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Optimal Stopping-Related Inequalities for
1.1.D. Random Variables when the Future Is Discounted

Frans A. BOSHUIZEN

Econometric Institute, Erasmus University Rotterdam, The Netherlands

Comparisons are made between the maximal expected gain of a prophet and the
maximal expected reward of an ordinary player observing a sequence of uniformly
bounded i.i.d. random variables when the future is discounted. The player uses pure
threshold stopping times which are asymptotically optimal. Both finite and infinite
sequences of random variables are treated. Also, comparisons between optimal
stopping values and expected rewards obtained by using asymptotically optimal
pure threshold stopping time are given. € 1994 Academic Press, Inc.

1. INTRODUCTION

Let X, X, .. be a sequence of independent identically distributed (i.i.d.)
random variables on some probability space (2, #, P) and taking values
in the unit interval [0, 1]. Hill and Kertz [5] proved that

E(max X,)—sup EX.<b,, (1)

1<ign 1€ Ty

where , is the collection of all stopping times which stop no later than »
and the numbers b, are fixed points of certain inductively defined functions
(e.g., b, =0.0625, bs=0.090, b0~ 0.110, b0~ 0.111; for more details,
see Hill and Kertz [5]). Moreover, the constants b, are the best possible
bounds for which (1} holds.

Recently, Samuel-Cahn [9] studied the same problem in a cost of
observation setting. She showed that for i.i.d. random variables X, X, ...
taking values in [0, 1] and for all c>0 and n>1

E( max (X;~ic))—sup E(X,~1tc)<e . 2)

1<i<n ted,
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The constant ¢~ '~ 0.3679 is the best possible bound for which (2) holds.
Also specific bounds b and b*(c) for n and ¢ fixed, respectively, were
obtained: b* = ((n— 1)/n)"*" and b*(c)=[1/c] c(1 — )l I1+1 ([x] is the
largest integer not exceeding x). Note that Samuel-Cahn’s results do not
imply inequality (1) (the cost model problem has a discontinuity at ¢ =0).

This paper concerns another classical model in optimal stopping theory,
namely the discount model. The main results are the following. For i.i.d.
random variables X, X,, .. taking values in [0, 1] we have

E(max B'7'X;)—sup E(f""'X,)< UL B), (3)

I<isn e Fy
where U, (f) is given in Definition 3.5 (see also Proposition 4.2(ii)), and

E(sup B~ 'X,)— sup E(B*'X,) < U(B), (4)

izl tedF

where 7 is the collection of all almost surely finite stopping times and
U(p) is given in Proposition 4.3(i). The constant U,(B) is the best possible
bound for which (3) holds if fe D,, where D, is defined in Definition 4.1.
The same phenomenon appears as in the Samuel-Cahn problem: inequality
(1) is not implied by inequality (3) since 1¢ D, for all n>2. The constant
U(p) is the best possible bound for which (4) holds for all f(0, 1).

Inequalities such as (1)-(4) have been called prophet inequalities due to
the natural interpretation (for instance in (1)) of E(max, ¢,., X;) as the
expected gain of a prophet (a player with complete foresight) and
sup, . 5, £X, as the expected reward of an ordinary player using an optimal
strategy.

Both in Samuel-Cahn [9] as in this paper pure threshold stopping times
(of the form stop the first time a certain fixed level is exceeded), which are
asymptotically optimal in some sense (see Definition 2.1), are used to
obtain the desired inequalities (2)-(4). (See also Samuel-Cahn [8].)

The organization of this paper is as follows: Section 2 is a preliminary
section where asymptotically optimal stopping times are defined. We also
show what these stopping times can look like in the setting of i.i.d. random
variables with a discount factor. In Section 3, inequality (3) is presented,
and Section 4 gives an asymptotic analysis of the constant U, (f) appearing
in (3). Also the prophet problem for infinite sequences of random variables
(inequality (4)) is solved in Section 4. Finally, in Section 5, comparisons
between the optimal stopping value sup, _, EX, and the expected reward
E(p™ 'X,) are given. Here {1,} is a sequence of asymptotically optimal
pure threshold stopping times as given in Proposition 2.2(ii).
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2. ASYMPTOTICALLY OPTIMAL STOPPING TIMES

Throughout this paper all sequences X, X5, ... consist of i.i.d. random
variables taking values in {0, 1]. Let us fix some notation: for real numbers
xand y, x v y and x A y denote the maximum and the minimum of x and
¥, respectively, x* =x v 0 denotes the positive part of x, and [x] is the
largest integer not exceeding x. For a sequence X, X,, ..., let F be the
collection of all as. finite stopping times with respect to the filtration
{#}7 ,, where Z=0d{X,, .., X;} is the o-algebra generated by { X, .., X,},
and let 7,={t An:te7 }. Also denote V(X,, X,,..)=sup,. ., EX, and
V(X,, .., X,)=sup, ., EX, the optimal stopping values for the infinite and
the finite horizon case, respectively.

