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SUMMARY
Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on car-

diomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inacti-

vated. Repression of PGC-1a, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and

activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered,

and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in

control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1a knockdown and similarly increased the calcium

transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature

cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac

physiology pertaining to disease.
INTRODUCTION

Pluripotent stem cells (PSCs) have the remarkable capacity

to generate all cell types of the body (Thomson et al., 1998).

Potential biomedical applications for the derivatives of

PSCs are vast and diverse, including disease modeling,

drug testing, tissue engineering, and cell therapies. How-

ever, to fully realize the potential of any of these applica-

tions, it is essential to understand more about their

functional properties and to identify the factors that con-

trol their stability and maturation, since all differentiated

derivatives of PSCs in vitro are immature, with fetal rather

than adult characteristics (Murry and Keller, 2008).

Here, we were interested in examining the properties of

cardiomyocytes derived in vitro from human embryonic

stem cells (hESCs). Electrically and contraction-competent

cardiomyocytes can now be generated efficiently under

defined conditions from hESCs and human induced

pluripotent stem cells (hiPSCs) (Mummery et al., 2012).

These cardiomyocytes have the potential to be used for

all of the applications relevant to heart physiology and

disease mentioned above. Now that the efficiency of differ-

entiation is not rate limiting, a deeper study of the cardio-

myocyte function is feasible and warranted. Of particular

relevance to the heart’s function as a pump is the ability

of the cardiomyocytes to supply themselves with the neces-
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sary energy for their work. During development in vivo,

cardiomyocytes acquire a high density of mitochondria,

which ultimately occupy 20%–30% of the cell volume in

the adult (Schaper et al., 1980). This gives these cells a

huge capacity for ATP synthesis, which is necessary to

fund the high energy demands of ion pumping and

contractility during strenuous activity. The importance of

mitochondria for heart function is highlighted by the

fact that functionally important mutations that affect

mitochondria frequently cause cardiomyopathy (Bates

et al., 2012; Hirano et al., 2001), and diminishedmitochon-

drial function is an almost universal feature of cardiac dis-

ease (Ventura-Clapier et al., 2011).

Heart disease remains a major cause of morbidity and

mortality in the Western world and there is an urgent

need for better models and treatment strategies. Surpris-

ingly, though, investigation ofmitochondrial involvement

in heart disease has largely been limited to mice, which

have a markedly different cardiac physiology compared

with humans (Davis et al., 2011) and have not proved to

be a highly predictable model for mitochondrial disease.

The advent of human PSC research has created opportu-

nities to probe the functional relationship between mito-

chondria and heart failure, and to study the specific cardiac

pathogenic mechanisms of mitochondrial diseases using

iPSCs generated from patients. However, little is known
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about how mitochondrial functions and bioenergetics

change in the transition from a PSC to a cardiomyocyte,

or how important these functions are. An analysis of these

fundamental characteristics is thus warranted. Such an

analysis would have practical implications for investi-

gating the response to an energetic stress, such as a hyper-

trophic or chronotropic stimulus, and for studying disease

phenotypes in whichmitochondria are implicated, such as

cardiomyopathy and cardiac hypertrophy.

Another important consideration is that if cardiomyo-

cytes acquire a high density of highly polarized mitochon-

dria, one would also expect reactive oxygen species (ROS)

production to be high. It is not known what impact this

would have on cardiomyocyte function, stability, or matu-

ration in this in vitro context, and therefore whether ROS

levels should be controlled. ROS have been shown to affect

a variety of important ion channels and pumps, so the

benefit of having a large energy reserve could be offset by

a greater burden on the cell as a consequence of oxidative

modifications and damage (Goldhaber et al., 1989; Liu

et al., 2010; Zima and Blatter, 2006).

From a developmental perspective, if hPSC-derived car-

diomyocytes do show developmentally related changes,

this system could provide a robust model for learning

about the regulation of these changes during formation

of the human heart. For example, fundamental details

such as whether the increase in cardiomyocyte mitochon-

dria is driven primarily by energy demands or by a ge-

netic program remain unknown. It is also not known

which genes control mitochondrial biogenesis in human

heart cells and whether these same genes are involved in

heart disease. In the mouse, genes with known roles in

mitochondrial biogenesis seem to have deterministic

roles in heart failure (Fritah et al., 2010a), and some of

these factors have also been additionally implicated in

the perinatal maturation of the mouse heart (Lai et al.,

2008).

In this study, we addressed fundamental aspects of hESC-

derived cardiomyocyte bioenergetics and identified

PGC-1a as a major regulator of mitochondria and wider

functionality in these cells.
RESULTS

Differentiation of hESCs to Cardiomyocytes Involves a

Large Increase in Mitochondrial Energy-Generating

Capacity Despite Little Change in Cell Energetic

Demand

We utilized the targeted NKX2-5eGFP/w hESC reporter line,

in which enhanced GFP (hereafter referred to as GFP) is ex-

pressed in cardiac progenitors and cardiomyocytes (Dubois

et al., 2011; Elliott et al., 2011), to analyze changes in the
Stem Cell R
cellular bioenergetic status during differentiation toward

fully committed (i.e., minimally proliferative) cardiomyo-

cytes. We used this cell line in combination with the

Seahorse Bioanalyzer to assess respiration and anaerobic

glycolytic rates (proton production rates) in monolayer

cultures (Figure 1). Fluorescence-activated cell sorting

(FACS)-sorted embryoid body (EB)-derived cells (at day

12+7 postdifferentiation [D12+7]) contained 95.5% ± 3%

cardiomyocytes in the GFPpos fraction and 11.5% ± 3%

cardiomyocytes in the GFPneg fraction as assessed by

troponin I immunofluorescence staining (Figure 1A). This

is consistent with a subpopulation of NKX2-5neg cardio-

myocytes in the heart (Christoffels et al., 2006). The

GFPneg fraction is further composed of a heterogeneous

population of mesodermal cell types (Figures S1A and S1B

available online). In this monolayer format, the GFPpos

cell population (hereafter referred to as cardiomyocytes)

