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Summary
Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few 
loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE 
collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations 
through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.

Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic 
stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide signifi cance in 
METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every 
associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls.

Findings We verifi ed previous associations for cardioembolic stroke near PITX2 (p=2·8×10–¹⁶) and ZFHX3 (p=2·28×10–⁸), 
and for large-vessel stroke at a 9p21 locus (p=3·32×10–⁵) and HDAC9 (p=2·03×10–¹²). Additionally, we verifi ed that all 
associations were subtype specifi c. Conditional analysis in the three regions for which the associations reached genome-
wide signifi cance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one 
risk haplotype. We also identifi ed 12 potentially novel loci at p<5×10–⁶. However, we were unable to replicate any of these 
novel associations in the replication cohort.

Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when 
compared with controls, all associations we were able to confi rm are specifi c to a stroke subtype. This fi nding has two 
implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. 
Second, diff erent genetic pathophysiological mechanisms seem to be associated with diff erent stroke subtypes.

Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research 
Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National 
Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of 
Neurological Disorders and Stroke (NINDS).

Introduction
Stroke is one of the three most common causes of death, is 
a major cause of adult chronic disability,1 and represents 
an important cause of age-related cognitive decline and 
dementia. Conventional risk factors explain only a small 
proportion of all stroke risk.2 Evidence from studies of 
twins and family history suggests that genetic 
predisposition is important.3 In common with many other 
complex diseases, in which environmental risk factors are 
thought to interact with multiple genes, the identifi cation 
of the underlying molecular mechanisms contributing to 

stroke risk has been a challenge. Can didate gene studies 
have produced few replicable associations.4 More recently, 
the genome-wide asso ciation study (GWAS) approach has 
transformed the genetics of other complex diseases and is 
just beginning to aff ect the study of stroke.5,6

About 80% of stroke is ischaemic, whereas 20% is 
due to primary haemorrhage.6 Ischaemic stroke itself 
includes several subtypes with diff ering patho-
physiological mechanisms, the most common of which 
are large-vessel disease stroke, small-vessel disease 
stroke, and cardioembolic stroke.7 Various genetic 
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variants that predispose to risk factors for stroke have 
also been shown in GWAS to predispose to ischaemic 
stroke.8–10 Two loci associated with atrial fi brillation 
(PITX2 and ZFHX3) were associated with cardio-
embolic stroke, whereas a locus on chromosome 9p21 
originally associated with coronary artery disease was 
shown to be a risk factor for large-vessel stroke.8–10 The 
few novel stroke-associated loci reported to date have 
been mainly associated with stroke subtypes, rather 
than with the phenotype of ischaemic stroke. In 
Japanese populations, a variant in the protein kinase C 
family (PRKCH) was associated with small-vessel 
stroke.11 A meta-analysis of prospective population-
based cohort studies reported an association with the 
12p13 region, thought to be with the NINJ2 gene, 
although this result was not replicated in a larger case-
control sample.12,13 Recently, the Wellcome Trust Case 
Control Consortium 2 (WTCCC2) GWAS in ischaemic 
stroke reported a novel association on chromosome 
7p21 within the HDAC9 gene, although it was 
associated only with large-vessel ischaemic stroke.14

GWAS in ischaemic stroke to date have used small 
discovery populations, with the largest including 
3548 individuals.14 In other complex diseases, many 
add itional associations have been detected as the 
discovery sample size has increased.15–17 This increase 
has usually been achieved by meta-analysis of 
independent datasets. Therefore, we established the 
METASTROKE collab oration to combine the available 
GWAS datasets of ischaemic stroke. Here, we describe 
the fi rst paper from METASTROKE with a description 
of the constituent cohorts. Using this dataset, we 
attempted both to replicate previous GWAS associations 
with ischaemic stroke and to identify novel associations. 
Additionally, we determined whether stroke loci were 
specifi c to individual stroke subtypes.

Methods
Study design and participating studies
The discovery sample consisted of 15 cohorts of patients 
with ischaemic stroke who were of European ancestry 
from Europe, North America, and Australia, together 
with controls of matched ancestry. All studies used a 
case-control methodology. Most participating studies 
were cross-sectional, whereas four were in large, 
prospective, population-based cohorts (table 1). 

Additionally, 18 cohorts were analysed in the replication 
phase. These cohorts were included for replication only, 
most did not have GWAS data available; and those with 
GWAS data were not available at the time of the discovery 
analysis. 17 of the included cohorts contained individuals 
of solely European ancestry, and one contained individuals 
of Pakistani ancestry (table 1).  Most cohorts (16) were 
cross-sectional, whereas two were population-based. 

The appendix includes detailed descriptions of the 
design and clinical characteristics of the participating 
studies.