DEerFINITION 2.1. (i) A stopping time ¢ is called &-optimal (& is a
subcollection of J7) for a sequence X, X,, .. if EX,=sup__., EX..

(it) A sequence of stopping times {t,}, such that r,€.7,, is called
asymptotically optimal (AG) if lim,, , , £X_ = V(X,, X,, ..).

In the discount model it is very easy to find the optimal stopping time
for an infinite sequence of random variables. The next proposition is due
to Karlin [6]. Since we only deal with bounded random variables a very
simple proof can be given and is included here for the sake of completeness.
An optimal stopping time t for an infinite sequence X,, BX,, B%X;, .. is
of the pure threshold type: stop the first time a fixed level is exceeded.
If the same threshold is used for the finite sequence X, BX,, .., B" 'X,,
then the resulting sequence of stopping times {z,} evidently has the AO-
property.

Note that stopping times having the AO-property are not necessarily
7,-optimal for a sequence X, BX,, .., 7~ 'X, (see also Section 5).

ProOPOSITION 2.2. Let X, X,, X5, ... be a sequence of 11.d. [0, | J-valued
random variables and take any Be (0, 1). Let V(B) be the unique solution of
the equation x = E(X v px). Then

(i) t=inf{i=1:X,> BV(B)} is an optimal stopping time for the
sequence X, BX,, B*X;, ... and V(X,, BX,, B*X;, ..)= V(B); and

(ii)
E(B™~'X,)=V(B)— (Bu)"~' E(BV(B)—X)",

where u=P(X< BV(B)) and t,=1 A n.
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Proof. (i) Since the {X,} are bounded, we have lim,, , . V(X,, fX,, ..,
B"~'X,)=V(X,, BX,, B*X;,..). The principle of backward induction
(Chow et al. [2, Th. 3.2, p. 50]) yields

V(Xl’ BX2’ LLEE) ﬂnian)zE(Xl v BV(XD ﬁXZs ey ﬂnszn——l))- (5)

Taking limits on both sides of the equality sign in (5) gives
V(X,, BX,, B?X5, ...) = V(B). To see that t is optimal, compute

E(B'X)= ) E(F~'X;1._;)

i=1

=3 E(X—BV(B)* (Buy
j=1

Les}

+ ) BV(B)(Bu) ~' (1 —u)= V().

j=1

(i1)

n—1
E(B1"71Xr,,)= Z E(ﬂjille(fﬁj})"'E(ﬁ"*lX") wt !

j=1

=V(B) = X EB "X (xs pripyy) W'+ (up)" " EX

j=n

=V(B) — (up)"~' V(B) + (uB)"~' EX
=V(B)— (Bu)" " E(BV(B)-X)*. I

3. PROPHET INEQUALITIES

In this section the best possible upper bound U,(f) for the difference
between E(max, ¢, ' 'X;) and E(f~'X,, ) is given, where {1,} are the
stopping times as in Proposition 2.2(ii) (having the AO-property). Now, let
ve[0,1] and fe(0,1) and let X, X,, X,,.. be any sequence such that
V(X,, BX,, B*X;, ..)=v. It may be assumed, without loss of generality (as
Lemma 3.3 shows), using a mass spreading technique called balayage (see
Hill and Kertz [4]), that X takes values in the set {0, vf, 1} if we are
searching for a best possible upper bound for E(max,.,., B 'X,)—
E(""'X,,).

DermviTioN 3.1, Given a [0, 1]-valued random variable X and constants
0<x<y<l, let X! denote a random variable with distribution
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P(X.eB)=P(XeB) if B¢l[x,y], Be#

PXI=0)=(y=x)" | (r-2)dPue),

PX=y)=(y=x)""[  (z=x)dPy(z).

[x. »]

(Py denotes the distribution of X and # is the family of Borel sets in
[0,1])

The next lemma states some basic properties of balayaged random
variables. The proofs of parts (i)-(iii) can be found in [4] and part (iv) can
be found in [3].

