Long-Term Clinical Outcome After Stent Implantation in Saphenous Vein Grafts

PETER P. DE JAEGERE, MD, PhD, RON T. VAN DOMBURG, MSC, PIM J. DE FEYTER, MD, PhD, FACC, PETER N. RUYGROK, MD, WIM J. VAN DER GIESSEN, MD, PhD,

MARCEL J. VAN DEN BRAND, MD, PHD, PATRICK W. SERRUYS, MD, PHD, FACC

Rotterdam, The Netherlands

Objectives. We sought to determine the role of stent implantation in vein grafts by evaluating the long-term clinical outcome and estimated event-free survival at 5 years in 62 patients and by comparing our data with those of other treatment modalities previously reported.

Background. Patients with recurrent angina after coronary artery bypass graft surgery pose a problem. Stent implantation has been advocated in an effort to avoid repeat operation and to address the limitations of balloon angioplasty.

Methods. Patients undergoing stenting of a vein graft were entered into a dedicated data base. They were screened for death, infarction, bypass surgery and repeat angioplasty. Procedure-related events were included in the follow-up analysis. Survival and event-free survival curves were constructed by the Kaplan-Meier method.

Results. A total of 93 stents (84 Wallstent and 9 Paimaz-Schatz) were implanted in 62 patients. During the in-hospital period,

seven patients (11%) sustained a major cardiac event: two deaths (3%), two myocardial infarctions (3%) and three argent bypass surgeries (5%). The clinical success rate, therefore, was 89%. During the follow-up period (median 2.5 years, range 0 to 5.2), another five patients (8%) died, 14 (23%) sustained a myocardial infarction, 12 (20%) underwent bypass surgery, and 14 (23%) underwent angioplasty. The estimated 5-year survival and event-free survival rates (free from infarction, repeat surgery and repeat angioplasty) were (mean \pm SD) 83 \pm 5% (95% confidence interval [CI] 73% to 93%) and 30 \pm 7% (95% CI 16% to 44%), respectively.

Conclusions. The in-hospital outcome of patients who underwent stent implantation in a vein graft is acceptable, but the long-term clinical outcome is poor. It is un 'kely that mechanical intervention alone will provide a satisfactory or definite answer for the patient with graft sclerosis over the long term.

(J Am Coll Cardiol 1996;28:89-96)

Coronary artery bypass graft surgery effectively relieves angina in patients with obstructive coronary artery disease and may prolong life in a selected group of patients (1,2). Recurrence of angina, however, occurs in 5% to 10% of patients each year and is mainly due to graft failure or a combination of graft failure and progression of coronary atherosclerosis (3–5). Serial angiographic studies revealed that 15% to 30% of the grafts are stenosed at 1 year after surgery and that nearly 50% of the grafts are closed at 10 years after surgery (6–8).

As the number of patients who undergo surgery increases, the number of patients with recurrent angina due to graft failure will also increase (9,10). Optimal management of these patients remains a subject of debate. In addition to pharmacologic treatment, other therapeutic options are repeat surgery or percutaneous revascularization. In general, repeat surgery is associated with an increased morbidity and mortality and less symptomatic relief in comparison to a first operation (10-12).

Balloon angioplasty of vein grafts may successfully be performed in selected patients but is plagued by a high restenosis rate (3). Patients with old, diffusely diseased or totally occluded grafts are at an increased risk of major cardiac complications owing to the risk of embolization of friable graft tissue into the coronary circulation (3). As a result, the use of stents is advocated to treat such patients. This is not only based on the fact that stents can be easily implanted in large vessels and may contain friable graft tissue and thus reduce the risk of embolization, but also on the assumption that the superior angiographic outcome immediately after implantation will be translated into a superior long-term clinical outcome (13,14). Clinical benefit, however, is largely based on anecdotal experience and a number of case studies with special emphasis on technical success rates and short-term rather than long-term clinical outcome. Randomized clinical trials are now under way to address this issue (15). They may, however, fail to give a definite answer owing to stringent inclusion and exclusion criteria. To reinforce the debate on the role of stent implantation in vein grafts and while awaiting the results of randomized trials, we report the immediate and long-term clinical outcome n a series of 62 patients who underwent stent implantation in a vein graft. All patients gave written informed

From the Catheterization Laboratory, Thoraxcenter, Rotterdam, The Netherlands.

Manuscript received September 20, 1995; revised manuscript received February 23, 1996, accepted March 4, 1996.

Address for correspondence: Dr. Peter P. de Jacgere, Catheterization Laboratory, Thoraxenter Building 412, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.

Table 1. Baseline Clinical and Angiographic Characteristics of 62 Study Patients

Study Patients	
Median age (yr)	65
Range	43-78
Men	. 52 (84°C)
Previous AMI	37 (60%)
Previous PTCA	17 (27%)
Risk factors	
Smoking	12 (19%)
Hypercholesterolemia	32 (52%)
Hypertension	17 (27%)
Diabetes	7 (11%)
NYHA functional class	
i	2 (3%)
. 11	7 (11%)
111	31 (50%)
īv	22 (36%)
Vessel disease	
1	1 (2%)
2	12 (19%)
3	49 (79%)
Ejection fraction	
>50%	17 (27%)
>30-50%	40 (65%)
≤30%	3 (5%)
Unknown	2 (3%)
Angiographic indication	
Primary lesion	51 (82%)
Restenosis	8 (13%)
Rescue angioplasty	3 (5%)
Median graft age (yr)	7.7
Range	1-20

Unless otherwise indicated, data presented are number (%) of patients. AMI = acute myocardial infarction; NYHA = New York Heart Association; PTCA = percutaneous transluminal coronary angioplasty.

consent before stent implantation, and the study was approved by the Medical Ethical Committee of our institution.