spontaneously contracted at a mean frequency of 0.50 ±

0.04 Hz.

hESCs actively respire, generatingmore than half of their

ATP by oxidative phosphorylation (Birket et al., 2011). The

hESC line used here also showed this bias, with an esti-

mated 68% ± 4% of ATP generated by oxidative phosphor-

ylation (Figures 1B–1D). Cardiomyocyte cultures (D12+7

GFPpos) showed a significant increase in coupled respira-

tion, whereas the anaerobic glycolytic rate was signifi-

cantly decreased, resulting in little difference in total ATP

output. By contrast, the GFPneg population showed no

change in coupled respiration, but the significantly

decreased anaerobic glycolytic rate caused a reduction in

total basal ATP output. However, mitochondrial inhibition

by oligomycin increased anaerobic glycolysis in cardio-

myocytes to a level as high as that observed in hESCs

(Figure 1B). This shift in energy supply after oligomycin

addition was permissive for contractility, demonstrating

that anaerobic glycolysis is robust enough to support

beating. In fact, contracting cardiomyocytes were pro-

duced even when mitochondrial ATP production was in-

hibited from day 3 of EB differentiation. Thus, this ATP

source is not essential for cardiomyocyte differentiation

either (Figure S1C).

To determine the component contributors to energy de-

mand, we inhibited contraction and/or the action poten-

tial (AP) and calcium transient. Contraction was inhibited

using the Myosin II ATPase inhibitor blebbistatin (Straight

et al., 2003), which does not affect electrical excitability,

and a combination of blebbistatin and the L-type calcium

channel inhibitor nifedipinewas used to additionally block

the AP and the calcium transient. The difference between

the effect of the blebbistatin alone and the combination

of the two inhibitors should give the energy demand of

only the AP and the calcium transient. These calculations

showed that sarcomeric contraction alone accounted for
eports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The Authors 561
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21.9% ± 1.9% of coupled respiration, and the AP and the

calcium transient combined accounted for 9% ± 2.9% (Fig-

ures 1E and 1F).

An obvious bioenergetic difference between these three

cell populations was the vastly increased maximal respira-

tory capacity, and thus the theoretical ATP production

capacity, of the cardiomyocytes (Figure 1B and 1C). This

suggests the possibility of increased mitochondrial respira-

tory chain content in these cells. Additionally, or alterna-

tively, this could be due to changes in tricarboxylic acid

(TCA) cycle enzymes, their state of activation, or differ-

ences in matrix [Ca2+] between beating and nonbeating

cells. To assess mitochondrial content changes, possibly

relating to cell maturation, we calculated the mitochon-

dria-to-cell volume ratio. From a typical dissociation at

D12, there was clear evidence of a gradual time-dependent

increase in mitochondria in cardiomyocytes (Figures 1G

and 1H). By contrast, the GFPneg fraction showed very

little evidence of increased mitochondrial biogenesis. As

there was little overall increase in energy demand between

the hESC state and the cardiomyocyte culture at D12+7, we

reasoned that this process is unlikely to be driven in

response to the basic energy demands of the cardiomyo-

cyte. Supporting this prediction, the addition of nifedipine

to reduce energy demand did not prevent the increase in

mitochondria (Figure 1I).

This suggests that cardiomyocyte mitochondrial biogen-

esis might be regulated by a set developmental genetic pro-

gram rather than occurring simply as a stochastic process in

response to current energy requirements.
Figure 1. Vastly Increased Respiratory Capacity and Mitochondria
Total Energy Demand
(A) Sorting of EB-derived cells in an NKX2-5 reporter line into GFPpos
populations.
(B) Oxygen consumption rates (OCRs) in monolayers of hESCs, D12+7
levels. Basal, endogenous rate; oligomycin, ATP-synthase inhibited
antimycin A-inhibited rate.
(C) Anaerobic glycolytic rates at basal or oligomycin-inhibited state.
(D) ATP production rates from oxidative phosphorylation or anaerob
rate.
(E) OCR plot during addition of blebbistatin or nifedipine+blebbistat
contraction. Drug additions are marked A–D as described in Experime
(F) ATP demand ‘‘budget’’ of contracting cardiomyocytes, showing
processes (n = 3 independent experiments).
(G) Imaging for mitochondria-to-cell volume calculations in cardiomy
shown in the upper panel, and processed images are shown in the low
cardiomyocyte identity (top-right image). The scale bar represents 1
(H) Mitochondria-to-cell volume ratios in GFPpos and GFPneg cells d
(I) Mitochondria-to-cell volume ratios in GFPpos cells at D30 culture
periments). Data are represented as mean ± SEM. Statistical significan
and hESC values as control in (A)–(C), and data are presented as mean
± SEM. *p < 0.05.
See also Figure S1.
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The Progressive Increase in Mitochondrial Volume in

Developing Cardiomyocytes Is Driven by a

Developmental Genetic Program Orchestrated by

PGC-1a

Mitochondrial biogenesis is coordinated by the regulation

of transcriptional coregulators that act on DNA-binding

transcription factors to modulate the expression of nu-

clear-encoded mitochondrial genes (Fritah et al., 2010b;

Scarpulla et al., 2012). We examined the expression profile

of three coregulators: two activators (PGC-1a and PGC-1b)

and one corepressor (RIP140). An obvious and universal

feature was the large upregulation of PGC-1a specific to

the GFPpos fractions with either ‘‘spin EB’’ differentiation

or coculture differentiation using END2 cells (Figure 2A).