LemMMma 3.2, Let X and Y be two [0, 1]-valued random variables and
suppose that Y is independent of both X and X2, 0<x< y<1. Then
(i) E(XvY)SEXIvY)
(i) E(X])=EX;
(iil) E(X!vx)=EXv x); and
(iv) E¢(X)<EHX?) for all convex functions ¢:[0,1]— [0, 1].

LeEmMMA 3.3. Fix fe(0,1), let X, X,, .. be a sequence of iid. random
variables taking values in [0,1] and let v = V(X,, BX;, B*X5, ...). Then there
exists a sequence of i.id. random variables X, X,, .., all distributed as a
random variable X of the type

1 v(1 - B)/(1— Bv)
X=<PBv  with probability (1 —v)/(1—pv)—p
0 p

Jfor some pe [0, (1 —v)/(1 — Bv)], such that
(1) V(f]’ B‘X}Z’ ﬁzX‘3s"-)=v; and
(i) E(max,c,c, f'7'X,) — E(f""'X,) < E(max, .., p''X) —
E(B™'X,), where t,=(inf{i=1:X,> fv}) A n.
Proof. (i) Define X=X}, Lemma 3.2(iii) and Proposition 2.2(i)
imply that E(X v fv)=v and thus V(X,, fX,, ..)=v. Note that X is of the
type above.

(ii) Lemma 3.2(i) implies that E(max, ., f~'X,)< E(max, ., <, §~'X,).
Further, Proposition 2.2(ii) yields

E(B"'X,)=v—(BP(X< Bv))" ' E(fv—X)".
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By Lemma 3.2(i1) and (iii) we have
E(Bo—X)* =E(pv—X)*

(use the identity (a—‘b)+ =a v b—b), and by the definition of X we have
that P(X < fv) < P(X < fv). Hence

E(p" X, )2 E(B™'X.,),
which settles the proof of (it). |
Remark. The reason that we work with a strict inequality in the
definition of 7, is that Lemma 3.3 does not hold for stopping times 7, of the
form {inf{i=1:X,= Bv}) A n, since
E(f"'X; ) =v—(BP(X < pv))"~ ' E(fv—X)*
and P(X < fv)> P(X < pv) (so the inequality is in the wrong direction).

The next lemma gives an upper bound for the difference
E(max, .., B 'X,)— E(p™ 'X,) for random variables X, X,, .. with
V(X,, BX,, B°X;5, ..)=v, ve(0,1) fixed. (In the sequel we exclude the
trivial cases v =0 and v =1 corresponding to X' =0 and X = I, respectively.)

LemMma 34, Fix f(0,1). Let X,, X5, ... be a sequence of i.id. random
variables such that v=V(X,, BX,, B°X;,..)€(0, 1} is fixed. Then

E(max g7 'X)— E(B" 'X,)<d,(p,v; p)

1<i<n
where

d(p, v; B)=vf(u— p)((1 = p*~'w* (1= (pB)"~*)/(1 — pB))
+(pBY ~u( = = (pB) ™ W(u—pB))+ (pB)" )
FOB"(pu = p" ),
with u=u(v; )= (1 —-v)/(1— fv) and s=s,(v; )= ([log v/log B1+2) A n.
Proof. Let X,, X,, ... be i.id. random variables with distributions as in
the reduction Lemma 3.3. For n=1, 2, ... define m,, = E(max, _,., '~ 'X)),
e,=E(f"'X,) and d,=m, —e,. The idea is to express d, in terms of
d,_; and then to obtain the expression for 4, by induction. Now,
d,=E(max B 'X,—X,)* +EX, —e,

2<isn

=ppm, ,+(u—p) BE( max pX,—v)*

lgig<n—-1

+(1—u)+ po(u—p)—e,
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=phd, _,+(u—p) BE( max B''X,~v)"

I<isn-—1

+(0=pB)v+pPe, —e,,
where u=u(v; )= (1 —v)/(1 — Br). By Proposition 2.2(ii) we have

pBe,_1—e,= pvf"u" " *(u— p)—v(l — pp).
Also note that

E( max ﬂi“Xi—v)*=jZ"(ﬁf—v)u"(l_u)=vuf~+1(1—ﬂf~+l),

lgign—1 i=

where j, = j,(v; B) =max{j: > v} = [log v/log B] A (n—2). Hence,
d,=ppd, \+ (u—p)v(B(1— B+ ") u* "+ ppmu"2).

