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Summary. Multidrug resistance (MDR) in a variety of hu- 
man tumors such as renal cell carcinoma (RCC) is thought 
to be caused by expression of the mdr! gene and may be 
reversed by applying chemosensitizers such as Dexvera- 
pamil that inhibit the rndrl gene product P-glycoprotein. 
On the basis of our preclinical analysis, we inititated a 
clinical (GCP) study with vinblastine (VBL), the most ef- 
fective - if at all - chemotherapeutic agent; dexverapamil; 
and dexamethasone in patients with RCC. All patients had 
histologically proven RCC that was metastatic and pro- 
gressive at study entry. The statistical design featured a 
preliminary study of two cycles of VBL alone followed by 
tumor evaluation. If no response was documented, with all 
patients thus serving as their own control, dexverapamil 
and dexamethasone were added for a minimum of three 
cycles of combination therapy. Having obtained institu- 
tional permission by the ethical review committee (MEC 
124, 106-1993/12), we enrolled 24 patients on this proto- 
col starting on May 3, 1993. In the preliminary study, 1 
complete response (CR) was achieved with VBL alone, 
and myelotoxicity led to an adequate dose reduction from 
2 mg/m 2 VBL per day given as a 5-day continuous infu- 
sion (days 1-5) in 6/10 yet evaluable patients to 1.4 mg/ 
m 2 per day. In 8/11 yet evaluable patients, dexverapamil 
doses reached > 3000 mg/day by 7-day oral uptake (days 
0-6, supported by 20 mg dexamethasone given twice 
daily), which is significantly higher than those previously 
reported. The combination of VBL given at 1.4 mg/m 2 per 
day plus, dexverapamil given at 3000 mg per day was felt 
to be safe and well tolerated. Nine patients were yet evalu- 
able for response. One partial response and three minor 
responses were noted in this heavily pretreated study pop- 
ulation. It appears that this innovative approach may have 
some activity in RCC and may eventually lead to a ratio- 
nal treatment modality. Careful evaluation in ongoing 
studies is warranted. 
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Dijkzigt, Erasmus University, Dr. Molewaterplein 40, NL-3015 
GD Rotterdam, The Netherlands; Fax: 31(10)463 5838 

Renal cell carcinoma (RCC) is the third most common 
urologic malignancy and accounts for approximately 3% 
of all adult tumors. The incidence of RCC in the Nether- 
lands is about 1000 new cases every year, roughly 75% 
of those presenting originally with organ-confined malig- 
nancy. The treatment of choice for nondisseminated dis- 
ease relies on surgery spanning from organ-sparing tumor 
resection to radical nephrectomy. The 5-year survival for 
all stages was 40% 40 years ago, reached 50% 20 years 
ago, and amounted to 60% in the recent literature. It is 
widely accepted that in addition to refinements in opera- 
tive strategies and general hospital care, paramount use of 
ultrasound in medicine has led to earlier tumor detection, 
thus enabling surgical resection. However, further improve- 
ment in the prognosis of RCC is most likely to depend on 
the development of an eventually effective systemic treat- 
ment for the persistantly high number of patients with 
metastatic disease (reviewed in [10]). 

Therapeutic options for advanced stages, including hor- 
monal, immuno-, and chemotherapy, have no proven effi- 
cacy, and there is an abundance of recent investigations us- 
ing innovative forms of immunotherapy [30], gene therapy 
[29], and chemosensitization-enhanced chemotherapy [ 11 ]. 
The development of the latter is reviewed in this paper. 

Chemotherapy of renal cell carcinoma 

Until relatively recently, treatment of cancer was the ex- 
clusive province of surgeons and radiotherapists. How- 
ever, only close to half of the patients with newly diag- 
nosed malignancy present with disease localized at the 
original site and will be cured by such an ablative therapy. 
The remaining malignancies include systemic cancers such 
as leukemia and lymphoma and unifocal tumors that have 
spread by metastasis. The only hope for cure of these neo- 
plasms resides in systemic treatments such as immuno- 
therapy and chemotherapy, 

Chemotherapy is a relatively new discipline. It arose in 
the 1940 s and is largely based on two principles. The first 
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Fig. 1. Two-dimensional model of 
Pgp (modified after Gottesman and 
Pastan [5] and Gottesman et al. 
[6]). Pgp is a 1280-amino acid 
protein that contains 12 transmem- 
branous regions and belongs to the 
adenosine triphosphate (ATP)-bind- 
ing cassette superfamily of trans- 
port proteins. It functions as an en- 
ergy-dependent multidrug trans- 
porter that evacuates natural-prod- 
uct chemotherapeutic agents from 
the cytoplasm or from the lipid bi- 
layer of the membrane 

is that certain types of cancers originate from differenti- 
ated cell types that have special properties and can be tar- 
geted if these characteristics persist in the cancer (e.g., via 
immunotoxins). The second is that cancer cells have meta- 
bolic differences that distinguish them from normal cells 
and these can be exploited. In urologic oncology, chemo- 
therapy is the most widely used systemic cancer treat- 
ment. However, only in testicular cancer are cure rates be- 
yond the 90% level, and in metastatic bladder cancer, ini- 
tial response rates may be up to 70%, but long-term sur- 
vival usually does not exceed 10%-15%. 