Stroke was defi ned as a typical clinical syndrome with 
radiological confi rmation. Stroke subtyping was done 
with the Trial of Org 10172 in Acute Stroke Treatment 
(TOAST) classifi cation system.18 Where subtyping was 
done, brain CT or MRI was undertaken for more than 
95% of cases in all the discovery cohorts.

Participating studies were approved by relevant 
institutional review boards, and all participants gave 
written or oral consent for study participation, including 
genetic research, as approved by the local institutional 
body.

Data imputation and statistical analysis
The 15 discovery cohorts used commercially available 
GWAS panels of single nucleotide polymorphisms 
(SNPs) from either Aff ymetrix (Santa Clara, CA, USA) or 
Illumina (San Diego, CA, USA). 14 of the 15 centres 
undertook genotype imputation with HapMap II,19 
HapMap III,20 or 1000 Genomes21 as reference haplotype 
training sets. Every centre did genotypic quality control 
steps before imputation, including removal of ancestry 
outliers defi ned by principal component analysis and 
poorly typed individuals. 

We used logistic regression for all cohorts with a cross-
sectional study design to model the multiplicative SNP 
eff ects on risk for the dichotomous outcome of stroke 
against ancestry-matched controls, whereas we used Cox 
proportional-hazards models for the prospective studies 
to assess time to fi rst stroke, fi tting an additive model 
relating genotype dose to the stroke outcome. Where 
genotypes were imputed, SNPs were modelled as allele 
dosages. Of the discovery cohorts, four (of 15) centres 
used ancestry-informative principal components as 
covariates to correct for population stratifi cation. All 
cohorts providing genome-wide data removed popu-
lation outliers before imputation. After verifying strand 
alignment, fi ltering SNPs with minor allele frequency 
lower than 0·01, and removing poorly imputed SNPs 
across centres, we did a meta-analysis of the results of 
the association analyses from every centre using a fi xed-
eff ects inverse-variance weighted model using METAL.22

We sought further evidence for association with novel 
suggestively associated SNPs in new samples from 
18 diff erent cohorts. Of the 18 centres, six submitted in-
silico genotype data and 12 undertook direct genotyping 
with the Sequenom (Sequenom, San Diego, CA, USA) or 
Taqman (Applied Biosystems, Foster City, CA, USA) 
platforms. All of the fi ve replication cohorts contributing 
genome-wide data used principal components as covariates 
in their analyses. We did a meta-analysis of the results for 
the replication cohorts using a fi xed-eff ects, inverse 
variance weighted method fi rst for all datasets, and then 
for replication datasets of solely European ancestry. We 
determined whether SNPs were signifi cantly associated in 
the replication population, and additionally, we combined 
results from the discovery and replication analyses using a 
fi xed-eff ects, inverse-variance weighted approach.

See Online for appendix
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We set the study-wide genome-wide signifi cance level 
at p<5×10–⁸ to control the experiment-wide error rate to 
<5%. Following the example of previous GWAS studies,15 
we set the level for suggestive signifi cance at p<5×10–⁶.

First, we attempted to determine the evidence for 
association for the six loci reported previously from GWAS 
to be associated with ischaemic stroke (HDAC9, PITX2, 

ZFHX3, NINJ2, PRKCH, and 9p21).8–12,14 After determining 
the evidence for association with the previously reported 
SNPs, we investigated whether any proxy SNPs were more 
signifi cantly associated in the METASTROKE dataset. 
Because some loci had been identifi ed in discovery 
populations included in METASTROKE, we initially did 
analyses for the whole dataset, and then we restricted 

Number 
of cases

Number 
of CS cases

Number of 
LVD cases

Number of 
SVD cases

Number of 
controls

Ancestry Study design Genotyping

Discovery cohorts

ARIC 385 93 31 63 8803 European Population-based Aff ymetrix 6.0

ASGC 1162 240 421 310 1244 European Cross-sectional Illumina 610

BRAINS 361 29 120 97 444 European Cross-sectional Illumina 660

CHS 454 147 ·· 73 2817 European Population-based Illumina 370

deCODE 2391 399 255 240 26 970 European Cross-sectional Illumina 317/370

FHS 171 48 ·· ·· 4164 European Population-based Aff ymetrix 550

GEOS 448 90 37 54 498 European Cross-sectional Illumina HumanOmni1

HPS 578 ·· ·· ·· 468 European Cross-sectional Illumina 610

HVH 566 88 61 173 1290 European Cross-sectional Illumina 370

ISGS/SWISS 1070 247 229 201 2329 European Cross-sectional Illumina 550/610/660

MGH-GASROS 516 169 95 38 1202 European Cross-sectional Aff ymetrix 6.0

Milano 372 25 74 65 407 European Cross-sectional Illumina 610/660

Rotterdam 367 ·· ·· ·· 5396 European Population-based Illumina 550

WTCCC2-Munich 1174 330 346 106 797 European Cross-sectional Illumina 660

WTCCC2-UK 2374 460 498 474 5175 European Cross-sectional Illumina 660

Total (discovery) 12 389 2365 2167 1894 62 004 ·· ·· ··

Replication cohorts

Barcelona 439 179 110 150 404 European Cross-sectional Sequenom

BSS 225 11 93 90 312 European Cross-sectional Sequenom

Copenhagen 730 ·· ·· ·· 1545 European Cross-sectional TaqMan

ESS 276 40 20 69 940 European Cross-sectional TaqMan/Illumina 610

Glasgow 675 125 91 150 940 European Cross-sectional Sequenom/Illumina 610

Go-Darts* 737 130 259 ·· 8424 European Cross-sectional Aff ymetrix 6.0/Illumina 
Cardio-metabochip