Now, put C,=p(1—p*""Yu" '+ pp"u"~? with s,=s5,(0; B)=j,(v; B)
+ 2. By induction on 7 it follows that

n—1

dn=(u—p)v Z (plB)iilCn'i«#l' (6)

i==

(We use the convention that an empty sum is equal to zero, so d, =0.)

by B,=(B ', 2], s=2,..n—1, and B,=(0, " 2]. For veB, we
have s,=s An and thus s, ,, =sfori<ig<n—sands,_,,,=n—i4+1
for n—s+1<i<n—1. Hence for ve B,

n—1

d,=@w—p)v Yy (pf)y ' Cp_ i\
i=1

—(u—p)v {z (pB) ) B — B Y
i=1

+ X (BT BU— BT u

i=n—s+1

+ i (pﬁ)iglpﬂn~i+luni—l}
i=1

=vBu—p){(1 =4 Y '(1—(pf) *)/(1 — pB)
+(pB)" " u( = (pBY ) (u—pB)+ (pB)" '}
+op"(pu" - p" W),

which completes the proof of the lemma. J
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The next theorem gives the best possible upper bound for
E(max, ¢,., B~ 'X,)— E(p™'X,,) for arbitrary sequences of iid. [0, 1]-
valued random variables X,, X,,... The bound U,(f) is given as the
maximum of the function d, (computed in Lemma 3.4) on an appropriate
domain.

DeFINITION 3.5. Let d, be the function as given in Lemma 3.4.
For Be(0,1), define U, (8)=max{d,(p,v; $):0<v<], 0<p<(l-v)/
(1 Bo)}.

THEOREM 3.6. Let X, X5, ... be a sequence of [0, 1]-valued i.i.d. random
variables and let f(0,1). Then for n> 1

E( max Bi_ lXi) - E(BT"7 lXt,,) < Un(ﬁ)o
1<sign

where t,= (inf{i > 1: X;> BV(X,, BX,, B*X;, ...)}} A n. The constant U,(f)
is the best possible.

Proof. Follows immediately from Lemma 3.4. |

It is obvious, since E(f™ 'X, )< V(X,, BX,, .., p*'X,), that U, (B) is
also an upper bound for E(max,;., ' 'X,)— V(X,, fX;5, .. B"'X,).
The next example shows that for n =2, U,(f) is the best possible upper
bound for E(X, v BX,)— I,/_(Xl’ pX,) for f<1/2. Also we compute the
best possible upper bound U,(f) for the difference above for 12 <8< 1.

In Example 3.8 we given some numerical approximations for the bounds
U B) for n=3,4,5, 10, 100 and several values of f.

ExaMpLE 3.7. Let n=2. Note that s,(v; f) =2 for all v and 8. Thus
dop, v; By =vB(u?(1 — )+ p(2f — 1) u— fp?).

If B=1/2, then max{d.(p,v;f):0<v<], 0<p<(l—v)/(1—-Pv)}=
max{1/4v((1 —v)/(1 — Bv))*: 0<v <1} = 1/4v¥((1 —v¥)/(1 —v¥B))* with

v¥=(3—B—/O—B)1-B))(2B). On the other hand, if <12, then
max{d,(p,v; f):0<v <1, 0<p< (1 —v)/(1 — Br)} =max{d,(0,v; §):0<

o<1} =B(1—B)oF((1 —v)/(1 —vFB))>

Now, we determine the constant
U,(B)=sup{E(X, v BX,)— V(X,, BX,;): X is a [0, 1]-valued r.v.}.
An extremal random variable for E(X, v fX,)— V(X,, BX,) has the form

1 (1—gB)u
X=<pu with probability q
0 t—g—(1—gB)p
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Here, u=EX and 0<g<(1—u)/(1 —uB). (Again, use a balayage argu-
ment as in Lemma 3.3.} For such a random variable X (X,, X, distributed
as X) we have

E(X; v BX,)=V(X,, BX;)=qBE(X — u)" = Bu(l — ) q(1 —gpP).

Call this function dy(q, y; f). Then UT,(B)=max{d,(q, u; f):0<u<1,
0<g<(t—p)/(1—up)} =dx(1/2,1/(2B); B)=1/16 if B 2/3, and Ux(f) =
max{dy((1 = p)/(1—up), u; B):0<pu<1}=p(1-PB)o3((1—0¥)/(1—-0Fp))?
if B<2/3. Hence U,(f) and U,(B) coincide on the interval (0, 1/2]. Note
that (1—oF)/(1 —v¥B)=(3+ B—/(9— B)1— B))/(4B).