A strong interest in chemotherapy of RCC has been 
noted in the past. By 1967, 30 drugs had been given to 
247 patients; by 1977, 42 drugs had been given to 1703 
patients; and by 1983, 53 drugs had been given to 2416 
patients and introduced into controlled clinical trials. The 
most recent analysis, from 1983 to 1989, included 39 new 
drugs that had been given to 2120 patients. The results 
were very disappointing, however, with less than 7% of 
the patients achieving objective remissions. As a conse- 
quence, the discussion on chemotherapy of RCC once more 
became laboratory-based and experimental. Current in- 
vestigations mainly focus on the detection of well-defined 
drug-resistance mechanisms in RCC and on strategies to 
reverse them [9]. 

Multidrug resistance 

Cancers such as RCC are often resistant to drugs of  more 
than one type with varying structures and different mech- 
anisms of action. This phenomenon is termed multidrug 
resistance (MDR). A search for the cause or causes of MDR 
has occupied the attention of cancer researchers for more 
than four decades, and it is widely believed that if the bio- 
chemical and molecular basis of  drug resistance is fully 
elucidated, it should become possible to devise new strate- 
gies for the circumvention of this resistance, hence in- 
creasing the number of cancers that can be cured. 

The high frequency of MDR, seen both in the clinical 
course of  the disease and in tissue-culture models, sug- 
gests that renal cancer cells can express genes that confer 

simultaneous resistance to different kinds of anticancer 
drugs. Three such mechanisms have been biochemically 
and genetically investigated in RCC and comprise P-gly- 
coprotein, the product of the mdrl  gene [3, 7, 8, 13]; glu- 
tathione metabolism [14]; and topoisomerase enzymes 
[31]. Others, such as MDR-associated protein (MRP), are 
the subject of  ongoing studies (G. Mickisch et al., manu- 
script in preparation). 

For the last 8 years, we and other investigators have 
embarked on studies of drug-resistance mechanisms in 
urologic cancers in the hope that this molecular analysis 
will eventually support our clinical research by defining 
pathways by which chemoresistance can be surmounted 
or reversed. It now appears that RCCs are unique in dif- 
ferentially expressing a minimum of three distinct factors 
associated with MDR, thus making RCC a tumor model 
of importance far beyond urologic oncology. A multitude 
of clinical studies has emerged since then, all with the 
same aim of intensifying chemotherapy by interfering with 
one or several resistance mediators. In RCC, thus far only 
attempts to inhibit P-glycoprotein have led to clinical in- 
vestigations, and I therefore confine my personal annota- 
tions to this particular mechanism. 

Expression of mdrl and its functional relevance 

The human MDR gene mdrl  (reviewed in [5, 27]), which 
encodes a 170,000-Da plasma membrane protein named 
P-glycoprotein (Pgp), (Fig. l), is widely expressed in nor- 
mal human tissues. It is found on the surfaces of  epithelia 
of the kidney, intestine, liver, and pancreas; in the adrenal 
cortex; in the placenta; and in capillary endothelial cells in 
the testis and brain. Pgp functions as a multidrug-trans- 
port protein that extrudes hydrophobic compounds from 
cells (Fig. 2). When transfected with the mdrl  gene, sensi- 
tive cells become highly resistant to many natural-product 
chemotherapeutic drugs that are recognized and expelled 
by the multidrug transporter. This accumulated evidence 
has led to the suggestion that in normal cells the multidrug 
transporter has an important role in removing from the body 
toxic agents ingested in food or inhaled in air, in trans- 
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porting steroids in the adrenal, and in protecting vulnera- 
ble tissues such as the fetus, the brain, or the testis. 

When tumors were examined for expression of mdrl, 
it was found to be present in many cancers derived from 
normal tissue in which it is constitutively detectable. In 
kidneys, the highest levels of mdrl expression were deter- 
mined in the cells of the proximal tubules, and RCCs arise 
from these cells. Gene expression could be quantitated by 
bulk methods such as Northern blotting, slot blotting, or 
RNAse protection assay [3, 7, 8, 22, 33], and tissue speci- 
ficity was established by in situ hybridization followed by 
autoradiography (G. H. Mickisch et al., manuscript in pre- 
paration). Despite the possible presence of the closely re- 
lated mdr2 transcript, with appropriate care these assays can 
be made quite specific and relatively quantitative [5, 6]. 