Of the three genes, this was the only strong candidate,

because PGC-1b was not upregulated in END2 coculture-

derived cardiomyocytes and RIP140 expression was

elevated universally during differentiation. The spin EB

cardiomyocyte gene-expression changes were mirrored

during human heart development (Figure S2A). Further-

more, GFP expressionwas detectable byD7 (Figure 2B), cor-

responding exactly with the onset of PGC-1a expression

(Figure 2C). In addition, PGC-1a expression was largely in-

dependent of energy demand related to cell contraction, as

the inductionwas onlymarginally affected by the presence

of nifedipine, consistent with the mitochondrial biogen-

esis phenotype (Figure 2D). Recently, four different iso-

forms of PGC-1a have been described, and although the

primers used here were able to detect both PGC-1a1 and

PGC-1a4, isoform-specific PCR showed that PGC-1a4 was
l Volume in hESC-Derived Cardiomyocytes, with Little Change in

and GFPneg fractions. Troponin I staining of representative sorted

GFPpos, and D12+7 GFPneg sorted cells, normalized to cell protein
rate; FCCP, maximum stimulated rate; Rot + Ant A, rotenone- and

ic glycolysis under basal conditions or at the maximum stimulated

in followed by oligomycin to calculate ATP demand for excitation/
ntal Procedures.
the proportion of coupled oxygen consumption used by different

ocytes. Live-cell images of GFP or MitoTracker Deep Red (MTDR) are
er panel. a-Actinin staining in the same cell after fixation confirms
0 mm.
uring differentiation from hESCs.
d in the presence or absence of nifedipine (n = 3 independent ex-
ce was calculated using a one-way ANOVA with Dunnett’s correction
values from three to five independent experiments for each cell type
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Figure 2. Mitochondrial Biogenesis Is Driven by PGC-1a during Cardiac Differentiation Independently of Energy Demand for
Excitation/Contraction
(A) Cell sorting following cardiac differentiation via either spin EB or coculture protocols to separate GFPpos and GFPneg populations for
RNA isolation. Normalized gene expression is shown relative to hESCs for PGC-1a, PGC-1b, and RIP140 from these sorted GFPpos and GFPneg
populations.
(B) GFPpos cell induction during early EB cardiac differentiation.
(C) Induction of PGC-1a mRNA in whole EBs during cardiac differentiation, and the parallel activity of three PGC-1a-luciferase reporter
constructs of 0 kb, 0.6 kb, and 2.2 kb promoter lengths.
(D) PGC-1a mRNA in sorted populations at D12 from EBs differentiated in the presence or absence of nifedipine (Nif).
(E) Images of cardiomyocytes showing GFP, MitoTracker Deep Red (MTDR), and processed MTDR in cells (mitos) transduced 7 days before
with Scr shRNA as control, a PGC-1a-specific shRNA (#2), and a lentivirus for overexpression of PGC-1a. Scale bar represents 10 mm.
In (A)–(D), data are represented as mean ± range (n = 2 independent experiments).
(F) Quantifications of the mitochondria-to-cell volume ratio measured after 7 days. Data are represented as mean ± SEM (n = 4 independent
experiments). Statistical significance was calculated using a one-way ANOVA with Dunnett’s correction using Scr shRNA or empty vector as
controls. *p < 0.01.
See also Figure S2.
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not detectable in our cells (Figure S2B) and the upregula-

tion was of PGC-1a1, which is the isoform that is most

important for mitochondrial biogenesis (Ruas et al.,

2012). Although many transcription-factor-binding ele-

ments have been studied within the PGC-1a1 proximal

promoter and shown to coordinate its regulation, neither

a 2.2 kb nor a 0.6 kb promoter was sufficient to drive

elevated luciferase expression at D7 (Figure 2C), suggesting

more complex regulation. Stronger activity from the 0.6 kb

promoter is consistent with the possible presence of repres-

sive elements upstream of position �823 (Irrcher et al.,

2009).

To test the involvement of PGC-1a in the cardiomyo-

cyte-specific mitochondrial changes, we stably expressed

short hairpin RNAs (shRNAs) targeting PGC-1a or a

scrambled (Scr) control from D12, and assessed cardio-

myocyte mitochondrial volume after 7 days of gene

knockdown. The efficacy of the shRNAs was confirmed

(Figure S2C). Clone shRNA #2 significantly inhibited

mitochondrial biogenesis in cardiomyocytes and shRNA

#1 also marginally diminished its rate (Figures 2E and

2F). Constitutive overexpression of PGC-1a or PGC-1b re-

sulted in a dramatic increase in mitochondrial volume.

Together, these data show that PGC-1a plays an impor-

tant role in the normal induction of mitochondrial

biogenesis in these cardiomyocytes. Further, PGC-1b

may be able to functionally substitute for PGC1a even

though it does not act during normal cardiogenesis in

this system.

PGC-1a Plays a Key Role in Regulating hESC-Derived

Cardiomyocyte Mitochondrial Respiration,

Contractile Automaticity, and Superoxide Production

To assess how depletion of PGC-1a affects mitochondrial

function, we performed a bioenergetic analysis 7 days after

gene knockdown. Both PGC-1a shRNA sequences repressed

mitochondrial respiration, with a very dramatic decrease in

maximal respiration for shRNA #2, confirming that

this gene alone plays a major role in increasing energy-

generating capacity during cardiac differentiation (Fig-

ure 3A). Surprisingly, the basal ATP turnover in these cells

was also diminished by PGC-1a knockdown despite consid-

erable reserves in respiratory capacity, which means that

these cardiomyocytes are doing less work (Figure 3B).

