum T$_3$ and thyroxine was accompanied by a threefold increase in serum T$_3$ sulfate (T$_3$S) apart from the known increase in serum T$_3$. Despite these changes, serum thyrotropin (TSH) was in the normal range.

In the study by LoPresti et al. the question was raised as to whether the increased T$_3$S production might contribute to the suppression of TSH secretion during NTI. In their experiments, infusion of T$_3$S in healthy volunteers, calculated to result in a relatively low serum level of T$_3$S, did not reduce the serum TSH level. In another study with the growth hormone–producing pituitary tumor cell line GH$_4$, it was shown that T$_3$S failed to displace [125I]T$_3$ from the nuclear binding sites. However, the possibility that T$_3$S could have thyromimetic activity after desulfation was not excluded. More recently, it was reported that administration of T$_3$S to hypothyroid rats produced thyromimetic effects with a potency of approximately 20% that of T$_3$. In the same study, it was shown that treatment of hypothyroid rats with a relatively high dose of T$_3$S resulted in a reduction of serum TSH and a normalization of the serum T$_3$ level, indicating desulfation of T$_3$S in vivo.

Together, these results could be explained by the assumption that T$_3$S is not taken up by the pituitary, and that the effects of T$_3$S in vivo might be due to an effect of T$_3$ (after desulfation or due to contamination of T$_3$S). To test this hypothesis, the present study was undertaken to examine in vitro the effects of T$_3$S on TSH secretion and the uptake of [125I]T$_3$S by the pituitary. We used primary cultures of anterior pituitary cells of euthyroid rats. This preparation contains active thyrotrophs that release TSH in response to (TSH-releasing hormone [TRH]) and transport T$_3$ by a carrier-mediated mechanism. Since it is not known whether T$_3$S is metabolized in the pituitary like it is in the liver and whether possible effects of T$_3$S on pituitary function should be ascribed to T$_3$S itself or to any metabolic product, we have also compared pituitary cells and hepatocytes with respect to the uptake and deiodination of [125I]T$_3$S and [125I]T$_3$.

MATERIALS AND METHODS

Animals

All experiments were performed using male Wistar rats weighing 220 to 250 g. The animals had free access to food and water and were kept in a controlled environment (21°C) with constant day length (12 hours).

Pituitary Cell Culture

Animals (12 for each experiment) were killed between 9:00 and 9:30 AM by decapitation. The pituitary glands were removed within 5 minutes, the neurointermediate lobe was discarded, and the anterior lobes were collected in calcium- and magnesium-free Hanks balanced salt solution supplemented with 10 g/L human serum albumin, penicillin (10,000 U/L), amphotericin B (Fungizone), and 10% fetal calf serum.
Bristol-Myers Squibb, Woerden, The Netherlands; 0.5 mg/L), and sodium bicarbonate (0.4 g/L). The anterior pituitary lobes were dissociated with dispase (2.4 x 10^3 U/L) as described in detail elsewhere. From each pituitary, 1 to 1.5 x 10^6 cells were obtained, and the viability of the cells as determined by trypan blue exclusion was greater than 90%.

The cells were cultured at 37°C in a water-jacketed incubator in humidified air with 5% CO_2 at a density of 3 to 5 x 10^6 cells per well in 48 well culture dishes. The culture medium consisted of Minimal Essential Medium with Earle’s salts supplemented with nonessential amino acids, sodium pyruvate (1 mmol/L), 10% fetal calf serum, penicillin (10^5 U/L), amphotericin B (0.5 mg/L), l-glutamine (2 mmol/L), and sodium bicarbonate (2.2 g/L, pH 7.4). The cells had attached to the wells after 2 days of culture; on day 3, the cells were used for experiments. In a previous study it was shown that the TSH content of the pituitary cell preparation was highest after this short period of culture.

TSH Secretion

The culture medium was removed from the cells, and the cells were washed once with incubation medium. This medium was identical to the culture medium except that the fetal calf serum was replaced by 0.5% bovine serum albumin (BSA). The pituitary cells were preincubated for 2 hours at 37°C in the absence or presence of variable concentrations of T3 or T3S (0.001 to 1 μmol/L). The medium was then discarded, and fresh medium was added containing TRH (0.1 μmol/L) with or without T3 or T3S. Incubation was continued for 2 hours at 37°C and was followed by removal of the medium. The cells were washed once with 1 mL ice-cold saline (0.9% NaCl). Incubation media were centrifuged (2,000 x g), and the supernatants were frozen for later determination of TSH. Incubations were performed in triplicate.