Expression of Pgp has also been measured by antibod- 
ies, which for obvious reasons appeared to be an attractive 
methodology in a clinical setting. The initial analysis was 
a negative one, since among many other tissues, two RCCs 
were also assessed and reported to be Pgp-negative [32]. 
In our first study, 6 of 20 surgical RCC specimens were 
found to express Pgp [1], and with further refinement of 
the techniques, we were capable of detecting Pgp in 19 of 
35 RCCs [14]. In general, it is currently accepted that with 
the help of a panel of monoclonal antibodies, Pgp can be 
routinely traced in more than 90% of RCCs [34]. 

These current methods involve obtaining quick-frozen 
tumor samples in large enough quantities to prepare RNA 
or to apply a panel of antibodies on frozen sections/archi- 
val materials. This appears easy for many primary cancers 
but is hardly feasible for core biopsies from recurrent or 
metastatic lesions. The latter difficulty in sample size can 
be surmounted using new technology based on reverse tran- 
scription followed by polymerization chain reaction, which 
amplifies the RNA signal in a small number of renal tu- 
mor cells (G. H. Mickisch et al., submitted for publication). 

In well-differentiated parts of RCC with a tendency to 
tubule formation, apical staining, mimicking the staining 
pattern in normal proximal tubules, was observed [13, 14], 
whereas the clear cell variant showed faint heterogeneous 
positivity [34] less pronounced than that of tubular differ- 
entiated tumor cells. This finding is in agreement with the 
higher mdrl mRNA levels described in (well) differenti- 
ated (grade 1-2) tumors as compared with poorly differ- 
entiated (grade 3-4) RCC [8]. Since grading contributes to 
some extent to the prognosis of patients with RCC [10] 
and since patients with rapidly progressive disease tend to 
suffer from poorly differentiated or sarcomatoid subtypes, 
Pgp expression appeared not to be a marker for an unfa- 
vorable prognosis for these tumor entities [13]. On the ba- 
sis of these retrospective studies [8, 13, 34], we recently 
started a prospective trial measuring, among many other 
molecular parameters, mdrl expression (mRNA + protein 
levels) in 59 consecutive tumor nephrectomy specimens 
and monitoring the clinical course of disease [24]. Time 
and a multivariate analysis will tell whether Pgp might 
eventually emerge as an independent prognostic factor in 
RCC. 

Finally, a possible relationship between Pgp expres- 
sion and in vitro chemoresistance has been addressed. Pgp 
has been discovered in 6 of 8 doxorubicin-resistant [3] 

and in 12 of 14 vinblastine-resistant [7] RCC cultures. In 
addition, a significant increase in in vitro vinblastine or 
doxorubicin cytotoxicity with dexverapamil or trifluoper- 
azine, related to the expression of Pgp, has been found in 
cells obtained from patients with RCC [13, 35]. 

Chemosens i t i za t ion  in vitro 

As noted above, the presence of the multidrug transporter 
in RCC has been conclusively demonstrated and an asso- 
ciation with intrinsic chemoresistance has been estab- 
lished. One goal of current cancer research is to explore 
ways to reverse, circumvent, or overcome MDR due to 
mdrl expression; this strategy is termed chemosensitiza- 
tion. Clinically, there is profound skepticism with regard 
to the use of classic chemotherapy in RCC, but since there 
is no reliable therapy for metastatic disease, innovative 
approaches including chemosensitization seem warranted. 

In general, reversal of MDR has been accomplished by 
exposing drug-resistant cells to a variety of alternate sub- 
strates of Pgp (see Fig. 3), which in themselves are only 
slightly cytotoxic, if at all. There seems to be no connec- 
tion among these chemosensitizing agents on a mechanis- 
tic level, but they all share a common feature of being 
membrane-active. 

In RCC, this modulation of MDR has initially been 
achieved in vitro by applying calcium antagonists such as 
verapamil [3, 13] or the antiarrhythmic drug quinidine [3, 
8]. The anti-tumor effects of doxorubicin or vinblastine 
have been strongly enhanced as deteced by soft-agar clono- 
genic assay, [3H]-thymidine incorporation, or colorimetric 
conversion of tetrazolium dye (MTT), respectively. Un- 
fortunately, these prototype low-molecular-weight MDR- 
reversing agents are potent pharmacologic compounds 
that produce undesirable side effects when given at the 
levels required, to surmount MDR substantially. In the 
case of verapamil, the first chemosensitizing effects were 
documented at concentrations of 1-2 gM, with optimal re- 
sistance modulation occurring at approximately 5-7 gM, 
far beyond a clinically useful range. Thus, a multitude of 
new agents with an improved therapeutic index have been 
and remain under development. 