Methods

Patients, Between November 1986 and June 1994, 62 patients underwent stent implantation in a vein graft. They

constitute 1.2% of the 5.340 patients who underwent coronary angioplasty in our institution during the same period. Baseline clinical and angiographic characteristics are shown in Table 1. The majority of patients underwent stent implantation because of severe angina pectoris (New York Heart Association [NYHA] classes III and IV, 86%) and as a treatment for a de novo graft lesion (82%). Most of the grafts were old (median age 7.7 years) and were, in general, diffusely diseased, as shown in Figure 1. Detailed baseline angiographic data were available in 57 patients and are shown in Table 2.

Stent implantation. Stent implantation was performed by standard techniques using the femoral approach, as previously described (16). The target lesion was first dilated with a balloon catheter to facilitate stent delivery. At variance with current standards of stent implantation, additional balloon dilation after stenting was performed in only 44 patients (71%). This was done with semicompliant balloons equal in size to or 0.5 mm larger than the interpolated reference diameter of the bypass graft (on-line quantitative coronary angiographic measurement) and by using pressures ranging from 10 to 14 atm. The total number, type and size of stents implanted are shown in Table 2. In almost all patients (90%) a Wallstent was used.

The postoperative treatment changed throughout the study period. While all patients were treated with a combination of acetylsalicylic acid, dipyridamole, heparin and acenocoumarol immediately after implantation, the first 26 patients also received 100,000 to 250,000 U of intravenous urokinase, which was infused through the guiding catheter into the vein graft. Thrombolytic therapy was later withheld from the postoperative treatment because of a high frequency of major bleeding complications, particularly at the vascular access site.

Stent implantation was regarded to be angiographically successful when there was no residual stenosis within the stented segment by visual assessment. A clinically successful stent implantation was defined as an angiographically successful implantation free of procedure-related complications leading to death, myocardial infarction, bypass surgery or repeat

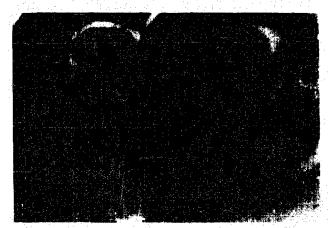


Figure 1. Angiographic result immediately after implantation of three Falmaz-Schatz stents in a graft supplying the left anterior descending coronary artery.

Table 2. Stent Implantation and Quantitative and Qualitative Angiographic Data

Sient data	
Fotal no. of stents	93 (100%)
No. of stents/patient	1.5
Wallstent	84 (90%)
Palmaz-Schatz stent	9 (10%)
Nominal size	
3.0	5 (5%)
3.5	25 (27%)
4.0	38 (41%)
4.5	14 (15%)
5.0	8 (7%)
5.5	1 (1%)
6.0	2 (2%)
Quantitative angiographic data (57 pts)	
Reference diameter (mm)	
Before stenting	3.3 ± 1.8
After stenting	3.5 ± 1.6
Minimal lumen diameter (mm)	
Before stenting	1.4 ± 0.5
After stenting	2.7 ± 3.1
Diameter sienosis (%)	
Before steming	58 ± 2.0
After stenting	23 ± 9
Lesion length (mm)	
Before stenting	16.5 ± 8.3
After stenting	-
Qualitative angiographic data (62 pts)	
Chronically occluded grafts	. 10(0)
Presence of thrombus	3 (1%)
Long lesions (>15 mm)	32 (52%)
Tandem lesions	23 (37%)
Lesion containing ulcus	25 (40%)

Data presented are mean value ± SD or number (%) of patients (pts).

angioplasty. A periprocedural infarction was determined by the development of new Q waves or an increase in the serum cardiac enzymes to more than twice the upper limit of normal.

Data collection and follow-up. Procedural details, including complications, were prospectively entered into a dedicated data base at the time of implantation. Procedure-related events were included in the follow-up analyses. All patients who survived their hospital stay were checked against the civil

registry to establish survival or death. Patients were screened for the occurrence of death, acute myocardial infarction, recurrent angina necessitating repeat percutaneous revascularization or repeat bypass surgery. Clinical follow-up information was obtained retrospectively through an interview during outpatient clinic visits or from the patient or family by telephone or from the referring physician. Two patients were lost to follow-up. As a result, follow-up was complete for 60 patients (98%). The median period of follow-up was 2.5 years (range 0 to 5.9). Patient survival curves and event-free plots were constructed by the Kaplan-Meier method. Repeat angiography 6 months after stent implantation was performed in only 43 patients (69%).