Graz 657 116 108 207 848 European Cross-sectional Sequenom/Illumina 610

Interstroke* 872 143 198 238 926 European Cross-sectional Illumina Cardio-metabochip

Krakow 1235 377 152 171 584 European Cross-sectional Sequenom

Leuven 458 195 83 63 391 European Cross-sectional Sequenom

Lund 424 140 21 94 466 European Cross-sectional Sequenom

Munster 1232 478 528 224 1053 European Cross-sectional Sequenom

Portugal 539 ·· ·· ·· 507 European Cross-sectional Sequenom

RACE (Pakistan)* 1322 225 195 189 1143 Pakistani Cross-sectional Illumina 660

SMART 623 30 368 195 6712 European Population-based Sequenom

Sweden 876 157 177 75 742 European Cross-sectional Sequenom

VISP* 1725 ·· ·· ·· 1047 European Cross-sectional Illumina HumanOmni1

WHI* 302 42 31 78 2099 European Population-based Illumina Omni-Quad

Total (replication) 13 347 2388 2434 1993 29 083 ·· ·· ··

CS=cardioembolic stroke. LVD=large-vessel disease. SVD=small-vessel disease. ARIC=The Atherosclerosis Risk in Communities study. ASGC=Australian Stroke Genetics 
Collabarative. BRAINS=Bio-Repository of DNA in stroke. CHS=Cardiovascular Health Study. FHS=Framingham Heart Study. GEOS=Genetics of Early-Onset Stroke. HPS=Heart 
Protection Study. HVH=The Heart and Vascular Health Study. ISGS/SWISS=The Ischemic Stroke Genetics Study/Sibling with Ischaemic Stroke Study. MGH-GASROS=The MGH 
Genes Aff ecting Stroke Risk and Outcome Study. WTCCC2-Munich=The Wellcome Trust Case-Control Consortium II Munich. WTCCC2-UK=The Wellcome Trust Case-Control 
Consortium II UK. BSS=Belgium Stroke Study. ESS=Edinburgh Stroke Study. Go-Darts=Genetics of Diabetes Audit and Research in Tayside Study. RACE=Risk Assessment of 
Cerebrovascular Events Study, Pakistan. SMART=Second Manifestations of ARTerial disease. VISP=The Vitamin Intervention for Stroke Prevention Trial. WHI=The Women’s 
Health Initiative. *Contributed genome-wide data. 

Table 1: Description of cohorts used in analysis by study population
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analysis to the lead SNP for every locus in the 
METASTROKE cohorts that had not been included in the 
discovery phase of the initial publication. We set the 
signifi cance level for independent replication at p<0·01, 
corresponding to Bonferroni corrected type 1 error <5% for 
the fi ve SNPs (excluding PRKCH) tested.

As the SNP in PRKCH (rs2230500) underlying the 
previous association in Japanese cohorts1 is mono morphic 
in populations of European ancestry, we sought to identify 
any associations within this gene region, including the 
50 kbp window upstream and downstream, in our large 
population of European ancestry. Using the modifi ed 
Nyholt correction approach of Li and Ji on the 353 SNPs 
from the region, we estimated the eff ective number of 
SNPs tested to be 103·3.23 We therefore set the signifi cance 
level at p<0·00048, corresponding to Bonferroni corrected 
type I error <5% for the eff ective SNPs tested.

We also did an analysis to determine whether the six 
previously reported variants were associated with stroke 
risk in prospective population-based studies. We did this 
analysis only for the known SNPs that had been analysed 
in a minimum of 100 cases in the prospective cohorts 
with incident stroke events for the relevant subtype.

For those associations we could confi rm, we then did a 
conditional analysis within the associated region to identify 
any signal in the region that was independent of the lead 
SNP in every case. For every association, we selected 
regions used in the conditional analysis on the basis of 
adjacent recombination hotspots, meaning we analysed 
diff erent numbers of SNPs for every locus (appendix). We 
used logistic regression in every centre, using imputed 
genotype dosages to model the eff ect of the lead SNP on 
risk as a covariate. We then did a meta-analysis of the 
results using a fi xed-eff ects, inverse-variance weighted 
model. We used our suggestive signifi cance threshold 
(p<5×10–⁶) to identify SNPs that were statistically 
independent of the lead SNP for every locus.