Hepatocytes

Hepatocytes were isolated by collagenase perfusion as previously described. Cells were cultured at 37°C at a density of 2 x 10^6 cells per well in 6-well culture dishes in 2 mL Ham’s F10, HEPES (8.9 mmol/L), PIPES (10.6 mmol/L), and N,N-bis[2-hydroxyethyl]-2-aminoethane sulfonic acid ([BES] 12.2 mmol/L) supplemented with 10% fetal calf serum, CaCl_2 (2 mmol/L), glucose (6.7 mmol/L), insulin (12 U/L), and penicillin/streptomycin (5 x 10^4 U/L, pH 7.4). After 4 hours of culture, the cells were washed once with rinsing medium and used for experiments.

Uptake of [125I]T_3 and [125I]T_T3S

For these studies, cells were cultured as described above. On the same culture dishes, an equal number of wells contained only culture medium (blanks). All incubations with and without cells were performed in triplicate.

Pituitary cells were equilibrated in 0.5 mL culture medium containing 0.5% BSA. After equilibration for 30 minutes, the medium was removed and the cells were incubated for 1 hour at 37°C with [125I]T_3 (50,000 cpm, 50 μmol/L) in 0.25 mL medium alone or together with 0.01 to 10 μmol/L T3 or T3S. The uptake of [125I]T_3S (50,000 cpm) was measured exactly as for [125I]T_3.

To allow direct comparison with the hepatocyte experiments, two experiments with pituitary cells were performed in incubation medium with NaHCO_3 was replaced by an equimolar amount of HEPES (8.9 mmol/L), PIPES (10.6 mmol/L), and BES (11.2 mmol/L). As previously described, this did not affect the uptake of [125I]T_3 by the pituitary cells. After incubation, the medium was removed and the cells were washed with 1 mL ice-cold saline to remove labeled compounds not bound to the cells. Cells were dissolved in 1 mL 0.1N NaOH and were counted for radioactivity in a 16-channel gamma counter (NE 1600, Nuclear Enterprises, Sighthill, Edinburgh, Scotland). The amount of [125I]T_3 or [125I]T_3S taken up by the cells was expressed as a percentage of the dose. The same procedure was applied to the incubations without cells. All results are corrected for the amount of radioactivity retained in the wells without cells.

Hepatocytes were incubated with [125I]T_3 or [125I]T_3S (both 100,000 cpm/mL) at 37°C for 1 to 120 minutes in 1 mL hepatocyte culture medium with 0.5% BSA instead of fetal calf serum. Further processing was the same as for pituitary cells.

Iodide Production

Aliquots of the incubation medium from the three uptake experiments with hepatocytes (Fig 2) and the two experiments with pituitary cells (Table 2) were chromatographed on Sephadex G-70. Iodide was eluted from the column with 3 x 1 mL 0.1N HCl. Subsequently, glucuronides and sulfates (conjugates) were eluted with 8 x 1 mL H_2O_2, and finally the iodothyronines were removed from the column with 3 x 1 mL 50% ethanol in 0.1N NaOH.

Determination of TSH

TSH levels in the incubation media were measured by radioimmunoassay as previously described.

Analysis of T3S

The purity of the unlabeled T3S preparation was tested by conventional radioimmunoassay with two T3 antisera produced in our laboratory (no. 7157 and 7160). Both antisera were used in a final dilution of 1:200,000.

Free T3 and T3S Concentrations

Calculation of the free T3 and T3S concentrations in the experiments was based on the determination of the free fractions by equilibrium dialysis. With 0.5% BSA in the incubation medium, the free T3 fraction amounted to 2.85% ± 0.01% (n = 4), and the free T3S fraction to 2.12% (n = 2). The free T3S fraction was corrected for the fact that only 60% of the T3S precipitated with MgCl_2. It was further checked by high-performance liquid chromatography that this was not due to the presence of iodide in the [125I]T_3S preparation.