Results

In-hospital outcome. A total of 93 stents were implanted (Table 2). In one patient, stent implantation was unsuccessful. Therefore, the implantation or angiographic success rate was 98%. In seven patients, a total of nine major cardiac events occurred during the hospital period (Table 3). As a result, the overall clinical success rate was 89%. Two patients (3.2%) died after stent implantation. Both of them received thrombolytic therapy—one patient because of protocol requirements during the initial study period and the other patient because of an acute myocardial infarction that was treated with balloon angioplasty and subsequent stent implantation, in addition to thrombolysis. In this patient, embolization of the graft material was noted during the procedure, which resulted in a creatine kinase (CK) elevation to 640 U/liter. A computed tomographic scan confirmed intracranial hemorrhage in both patients. Two other patients (3.2%) developed an acute myocardial infarction during their hospital stay, with a CK elevation to 706 and 1,100 IU/liter. One of these two patients was admitted because of an acute inferior infarction and was treated with balloon angioplasty and stent implantation into the graft supplying the right coronary artery. The other patient developed an anterolateral infarction with a CK elevation to 706 IU/liter 4 days after stent implantation. Although the infarction was mainly caused by a subacute stent thrombosis, the exact cause was not documented. Another three patients (4.8%) were referred for

Table 3. Major Cardiac Events During Hospital Stay and After Discharge

	In-Hospita	l (n = 62)	After Discharge	: (n = 60)*	Total (n = 62)			
	Total	Ranking	Total	Ranking	Total	Ranking		
Event			1					
Death	2 (3%)	2 (3%)	5 (8%)	5 (8%)	7 (11%)	7(11%)		
AMI -	3 (5%)	2 (3%)	14 (23%)	14 (23°7)	17 (27%)	16 (26%)		
CABG	3 (5%)	3 (5%)	12 (20%)	12 (20%)	15 (24°e)	15 (24%)		
Re-PTCA	1 (2%)	0	18 (30%)	14 (23%)	19 (31%)	14 (23%)		
Total	9 (15%)	7 (11%)	49 (82%)	45 (75%)	58 (94%)	52 (84%)		

^{*}Two patients lost to follow-up. Data presented are number (%) of patients. Ranking = frequency of events in descending order of seventy (death [worst outcome], followed in order of rank by acute myocardial infarction [AMI], bypass surgery [CABG], repeat intervention [Re-PTCA]). Total = total count of all events (nonmutually exclusive analysis).

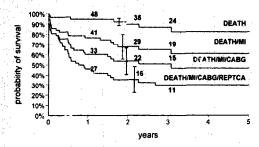


Figure 2. Survival and event-free survival curves (Kaplan-Meier) of patients who underwent stent implantation in a vein graft. CABG = coronary artery bypass graft surgery; MI = myocardial infarction; REPTCA = repeat percutaneous transluminal coronary angioplasty.

urgent bypass surgery; one patient because of recurrent angina 11 days after stent implantation and two other patients because of a documented subacute stent thrombosis. In one of these two patients, anticoagulation was stopped because of gastro-intestinal bleeding (Mallory-Weiss syndrome).

In addition, a major bleeding complication necessitating blood transfusion occurred in six patients (9.8%)—two groin (3.2%), three gastrointestinal (4.8%), one retroperitoneal (1.6%)—and a vascular access site complication necessitating surgery or blood transfusion, or both, in another eight patients (12.9%). The median hospital stay for the total study cohort was 9 days (range 5 to 53).

Clinical events after hospital discharge. Table 3 lists the occurrence of major events after hospital discharge. There were five deaths (8%), two of which were cardiac, one noncardiac and two of unknown etiology. Fourteen patients (23%) sustained a nonfatal myocardial infarction. In 2 of these 14 patients, myocardial infarction was associated with a repeat balloon angioplasty during the follow-up period. Twelve patients (20%) underwent repeat bypass surgery at a median interval of 7 months (range 1 to 43). In all but one of these patients, the indication of repeat surgery was angina pectoris in association with restenosis of the stented graft segment. Repeat angioplasty was performed in 18 other patients (30%) at a medium interval of 6 months (range 1 to 32). As for the patients who underwent repeat bypass surgery, in all but one, the angiographic indication to perform angioplasty was restenosis in or adjacent to the stented graft segment. Repeat angioplasty was successful in 16 patients but was complicated by a myocardial infarction in two. Repeat angiography 6 months after stent implantation was performed in 43 patients (69%) Restenosis (50% diameter stenosis criterion) was documented in 23 patients (53%), 7 of whom underwent repeat angioplasty and 6 bypass surgery. During the further follow-up, another seven and six patients underwent repeat angioplasty and bypass surgery, respectively, because of graft failure at the stented site in all but two patients.

Survival and event-free survival. The mean \pm SD estimated survival at 5 years after stent implantation was $83 \pm 5\%$ (95% confidence interval [CI] 73% to 93%) (Fig. 2). Survival

free from myocardial infarction at 5 years was $61 \pm 6\%$ (95% Cl 49% to 73%) and event-free survival at 5 years free from myocardial infarction, bypass surgery and angioplasty was $30 \pm 7\%$ (95% Cl 16% to 44%).

Discussion

The present study describes the immediate and long-term clinical outcome of 62 patients with angina pectoris who underwent stent implantation in a vein graft. The angiographic indication was a de novo lesion in the majority of patients (82%) and a restenotic lesion in 13%. Taking into account the limitations of this study—on the one hand, the design and therefore the potential shortcomings in the accuracy of data collection, and on the other hand, the fact that it concerns a series of nonconsecutive patients with, in general, advanced graft failure—the main message of the present study is that stent implantation in vein grafts can be safely performed but that the long-term clinical outcome is poor. This should be interpreted when taking into account that in the majority of patients a Wallstent was implanted and that high pressure balloon dilations according to current standards were not performed. Changes in stent design and, especially, implantation and deployment technique may have beneficially influenced early and late outcomes (13,15).