Consistent with the diminished ATP turnover, the beating

frequency was reduced by around 50% (Figure 3C). There-

fore, the 25% reduction in ATP turnover following PGC-1a

knockdown may be largely explained by the reduced

frequency in excitation/contraction. Thus, PGC-1a seems

to be an important regulator of cardiomyocyte contractile

automaticity. The slower beating rate will result in

decreased mitochondrial [Ca2+], potentially decreasing

TCA cycle activity. Lower ATP demand and lower mito-
Stem Cell R
chondrial [Ca2+] could both be contributing to the

decreased respiration rate.

Mitochondria are important producers of reactive

oxygen species (ROS), which can be highly damaging and

inhibitory to cardiomyocyte function. PGC-1a will in-

crease the number of potential ROS-producing sites and

may impact the rate of ROS production at these sites via

changes in mitochondrial proton motive force. Figure 3D

shows that in line with differential accumulation of the

cationic probe tetramethylrhodamine methyl ester

(TMRM) between GFPpos and GFPneg cells during normal

EB differentiation, probably reflecting the change in mito-

chondria-to-cell volume ratio (Figure 1H), the levels of

superoxide measured by dihydroethidium (DHE) were

also different, increasing in cardiomyocytes and decreasing

slightly in the GFPneg fraction. Knockdown of PGC-1awas

sufficient to repress superoxide production in cardiomyo-

cytes, effectively eliminating the difference between the

populations (Figure 3E).

Additionally, oxidative stress proved to be an important

second regulator of mitochondrial biogenesis in hESC-

derived cardiomyocytes. Decreasing ROS levels by

culturing the cells under 3% O2 slowed the rate of mito-

chondrial biogenesis, whereas increasing ROS with low

concentrations of rotenone, antimycin A, or H2O2 stimu-

lated it (Figures S3A and S3B). PGC-1a mRNA is already

elevated at D7 (Figure 2C), whereas superoxide increases

only after this time (Figure 3D), excluding the possibility

that ROS are primarily responsible for at least the initial

elevation in PGC-1a mRNA and consequential PGC-

1a-dependent mitochondrial biogenesis, consistent with

an equal upregulation of PGC-1a with differentiation at

3%O2 (Figure S3C). However, the ability of PGC-1a to stim-

ulate ROS production may act to potentiate mitochondrial

biogenesis, thereby reinforcing its action.

Given the striking effect of PGC-1a knockdown on the

bioenergetics and ROS levels of cardiomyocytes, an investi-

gation of the AP and the calcium transient was warranted.

PGC-1a Knockdown Alters AP Characteristics and

Increases the Amplitude of the CalciumTransient via a

Reduction in Oxidative Stress

Figures 4A and 4B show typical APs of clusters and single

cardiomyocytes with control and PGC-1a knockdown;

average AP parameters are summarized in Figure 4C. Clus-

ters of cardiomyocytes as well as single cells were measured

to avoid limiting the analysis to a subset of cells. Clusters

show more robust activity during patch-clamp analysis,

which could make them less prone to potential sampling

bias.

In spontaneously beating cell clusters, the reduction in

frequency remained evident upon PGC-1a knockdown

(1.11 ± 0.42 versus 1.47 ± 0.30 Hz; Figures 4A and 4C).
eports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The Authors 565



Figure 3. PGC-1a Is Responsible for Increased Respiratory Capacity in Cardiomyocytes, but Also Regulates Basal ATP Turnover and
ROS Production
(A) OCRs in monolayers of cardiomyocytes transduced with shRNA-expressing lentivirus on D12 and measured 7 days later, with values
normalized to cell protein levels. Basal, endogenous rate; oligomycin, ATP-synthase-inhibited rate; FCCP, maximum stimulated rate; Rot +
Ant A, rotenone- and antimycin A-inhibited rate.
(B) ATP production rates from oxidative phosphorylation or anaerobic glycolysis under basal conditions or at the maximum stimulated
rate.
(C) Average beating rates of cardiomyocyte monolayers used for bioenergetic analysis.
(D) TMRM and DHE FACS quantifications in GFPpos and GFPneg cells during EB differentiation. The dot plot and corresponding histogram
show DHE-labeled cells gated based on GFP expression.
(E) TMRM and DHE FACS quantifications in cells transduced with shRNA-expressing lentivirus. Values are relative to the GFPneg cells in the
control Scr shRNA. All data are represented as mean ± SEM; n = 4 independent experiments in (A)–(C) and (E), and 3 independent ex-
periments in (D). Statistical significance was calculated using a one-way ANOVA with Dunnett’s correction. *p < 0.05.
See also Figure S3.
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The faster rates compared with those measured in the Sea-

horse plates (Figure 3C) may reflect the different experi-

mental conditions (see Experimental Procedures).

The maximal diastolic potential (MDP) and AP

upstroke velocity did not differ significantly. However, AP

amplitude was significantly increased on PGC-1a knock-

down in both single cells (109 ± 2 versus 101 ± 2 mV; p =

0.013) and clusters (116 ± 2 versus 107 ± 2 mV; p =

0.009). Furthermore, AP duration was prolonged in both
566 Stem Cell Reports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The
groups, although only statistically significant in clusters

(APD50 = 153 ± 15 versus 102 ± 17 ms, p = 0.034; APD90 =

182 ± 16 versus 120 ± 17 ms, p = 0.015; Figure 4C).