We therefore systematically investigated different 
classes of calcium antagonists [13] in RCC. Papaverine 
derivatives such as verapamil and its analogues seemed to 
bear the most adequate properties for further refinement. 
Two different strategies appeared feasilbe for reversing 
MDR in a clinical setting. One involved the evaluation of 
new chemosensitizers derived from verapamil by selec- 
tion for higher potency in reversing MDR without inflict- 
ing excessive toxicity. Therefore, lower doses should be 
needed to achieve reversal of MDR, and some of these 
drugs have been classified as being attractive candidates 
for future clinical trials [16]. The other concept was to ex- 
plore resistance modifiers such as dexverapamil, the R(+)- 
stereoisomer of verapamil, which exhibits strongly reduc- 
ed cardiovascular activity as compared with racemic ver- 
apamil, while maintaining its ability to reverse MDR [13]. 
Because much higher doses of dexverapamil can be given, 
clinical trials have been initiated [11]. 
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Fig. 2. Schematic illustration of the pump mechanism of the mdrl 
gene encoding for Pgp, the "multidrug transporter," also known as 
the "Loch Ness monster of drug resistance." Chemotherapeutic 
agents enter the cell by passive diffusion. Pgp rapidly and effec- 
tively expels them by an energy-dependent process; the cell be- 
comes "resistant" 

Fig.3. Illustration of the current concept of chemosensitization 
used for clinical studies. The most commonly applied method to 
reverse MDR mediated by Pgp consists of distracting the pump by 
the use of alternate substrates, which in themselves are only slightly 
cytotoxic, if at all 

Fig.4. Illustration of how MDR due to Pgp can be cirumvented. 
By disrupting the phospholipid structure of membranes (e.g., via 
liposomes), functional or steric alterations of Pgp may be intro- 
duced, thus reducing its efficacy 

Fig. 5. Model of a chemotherapeutic drug encapsulated in a multi- 
lamellar liposome (adapted from Gregoriadis [6@ • Water-solu- 
ble molecules; I lipid - soluble molecules; y water-soluble mole- 
cules with hydrophobic moiety penetrating lipid phase 

An alternate method of chemosensitization relies on 
circumventing (Fig. 4) rather than distracting the activity 
of Pgp via false substrates (cf. Fig. 3). Liposomal encap- 
sulation of drug (Fig. 5) may serve this purpose, since (a) 
it may reduce the binding affinity to Pgp, (b) liposomes 
themselves may inhibit the pump function of Pgp directly 
or indirectly, (c) liposomes may modify the phospholipid 
membrane strucuture and subsequently introduce func- 
tional and/or steric alterations to Pgp, and (d) delivery of 
drugs via liposomes may bypass the plasma membrane, 
directly discharging the drug into the cytoplasm, from 
which MDR purging of the drug may be less efficient [20]. 
In RCCs, our feasibility study indicated that liposomes 
composed of cardiolipin, phosphatidyl choline, choles- 
terol, and doxorubicin (approximately 12% by weight) 
enhanced the therapeutic ratio by a factor of 2-4  as com- 
pared with doxorubicin alone [23]. However, our liposo- 
mal formulation was developed empirically, and rational 
liposome design needs to be applied directly to the prob- 
lem, as this will ultimately lead to the best therapeutic in- 
dex (G. Mickisch et al., submitted for publication). 

Another approach to eliminate the activity of Pgp is 
based on overcoming MDR by selectively killing cells 
that express Pgp on their surfaces (Fig. 6). This goal can 
be achieved experimentally using protein toxins such as 
Pseudomonas exotoxin (PE), that are chemically linked or 
recombinantly attached to certain anti-Pgp antibodies 
such as MRK16. For targeted drug delivery to be success- 
ful, it is necessary that the cytotoxic agent be extremely 
active, since the internalization efficiency of conjugates 
tends to be low. These toxins are catalysts with high turn- 
over numbers, and very few molecules need to reach the 
cytoplasm of the cell to kill the target cell. For the con- 
struction of active immunotoxins (Fig. 7), the toxin must 
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Fig. 6. Illustration of how MDR due to Pgp can be overcome. An- 
other attempt to eliminate the activity of the multidrug transporter 
is based on overcoming MDR by selectively killing cells that ex- 
press Pgp on their surfaces. This can be accomplished by molecu- 
lar targeting via antisense oligonucleotides or via bacterial toxins 
chemically linked or recombinantly attached to certain anti-Pgp 
antibodies 

be modified such that its interactions with cellular recep- 
tors are diminished or abolished, thus preventing unspe- 
cific toxicity. As a consequence, toxin entry is mediated 
by antibody binding. With PE, this can be accomplished 
by coupling MRK16 to domain I of PE, which strongly 
reduces the binding of domain I to the ubiquitous PE re- 
ceptor [3-2 microglobulin. In fact, our investigations with 
MRK16-PE documented effective and specific killing of 
Pgp-expressing renal carcinoma cells [21, 22]. Alterna- 
tively, RCCs were exposed to selected Pgp antisense oligo- 
nucleotides, resulting in significant tumor growth delay in 
the presence of cytotoxic agents (G. H.Mickisch et al., 
manuscript in preparation). 