In-hospital results. With respect to safety, the frequency of in-hospital events is acceptable despite advancing graft age and the complications one could anticipate from such a graft based on the underlying histopathologic substrate described by Sabre et al. (17). The reported frequency of in-hospital events compares favorably with that after balloon angioplasty of vein graft lesions and with that after repeat bypass surgery (Tables 4 and 5) (18-50). It is, however, inferior to the frequency after stent implantation in vein grafts reported by other investigators (51-63) (Table 6). Again, one should account for the type of patients treated in this study. In most other reported studies shown in Table 6, 70% to 80% of the patients had a discrete lesion <10 to 13 mm long; thus, they may represent a more favorable group of patients. Furthermore, it should be recognized that two patients died because of an intracranial hemorrhage after thrombolytic therapy, and that two other patients received a stent in the setting of an acute myocardial infarction. Fine tuning of the indication for stent implantation and of the periprocedural and postprocedural pharmacologic treatment by systemic use of high pressure balloon dilations may have resulted in a better immediate outcome. It is noteworthy that despite the above observations, the frequency of inhospital major cardiac events compares favorably with that after stent implantation in coronary arteries. The reported frequencies of death, acute myocardial infarction and emergency bypass surgery in 1,191 patients treated with a stent in a coronary artery between 1989 and 1992 were 2.0, 3.3 and 1.9%, respectively (64).

Long-term results. The long-term clinical outcome is disturbing. This is not so much because of the estimated 5-year survival rates, which was 83% in this study. The long-term

Table 4. In-Hospital Events After Balloon Angioplasty of Saphenous Vein Grafts

1.1	Study	4						1.20	
First Author	Year	Ref. No.	Study Period	No. of Pts	Age (yr)	Graft Age (yr)	Death (%)	AMI (%)	CABG (%)
Ford	1981	18	1978-1979		51	0.3 to 4.7	0	0	. 0
Jones	1983	19	1978-1982	37	54	2	. 0	5	5
Douglas	1983	20	1978-1992	62	54	<1 to >5	0	. 0	2
El-Gamal	1984	21	1980-1982	31	NR	0.3 to 4.7	0	. 5	0
Block	1984	. 22	1979-1982	44	56	0.2 to 9	0	0	2
Corbelli	1985	23	1981-1984	35	51	<0.5 to >5	0	0	2
Reeder	1986	24	1979-1984	19	60	3	5	5	10
Cote	1987	25	1981-1985	82	60	4	0	4	1
Ernst	1987	26	1980-1985	33	59	NR	. 0	6	0
Dorros	1988	27	1979-1986	53	- 58	7	.4	1	1
Reed	1989	28	19831986	54	58	3	0	0	0
Platko	1989	29	1981-1987	101	60	4	2	6	. 2
Webb	1990	30	1978-1988	140	NR	NR	. 0	4	1
Jost	1991	31	1978-1983	41	57	3	0	0	0 -
Reeves	1991	32	1981-1987	. 57	58	5	2 ·	. 9	2
Plokker	1991	33	1980-1989	454	60	6 .	1	. 3	1
Meester	1991	34	1981-1988	84	60	5	4	8	2
White	1993	35	NR NR	21	65	10	. 0	0	0
Morrison	1994	36	1986-1993	75	62	8	3	3	1
Total/weighted	average			1,408			. 1	6	2

NR = not reported; Ref = reference; other abbreviations as in Tables 1 to 3.

survival does not differ from the 5-year survival in patients who underwent balloon angioplasty of a vein graft iesion or who underwent repeat bypass surgery, which have been reported to vary between 70% and 89% and 76% and 94%, respectively (65-67) (Table 7). Rather, it is mainly because of a high incidence of myocardial infarction and a very strong need for repeat revascularization during the follow-up period. Almost

25% of the patients sustained an acute myocardial infarction at a median of 6 months (range 1 to 21) after the index procedure, and almost 50% of the patients underwent repeat revascularization by means of either repeat bypass surgery (22%) or repeat angioplasty (23%) at a median of 7 (range 1 to 43) and 6 (range 1 to 32) months, respectively. In all these patients, apart from two, the indication for repeat revascular-

Table 5. In-Hospital Events After Repeat Bypass Surgery

	Study									
First Author	Year	Ref. No.	Study Period	No. of Pts	Age (yr)	Graft Age (yr)	Death (%)	AMI (%)	Rethoracotomy (%)	Other (%)
Norwood	1977	37	1970-1975	26	40	0.5	8	12	NR	NR
Reul	1979	38	19681978	168	51	NR	5.	2	2	≥2
Schaff :	1983	39	1969-1980	106	49	NR	3	8	NR	- 11
Foster	1984	11	1976-1979	283	52	. 3	5	6	5	. 5
Cameron	1988	40	1970-1973	64	58	8	5	NR	NR	NR
Brenowitz	1988	. 41	1973-1986	150	56	8	12	5	7	23
Osaka	1988	42	1970-1983	119	52	4	3	: 9	3	3
Verkkala	1989	43	1970 - 1988	71	54	4	10	- NR	NR	NR
Nair	1989	44 :	1980-1986	73	51	3 %	4	NR	NR	NR.
Loop	1990	45	1967-1987	2,509	57	6	. 4	. 7	8	9.
Verheul	1991	46	1979-1987	200	58	5	8	4	6	7
Galbut	1991	47	1982-1988	88.	62	. 9	7 -	8	6	21
Akl	1992	-48	1981-1990	115	54	0.5	5	4	NR	7
Horton	1992	49	1981-1990	172	: 59	3-7	1	0	2	NR.
Noyez	1994	50	1987-1992	16	50	+ 11. · · ·	6	3	13	13
Total/weighted	average			4,160			. 5	. 6	7	9

Other = total sum of reported complications, such as cerebrovascular accidents, pulmonary and renal failure, bleeding and wound infection; other abbreviations as in Tables 1, 2 and 4.