We then did a meta-analysis of the genome-wide study-
specifi c analysed datasets to identify novel associations 
with ischaemic stroke and its subtypes. We did the 
primary association analyses for all ischaemic stroke and 
for the three major subtypes: cardioembolic stroke, large-
vessel disease, and small-vessel disease. We did additional 
secondary analyses for young cases (younger than 
70 years at fi rst stroke) and for the phenotype of ischaemic 
stroke in each sex separately. We reused the same 
controls per centre for all analyses. Excluding the 
previously published associations, we considered all 
SNPs reaching suggestive signifi cance (p<5×10–⁶) for 
replication. We examined SNPs for heterogeneity across 
datasets and attempted replication in independent 
datasets for the loci that were deemed plausible can-
didates for association with ischaemic stroke.

For a minor allele frequency of 0·25, we had 80% 
power to detect variants with a per-allele odds ratio (OR) 
greater than 1·11 for the all ischaemic stroke analysis, 
1·23 for cardioembolic stroke, 1·24 for large-vessel 

disease, and 1·26 for small-vessel disease at p<5×10–⁸ in 
the discovery phase.

Role of the funding source
The sponsors of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results
The discovery meta-analysis of ischaemic stroke pheno-
types involved a total of 12 389 cases and 62 004 controls 
from 15 populations (table 1; fi gure 1).

The discovery meta-analysis confi rmed associations at 
genome-wide signifi cance levels for HDAC9 with large-
vessel disease, and for both PITX2 and ZFHX3 with 
cardioembolic stroke (table 2). For PITX2, ZFHX3, 
and HDAC9 a proxy SNP was more signifi cant in the 
METASTROKE dataset than the SNP from the original 
publication (original SNP shown in appendix). The 9p21 
locus was associated with large-vessel disease 
with a similar OR (1·15, 95% CI 1·08–1·23, in 
METASTROKE) to that reported previously (1·21, 
1·07–1·37),10 although it did not reach genome-wide 
signifi cance (p=3·32×10–⁵). All four associations were 
subtype specifi c, being present only for a single stroke 
subtype (table 2). To determine the extent to which these 
results replicated the fi ndings from the originally 
published associations, we repeated the meta-analysis, 
this time excluding the populations that contributed to 
the discovery phase of the original publication. For the 
PITX2, ZFHX3, HDAC9, and 9p21 loci, the associations 
were replicated in the independent METASTROKE 
samples (table 2). The population attributable risks in 
the METASTROKE discovery cohort were estimated as 
5·8% for PITX2 and 7·0% for ZFHX3 in cardioembolic 
stroke, and 4·5% for HDAC9 and 7·2% for 9p21 in large-
vessel disease.

The NINJ2 locus showed nominal evidence of asso-
ciation with all ischaemic stroke when all populations 
were included (table 2). However, no evidence was noted 
for association with the NINJ2 locus when the original 
discovery populations were excluded (table 2).

To estimate the eff ect of these associations in pro-
spective population-based studies, we had a suffi  cient 
number of stroke cases for the analysis in only the 
cardioembolic subtype (n=376). We noted ORs similar to 
those identifi ed in the overall case-control study for both 
PITX2 (1·26, 95% CI 1·05–1·52, in prospective studies 
and 1·36, 1·27–1·47, in case-control analysis) and 
ZFHX3 (1·23, 0·98–1·55, in prospective studies and 
1·25, 1·15–1·35, in case-control analysis), although this 
similarity was signifi cant only for PITX2 (appendix).

We found no signifi cant associations between the 
PRKCH gene region and all ischaemic strokes or with 
the three main subtype analyses. Table 2 provides details 



Articles

www.thelancet.com/neurology   Vol 11   November 2012 955

of the most strongly associated SNPs in every subtype 
for this locus. 

For those loci for which we confi rmed genome-wide 
signifi cance (PITX2, ZFHX3, and HDAC9), we did 
conditional analyses. After conditioning on the lead SNP 
in the given region, no SNP showed signifi cance at 
p<0·01 in PITX2 or ZFHX3, and no SNP showed 
signifi cance at p<0·005 in HDAC9. Furthermore, all 
other SNPs in the regions that were associated at 
p<5×10–⁸ in the main analysis showed no signifi cance 
(p>0·05) in any of the analyses after conditioning on the 
lead SNP. Figure 2 shows plots of –log10(p values) against 
genomic position in the selected regions for the 
unconditional and conditional analyses.