Animal studies 

The development of  novel pharmacologic agents for the 
treatment of human and animal diseases requires consid- 
erable time and expense. Typically, a new agent is either 
synthesized from existing materials or extracted from nat- 
ural sources and then tested extensively in vitro for de- 
sired pharmacologic properties. Once potent agents are 
obtained, they must be tested in animals to determine 
whether they maintain their biological activity in the face 
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Fig.7. Construction of an immunoconju- 
gate directed against an external epitope 
of Pgp (modified after Mickisch et al. [21, 
22]). This immunoconjugate (MRK16- 
PE) was used to eliminate Pgp-expressing 
renal carcinoma cells effectively and 
specifically 
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Fig. 8. Potential clinical scenario of en- 
gaging the mdrl gene in a gene therapeu- 
tic setting to intensify classic chemother- 
apy (adapted from Mickisch and 
Schroeder [12]) 

of  mechanisms that excrete or chemically modify them 
and whether they have unexpected toxic properties unre- 
lated to their pharmacologic effect. Animal testing of this 
kind is expensive, requires many months, consumes large 
numbers of  animals, and often delays the introduction 
of effective new drugs for medical and veterinary use 
[17]. 

Similarly, when new drugs appear to be useful in over- 
coming MDR on the basis of tissue-culture data (see above), 
it is necessary to show appropriate bioactivity in an ani- 
mal system before clinical trials can be justified. Using a 
traditional approach, the efficacy and toxicity of reversing 
agents can be evaluated in xenograft-bearing-mouse mod- 
els of human tumors such as RCC. Multidrug-resistant tu- 
mors are implanted in mice and the activity of a cytotoxic 
drug in the presence and absence of a chemosensitizer is 
assessed. These types of assays are slow, require large 
numbers of animals, and are not highly reproducible be- 
cause of variability in the growth rate of the tumors. 

In the past few years it has become apparent that the 
use of recombinant DNA technology to engineer animals 
for the specific testing of new classes of pharmacologic 
agents can speed the development of  new drugs. The gen- 
eral principle is that proteins with which drugs interact 
can be introduced into transgenic mice and used to predict 
the activity of  the drugs in certain disease states. 

Our goal was to obtain expression of the human mdrl  
gene in a drug-sensitive tissue in mice that did not express 
mouse-endogenous mdrl  genes. We began with two dif- 
ferent constructions: the first contained a truncated chicken 
~-actin promoter sequence joined to a full-length mdr! 
cDNA, and the second used a zinc-inducible human met- 
allothionein promoter controlling the expression of the 
mdrl  cDNA. Both promoters should allow high-level ex- 
pression of rndrl RNA in a variety of  mouse tissues. As is 
frequently the case in the construction of transgenic mice, 
the results we obtained were unexpected but extremely in- 
formative [17]. 

Lines of transgenic mice carrying the mdrl  cDNA un- 
der the control of either the J3-actin promoter or the in- 
ducible metallothionein promoter were established. The 
latter expressed Pgp in several tissues, including skeletal 
muscle, the central nervous system, and the lung, after in- 
duction with zinc, which made these animals resistant to 

the lethal effects of  colchicine. The biochemical basis of 
this resistance is presently being characterized. 

The chicken J3-actin promoter linked to the mdrl  
cDNA resulted in transgenic mice whose phenotype was 
much easier to interpret. These mice have made it possi- 
ble to study the function of human Pgp in a living animal 
and have formed the basis for strategies aimed at develop- 
ing new anticancer drugs [15]. 

Several lines of  mice in which the ~-actin-mdrI trans- 
gene was stably integrated into the germ line were ob- 
tained. One of these lines (MDR39) has been studied in 
great detail; mdrl  RNA levels were determined in many 
different organs of MDR39 mice, and transcripts of  the 
rndrl gene were detected at the highest levels in bone 
marrow cells and, to a lesser extent, in the spleen. Very 
small amounts of mdrl  RNA were also found in the ovary 
and muscle. The level of mdrl  mRNA expression ob- 
served in bone marrow cells was comparable with that 
seen in an in-vitro-selected cell line (KB-8-5) that exhibits 
3- to 18-fold drug resistance, depending on the drug. This 
amount of resistance should be clinically significant and, 
in fact, corresponds to the levels detected in many drug- 
resistant human tumors such as RCC. 

Since expression of Pgp was discovered in the bone 
marrow of  MDR-transgenic mice, it appeared to be of  
particular importance to determine whether the trans- 
gene could protect bone marrow cells against chemo- 
therapy. Bone marrow cells are normally very suscepti- 
ble to anticancer drugs and, thus, toxicity to bone mar- 
row is often dose-limiting for many kinds of  chemother-  
apy. Differential WBCs of  normal and MDR-transgenic 
mice demonstrated that all major  peripheral blood cells 
of  the MDR-transgenic mice had a selective advantage 
over normal blood cells due to the protection afforded 
by the mdr l  gene. This protective advantage of the mdr l  
gene could be transferred to recipient animals by bone 
marrow transplantation, indicating that protection of 
marrow was intrinsic to the marrow itself [19]. These 
data provide clear evidence that expression of  the hu- 
man mdr l  gene confers M D R  on an intact animal at lev- 
els of  expression seen frequently in human cancers. 
Transfection of the mdr l  gene into CD34+ bone marrow 
cells to intensify classic chemotherapy of  human cancer 
by virtue of  mdr l  anti-myelosuppressive protection is 
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Table 1. Summary of chemosensitization 
studies performed in the mdr 1-transgenic 
mouse model 