Table 6. In-Hospital Events After Stent Implantation in Saphenous Vein Grafts

St	udy											
First Author	Year	Ref. No.	Study Period	No. of	Age (yr)	Graft Age (yr)	No. of Stents	Death (%)	AMI (%)	CABG (%)	PTCA (%)	Bleeding/ Vasc (%)
Urban	1989	51	1986-1988	13	63	5	20	0	0	0	NR	15
de Scheerder	1992	52	1988-1990	69	-63	7	136	4	7	6	3	33
Strumpf	1992	53	1990-1991	26	68	9	30	0	4 .	0 .	4 .	-19
Pomerantz	1992	54	1988-1991	: 69	66	9	84	0 .	10	0	NR	7
White	1993	55	NR	- 11	64	NR	16	0	0	0	0	0
Wong	1994	56	1990-1992	589	66	9	NR	2	0.3	1 .	NR	16
Eeckhout	1994	57	1986-1993	40	63	8	58	0	2	2	NR	14
Fenton	1994	58	1990-1991	198	66	8	NR	0.5	0.5	0.5	0.5	26
Nordrehaug	1994	59	NR	-19	60	NR	NR	0	П	0	6	16
Keane	1994	60	1991-1993	29	63	10	35	0	0	0	0	17
Piana	1994	61	1988-1993	150	66	9	200	١	0	0	0	27
Rocha-Sing	1995	62	1989-1992	22	66	NR	NR	5	0	Ð	0	<7
Wong	1995	63	1990 Ju91	231	66	8	305	1	1	0.4	0.4	1
Total/weighted a	verage			1,466				1	ı	1	1	. 16
Present Stoay	·		1995 1994	62	65	8	93	3	. 5	5	1 .	23

Vasc = vascular complications; other abbreviations as in Tables 1 to 4.

ization was failure of the graft at the site of the stented segment. As mentioned above, the use of high pressure balloon dilation after stenting may have resulted in a lower restenosis rate and, consequently, less need for subsequent revascularization.

Yet, although half of the major cardiac events occurred within the first 6 months after stent implantation, these data and the configuration of the Kaplan-Meier plots indicate a continuous and progressive clinical deterioration beyond this period. Given the limitations of comparing those data with other studies reported to date, the 1- and 5-year survival rates do not differ between the various treatment modalities for recurrence of angina due to graft failure (Table 7). The 5-year event-free survival, however, appears to be significantly inferior after balloon angioplasty or stent implantation when compared with repeat surgery. This is largely based on the stronger need of repeat revascularization after catheter-based interventions. It is, however, important to point out that the decision to proceed with another revascularization is not only patient but also physician related. The threshold for performing a third or fourth repeat bypass operation is obviously much higher than for another angioplasty. If repeat surgery and angioplasty are excluded from the survival analysis, the 5-year survival free from myocardial infarction is 61 ± 6% (95% CI 49% to 73%). Nevertheless, patients who have had previous bypass surgery represent a select and difficult-to-manage subgroup of patients with ischemic heart disease. This is illustrated by the work of Lytle et al. from The Cleveland Clinic Foundation (68). They found that patients who have had previous bypass surgery do less well in terms of survival and event-free survivai, irrespective of the presence or absence of graft stenoses, in comparison with patients with obstructive coronary artery disease but without a previous bypass operation. Furthermore, it needs to be emphasized that the prognosis of patients who have had previous bypass surgery is determined not only by the extent of coronary artery disease and the degree of graft failure but also by other clinical and anatomic factors such as age, coexisting disorders, ventricular function and type of conduit used. Furthermore, it is noteworthy that the Cholesterol Lowering Atherosclerosis Study, in which male patients who have had previous bypass surgery were randomized into a placebo group and a group receiving lipidmodifying drugs, revealed a significantly lower rate of progression and a significantly higher rate of regression in the active

Table 7. Survival and Event-Free Survival After Balloon Angioplasty, Repeat Surgery or Stent Implantation in Saphenous Vein Grafts

		Survival			Event-Free Survival					
Treatment	Ref. No.	No. of Pts	1 Year (%)	5 Years (%)	Ref. No.	No. of Pts	l Year (%)	5.Year - (%)		
Balloon angioplasty	27, 29, 30, 33, 34, 66	915	90-94	70-89	33, 34, 66	621	50-60	26		
Repeat surgery	39-42, 65	1,939		76-94	65, 67	2,000	·	63-76		
Stent implantation	54, 61	219	90-91	_	54, 56, 58, 61	1,006	56-80	:		
Present study		62	. 95	83		62	46	30 .		

^{- =} not available.

treatment group (30% vs. 61% and 16% vs. 2.4%, respectively) (69). Therefore, risk factor modification may play a role in the improvement of the late outcome.