ExampLE 3.8. For n =3, U,(1/2) ~ d,(0,0.3542) ~ 0.0642; U,(B¥) ~
d5(0, 0.3970) ~ 0.0774, where ¥ = \/g —~1)/2~06180; and U,(3/4)~
d,(0.2748, 0.4648) =~ 0.0967.

For n=4, U,(1/2) =~ d4(0,0.3542) =~ 0.0642; U,(B}) =~ d,(0,0.3703) =~
0.0869, where f¥ ~0.6823; and U,(3/4) ~ d,(0.2359, 0.4093) = 0.0982.

For n=35, Ug(1/2) =~ ds(0, 0.3542) =~ 0.0642; Us(f¥) =~ d,(0,0.3512) =~
0.0920, where ¥ x0.7245; and U;(3/4) =~ ds(0.1285, 0.3670) = 0.0964.

The discount factors ¥, ¥, and ¥ have the following interpretation:
The numerical approximations for n=3, 4, and 5 suggest that the largest
discount factor p for which the maximum (pJX, v¥) lies on the axis p=0is
equal to the unique solution (in (0, 1)) of the equation p" '+ f=1. It
is not hard to show that if s (v; f)=n (in the expression for d, in
Lemma 3.4), then the partial derivative of d, (with f= g¥)in p=0is equal
to zero, and v} so that max{d,(0,v; $¥):0<v <1} =4, (0, v, B¥) satisfies
s,(v¥, B¥)y=nforn=2,3,4,5 For n>5 it is much harder to come up with
a clean expression for ¥ with the latter property, although for fixed n
approximations can be made. (See also the remark before Proposition 4.3.)

For n =10, U,,(3/4) = d,,(0,0.3670) ~ 0.0956, and U,,(0.95) ~
d,0(0.6610, 0.5082) =~ 0.2017.

For n=100, U,4,(0.95) x d,04(0, 0.3910) = 0.1230.

Hill and Kertz [5] conjectured that the constants {b,}, the best possible
upper bounds for the differences E(max,.;., X;)— V(X,, .., X,) form a
monotonically increasing sequence. Note that in the discount model
{U,(B)} is not necessarily an increasing sequence for fixed f: U,(3/4) <
U,(3/4)> Us(3/4).

4. ASYMPTOTIC ANALYSIS AND THE INFINITE HORIZON PROPHET PROBLEM
In this section the bound U,,(B) is analyzed. It is clear that E(f™ 'X_ )=

V(X,, BX,, .., B"7'X,) for iid. random variables X, .., X, taking at most
two values. So if the extremal random variable (the random variable for
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which U,(f) is attained) takes at most two values, then U,(f) is also the
best possible upper bound for E(max, ., ., B 'X,) — V(X,, BX5, ... B7'X,).
We will say something about those f for which this is the case (see
Proposition 4.2). Remember that we showed in Example 3.7 that for n=2
the extremal random variable takes two values if f<1/2.

Furthermore, we prove that U(f)=Ilim,_ . U,(f) is the best possible
upper bound for E(sup,,, ' 'X,)— V(X,, BX,, f?X;,..) in the infinite
horizon prophet problem (see Corollary 4.5).

DEerFINITION 4.1. Let D, = (0,1) be the set of discount factors S for
which d,(p, v; B) is maximized by a point (p*(f),v¥(B)) somewhere on the
axis p=0, i, D,={fe(0,1): p¥(f)=0}.

PROPOSITION 4.2. Fix n> 1.

(1) Let X,,X,,.. be a sequence of [0, 1]-valued iid random
variables and let fe (0, 1). Then

E( max B'7'X)—V(X,, BXs, .. B 'X,) S U,(B).

Il<isn

(W) If BeD,, with D, as in Definition 4.1, then the constant U, () is
the best possible for the inequality in (i) and U, () can be expressed us

U.(B)

Here v, =(p* " "voX)aA B2 s=2.,n—1andv,=v* A "2, where

max B(l - ﬁ)s ! Us(us)s'

2<s<n

D=1 =+ 1)~ (5= 1)’ )1 — )

k 25 s§=2,..n,
and u,=(1—-v)/ (1 —v.B)=(w,_,vuX)yrw,_,, s=2,..,n where w,=
(1= —-p*Y, i=0,.,n—2andw, =1, and