Materials

All solutions used for cell isolation and cell culture were obtained from Gibco Europe (Breda, The Netherlands), with the exception of human serum albumin (Rhone-Poulenc, Amstelveen, The Netherlands), dispase (grade II, Boehringer, Mannheim, Germany), and collagenase (type I, Sigma, St Louis, MO). Culture dishes (48- and 6-well) were purchased from Costar (Cambridge, MA) and Nunc (Roskilde, Denmark), respectively. TRH (Relefact) was obtained from Hoechst, Frankfurt am Main, Germany. T3, PIPES, HEPES, BES, and BSA (fraction V) were purchased from Sigma (St Louis, MO). [3',5',125I]T_3 (3,070 μCi/μg) was purchased from Amersham International (Aylesbury, Buckinghamshire, UK). T3S and [125I]T_3S were prepared from T3 and [125I]T_3, respectively, using CSO_4·H_2O. [125I]T_3S was purified by LH-20 chromatography, and analysis of the fractions by high-performance liquid chromatography showed that the preparation consisted of 98% T3S and contained less than 2% iodide. Reagents for the rat TSH radioimmunoassay were kindly provided by the National Institute of Diabetes and Digestive and Kidney Diseases (Bethesda, MD). Sephadex G25 was obtained from Pharmacia (Uppsala, Sweden). All other reagents were of the highest purity available.
were cultured for 3 days at a density of 5 x 10^5 cells/well. The cells were preincubated for 2 hours in the absence or presence of T₃ (0.01 to 1 µmol/L) or T₃S (0.01 to 1 µmol/L). Then they were incubated with TRH (0.1 µmol/L) for 2 hours with or without the additions indicated. Anterior pituitary cells (0.1 trmol/L) for 2 hours with or without the additions indicated.

Effects of T₃S on TSH Secretion

Table 1 shows a comparison of the effects of various concentrations of T₃ and T₃S on the TRH-induced TSH secretion by anterior pituitary cells. When TRH was added at a concentration of 0.1 µmol/L, TSH release was stimulated by 176% (P < .001). This effect was reduced by approximately 45% after preincubation with 1 µmol/L T₃ or T₃S (P < .001 for both). The inhibitory effect of T₃ on TRH-induced TSH secretion was the same after preincubation with lower concentrations of T₃ (0.1 and 0.01 µmol/L).

Effects of T₃S on [¹²⁵I]T₃ Uptake

A comparison between the effects of T₃ and T₃S was also made with respect to the uptake of [¹²⁵I]T₃ by the pituitary cells. Figure 1 shows the combined results of three experiments. In the first experiment with 300,000 cells per well the uptake of [¹²⁵I]T₃ was 1.62% ± 0.03% (n = 3), and 2.39% ± 0.08% (n = 5). Simultaneous incubation of the cells with 0.01, 0.1, and 10 µmol/L unlabeled T₃ reduced the uptake of [¹²⁵I]T₃ by 40% ± 4% (P < .001), 40% ± 5% (P < .001), 52% ± 2% (P < .001), and 56% ± 1% (P < .001), respectively. When T₃S was added at concentrations of 0.01, 0.1, and 10 µmol/L, [¹²⁵I]T₃ uptake was reduced by 6% ± 4% (NS), 11% ± 4% (P < .025), 34% ± 2% (P < .001), and 52% ± 5% (P < .001), respectively.

Uptake of [¹²⁵I]T₃S by Pituitary Cells and Hepatocytes

In four experiments with 500,000 cells per well, the uptake of [¹²⁵I]T₃S by pituitary cells was compared with that of [¹²⁵I]T₃ (Table 2). After 1 hour of incubation the uptake of [¹²⁵I]T₃S was less than 0.1%, whereas the mean uptake of [¹²⁵I]T₃ amounted to 3.0% ± 0.4% (Table 2). In contrast, both [¹²⁵I]I₃S and [¹²⁵I]I₁ were taken up by hepatocytes (Fig 2A), although the uptake of [¹²⁵I]I₃S was only fourfold greater than that of [¹²⁵I]I₃. The uptake of both compounds reached a maximum value between 0.5 and 1 hour of incubation, and then declined slightly. As can be seen from Fig 2B, both T₃ and T₃S were deiodinated in hepatocytes, and iodide production from [¹²⁵I]T₃S was at

Table 1. Effects of T₃ and T₃S on the TRH-Induced Stimulation of TSH Release From Anterior Pituitary Cells