Study limitations. A number of limitations have been briefly mentioned above. In addition to the design, the major drawback of the present study is that the patient group does not comprise a series of consecutive patients. Therefore, the possibility of an important selection bias cannot be neglected. In addition, we have basically reserved stent implantation for patients with advanced graft failure. This is not only because of our own philosophy with respect to the management of these patients but also because our center is a tertiary referral center. Forty-three percent of the patients are referred because of this top referral function. The small number of patients did not allow us to stratify patients into subgroups to explore which patient may benefit more from this treatment than the other. Therefore, we are unable to give guidelines with respect to improvement in patient selection and indications. In addition, the results reported herein need to be challenged by other investigators with larger series and, if possible, consecutive patients. Learning curve, more strict indications, improvements in stent design, changes in periprocedural procedures such as in-stent high pressure balloon dilations, which affect not only the postprocedural pharmacologic treatment but also potentially the clinical outcome, and, finally, more attention to risk factor modifications may contribute to superior results.

Conclusions. The management of patients with recurrent angina and graft failure is complex. In this historical series of nonconsecutive patients, in which the self-expanding Wallstent was predominantly used according to previous standards of stenting, stent implantation was associated with a poor long-term clinical outcome. These observations needs to be challenged by more recent studies. It may well be that changes in stent design and the systematic use of in-stent high pressure balloon dilations may result in a better long-term outcome. In addition, attention needs to be paid to risk factor modification to reduce long-term graft failure.

References

- CASS principal investigators and their associates. Coronary Artery Surgery Study. Circulation 1983;68:939 -50.
- Vaurnaskas E, for the European Coronary Surgery Study group. Twelve year follow-up of survival in the Randomized European Coronary Surgery Study. N Engl J Med 1988;319:332–7.
- de Feyter PJ, van Suylen RJ, de Jaegere PPT, Topol EJ, Serruys PW. Balloon angioplasty for the treatment of lesions in saphenous vein bypass grafts. J Am Coll Cardiol 1993;21:1539-49.
- Seides SF, Bozer JS, Kent KM, Rosing DR, McIntosh CL. Epstein SE. Long-term anatomic fate of coronary artery bypass grafts and functional status of patients five years after operation. N Engl J Med 1978:298:1213

 –7.
- Grondin CM. Campeau L. Lesperance J. Engalbert M. Bourassa MG. Comparison of late changes in internal mammary artery and saphenous vein grafts. in two consecutive series of patients 10 years after operation. Circulation 1984;70 Suppl 1;1-208-12.
- Guthaner DF, Robert EW, Alderman EL, Wexler L. Long-term serial angiographic studies after coronary artery bypass surgery. Circulation 1979; 60:250-9.
- 7. Bourassa MG, Engalbert M, Campeau L, Lesperance J. Progression of

- atherosclerosis in coronary arteries and bypass grafts: ten years later. Am J Cardiol 1984;53:102C-7C
- Virmani R, Atkinson JB, Forman MB. Aorto-coronary saphenous vein bypass grafts. Cardiovasc Clin 1988;18:41-59.
- Weintraub WS, Jones EL, Craver JM, Guyton RA. Frequency of repeat coronary hypass or coronary angioplasty after coronary artery bypass surgery using saphenous venous grafts. Am J Cardiol 1994;73:103–12.
- Loop FD: A 20-year experience in coronary artery reoperations. Eur Heart J 1989;10 Suppl M:78-84.
- Foster ED, Fisher LD, Kaiser GC, Myers WO, principal investigators of CASS and their associates. Comparison of operative mortality and morbidity for initial and repeat coronary artery bypass grafting: the Coronary Artery Surgery Study Registry experience. Ann Thorac Surg 1984;38:563-70.
- Lytle BW, Loop FD, Cosgrove DM, et al. Fifteen hundred coronary reoperations. Results and determinants of early and late survival. J Thorac Cardiovasc Surg 1987;93:847–59.
- Leon MB, Wong SC, Pichard AD. Balloon-expandable stent implantation in saphenous vein grafts. In: Hermann K, Hirshfield J, editors. Clinical Use of the Palmaz-Schatz Intracoronary Stent. Armonk (NY): Fucura: 1993:111-21.
- Strauss BH, Serruys FW, Bertrand ME, et al. Quantitative angiographic follow-up of coronary Wallstent in native vessels and bypass grafts. Am J Cardiol 1992;69:475-81.
- Savage M, Douglas J, Fischman D, et al. Coronary stents versus balloon angioplasty for aorto-coronary saphenous vein graft disease: interim results of a randomized trial [abstract]. J Am Coll Cardiol 1995;25:79A.
- Serruys PW, Strauss BH, Beatt KJ, et al. Angiographic follow-up after placement of a self-expanding coronary stent. N Engl J Med 1991;324:13-7.
- Saber RS, Edwards WD, Holmes DR, Vlietstra RE, Reeder GS. Balloon angioplasty of aortocoronary saphenous vein bypass grafts: a histopathologic study of six grafts from five patients, with emphasis on restenosis and embolic complications J Am Coll Cardiol 1988;12:1501-9.
- Ford WB, Wholey MH, Zikria EA, Somadani SR, Sullivan MA. Percutaneous transluminal dilatation of aortocoronary saphenous vein bypass grafts. Chest 1981;79:521-35.
- Jones EL, Douglas JS, Gruentzig AR, et al. Percutaneous saphenous vein angioplasty to avoid reoperative bypass surgery. Ann Thorac Surg 1983;36: 380-05
- Douglas JS, Gruentzig AR, King SB III. et al. Percutaneous transluminal coronary angioplasty in patients with prior coronary bypass surgery. J Am Coll Cardiol 1983;2:745-54.
- El-Gamal M, Bonnier H, Michels R, Heijman J, Stassen E. Percutaneous transluminal angioplasty of stenosed aortocoronary bypass grafts. Br Heart J 1984;52:617–20.
- Block PC, Cowley MJ, Kaltenbach M, Kent KM, Simpson J. Percutaneous angioplasty of stenosed hypass grafts or of bypass graft anastomotic sites. Am J Cardiol 1984;53:666-8.
- Corbelli J, France I, Hollman J, Simpfendorfer C, Galan K. Percutaneous transluminal angioplasty after previous coronary artery bypass surgery. Am J Cardiol 1985;56:398–403.
- Reeder GS, Bresnahan JF, Holmes DR. Angioplasty for aortocoronary bypass graft stenosis. Mayo Clin Proc 1986;61:14-9.
- Cote G, Myler RK, Stertzer SH, et al. Percutaneous transluminal angioplasty of stenotic coronary artery bypass grafts: 5-year experience. J Am Coll Cardiol 1987;9:8–17.
- Ernst JM, van der Feltz TA. Ascoop CA. et al. Percutaneous transluminal coronary angioplasty in patients with prior coronary artery bypass grafting. J Thorac Cardiovasc Surg 1987;93:268-75.
- Dorros G, Lewin RF. Mathiak LM. et al. Percutaneous transluminal coronary angioplasty in patients with two or more previous coronary artery bypass grafting operations. Am J Cardiol 1988;61:1243-7.
- Reed DC, Beller GA, Nygaard TW, Tedesco C, Watson DD, Burwell LR. The clinical efficacy and scintigraphic evaluation of post-coronary bypass patients undergoing percutaneous transluminal coronary angioplasty for recurrent angina pectoris. Am Heart J 1989;117:60-71.
- Platke WP, Hollman J, Whitlow PL, Franco I. Percutaneous transluminal angioplasty of saphenous vein graft stenosis: long-term follow-up. J Am Coll Cardiol 1989;14:1645–50.
- Webb JG, Myler RF, Shaw RE, et al. Coronary angioplasty after coronary bypass surgery: initial results and late outcome in 422 patients. J Am Coll Cardiol 1990;16:812–20.
- 31. Jost S, Gulba D, Daniel W, et al. Percutaneous transluminal angioplasty of