Chemosensitizer MTD WBC at WBCs0 Therapeutic 
(mg/kg) MTD (%) (mg/kg) window 

(MTD/ 
WBCs0) 

Verapamil 40 29 ~ 1.1 36.4 

Quinine 150 28 - 12.0 12.5 

Quinidiue 50 33 .v 11.0 4.5 

Cyclosporin A 150 22 - 4.0 37.5 

R-verapamil 150 30 - 1.5 100.0 

Amiodarone 100 38 -- 12.0 8.3 

Progesterone a > 150 + 46 - 52.0 -~ 

LU 48895 (Knoll) 25 34 - 1.5 16.7 

LU 49940 (Knoll) 50 32 - 1.0 50.0 

LU 49667 (Knoll) 75 24 - 0.4 187.5 

LU 51903 (Knoll) 60 27 - 0.5 120.0 

PAK 104 (Nissan Chemical) 150 29 - 14.0 10.7 

PAK 200 (Nissan Chemical) 150 24 - 0.9 166.7 

RS 12103-190 (Syntex) 3 72 - - 

RS 36186-193 (Syntex) 60 90 - - 

D-Tetrandine (NSC 77037) 50 93 - - 

12288B-124 (Lederle) 150 93 - - 

B8509-035 (Byk Gulden) 20 28 - 0.9 22.2 

mAb MRK16 (Hoechst Japan) ~ > 2 + 40 - 1.5 J 

mAb MRK16F(ab')2 (Hoechst) a > 1 + 55 - - 
MRK16-PE b 4 b 33 - -  1.5 b b 

Data were compiled as outlined by Mickisch et al. [15, 17]. WBCs0 = Dose of chemosen- 
sitizer that reduces the WBC by 50% within 5 days of chemosensitization. Data were gen- 
erated in conjunction with the administration of 10 mg/kg daunomycin as a single i.p. bo- 
lus injection and were expressed as a percentage of the remaining WBC on day 5 as com- 
pared with the pretreatment value. MTD, Maximum tolerated dose as defined by Mickisch 
et al. [18] 

a Not the MTD, but the highest dose tested 
b Values expressed in btg 

Table 2. Efficacy of combinations of chemosensitizers in reversing daunomycin resistance in MDR-transgenic mice 

Single Verapamil Quinine Quindine Cyclosporin A PAK 200 
dose (0.5 mg/kg) (5 mg/kg) (5 mg/kg) (3 mg/kg) (0.5 mg/kg) 

Verapamil (0.5 mg/kg) 62% 48% 28% 25% 22% 45% 

Quinine (5 mg/kg) 64% 28% 55% 57% 52% 42% 

Quindine (5 mg/kg) 59% 25% 57% 53% 49% 40% 

Cyclosporin A (3 mg/kg) 60% 22% 52% 49% 55% 35% 

PAK 200 (0.5 mg/kg) 59% 45% 42% 40% 35% 50% 

For a description of the methods used, see the footnote to Table 1. Column 2, Single dose of one chemosensitizer; columns 3-7, combina- 
tions of different sensitizers; underlined values, combinations of the same sensitizer (i.e., doubling of the dose) 

cu r r en t ly  b e i n g  p u r s u e d  in a c l in i ca l  g e n e  t h e r a p e u t i c  
se t t ing  [12] (Fig.  8). 

To m e a s u r e  the  p o t e n c y  o f  the inser ted  t ransgene ,  w e  
p e r f o r m e d  dose -e sca l a t i on  s tudies  in the M D R - t r a n s g e n i c  
m i c e  us ing  taxol .  Taxo l  is a n o v e l  i nves t i ga t i ona l  an t imi -  
c ro tubu le  agen t  cur ren t ly  under  s tudy as an an t i cance r  
drug,  w h i c h  s e e m e d  sui table  for  our  pu rposes  due  to its 
k n o w n  b o n e  m a r r o w  specif ic i ty .  In fact ,  it b e c a m e  c lear  
that  e x p r e s s i o n  o f  the  m d r l  t r ansgene  resu l ted  in a 10- 
fo ld  res i s tance  to the  cy to tox i c  ac t iv i ty  o f  t axo l  in v i v o  

[18]. 