We selected a total of 12 novel SNPs for testing in the 
independent replication cohort: three associated with all 

Chr BP SNP RA RAF Full METASTROKE discovery sample Excluding cohorts used in previous 
discovery of relevant association*

OR (95% CI) p value† OR (95% CI) p value†

HDAC9 7 19 015 913 rs2107595 A 0·16

IS ·· ·· ·· ·· ·· 1·12 (1·07–1·17) 4·34×10�⁶ 1·11 (1·05–1·17) 7·8×10�⁵

LVD ·· ·· ·· ·· ·· 1·39 (1·27–1·53) 2·03×10�¹⁶ 1·39 (1·24–1·56) 3·15×10�⁸

SVD ·· ·· ·· ·· ·· 1·03 (0·93–1·14) 0·57 1·11 (0·96–1·29) 0·92

CE ·· ·· ·· ·· ·· 1·07 (0·98–1·17) 0·15 1·07 (0·96–1·19) 0·25 

PITX2 4 111 937 516 rs6843082 G 0·21

IS ·· ·· ·· ·· ·· 1·11 (1·06–1·15) 1·95×10�⁷ 1·09 (1·04–1·14) 1·12×10�⁴

LVD ·· ·· ·· ·· ·· 1·06 (0·97–1·15) 0·17 1·03 (0·93–1·13) 0·61

SVD ·· ·· ·· ·· ·· 1·04 (0·96–1·14) 0·31 1·01 (0·90–1·13) 0·91

CE ·· ·· ·· ·· ·· 1·36 (1·27–1·47) 2·8×10�¹⁶ 1·32 (1·23–1·44) 3·64×10�¹²

ZFHX3 16 71 626 169 rs879324 A 0·19

IS ·· ·· ·· ·· ·· 1·05 (1·00–1·09) 0·037 1·06 (1·01–1·11) 0·021

LVD ·· ·· ·· ·· ·· 1·06 (0·98–1·16) 0·15 1·06 (0·96–1·17) 0·32

SVD ·· ·· ·· ·· ·· 0·99 (0·91–1·09) 0·94 1·01 (0·91–1·13) 0·81

CE ·· ·· ·· ·· ·· 1·25 (1·15–1·35) 2·28×10�⁸ 1·25 (1·15–1·36) 1·53×10�⁷

NINJ2 12 645 460 rs11833579 A 0·22

IS ·· ·· ·· ·· ·· 1·06 (1·02–1·10) 6·1×10�⁴ 1·00 (0.96–1·05) 0·81

LVD ·· ·· ·· ·· ·· 0·99 (0·91–1·08) 0·87 0·99 (0·91–1·08) 0·79

SVD ·· ·· ·· ·· ·· 0·98 (0·90–1·08) 0·79 0·99 (0·90–1·08) 0·79 

CE ·· ·· ·· ·· ·· 1·04 (0·97–1·13) 0·27 1·00 (0·92–1·09) 0·95

9p21 9 22 105 959 rs2383207 G 0·52

IS ·· ·· ·· ·· ·· 1·04 (0·76–1·41) 0·024 1·03 (0·99–1·07) 0·16

LVD ·· ·· ·· ·· ·· 1·15 (1·08–1·23) 3·32×10�⁵ 1·15 (1·04–1·27) 5·69×10�³

SVD ·· ·· ·· ·· ·· 1·02 (0·96–1·10) 0·48 1·03 (0·93–1·14) 0·61

CE ·· ·· ·· ·· ·· 0·96 (0·91–1·03) 0·24 1·02 (0·92–1·14) 0·61

PRKCH

IS 14 61 077 900 rs2246700 A 0·84 1·07 (1·02–1·12) 0·0049 ·· ··

LVD 14 60 894 555 rs12587610 G 0·31 1·11 (1·03–1·21) 0·0046 ·· ··

SVD 14 61 114 037 rs2255146 G 0·82 1·22 (1·03–1·43) 0·0175 ·· ··

CE 14 60 988 886 rs3825655 C 0·95 1·31 (1·00–1·71) 0·0475 ·· ··

Chr=chromosome. BP=base position. SNP=single nucleotide polymorphism.RA=risk allele. RAF=risk allele frequency. OR=odds ratio. IS=all ischaemic strokes. LVD=large vessel 
disease. SVD=small vessel disease. CE=cardioembolic stroke. *Statistics shown are after removal of discovery populations showing an association between the gene and 
stroke from original publications—ie, deCODE excluded for PITX2, ZFHX3;8,9 WTCCC2-UK and WTCCC-Munich excluded for HDAC9;14 WTCCC2-UK and WTCCC2-Munich, ISGS/
SWISS, GEOS, and MGH-GASROS excluded for CDKN2a/CDKN2b (9p21);10 Rotterdam, ARIC, FHS, and CHS excluded for NINJ2.12 †One-sided p value. 

Table 2: METASTROKE association signals for SNPs identifi ed in previous genome-wide association studies by gene and disease subtype

Figure 1: Flow diagram of METASTROKE analyses
GWAS=genome-wide association study. SNP=single nucleotide polymorphism. 