- aortocoronary venous bypass grafts and effect of the caliber of the grafted coronary artery on graft stenosis. Am J Cardiol 1991;68:27-30.
- Reeves F, Bonan R, Cote G, et al. Long-term angiographic follow-up after angioplasty of venous coronary bypass grafts. Am Heart J 1991;122:620-7.
- 33. Plokker TH, Meester HB, Serruys PW. The Dutch experience in percutaneous transluminal angioplasty of narrowed saphenous vein aortocoronary arterial bypass. Am J Cardiol 1991;67:361-6.
- Meester BJ, Samson M, Suryapranata H, et al. Long-term follow-up after attempted angioplasty of saphenous vein grafts: the Thoraxcenter experience 1991-88. Eur Heart J 1991;12:648-53.
- White CJ, Ramee SR, Collins TJ, Mesa JE, Jain A. Percutaneous angioscopy of saphenous vein coronary bypass grafts. J Am Coll Cardiol 1993;21:1181–5.
- Morrison DA, Crowley ST, Veerakul G, Barbiere CC, Grover F, Sacks J. Percutaneous transluminal angioplasty of saphenous vein grafts for medically refractory unstable angina. J Am Coll Cardiol 1994;23:1066-70.
- Norwood WI, Cohn LH, Collins JJ. Results of reoperation for recurrent angina pectoris. Ann Thorac Surg 1977;23:9-13.
- Reul GJ, Cooley DA, Coelho A, Chapa L, Eterovic I. Reoperation for recurrent coronary artery disease. Causes, indications, and results in 168 patients. Arch Surg 1978;114:1269-75.
- Schaff HV, Orszulak TA, Gersh BJ, et al. The morbidity and mortality of reoperation for coronary artery disease and analysis of late results with use of actuarial estimate of event-free interval. J Thorac Cardiovasc Surg 1983;85:508-15.
- Cameron A, Kemp HC, Green GE. Reoperation for coronary artery disease. 10 years of clinical follow-up. Circulation 1988;78 Suppl I:I-158-62.
- Brenowitz JB, Johnson D, Kayser KL, Saedi SF, Dorros G, Schley L. Coronary artery bypass grafting for the third o. more. Results of 150 consecutive cases. Circulation 1988;78 Suppl El-166-70.
- Osaka S, Barratt-Boyes BG, Brandt PW, Kerr AR Whitlock RM. Early and late results of re-operation for coronary artery disease: a 13-year experience. Aust in Z J Surg 1988;58:537-41.
- Verkkala K, Jarvinen A, Virtanen K, et al. Results of reoperations for coronary artery disease. Ann Chir Gynaecol 1989;78:282-6.
- Nair UR, Campbell CC, Dark JF, et al. Re-operation for recurrent coronary artery and graft disease. J Cardiovasc Surg 1989;30:656-60.
- Loop FD, Lytle BW, Cosgrove DM, et al. Reoperation for coronary atherosclerosis. Changing practice in 2059 consecutive cases. Ann Surg 1990;212:378–86.
- Verheul HA, Moulijn AC, Hondema S, Schouwink M, Dunning AJ. Late results of 200 repeat coronary artery bypass operations. Am J Cardiol 1991;67:24-30.
- Galbet DL, Traad EA, Dorman MJ, et al. Bilateral internal mammary artery grafts in reoperative and primary coronary bypass surgery. Ann Thorac Surg 1991;52:20–8.
- Aki ES, Ozdogans E, Ohri SK, et al. Early and long-term results of reoperation for coronary artery disease. Br Heart J 1992;68:176-80.
- Horton DA, Hicks RG. Reoperation for recurrent coronary artery disease—1 ten year experience. Aust N Z J Med 1992;22:364-8.
- Noyez L, van der Werf T, Klinkenberg TJ, Janssen DP, Kaan GL, Lacquet LK. Experience and early results of second reoperations for coronary artery disease. Should patent vein grafts be replaced during reoperation? J Thorac Cardiovasc Surg 1994;107:684-9.
- 51. Urban P. Sigwart U, Golf S, Kaufmann U, Sadeghi H, Kappenberger L.