. _ _ 2 (o _1)2 -
e D DB G D 1P

3 2sp

Proof. Part (i) follows immediately from Theorem 3.6, since
V(X,, BX,, .., B"'X,) = E(B™ X, ). For part (ii) we have to show that
max{d,(v; ):0 < v < 1} = U,(B), where d,(v; B) = d,(p = 0,v; B) =
B(1 = B~y u((1 —v)/(1 = Bv))™; s, =([logv/log ]+ 2) A n. Recall the
partition (of [0,1]) {B,},_. .., as defined in the proof of Lemma 3.4. If
veB,, some 2<s<n, then s,=s. Thus d, restricted to B, is equal to
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B(1 — B 1y f.(v), where f{v) = v((1 — v)/(1 — Br))°. Straightforward calculus
shows that max{f,(v):0<v <1} =f,(v¥), where

y GHED === s+ 1)2=(s—1)! B)(1 - B)

v¥= s s=2,..,n.

5 2ﬂ

In order to maximize d, on B, we have to check whether v*e B, v* < B!
or v*> f*~2 In the first case we have

max{d,(v; f):ve By} = f(1 — f*~ ") vX(ut),
and in the latter two cases we have
max{d,(v; B):ve B,} =d(p " p)= B (1~ f 1) (1)
and
max{d,(v; B):ve By =, (8% )= (- p A (1=p )Y,
respectively. Hence, if S D, then

Un(B)= max max{d,(v; f):ve B,} = max B(1—p~")v,(u)"

sssn €ssn

Since the extremal random variable takes only the values fv*, some
v*€(0, 1), and 1 we have that max, ., B(1 — B°" ') v,(u,) is also the best
possible upper bound for E(max,_;., 8 'X,)— V(X,, BX,, .., B"'X,).
This observation completes the proof of the theorem. |}

Remark. It is not directly obvious that the sets D, appearing in Defini-
tion 4.1 and Proposition 4.2(ii) are non-empty. However, Example 3.7
shows that D,=(0,1/2]. Also we prove in Proposition 4.3(ii) that
lim,_, . U,(B)=1lm, . d,(0,v}; B) is asymptotitcally the best upper
bound for E(max, ., B~ 'X:)— V(X,, BX5, .., B”'X,). This implies that

~_, D,=1(0,1). Numerical examples, for instance, Example 3.8, suggest

the following conjectures:
(iy D,eD, . ,,n=23,..;and
(i) D, is an interval of the form (0, §,] for some f,€ (0, 1).

The author was not able to prove either (i) or (ii) since it is extremely
hard to analyse the partial derivatives of d,,.

Note that the Hill and Kertz prophet inequality (1) implies that 1¢ D,
since b,# U, (1), for all n>2.

In the next proposition we give an expression for lim,_, . U,(f) and we
show that this limit is asymptotically the best possible upper bound for
E(max, ¢, <, B~ 'X) - V(X,, BX,, .., " 'X,).
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ProrosiTION 4.3, Fix fe(0, 1).

(i) UB)=lim,_ . U p)=sup,, (1 — B ')vu), where v, and
u, were defined in Proposition 4.2(ii1).

(") limn—’x Sup{E(maxlsiSn ﬂi ]Xi) - V(Xl’ ﬁXZ’ it} ﬂn—-an):
X, . X, iid. [0, 1 ]-valued} = U(p).

Proof. (i) 1t follows from the definition of U,(f) (Definition 3.5) that

max d4,(0,v; )< U (B)< max d0,v; By+ B 428" (7)

Osr<1 [CEEIES
To see the second inequality in (7) write d, as d'"' + d'*, where
diV(p, v; B)=ovB(1— B~ Yu—p)u™"'(1—(Bp)"~™)/(1— Bp),
and
diP(p,v; By=vp" " 'p"uu = — (Bpy T )u— p)/(u— Pp)
+op"((u—p) p"+ pu" " = p" U,

Since d'! is decreasing in p, we have max{d"(p,v; 8):0<v<1,0<p<
u} =max{d\"(0,v; f):0<v< 1} =max{d,(0,0; f):0<v<1}. Recall that
u=(1—0v)/(1—Bv). It is obvious that d¥<p" * '+28" since all
variables involved are in [0, 1]. Now, fix 2<s<n and let ve B, (the {B,}
were defined in the proof of Lemma 3.4). Then s,=s and

max 4,0,v; f)= max B(1 — B ') max vu®

Ot 2<s<n ve B,

= max f(1—p" Do(1—v,)/1—v,p))

Letting n tend to infinite etablishes part (i) of the proposition, since
n—s,={n—[logvlog f]1—-2)" - o0 if n— o0.
(i) Since V(X,, BX,, .., B~ 'X,) = E(f™'X,),

E(max B'7'X) = V(X,, BXs, .y BT X, ) S ULB) = U(P),

1<ign
and hence

lim sup sup{ E( max g~ 'X,)—V(X,, BX,, .., B"'X,):

n-— % lgign
X, . X, iid. [0, 1]-valued} < U(B).