Replication of previously 
identified GWAS SNPs

Identification of 12 potential 
stroke-associated SNPs at p<5×10–⁶

Further evidence sought in 
replication dataset: 
13 347 
29 083 

METASTROKE discovery populations:
12 389 
62 004

Meta-analysis

cases
controls

cases
controls
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ischaemic stroke, fi ve associated with specifi c stroke 
subtypes, and two each associated with young stroke and 
female stroke. Four of these SNPs showed associations 
close to genome-wide signifi cance in the discovery 
cohort: rs225132 in the ERRF11 gene and rs17696736 in 
the NAA25 (C12orf30) gene with all ischaemic stroke 
(p=6·3×10–⁸ and 5·9×10–⁸, respectively), rs7937106 in 
ALKBH8 with large-vessel disease (p=5·9×10–⁸), and 
rs13407662 on chromosome 2p16.2 (p=5·2×10–⁸) in an 
intergenic region with small-vessel disease. The re-
maining SNPs were identifi ed at the suggestive 
signifi cance level of p<5×10–⁶. Table 3 shows details of 

these SNPs, including stroke subtypes with which they 
were associated, and signifi cance levels. These 12 novel 
SNPs were taken forward for replication in an additional 
13 347 cases and 29 083 controls. Figure 3 shows the plots 
of –log10(p values) by chromosomal location for the 
analysis of all stroke and the three main subtypes. 

None of the novel SNPs reached genome-wide 
signifi cance on combination of the discovery and 
replication data. This result was the same when 
replication analysis was restricted to individuals of 
European ancestry (table 3). There was signifi cant 
heterogeneity (p<0·05) for all of the SNPs in the 
combined analysis. We had suffi  cient sample size to 
obtain 80% power to confi rm each of the 12 loci 
(appendix).

Discussion
METASTROKE is the fi rst large meta-analysis of stroke 
GWAS data (panel). The METASTROKE collaboration 
brings together GWAS data from more than 12 000 cases 
of ischaemic stroke and 60 000 controls from 15 cohorts 
all of European ancestry. In this fi rst analysis from the 
dataset, we confi rmed four of fi ve previously described 
associations with ischaemic stroke in populations of 
European ancestry, including replication in an 
independent non-overlapping sample of the dataset not 
included in the original GWAS. All these associations 
were with specifi c subtypes of ischaemic stroke, 
emphasising the genetic heterogeneity of the disease. 
Additionally, we identifi ed several promising novel 
associations, some of which were close to genome-wide 
signifi cance in the discovery cohorts, but these were not 
confi rmed in our replication population.

Our results provide further robust data supporting 
an association between two gene regions (PITX2 and 
ZFHX3) and cardioembolic stroke, and a further two 
(HDAC9 and 9p21) with large-vessel stroke although the 
9p21 locus did not reach genome-wide signifi cance. In all 
cases, these associations were present in the dataset as a 
whole, and also when those samples used in the original 
discovery cohorts that identifi ed associations with 
ischaemic stroke were excluded. 

Both PITX2 and ZFHX3 were originally identifi ed as 
risk factors for atrial fi brillation.8,9 Atrial fi brillation is a 
major risk factor for stroke, particularly in the elderly, 
and therefore their association with ischaemic stroke is 
not unexpected. Our results confi rm this association and 
clearly show that it is limited to the cardioembolic stroke 
subtype. Furthermore, we were able to show an 
association between PITX2 and ischaemic stroke in 
prospective cohorts. A potential bias is that a variant that 
is in fact associated with mortality rate after acute stroke 
and not with stroke risk might seem to be related to risk; 
for cross-sectional studies in a disease such as stroke, 
which has substantial early mortality, death might occur 
before or soon after hospital admission before samples 
are taken. In a prospective study, such cases are included 

Figure 2: Manhattan plots of –log10(p) against genomic position for principal analyses
(A) All ischaemic stroke. (B) Large-vessel disease. (C) Cardioembolic stroke. (D) Small-vessel disease. Genome-wide 
meta-analysis association results by genomic position for the four main analyses.
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as the sample was taken at recruitment to the study and 
therefore before the onset of stroke.

By contrast, the HDAC9 and 9p21 associations were 
specifi c to large-vessel stroke, and not present with other 
stroke subtypes. An association with the 9p21 locus was 
fi rst associated with myocardial infarction and coronary 
artery disease but has now been associated more widely 
with other arterial diseases such as aneurysms and 
ischaemic stroke.10,24 HDAC9 was recently identifi ed in 
the WTCCC2 ischaemic stroke study as a novel asso-
ciation with ischaemic stroke,14 having not previously 
been shown in GWAS analyses of ischaemic heart 
disease.

For the PITX2, ZFHX3, and HDAC9 associations, 
we did a conditional analysis to establish whether the 
lead SNP that we had identifi ed was suffi  cient to model 
all of the associations within that region, or whether 
other independent genetic variants were associated with 
disease. In every case, no signifi cant association re-
mained after controlling for the lead SNP, suggesting 
that all the signal in each region can be attributed to one 
risk haplotype.