- Intravascular stenting for stenosis of aortocoronary venous grafts. J Am Coll Cardiol 1989:13:1085-91.
- de Scheerder IK, Strauss BH, de Feyter PJ, et al. Stenting of venous bypass grafts: a new treatment modality for patients who are poor surgical candidates for reintervention. Am Heart J 1992;123:1046-54.
- Strumpf RK, Mehta SS, Ponder R, Heuser RR. Palmaz-Schatz stent implantation in stenosed saphenous vein grafts: clinical and angiographic follow-up. Am Heart J 1992;123:1329-36.
- Pomerantz RM, Kuntz RE, Carrozza JP, et al. Acute and long-term outcome
 of narrowed saphenous venous grafts treated by endoluminal stenting and
 directional atherectomy. Am J Cardiol 1992;70:161-7.
- White CJ, Ramee SR, Collins TJ, Escobar A, Jain SP. Placement of "biliary" stents in saphenous vein coronary bypass grafts. Cathet Cardiovasc Diagn 1993;30:91-5.
- Wong SC, Popma JJ, Kent KM, et al. Clinical experience with stent implantation in the treatment of saphenous vein graft lesions. J Interven Cardiol 1994;7:565-73.
- Fechout E, Goy JJ, Stauffer JC, Vogt P, Kappenberger L. Endoluminal stenting of narrowed saphenous vein grafts: long-term clinical and angiographic follow-up. Cathet Cardiovasc Diagn 1994;32:139–46.
- Fenton SH, Fischman F, Savage MP, et al. Long-term angiographic and clinical outcome after implantation of balloon-expandable stents in aortocoronary saphenous vein grafts. Am J Cardiol 1994;74:1187-91.
- Nordrehaug JE, Priestley KA, Chronos NA, Rickards AF, Buller NP, Sigwart U. Self-expanding stents for the management of aorto-ostial stenoses in saphenous vein bypass grafts. Br Heart J 1994;72:285-7.
- Keane D, Buis B, Plokker TH, et al. Clinical and angiographic outcome following implantation of the new less shortening Wallstent in aortocoronary vein grafts. J Interven Cardiol 1994;7:557-64.
- Piana RN, Moscucci M, Cohen DJ, et al. Palmaz-Schatz stenting for treatment of focal vein graft stenosis: immediate results and long-term outcome. J Am Coll Cardiol 1994;23:1296-304.
- Rocha-Sing K, Morris N, Wong SC, Schatz RA, Teirstein PS. Coronary stenting for treatment of ostial stenoses of native coronary arteries or aortocoronary saphenous venous grafts. Am J Caracol 1995;75:26-9.
- Wong SC, Popma JJ, Pichard AD, et al. Comparison of clinical and angiographic outcomes after saphenous vein graft angioplasty using coronary versus biliary tubular slotted stents. Circulation 1995;91:339–50.
- 64. de Jaegere PPT, de Feyter PJ, Serruys PW. Intracoronary stenting. In: Topol EJ, Serruys PW, editors. Current Review of Interventional Cardiology. Philadelphia: Current Medicine, 1994;8.1–8.17.
- Lytle BW, Loop FD, Cosgrove DM, et al. Fifteen hundred coronary reoperations: results and clinical determinants of early and late survival. J Thorac Cardiovasc Surg 1987;93:847-59.
- Kahn JK, Rutherford BD, McConahay DR, et al. Initial and long-term outcome of 83 patients after balloon angioplasty of totally occluded bypass grafts. J Am Coll Cardiol 1994;23:1038–42.
- Loop FD, Cosgrove DM, Kramer JR, et al. Late clinical and arteriographic results in 500 coronary artery reoperations. J Thorac Cardiovasc Surg 1991;81:675–85.
- Lytle BW, Loop FD, Taylor PC, et al. Vein graft disease: the clinical impact of stenoses in saphenous vein bypass grafts to coronary arteries. J Thorac Cardiovasc Surg 1992;103:831-49.
- Blankenhorn DH, Johnson RL, Nessim SA, et al. The Cholestere! Lowering Atherosclerosis Study (CLAS). Control Clin Trials 19.7/8:554-87.