<table>
<thead>
<tr>
<th>Experimental Conditions</th>
<th>TSH Release (ng)</th>
<th>Effect (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (14)</td>
<td>2.1 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ TRH 0.1 µmol/L (14)</td>
<td>5.8 ± 0.2</td>
<td>+176</td>
<td><.001</td>
</tr>
<tr>
<td>TRH + T₃ 1 µmol/L (18)</td>
<td>4.1 ± 0.3</td>
<td>+95</td>
<td><.001*</td>
</tr>
<tr>
<td>TRH + T₃S 1 µmol/L (9)</td>
<td>3.9 ± 0.3</td>
<td>+86</td>
<td><.001*</td>
</tr>
<tr>
<td>TRH + T₃ 0.1 µmol/L (13)</td>
<td>4.3 ± 0.1</td>
<td>+104</td>
<td><.025*</td>
</tr>
<tr>
<td>TRH + T₃S 0.1 µmol/L (6)</td>
<td>5.3 ± 0.2</td>
<td>+152</td>
<td>NS*</td>
</tr>
<tr>
<td>TRH + T₃ 0.01 µmol/L (6)</td>
<td>4.2 ± 0.2</td>
<td>+100</td>
<td><.001*</td>
</tr>
<tr>
<td>TRH + T₃S 0.01 µmol/L (6)</td>
<td>5.7 ± 0.1</td>
<td>+171</td>
<td>NS*</td>
</tr>
</tbody>
</table>

NOTE. Data are the mean ± SE of three independent experiments, with the number of observations in parentheses. Anterior pituitary cells were cultured for 3 days at a density of 5 x 10⁶ cells/well. The cells were preincubated for 2 hours in the absence or presence of T₃ (0.01 to 1 µmol/L) or T₃S (0.01 to 1 µmol/L). Then they were incubated with TRH (0.1 µmol/L) for 2 hours with or without the additions indicated.

*P values calculated compared with the addition of TRH alone.
T3 UPTAKE IN PITUITARY AND HEPATOCYTES

![Graph](image)

Fig 2. Time course of the (A) uptake of \([125I]T_3\) and (B) iodide production by primary cultures of hepatocytes. Hepatocytes were incubated for periods varying from 1 minute to 2 hours with \([125I]T_3\) or \([125I]T_3S\) (both 100,000 cpm/mL). Iodide production after 1 and 2 hours of incubation was measured in the media by LH-20 chromatography. Data represent the mean ± SE of nine observations from three independent experiments. (○) Iodide production from \([125I]T_3\); (●) iodide production from \([125I]T_3S\).

least as high as that from \([125I]T_3\). Furthermore, iodide production from T3 and T3S doubled when the incubation time was prolonged from 1 to 2 hours. In the same 1-hour period, the mean conjugate formation from \([125I]T_3\) was 4.7% ± 0.8% (not shown). There was no production of unconjugated T3 from \([125I]T_3S\) by hepatocytes during the course of the experiment (not shown).

To determine if pituitary cells also metabolized T3 and T3S, incubation media from the last two experiments shown in Table 2 were analyzed for iodide production. Neither in the media from the pituitary cells incubated with \([125I]T_3\) nor in those from \([125I]T_3S\) incubations was iodide detectable. After incubation with \([125I]T_3\), no conjugates were detected, and 95% of the radioactivity appeared in the iodothyronine fraction. In the case of \([125I]T_3S\), 90% to 95% of the radioactivity was found in the conjugate fraction, and no radioactivity was found in the iodothyronine fraction (not shown).

Purity of Unlabeled T3S

Finally, the amount of T3 present in the unlabeled T3S preparation was determined by radioimmunoassay with two different antisera, showing that the T3S preparation contained 0.25% T3. Incubation medium with 1 \(\mu\)mol/L T3S contained 2.49 nmol/L T3 before incubation with cells and 2.08 ± 0.03 (n = 3) nmol/L T3 after incubation with cells.

DISCUSSION

The results of the present study indicate that T3S does not play a significant role in the suppression of TSH secretion in pituitary cells in vitro. Furthermore, our results suggest essential differences in the metabolic handling of T3 and T3S by pituitary cells and hepatocytes.

LoPresti et al suggested that T3S might play a role in the suppression of TSH secretion during NTI. This hypothesis seemed already somewhat weakened by their own observation that infusion of T3S in healthy volunteers did not result in decreased levels of serum TSH. On the other hand, the serum level of T3S achieved during the infusion was not measured, and the lack of effect of T3S could be due to the low calculated T3S/T3 ratio (46%).