A meta-analysis of prospective cohort studies reported 
an association between ischaemic stroke and a SNP in 
the 12p13 region, although this was not replicated in an 
independent study.13 The underlying gene was suggested 
to be NINJ2.12 This association was present in the 
METASTROKE discovery cohort, but this cohort con-
tained the datasets in which the original association had 
been determined. When these datasets were excluded, 
there was no evidence of any associations.

In a Japanese population, a variant in PRKCH has been 
associated with small-artery disease, a stroke sub type 
that is particularly common in this ethnic group.11 This 
association was confi rmed in a prospective study with 

relatively few stroke endpoints, and also in a Chinese 
population.25,26 Interestingly, an association was also 
suggested with cerebral haemorrhage, which shares 
some underlying pathological similarities with cerebral 
small-vessel disease causing lacunar infarction. The 
association has not yet been examined in other ancestral 
groups. The SNP is monomorphic in European popu-
lations and therefore we were unable to examine whether 
the association was present in our population. However, 
we assessed all SNPs at this chromosomal region and 
noted no evidence of any association in our population of 
European ancestry.

We identifi ed associations at four loci that were near 
genome-wide signifi cance in the discovery cohort and 
had not been associated with stroke in previous studies: 
SNPs in the ERRF11 and NAA25 (C12orf30) genes with 
all ischaemic stroke, a SNP in ALKBH8 with large-vessel 
stroke, and rs13407662 on chromosome 2p16.2 in an 
intergenic region with small-vessel disease. We took 
these four forward, with an additional eight of the 
strongest associations that had not reached genome-wide 
signifi cance, to replication in an independent sample. 
None of the associations replicated. Our replication 
sample contained a cohort of patients of Pakistani 
ancestry, but, restriction of our analysis to individuals of 
European ancestry did not alter the results.

The same risk allele of SNP rs17696736 in the NAA25 
gene has previously been associated with type 1 diabetes 
in a large genome-wide association study.27 Other SNPs 
in this 12q24 region have also been implicated in several 
of related phenotypes including microcirculation in vivo, 
platelet count, and blood pressure.28–30 None of the other 
three associations near to genome-wide signifi cance have 
previously been associated with cardio vascular or 
neurological disease.

Chr SNP Candidate gene RA RAF pdiscovery; ORdiscovery (95% CI) All replication samples Replication in European descent 
individuals only

preplication; ORreplication (95% CI) pcombined preplication; ORreplication (95% CI) pcombined

IS 1 rs225132 ERRFI1 T 0·82 6·27×10�⁸; 1·12 (1·07–1·17) 0·16; 0·97 (0·92–1·01) 1·65×10�³ 0·11; 0·96 (0·92–1·01) 1·91×10�³

IS 12 rs17696736 NAA25 (C12orf30) G 0·42 5·97×10�⁸; 1·10 (1·06–1·14) 0·59; 1·01 (0·97–1·05) 1·92×10�⁵ 0·60; 1·01 (0·97–1·05) 1·69×10�⁵

IS 3 rs16851055 SPSB4 G 0·81 6·34×10�⁷; 1·12 (1·07–1·17) 0·20; 1·03 (0·98–1·08) 6·23×10�⁶ 0·25; 1·03 (0·98–1·08) 7·76×10�⁶

CS 3 rs6763538 OXNAD1 T 0·04 2·89×10�⁷; 1·47 (1·27–1·69) 0·69; 1·04 (0·87–1·24) 2·68×10�⁵ 0·59; 1·05 (0·88–1·25) 1·36×10�⁵

LVD 11 rs7937106 ALKBH8 C 0·16 5·85×10�⁸; 1·68 (1·40–2·03) 0·66; 1·04 (0·87–1·25) 3·93×10�⁵ 0·65; 1·05 (0·85–1·31) 1·42×10�4

LVD 6 rs556621 ·· T 0·33 4·63×10�⁷; 1·20 (1·12–1·28) 0·46; 1·03 (0·96–1·10) 5·33×10�⁵ 0·37; 1·03 (0·96–1·11) 2·43×10�⁵

SVD 18 rs7407640 AFG3L2 A 0·21 2·20×10�⁶; 1·23 (1·13–1·34) 0·99; 1·00 (0·91–1·10) 4·54×10�⁴ 0·57; 0·97 (0·88–1·07) 1·16×10�³

SVD 2 rs13407662 ·· T 0·04 5·18×10�⁸; 1·95 (1·53–2·48) 0·28; 1·16 (0·89–1·51) 1·97×10�⁶ 0·36; 1·14 (0·86–1·53) 1·88×10�⁶

FS 3 rs7432308 ·· T 0·15 1·63×10�6; 1·16 (1·09–1·24) 0·15; 0·95 (0·88–1·51) 4·80×10�³ 0·37; 0·96 (0·89–1·05) 9·13×10�⁴