To assess whether the changes in the AP following

PGC-1a knockdown could be mimicked by direct mito-

chondrial inhibition, the mitochondrial ATP synthase in-

hibitor oligomycin was added to the extracellular solution

duringmeasurement of clusters of control cardiomyocytes.

Neither frequency nor any other parameter of the AP was
Authors



Figure 4. AP Characteristics with PGC-1a Knockdown or Mitochondrial Inhibition
(A) Typical spontaneous APs in clusters of cells previously transduced with a control Scr shRNA or the PGC-1a-specific shRNA.
(B) Typical APs elicited at 1 Hz in single cardiomyocytes.
(C) Average AP characteristics.
(D) AP parameters in spontaneously beating clusters of control cardiomyocytes at baseline or following perfusion with oligomycin. APD50
and APD90 = AP duration at 50% and 90% repolarization, respectively. Statistical significance was calculated using an unpaired or paired t
test in (C) and (D), respectively. *p < 0.05.
See also Figure S4.
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Figure 5. Calcium Transient Characteris-
tics with PGC-1a Knockdown and the Ef-
fect of Directly Lowering ROS Levels
(A) Indo-1 ratio values showing transients
in paced cardiomyocyte clusters and the
response to rapid cooling.
(B–D) Average diastolic (B), systolic (C),
and transient (D) concentrations in car-
diomyocyte clusters paced at 0.5 Hz.
Statistical significance was calculated using
an unpaired t test (data are from three
independent experiments).
(E) Superoxide levels measured by DHE
following 5 days under test conditions of
control (21% O2), low oxygen (3% O2), or
low oxygen plus NAC. Data are represented
as mean ± SEM (n = 3 independent experi-
ments). Statistical significance was calcu-
lated using a one-way ANOVA with
Dunnett’s correction using the 21% O2
GFPpos values as the control. *p < 0.05.
See also Figure S5.
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significantly affected by application of oligomycin for

4 min (Figure 4D). Contraction frequency was also un-

changed when measured by imaging after exposure to

oligomycin for 15 min in normal culture conditions (Fig-

ure S4). This suggests that ATP generated by anaerobic

glycolysis alone may be sufficient to fund the AP require-

ments of these cells, at least in the short term, and that

the effect of PGC-1a knockdown on the AP may not neces-

sarily be related to the energetic defect in these cells.

Figure 5A shows typical [Ca2+]i measurements in a con-

trol and a PGC-1a knockdown cluster; average [Ca2+]i
values are summarized in Figures 5B–5D. The diastolic

[Ca2+]i was similar between control and PGC-1a knock-

down clusters (Figure 5B). However, systolic [Ca2+]I was

increased (Figure 5C) and consequently the Ca2+ transient

(Figure 5D) was larger in PGC-1a knockdown clusters. The

positive response to rapid cooling to release sarcoplasmic

reticulum (SR) calcium suggests that the SR is a major store

of Ca2+ in both conditions (Figure 5A).

The increase in systolic calcium is unlikely to be due to a

lower level of calcium buffering by mitochondria, as mito-

chondria are reported to removeonly 1%of systolic calcium

even in adult myocytes during a transient (Bassani et al.,

1994; Bers, 2008). We tested whether the effect on [Ca2+]i
could be recreated by lowering ROS levels. Incubation at
568 Stem Cell Reports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The
3%O2 in thepresenceof 6mMN-acetyl cysteine (NAC) sup-

pressed superoxide levels in cardiomyocytes to a value

equivalent to that observed for PGC-1a knockdown cardio-

myocytes (53% versus 56% decrease, respectively; Fig-

ure 5E). In cells precultured in this low-ROS condition, the

Ca2+ transient was similarly increased (Figures 5B–5D).

The same changes were evident when the clusters were

paced at 1 Hz (Figure S5), although the decreased transient

in all conditions at 1 Hz already reveals a negative force-

frequency relationship above 0.5 Hz.

PGC-1a Is Important for the Maintenance of

Cardiomyocyte Sarcomeric Organization during Fetal

Calf Serum-Induced Hypertrophy and Response to

Beta-Adrenergic Stimulation

Under baseline conditions, where these cardiomyocytes

are using only about one-third of their theoretical ATP

production capacity (Figure 1C), mitochondrial function

may be partially redundant. However, under more en-

ergy-demanding conditions, one would expect that an

energetic compromise might be exposed. To investigate

this possibility, we established a model of cardiomyocyte

hypertrophy using fetal calf serum (FCS) as the inducing

agent. We found that 5% FCS caused a hypertrophic

phenotype resulting in a volume difference of 3.8-fold
Authors
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when measured after 18 days (Figures 6A and 6B), from a

median of 2,324 mm3 in serum-free media (BSA, polyvinyl

alcohol, essential lipids [BPEL]) to 8,886 mm3 in 5% FCS

(n = 85 and 78 cells, respectively; p < 0.001). The question

we wanted to address was whether PGC-1a-depleted cells

would still be able to maintain their structural organiza-

tion during this volume increase by correctly synthesiz-

ing, trafficking, and recycling their specialized sarcomeric

proteins. Following NKX2-5pos cell identification in live

cells, a-actinin staining was used to categorize single cardi-

omyocytes into three structural classes (Figure 6C). In

class I, a-actinin antiparallel bands are present across

more than half of the cell’s area; in class II, many bands

are also present but across less than half of the cell’s

area; and in class III, labeling is apparent but a banding

pattern is almost completely absent. In cardiomyocytes

transduced with the control Scr shRNA, 17.6% were of

the class III type after chronic FCS exposure, whereas in

PGC-1a-depleted cardiomyocytes, a significantly higher

proportion (53.5%; chi-square test, p < 0.001) displayed

class III characteristics (Figure 6D). Chronic incubation

with the mitochondrial uncoupler 2,4-dinitrophenol

(DNP) caused a similar disturbance to structural integrity,

suggesting that energetic compromise may be the cause of

this phenomenon (Figure 6E; chi-square test, p < 0.001).