To establish the reverse inequality let & be the number such that
maxg<, <) da(0, 0 f) = B(Y — B~ B((1 — B)/(1 — B)™ Let X be a



OPTIMAL STOPPING-RELATED INEQUALITIES 127

random variable with distribution P(X = #5) = (1 — #)/(1 — 8) = 1 —
P(X=1)and let X,, .., X, be iid, distributed as X. Then

sup{E(max B 'X,)—V(X,, BX,, .., B"'X,):

I1<ign
Xy, .., X, iid. [0, 1]-valued}
>E( max Bi_lj;i)— V(Xfla ﬂi2s aren Bn—l‘i’/n)

lgigsn

=E(max p'7'X)—-E(f~'X,)

I<i<gn

=B(1—p= ) o((1 = B)/(1 —5p))™
= max d,(0,0:)>U(B) il n—e,

[LESTES
where the first equality follows since
E(B!n‘ IXII,,) =0= V(X}l’ ﬂyz, ey an 1A7n)>

and the second equality follows from Lemma 3.4 since P(X=0)=0. |

The next theorem is the solution to the infinite horizon prophet problem
in a general sense, namely, we describe all ordered pairs (V(X,, BX,, ..),
E(sup,,, B'~'X,)) as a subset of [0, 1]% where X, X,, .. runs through
the class of sequences of [0, 1]-valued ii.d. random variables. The set
containing these pairs is usually called a prophet region. See Kertz [ 7] for
the case f=1 (which is not included here) and Boshuizen [1] for the
case that the random variables involved are not necessarily identically
distributed. An immediate consequence of the next theorem is that the
constant U(f) defined in Proposition 4.3(i) is the best upper bound for
E(sup;, B~ ' X)) = V(X,, BX,, ..).

THEOREM 44. Let R be the set {(x,y):x = V(X,, fX5, ..), y =
E(sup,,; B 'X,), X,, X, ... iid. [0, 1]-valued}. Then

oC

R=J {(ey):pi<x<p 3 x<y< P (x) o {(0,0)], (8)

s=2
where ¥ (x)=x+ B(1 — B*~ ") x((1 — x)/(1 — Bx))~.
Proof. Let S be the set at the right hand side of (8). First, we prove
that R< S. Obviously, E(sup,., '~ 'X;) =0 whenever V(X,, fX,,..)=0,
so it is enough to prove that E(sup,,, '~ 'X,) < ¥,(v), for a sequence

X, X,,...ofiid. [0, 1]-valued random variables such that V(X,, BX,, ..)=
ve(ps~1, p=2], for some s=2,3,... Again we may assume, without loss
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of generality, that the X, take values in the set {0, fv, 1 }. Letting n — o in
Lemma 3.4, we get

E(sup '~ 'X)
izl
B1— B ) o((1—v)/(1 = Bv))* " ((1 —v)/(1 = Bv)— p)
1—pB '
where p= P(X,=0). The function g(p)={((1—0v)/(1 — fv)—p)/(1 —pB) is
decreasing on [0, (1 —v)/(1 — Bv)]. Hence
E(sup ' 'X,)<v+ (1= ")o((1 —0)/(1 = fv))* = ¥,(v).

izl

=v+

To prove S < R we have to show that for any (x, y)e S there exists a
sequence X, X, ... such that V(X,, fX,,..)=xand E(sup,,, ' 'X,) = ».
If (x,y)=(0,0), then take X,=0, j=1,2,... Now, take any point
Sa(v, y)#(0,0). Let s(v; f)=[logv/log B]1+2 and let X be a random
variable with distribution P(X = 1) = v(1 — 8)/(1 — vf), P(X = vf) =
(1 — v)/(1 — Bv). Then E(sup,,, ' 'X;) = ¥,..pv) and V(X,, pX,, ..)
=v, where X,,X,,.. are iid. and distributed as X. Let a=(y—v)/
(¥, p(v) — v), and define X, X, .. by X’j = aX, + (1 — a). Then
V(j}ls ﬂjfz, ..)=v and E(sup;;, B l)?i)= v 1

COROLLARY 4.5. (i) Let X,, X,, ... be a sequence of i.i.d. [0, 1]-valued
random variables and let U(B) be the constant defined in Proposition 4.3(i).
Then

E(sup B'~'X,) = V(X,, pX,, ..) S U(B).

izl
The constant U(B) is the best possible.
(il) Let X,, X5, ... be a sequence of i.i.d nonnegative random variables.
Then

E(sup '~ 'X) < (1+ B) V(X,, BX,, ..).

iz1
The inequality is sharp.