FS 12 rs2238151 ALDH2 T 0·66 1·03×10�⁶; 1·13 (1·08–1·19) 0·26; 1·03 (0·98–1·09) 8·62×10�⁶ 0·22; 1·04 (0·98–1·11) 3·98×10�⁶

YS 7 rs12703165 PRKAG2 G 0·82 5·63x10�⁷; 1·20 (1·12–1·29) 0·49; 0·98 (0·93–1·04) 0·012 0·89; 1·00 (0·94–1·06) 1·81×10�³

YS 8 rs4875812 ARHGEF10 G 0·55 1·40×10�⁶; 1·16 (1·10–1·23) 0·87; 1·00 (0·97–1·03) 0·034 0·94; 1·00 (0·97–1·03) 0·024

Chr=chromosome. SNP=single nucleotide polymorphism. RA=risk allele. RAF=risk allele frequency. pdiscovery=one-sided p value in discovery cohorts. ORdiscovery=odds ratio in discovery cohorts. preplication,=one-sided 
p value in replication cohorts. ORreplication=odds ratio in replication cohorts. pcombined=one-sided p value in all cohorts combined. IS=all ischaemic stroke. CS=cardioembolic stroke. LVD=large-vessel disease. SVD=small-
vessel disease. FS=female-only stroke. YS=young stroke.

Table 3: Association signals for SNPs selecting for testing in the independent replication cohort by subtype
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Our inability to replicate any of the novel associations 
we identifi ed in the discovery phase could be explained 
by various factors. All non-imputed SNPs in all cohorts 
were checked for Hardy-Weinberg equilibrium and 
standard quality control measures were done, including 
checking for sex mismatch on the basis of three genotypic 

markers, but we cannot rule out confounding by other 
means. For example, many of the 12 replication cohorts 
only directly genotyped the 12 replication SNPs. First, 
this type of analysis provides no means of adjustment for 
ancestry-informative principal components, which could 
lead to results being adversely aff ected by popu lation 

Figure 3: Plots of conditional analysis regions before and after conditioning on lead SNP
SNP=single nucleotide polymorphism. Plots of association signals around loci investigated in conditional analyses in subtypes in which they were discovered for the meta-analysed discovery samples. 
SNPs are coloured on the basis of their correlation (r²) with the labelled top SNP, which has the smallest p value in the region. The fi ne-scale recombination rates estimated from HapMap data are 
marked in red, with genes marked below by horizontal blue lines. Arrows on the horizontal blue lines show the direction of transcription, and rectangles are exons. (A,C,E) Regions from discovery 
meta-analyses. (B,D,F) Same regions as A,C,E after conditioning on the lead SNP from the region.
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structure. Second, our strategy of attempting replication 
with one SNP from each region might not have been 
optimum. In regions such as the 12q24 locus, where the 
linkage disequilibrium patterns are complex, attempting 
replication in multiple SNPs might have proved more 
fruitful. Furthermore, one SNP (rs13407662) associated 
with small-vessel disease in the discovery phase failed 
genotyping in more than half of the replication cohorts. 
Genotyping multiple SNPs at this locus might have 
avoided this issue. We also cannot rule out confounding 
because of other environmental factors or phenotypic 
heterogeneity. Although phenotyping was done using the 
TOAST classifi cation system, inter pretation of exact 
classifi cation criteria and defi nitions can diff er across 
countries and studies, which becomes more of an issue 
when there are many smaller cohorts, such as in the 
replication phase of this study. Varying cohort study 
designs might also increase heterogeneity in large-scale 
meta-analyses.

Our results show that although genetic variants can be 
detected with ischaemic stroke, all associations we were 
able to confi rm were specifi c to a stroke subtype. This 
fi nding has two implications. First, to maximise success 
of genetic studies in ischaemic stroke, detailed stroke 
subtyping is needed. Second, it implies that diff erent 
pathophysiological mechanisms are associated with 
diff erent stroke subtypes and, therefore, drug treatments 
might have diff erent eff ects in diff erent stroke subtypes. 
Most trials of secondary prevention in stroke have 
included all strokes, with limited stroke subtyping, and 
further studies with the detailed sub typing would be 
required to show diff erent pharma cological profi les.

METASTROKE brings together GWAS data from most 
groups working in the area of stroke genetics worldwide. 

This paper describes the details of every population and 
represents the fi rst analysis of the datasets. Various 
additional GWAS studies in stroke are currently taking 
place or have recently been completed, including a 
recently published GWAS in an Australian population, 
which confi rmed an association at a 6p21.1 locus with 
large-artery atherosclerotic stroke.31 The addition of these 
data might lead to identifi cation of further novel 
associations with ischaemic stroke.
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Interpretation
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with potential implications for all areas of stroke research.
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