In a second assay, we evaluated the chronotropic

response to beta-adrenergic stimulation. We found that

100 nM of isoproterenol raised the spontaneous beating

frequency of Scr shRNA control cardiomyocyte clusters in

30 of 33 areas by amean increase in rate of 79% (Figure 6F).

In PGC-1a knockdown clusters, isoproterenol caused

beating to cease completely in 29 of 48 areas, while 17 areas

increased their rate by a mean of 74% (Figure 6G). Consis-

tent with the imaging data, isoproterenol increased the

ATP production rate of the Scr shRNA control cells by

43.5% with both increased oxidative phosphorylation

and anaerobic glycolysis, whereas in PGC-1a shRNA cells,

ATP production rate was decreased overall by 19% (Fig-

ure 6H). The increased glycolytic rate in these PGC-1a

shRNA cells by isoproterenol may reflect a much faster

rate in the minority of cells that were able to increase their

beating frequency under this condition.
DISCUSSION

In this study, we have described the bioenergetics of hESC-

derived cardiomyocytes and the functional impact of its

manipulation. Our principal finding is that upon induc-

tion of cardiac differentiation in hESCs, a PGC-1a-

dependent developmental program was engaged that

strongly stimulated mitochondrial biogenesis, consistent

with cardiomyocytematuration. Inactivating this pathway
Stem Cell R
blocked mitochondrial biogenesis, but also lowered levels

of ROS. This led to an increased AP and calcium transient

amplitude, and at the same time made these cells vulner-

able to metabolic stress.

Cardiomyocytes are rather unique in that during embry-

onic and fetal development, they undergo dramatic matu-

ration-related changes, progressing from small rounded

cells with immature sarcomeric organization and limited

energy-generating capacity to large rectangular cells with

dense striated myofibrils organized in parallel to densely

packed elongated mitochondria (Martin-Puig et al., 2008;

Piquereau et al., 2010). Cardiomyocyte mitochondria are

essential for supplying the ATP required for excitation/

contraction during intense heartbeating, and if respiratory

function is compromised as a result ofmutation or damage,

or is dysregulated in other ways, there may be pathological

consequences (Arany et al., 2005; Bates et al., 2012; Gra-

ham et al., 1997).

Much of what we know about the genetics of mitochon-

drial regulation in the heart still comes from the mouse.

Widely regarded as mitochondrial gene ‘‘master regula-

tors,’’ PGC-1a and PGC-1b are known to be highly ex-

pressed in the heart, and overexpression of PGC-1a has

been shown to induce mitochondrial proliferation in

both the mouse heart and cultured rat cardiomyocytes

(Lehman et al., 2000; Russell et al., 2004). Single PGC-1a

or PGC-1b gene deletions have only a mild effect on the in-

crease in mitochondrial mass that normally occurs during

heart development, and the cardiac phenotypes are subtle,

often becoming apparent only under metabolic challenge

(Arany et al., 2005; Gurung et al., 2011; Lelliott et al.,

2006; Leone et al., 2005). By contrast, the hearts of PGC-

1a/b double-knockout mice are severely affected; the mice

die soon postnatally and have markedly diminished mito-

chondrial mass and density even though up to mid-gesta-

tion, the mitochondria are apparently normal (Lai et al.,

2008). This suggests that other, PGC-1-independent mito-

chondrial biogenesis-promoting genes may be involved

in early mouse heart development.

Our system models human cardiac mitochondrial

biogenesis using nontransformed cells, allowing this pro-

cess to be studied in parallel with function. We found

that PGC-1a alone was strongly upregulated at the very

initiation of cardiac differentiation specifically in NKX2-

5pos cells, regardless of the differentiation method used.

The cardiomyocytes showed a regular and progressive in-

crease in mitochondrial mass over many weeks of culture

that depended on PGC-1a. Mitochondrial expansion still

occurred in the complete absence of excitation/contrac-

tion, demonstrating that cardiomyocyte identity is linked

to the mitochondrial biogenesis phenotype irrespective

of increased energy demand. Significantly raising the en-

ergy demand may stimulate it further, as we observed
eports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The Authors 569



Figure 6. PGC-1a Is Important for Maintaining Cardiomyocyte Structural Identity during FCS-Induced Hypertrophy and for the
Chronotropic Response to Beta-Adrenergic Stimulation
(A) Calcein-AM-labeled cells used for cell volume calculations, previously maintained for 18 days in serum-free BPEL media (i) or 5% FCS-
containing media (ii). GFPpos cardiomyocytes were identified before loading and are shown as regions of interest.
(B) Histogram quantification of cell volumes for the two culture conditions. BPEL median = 2324 mm3 (n = 85), 5% FCS median = 78 mm3

(n = 78); p < 0.001.
(C) a-Actinin-labeled NKX2-5pos cells (cultured in 5% FCS) classified by sarcomeric structure into three groups.
(D) Frequency of each cardiomyocyte structural class in Scr shRNA and PGC-1a-specific shRNA conditions (n = 160 cells counted from 3
independent experiments).
(E) Frequency of each cardiomyocyte structural class in vehicle control cells compared with 200 mM DNP-treated cells (n = 80 cells counted
from 2 independent experiments).
(F) Contraction frequency of individual Scr shRNA-transduced clusters at baseline and after exposure to 100 nM isoproterenol.