Although 1 \(\mu\)mol/L T3S was as effective as 1 \(\mu\)mol/L T3 in suppressing the TRH-induced TSH secretion in our cell culture, this effect can simply be explained on the basis of a slight contamination of the T3S preparation with T3. The amount of T3 in the unlabeled T3S preparation was 0.25%, and hence, 1 \(\mu\)mol/L T3S will roughly contain 2.5 nmol/L T3. This idea was confirmed by the experiment where the effect of 1 \(\mu\)mol/L T3S on TRH-induced TSH secretion was found to correspond to a value (53%) just between 1 nmol/L T3 (41%) and 10 nmol/L T3 (62%).

The effect of unlabeled T3S on the uptake of \([125I]T_3\) by pituitary cells was dose-dependent, and was still lower (34% inhibition) when T3S was added at a concentration of 1 \(\mu\)mol/L as compared with the effect of 10 \(\mu\)mol/L T3 (40% inhibition). In our previous study, it was observed that addition of 1 nmol/L T3 reduced the uptake of \([125I]T_3\) by approximately 29%. Thus, the effects of T3S on \([125I]T_3\) uptake are also compatible with a contamination of the T3S preparation with T3 (≤ 1%). Our results are also in line with those of Spaulding et al, who apparently used more purified T3S and found no displacement of \([125I]T_3\) from the nuclear receptors in the growth hormone–producing cell line GH4C1 in the concentration range of 0.001 to 1 \(\mu\)mol/L T3.

The explanation that the effect of high concentrations of T3S on TRH-induced TSH secretion or \([125I]T_3\) uptake is due to contamination of the T3S preparation with T3 is also supported by our observation that \([125I]T_3S\) itself was only poorly taken up by the pituitary cells. This was concluded from a series of experiments where a significant amount of \([125I]T_3\) added at the same radioactive and molar concentration as \([125I]T_3S\) was taken up by the pituitary cells. In contrast, both \([125I]T_3\) and \([125I]T_3S\) were taken up by hepatocytes, although the uptake of \([125I]T_3\) was roughly fourfold higher than that of \([125I]T_3S\). On the other hand, despite this difference in uptake, iodide production from \([125I]T_3S\) was at least as high as that from \([125I]T_3\). This indicated that T3S and T3 (after preceding sulfation) were deiodinated followed by efflux of \(125I\)- from the liver cells. These results also confirmed the previous observation that...
T₃S is a preferred substrate for the liver type I deiodinase, being deiodinated successively in the inner and outer ring. During the 2 hours of the experiments, no unconjugated T₃ was detectable in the media from hepatocytes incubated with [¹²⁵I]T₃S. This seems to be in contrast to the observations of Kung et al., who reported 1% hydrolysis of T₃S per hour in isolated hepatocytes. The reason for this discrepancy might be that hepatocytes were incubated in the presence of T₃S in the micromolar range (7 to 50 μmol/L) in the study by Kung et al., which is far above the Km of the type I deiodinase for T₃S (4.6 μmol/L). As a result, T₃S was hardly detectable. It was recently reported that the posterior pituitary, like the brain, contains type III deiodinase that would deiodinate T₃. This reaction would only be detectable by [¹²⁵I]− production, if the inner-ring deiodination by type III deiodinase is followed by outer-ring deiodination. Furthermore, T₃S is not a substrate for the type III deiodinase. The LH-20 chromatography performed in the same way as for the hepatocyte experiments showed no [¹²⁵I]− production from [¹²⁵I]T₃S or from [¹²⁵I]T₃ during the hour the experiment lasted. Taken together, our results strongly suggest that relative to T₃, T₃S is poorly taken up by the pituitary gland. In addition, it seems that T₃S is not hydrolyzed in this tissue, and consequently the biological effects of T₃S on the euthyroid pituitary gland are minimal.

REFERENCES

ACKNOWLEDGMENT

The material used in the TSH assay was kindly provided by the National Hormone and Pituitary Program of the National Institute of Diabetes and Digestive and Kidney Diseases (Bethesda, MD). We thank H. van Toor, H.F. Bernard, E.P.C.M. Moerings, and A.M.P. Tempelaars for skilful technical assistance.