T h e  d e v e l o p m e n t  o f  a p rec l in i ca l  m o d e l  for  the  rap id  
tes t ing  o f  agents  that  c i r c u m v e n t  M D R  in c a n c e r  is a h igh  
pr ior i ty  o f  r e sea rch  on drug  res is tance .  T h e  c lea r -cu t  dif-  
f e r e n c e  b e t w e e n  M D R - p r o t e c t e d  and n o r m a l  b o n e  mar -  
r o w  m a d e  it poss ib le  to eva lua t e  the  e f fec t  o f  c h e m o s e n s i -  
t izers [15, 16, 21]. In addit ion,  these t ransgenic  mice  served 
as a s i m p l e  and re l i ab le  test  s y s t e m  to d e t e r m i n e  w h e t h e r  
drugs  that  appea red  on  the basis  o f  t i s sue -cu l tu re  samples  
to be  use fu l  in o v e r c o m i n g  M D R  w o u l d  act  in a s imi la r  
m a n n e r  in an an imal .  E x a m p l e s  o f  our  s tudies  are de-  
p ic t ed  in Tab le  1. T h e y  s h o w  the  e f f i cacy  o f  c h e m o s e n s i -  
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tization (WBCs0), measured as a fall in the peripheral WBC 
of MDR-transgenic mice, the toxicity encountered with 
this approach (MTD), and the calculated therapeutic win- 
dow (MTD/WBCs0), clearly indicating differences among 
the various reversing agents. 

Moreover, we systematically investigated whether this 
unique system would be adequate and suitable for the as- 
sessment of combinations of prototype and readily avail- 
able chemosensitizers in the hope of avoiding the toxic 
complications inherent to the use of higher concentrations 
of these drugs. Pilot studies had revealed that small 
amounts of drugs such as verapamil and quinine [15] or 
verapamil and cyclosporin A [21], which produced only 
partial sensitization of the MDR-transgenic bone marrow 
cells in vivo, were fully sensitizing when used in combi- 
nation. Table 2 summarizes data obtained with only one 
chemosensitizer (column 2), with one chemosensitizer af- 
ter doubling of the dose (underlined numbers), and with 
combinations of different chemosensitizers (columns 3-  
7). There is no doubt that certain combinations give a 
much greater effect than does either drug alone, whereas 
other combinations do not lead to substantial enhance- 
ment of efficacy. 

Suffice it to say that alternative pathways such as cir- 
cumvention of MDR via liposomes (Fig. 4) or overcoming 
of MDR via immunotoxins (Fig. 6) have been tested in 
these intact animals and shown to be feasible [20, 22]. 
However, given the considerable time required until a new 
drug has been approved to enter the market, we suggest 
second-generation chemosensitizers such as dexverapamil 
to be the most appropriate candidates for the initiation of 
rational clinical investigation adopting this principle in 
RCC [11]. 

Clinical investigations 

We are now faced with the emergence of an array of clin- 
ical investigations that all have the same aim of attempt- 
ing to intensify" classic chemotherapy by inhibiting the un- 
derlying resistance mechanism, e.g. mdrl expression. Thus 
far, hematologic neoplasms and lymphomas have been con- 
sidered appropriate diseases for the initiation of clinical 
evaluation. As these are tumors in which many active che- 
motherapeutic agents are handled and subsequently ex- 
pelled by Pgp, an alteration in drug efflux via chemosen- 
sitization should indeed have an impact on response. 

Recent/ongoing clinical studies in RCC are conducted 
under phase I/II conditions. Hence, the need for well-con- 
trolled, randomized trials to evaluate these chemomodula- 
tors will remain imperative for the near future. To date, 
three such investigations in RCC have been reported. As is 
frequently the case with innovative approaches, the initial 
results were not extremely rewarding. There was one at- 
tempt to circumvent MDR in 15 patients with RCC by 
combining bolus vinblastine with infusional cyclosporin A 
[28]. Despite the ambitious title of their report, these au- 
thors did not strive to determine mdrl expression or to doc- 
ument resistance against vinblastine. Median cyclosporin 
plasma levels reached a modest 5668 ng/ml. Thus, the tox- 
icity was described as being minimal, as was the efficacy. 

Lately, dexniguldipine, a dihydropyridine derivative, 
was given orally in conjunction with i.v. doxorubicin, a 
cytotoxic agent that has no activitiy in RCC when given 
as monotherapy. A total of 30 patients were recruited for 
this study, to render only 20 eligible cases [4]. Gastroin- 
testinal toxicity was considerable, preventing a reasonable 
dose escalation, which might have contributed to a more 
favorable therapeutic outcome. 

More recently, in a pilot study, continuous i.v. vinblas- 
tine and oral dexverapamil, the R(+/+)-stereoisomer of 
racemic verapamil, were given concomitantly to 12 pa- 
tients [26] with continuation of patient accrual. Response 
rates have not yet been reported, but the study design, fea- 
turing four equal daily doses of dexverapamil, led to 
plasma levels associated with cardiovascular side effects 
such that most patients did not tolerate more than a daily 
dose of 1500 mg dexverapamil. 