(legend continued on next page)
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with DNP (Figure S3), but was not essential for the basal

rate of mitochondrial biogenesis.

Sincemitochondria are a principal source of ROS produc-

tion, we also investigated whether PGC-1a-dependent

mitochondrial changes result in altered ROS levels in cardi-

omyocytes. Although PGC-1a can induce the expression of

antioxidant enzymes (St-Pierre et al., 2006), in this context

the impact of having a greater number of mitochondrial

ROS-producing sites must outweigh the induction of

detoxification pathways, because ROS levels were

increased.

Remarkably, upon PGC-1a knockdown, the amplitude

and duration of the AP and the maximum amplitude

of the calcium transient were increased to values closer

to those found in adult cardiomyocytes, despite a marked

energetic defect. Energetic compromise in cardiomyo-

cytes typically shortens the AP as a result of increased

ATP-regulated potassium current, and decreases the cal-

cium transient amplitude (Baartscheer et al., 2011;

Koumi et al., 1997; Nichols et al., 1991). Yet, counter

to this, there is evidence for an inhibitory effect of oxida-

tive stress on the calcium current and AP duration (Gold-

haber et al., 1989; Guerra et al., 1996). Given our

evidence for the oligomycin insensitivity (at least upon

short-term exposure) of the AP in these early cardiomyo-

cytes, the benefit of lowered oxidative stress may be

dominant in determining the overall outcome. Remark-

ably, repression of the mitochondrial biogenesis program

in these cells resulted in an improvement in the calcium

transient. Fortunately, however, the ROS levels could be

lowered directly in control cardiomyocytes with a combi-

nation of culture at physiological oxygen tension and

antioxidant supplementation, resulting in an improve-

ment in the calcium transient to the same degree as

PGC-1a knockdown. Based on these data, it may be

worthwhile to make this a standard aspect of PSC-derived

cardiomyocyte culture, at least at later stages of differen-

tiation. Although an increase in mitochondrial mass is a

feature of maturity, if the ROS produced by the mito-

chondria are not controlled, the overall function and

contractility of the cardiomyocytes may be restricted.

Further work will be required to determine precisely

how ROS should be manipulated temporally to control

the balance between maturation-related mitochondrial

biogenesis and wider cell function.

Increasing the energetic demands of the cardiomyocytes

through stimulation with FCS, and exerting physiologi-

cally relevant chronotropic stimulation through beta-
(G) Contraction frequency of individual PGC-1a shRNA-transduced clu
(H) ATP production rates from oxidative phosphorylation or anaerobi
(data represent the mean from four technical replicates). Statistical s
square test in (D) and (E).
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adrenergic receptor activation both exposed shortcomings

in PGC-1a knockdown cardiomyocytes. FCS induced a

consistent hypertrophic growth, and in cells that had

repressed PGC-1a or were uncoupled by DNP, this resulted

in sarcomeric disorganization, presumably as a multifacto-

rial response to inadequate energy supply. Themechanisms

underlying the PGC-1a-dependent loss of automaticity

upon isoproterenol stimulation, as well as the lower AP fre-

quency under basal conditions, are unknown. They may

relate to the longer AP we observed in these cells, the

chronic energy disturbance, or an unknown connection

between PGC-1a and automaticity. In line with this, both

PGC-1a and PGC-1b knockout mouse hearts show blunted

responses to beta-adrenergic stimulationwith dobutamine,

and it has been suggested theymaybe required formaximal

automaticity of pacemaker cells, although a mechanism is

lacking (Arany et al., 2005; Lelliott et al., 2006; Leone et

al., 2005).

We set out to develop a human model of acquired heart

disease by diminishing mitochondrial function. The ratio-

nale for this stemmed from the large body of literature re-

porting downregulation of mitochondrial pathways dur-

ing heart failure, but with little explanation for how and

why this occurs, or what consequences it has for individual

heart cells (Ventura-Clapier et al., 2011). We confirmed

that hESC-derived cardiomyocytes are a valuable tool for

exploring the functional relationships between mitochon-

dria and heart disease, revealing perhaps unexpected

outcomes. Such studies go hand in hand with the goal of

producing more adult-like cells for these and other

applications. To maximize the potential function of these

cells, it is important to control ROS, since the mitochon-

drial biogenesis program is activated in PSC-derived

cardiomyocytes.
EXPERIMENTAL PROCEDURES

Cell Culture and Differentiation
Previously generatedNKX2-5eGFP/w hESCs (Elliott et al., 2011) were

maintained on mouse embryonic fibroblasts and passaged using

TrypLE Select (Invitrogen). Differentiations were performed in

serum-free media (BSA, polyvinyl alcohol, essential lipids [BPEL])

as previously described (Ng et al., 2008). The following growth fac-

tors were present for the first 3 days of differentiation: 35 ng/ml

bone morphogenetic protein 4, 30 ng/ml activin A, 30 ng/ml

vascular endothelial growth factor, and 40 ng/ml stem cell factor

plus the GSK-3b inhibitor ChiR 99021 (1.5 mM). The Tankyrase

inhibitor XAV 939 (1 mM) was present on D3–D6. Coculture
sters at baseline and after exposure to 100 nM isoproterenol.
c glycolysis under basal conditions or after isoproterenol exposure
ignificance was calculated using an unpaired t test in (B) and a chi-
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differentiations were performed as previously described (Mum-

mery et al., 2007).

EBs typically were dissociated on D12 using TrypLE Select and

plated onto plastic or glass coated with Matrigel (Invitrogen).