Proof. We only prove part (ii). If EX, = co, then there is nothing to
prove. So assume that EX, < co. By appropriate scaling (and then passing
to limits) it is enough to prove (ii) for [0, 1]-valued random variables.
From Theorem 4.4 it is easy to deduct

E(sup;5, ' 'X)) 1 (1—1) )‘
2 —~< 1 +supmax f(1 - p° —_— . 9
VX, BXs0 ) sup max ji{ T ®)
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The maximum on the right hand side of (9) is equal to B(1—p""")
(1= B N/(1= B9y, since (1—v)/(1—pv) is decreasing in v. The
inequality now follows from sup,.,(1— g~ ")(1 =" —-p))=1 }

5. AO vErsus OpPTIMAL STOPPING TIMES

In Section 2 we remarked that the stopping times {r,} with the AO-
property are not necessarily optimal in the finite horizon stopping
problems in that it is possible that V(X, BX,, .., " 'X,)>E(f™ 'X,)
for some sequence X,,.., X,. What we do know is that the difference
between the latter two quantities tends to zero if the horizon tends to
infinity. We can raise the following question: What is the maximal
difference between V(X,, BX,, ... p" 'X,)and E(f™'X )if X\, ... X, isa
sequence of iid. [0, 1]-valued random variables, and fe(0,1) and n> 1
are fixed? (In practice, it is far more easy to work with a stopping time t,
then with a 7, -optimal stopping time since only one stopping threshold
has to be computed. Theorem 5.1 basically says that you will lose at most
W.(B) in doing so.) Again, by using a similar result as Lemma 3.3, we may
assume, without loss of generality, that X, is of the type defined in that
lemma (here we basically apply parts (iii) and (iv) of Lemma 3.2). So in the
following theorem all random variables are assumed to be iid. and
{0, Bv, 1}-valued, where v=V (X, BX,, B°X;, ..).

THEOREM 5.1. Let X, X5, ... be a sequence if i.id. [0, 1]-valued random
variables. Then

VX, BXy, ., 877 'X,)— E(B™'X, )< W,(B),
where
W.(B)=B"(n—1)n """ pX(ury,

with

D —(— D) p— (4 1P~ (1~ 1) p)(1 = B)

n Zﬁ

o)+ 1) = S((n+ 1)~ (n=1) B)(1 = )

u; = s
2nf

and 1, is the stopping time defined in Proposition 2.2(ii). The constant W, (f§)
is the best possible.
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Remark. Obviously, lim,, _, . W,(f)=0, since the sequence of stopping
times {t,} has the AO-property. However, if = f, depends on », then it
is possible that lim,_ , W,(f)=#, for some >0, as the next example
shows. Also we calculate some values of W, (f) explicitly for §=0.95 and
several n.

EXAMPLE 5.2. (i) W,(0.95) =~ 0.1280, W,(0.95) ~ 0.1659, W(0.95) ~
0.1734, W,,(0.95)~0.1281 and W,(0.95) ~ 0.605.

(ii) Let {B,} be a sequence of numbers such that §,=n/(n+1)+
o(1). Then lim, _, , W,(B.)=(1/2)3—./5) e~ >+ V2 %0757,

Proof of Theorem 5.1. For iid. random variables of the same type as
the extremal random variable in Lemma 3.3 (so v = V{(X,, BX,, B°X,, ..) is
fixed) we have by Proposition 2.2(ii)

E(B'X,)=0v(1— ppru"""), (10)

where u=(1-v)/(1— fv). On the other hand, it follows by backward
induction [2, p. 507 that

V(B " 'X,, ., B X)) =B o(1 — (pf)r 'Y, i=n,., 1. (11)
Together (8) and {9) imply
VX, BXy, oy B X)) — E(B™ 71X, )= 0B"(pu" ' — p") =1 H,(p, V).
It is easy to see that

max H,(p,v)=H (n= " Yy p)

0 p<u
=B(n—1)n """ Do((1 —v)/(1 - Bv))"=: H,(v).

By direct calculations {compare the proof of Theorem 4.2) it follows that
maxOSUSI H"(U)= Wn(ﬁ)' I
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