On the basis of our preclinical analysis (see above), we 
started a clinical (GCP) study in patients with RCC [25], 
Vinblastine, the most effective - if at all - chemothera- 
peutic agent in RCC, was combined with dexverapamil as 
a chemosensitizer. Since our intensive animal testing had 
indicated that dexamethasone significantly increased dex- 
verapamil tolerance, tile former drug was also included in 
our protocol. The treatment schedule included 2 mg/m 2 
(patients 1-10; optional dose reduction) vinblastine and 1.4 
mg/m 2 (patient 11 through the study end; optional dose in- 
tensification) vinblastine given as a 5-day continuous in- 
fusion. Dexverapamil was given orally six times daily 
starting at 250 mg/dose until dose escalation reached the 
individual maximum tolerated dose (days 0-6), and 20 
mg dexamethasone was given twice daily as a short-term 
infusion (days 0-6). The cycle duration was 3 weeks. All 
patients had histologically proven RCC (in which an 
mdrl-expression analysis will be carried out) that was 
metastatic and progressive at study entry. The statistical 
design featured a preliminary study of two cycles of vin- 
blastine alone followed by tumor evaluation. If no re- 
sponse was documented, with all patients thus serving as 
their own control, dexverapamil and dexamethasone were 
added for a minimum of three cycles of combination ther- 
apy (Fig. 9). To meet the objectives of this study, i.e., to 
determine the toxicity and efficacy of this particular regi- 
men in RCC, a minimum of 15 and a maximum of 25 
evaluable patients were required. Having obtained institu- 
tional permission by the ethical review committee (MEC 
124, 106-1993/12), we enrolled 24 patients on this proto- 
col from May 1993 until February 1994. 

In the preliminary study, 1 complete response (CR) 
was achieved with vinblastine alone, and myelotoxicity 
led to an adequate dose reduction from 2 mg/m 2 vinblas- 
tine per day given as a 5-day continuous infusion (days 
1-5) in 6/10 yet evaluable patients to 1.4 mg/m 2 per day. 
In 8/11 yet evaluable patients, dexverapamil doses 
reached > 3000 mg per day by 7-day oral uptake (days 
0-6, supported by 20 mg dexamethasone given twice 
daily), which is significantly higher than those previously 
reported. The combination of vinblastine given at 1.4 
mg/m z per day plus dexverapamil given at 3000 mg per 
day was felt to be safe and well tolerated (Fig. 9B). Nine 
patients were yet evaluable for response. One partial re- 



222 

Dexverapamil 

Dexamethasone 

0 1 2 3 4 5 6 

a l Vinblastine l 

\ 

b 
Fig. 9. a Schematic illustration of a contemporary clinical study to 
reverse MDR in patients with metastatic, progressive, and vinblas- 
tine-resistant RCC (protocol MEC 124,106-1993/12). b This study 
design (protocol MEC 124,106-1993/12) was felt to be safe and 
well tolerated 

sponse (PR; W H O  criteria, > 50% reduct ion in tumor  vol-  
ume) and three min imal  responses  (MR; W H O  criteria,  
> 25% and < 50% reduct ion in tumor  volume)  were noted 
in this heavi ly  pre t reated s tudy populat ion.  

It appears  that this innovat ive  approach may  have 
some act ivi ty  in RCC and may  eventual ly  lead  to a rat io- 
nal  t reatment  modali ty.  Careful  evaluat ion  in ongoing 
studies is warranted.  

Conclusions 

Within  a per iod  of  8 years,  M D R  in RCC has evo lved  
f rom a labora tory  cur iosi ty  to a c l inical  real i ty  that has 
been in t roduced into s tandard textbooks  such as Camp- 
bell's Urology [2]. The  rat ional  approach start ing with ex- 
press ion analysis  and determinat ion  o f  funct ional  signifi-  
cance, fo l lowed  by  chemosens i t iza t ion  in vitro and in an- 
imal  exper iments ,  and u l t imate ly  ending in the ini t iat ion 

of  c l inical  studies has he lped  to speed this process.  Thus,  
M D R  in RCC may  serve as a mode l  sys tem for the inte- 
grat ion of  recent  deve lopments  in bas ic  science into cl ini-  
cal  practice,  c lear ly  p rompt ing  the use of  modern  biotech-  
no logy  to support  c l inical  urologic  research.  

There  is no doubt  that the present  therapeut ic  si tuation 
in metastat ic  RCC warrants  novel  approaches  including 
exper imental  chemotherapeut ic  strategies. Moreover,  since 
precl in ical  data  on RCC as wel l  as init ial  c l inical  reports  
on the managemen t  of  hemato log ic  mal ignancies  using 
chemosens i t i za t ion-enhanced  chemotherapy  seem to be 
encouraging,  c l inical  tr ials on R C C  patients in a con- 
t rol led setting are easi ly  just if ied.  However ,  it must  be  
stated that in spite of  the successful  present  breakthrough 
in the innovat ive  chemotherapy  o f  RCC,  there is nonethe-  
less a long way  to go into the future. 
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