Lentiviral Transduction
PGC-1a and PGC-1b were overexpressed from a pLenti CMV/TO

Puro DEST (Campeau et al., 2009; Addgene plasmid: 17452). The

empty vector was used as the control. shRNAs against PGC-1a

were obtained from Open Biosystems in the pLKO Puro vector

(TRCN0000001167 [#1] and TRCN0000001166 [#2]). Scr shRNA

was used as control (Addgene plasmid: 1864). The vectors used

for luciferase measurements are described in the Supplemental

Experimental Procedures.

Respiration and Acidification RatesMeasuredwith the

Seahorse XF-24 Analyzer
Respiration and acidification rates were measured on adherent

cells using a Seahorse XF-24 analyzer (Seahorse Bioscience) as pre-

viously described (Birket et al., 2011). When combined with

shRNA transductions, virus was added on cell plating at an appro-

priate titer to infect >90% of cells.

Basal acidification rates were taken as themean rate from the sec-

ond and third baseline readings, and ‘‘Max/stimulated’’ rates were

taken after oligomycin addition. ATP production rates were calcu-

lated as previously described (Birket et al., 2011). Maximal ATP

production rates (‘‘Max’’) were calculated from the oxygen con-

sumption rate difference between the oligomycin rate and the

carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP)

rate, and from the maximum extracellular acidification rate with

oligomycin. At least three separate experiments were performed

for each cell population.

For ATP demand calculations, normal untransduced cardiomyo-

cytes were used with the experiment set up as above. After four

baseline measurements, blebbistatin (5 mg/ml) or nifedipine

(10 mM) plus blebbistatin, or DMSO was injected and the next

measurement was used for the ‘‘process-inhibited’’ state. This was

followed by oligomycin, FCCP, and rotenone and antimycin A in-

jections. The fraction of oligomycin-sensitive respiration that was

responsive to the drugs was calculated and the effect of the buffer-

alone injection was subtracted.

Confocal Imaging of Mitochondria-to-Cell Volume

Ratios
Cells were loaded with 40 nM MitoTracker Deep Red (Invitrogen)

and imaged live in the presence of 10 mM nifedipine on a Leica

SP5 confocalmicroscope. hESCs andGFPneg cells were also loaded

with calcein-acetomethoxy (calcein-AM; 1 mM) to image the cell

volume. Image acquisition and data analysis were performed as

previously described (Birket et al., 2011).

Confocal Imaging for Calculation of Cell Volume
Cells were imaged live in the presence of 10 mM nifedipine on a

Leica SP5 confocal microscope within a 37�C chamber using a

Plan-Apochromat 403/1.25 oil lens. Sequential imaging stacks

were acquired through the entire thickness of calcein-AM-loaded

cardiomyocytes and their volumes were calculated by calibration
572 Stem Cell Reports j Vol. 1 j 560–574 j December 17, 2013 j ª2013 The
to 4 mm TetraSpek fluorescent microsphere standards (Invitrogen)

imaged in the same way. Further details are described in the Sup-

plemental Experimental Procedures.

ROS and TMRM Measurements
For ROS measurements, cell cultures were dissociated with Try-

pLE Select and labeled for 30 min at 37�C with 20 mM DHE

(Molecular Probes). They were then washed twice with buffer

and measured immediately by FACS. For TMRM measurements,

5 nM TMRM (Invitrogen) was added in BPEL media the day

before measurement. Cells were dissociated as above, but with

TMRM included in all solutions and also present during

measurement.

Electrophysiological Characterization
APs were measured 7–15 days after cell dissociation via the ampho-

tericin-perforated patch-clamp technique using an Axopatch 200B

amplifier (Molecular Devices). Signals were filtered and digitized

at 5 and 40 kHz, respectively. Data acquisition and analysis

were accomplished using pClamp10.1 (Axon Instruments) and

custom software. Potentials were corrected for the liquid junction

potential.

APs were recorded at 37�C using Tyrode’s solution containing

(mM) NaCl 140, KCl 5.4, CaCl2 1.8, MgCl2 1.0, glucose 5.5, HEPES

5 pH 7.4 (NaOH). Pipettes (borosilicate glass; resistance �2.5 MU)

were filled with solution containing (mM) K-gluconate 125, KCl

20, NaCl 5, amphotericin-B 0.22, HEPES 10 pH 7.2 (KOH). APs

were recorded from single cardiomyocytes as well as from small

clusters of cardiomyocytes. The clusters were spontaneously

active, whereas in single cardiomyocytes the APs were elicited by

3 ms 1.23 threshold current pulses through the patch pipette at

1 Hz. AP parameter values obtained from ten consecutive APs

were averaged and data were collected from at least three indepen-

dent differentiations per condition.

Calcium Imaging
Intracellular Ca2+ ([Ca2+]i) was measured at 37�C in Indo-1-

loaded clusters of cardiomyocytes. In brief, cardiomyocytes

were loaded with 5 mM of the fluorescent dye Indo-1-AM

(Molecular Probes) for 50 min at 37�C in Tyrode’s solution. The

cardiomyocyte clusters were stimulated at 0.5 Hz using field stim-

ulation. Dual-wavelength emissions of Indo-1 upon excitation at

340 nm were recorded at 405–440 and 505–540 nm using photo-

multiplier tubes, and, after correction for background fluorescence,

free [Ca2+]i was calculated as previously described (Baartscheer

et al., 1996).

SR calcium contentwas analyzed by using rapid coolingwith ice-

cold (0–1�C) Tyrode’s solution, which typically results in depletion

of calcium from the SR, with the released calcium remaining

confined to the cytoplasm (Bers, 1987). Data were collected from

at least three independent differentiations per condition.
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