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SUMMARY

When studying familial aggregation of a disease, the following two-stage design is often used: first
select index subjects (cases and controls); then record data on their relatives. The likelihood
corresponding to this design 1s derived and a score test of homogeneity 1s proposed for testing the
hypothesis of no-aggregation. This test takes into account the selection procedure and allows
adjustment to be made for explanatory variables. It appears as the sum of three terms: a pure test
of homogeneity, a test of comparison of observed minus expected cases in the two groups, and a
term which adjusts for the possible unequal probabilities of disease of the index subjects. Asymp-
totic efficiency and a simulation study show that the proposed test is superior to either the pure
homogeneity test or tests based on the comparison of numbers of affected in the two groups. The test
statistic, which has an asymptotically standard normal distribution, is applied to a study of familial
aggregation of early-onset Alzheimer’s disease for which a highly significant value (9.46) is obtained:
this 1s the highest value among the three tests compared, in agreement with the simulation study. A
logistic normal model 1s fitted to the data, taking account of the selection procedure: it allows to
estimate the regression parameters and the variance of the random effect; the likelihood ratio test for
familial aggregation seems less powerful than the score test.

1. Introduction

In many multifactorial diseases such as cancers, Alzheimer’s disease, and chronic obstructive
pulmonary disease (Cohen, 1980), a genetic determinant is suspected but it is difficult to specify the
genetic mechanism. In a first stage, it 1s necessary to verify whether familial aggregation exists.
Even this more modest aim 1s not easy to achieve, because the aggregation is weaker than in simpler
genetic diseases and it is blurred by the influence of other factors. These factors may weaken the
apparent aggregation or, on the contrary, they may be responsible for a familial aggregation of the
disease. The relevant epidemiological issue is to assess whether there is a familial aggregation which
cannot be explained by non-genetic factors.

Studies of familial aggregation of chronic diseases often have a particular design: they have been
called proband studies (Tosteson, Rosner, and Redline, 1991) or case-control relatives studies
(Commenges and Letenneur, 1992). The design is the following: in a first stage, a sample of index
cases and a sample of index controls are constituted; then data on the relatives of these index
subjects are collected. The simplest method of analysis is the comparison of the proportions of
atfected relatives in the case relatives group and in the control relatives group. Commenges and
Letenneur (1992) have analyzed this simple situation in order to derive sample size formulas.
However, at the stage of analysis it is important to use more sophisticated methods for both
achieving increased power and adjusting for non-genetic factors.

Neuhaus and Jewell (1990) have stressed the importance of taking account of the sampling scheme
when analyzing binary correlated data. Tosteson et al. (1991) have proposed an adaptation of the
Rosner model (Rosner, 1984) for proband studies. Zhao and Lemarchand (1991) have proposed to
estimate and test the odds-ratio of the group label using the GEE approach.

The aim of this paper is to derive a score test of familial aggregation which can be used in proband
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studies and which can take into account explanatory variables. The statistic takes a particularly
appealing form when a logistic model is chosen. A simulation study of the power of the test is
presented. Finally, the test 1s applied to a study of familial aggregation of early-onset Alzheimer’s
disease. Also, the logistic normal model is fitted to the data, taking account of the selection
procedure.

2. The Score Test
2.1 The Random Effect Model

We suppose the following random effect model which is an extension of the model used by Donald
and Donner (1987) and by Liang (1987). The probability for family 7 is given by:

pr()’:]a,) — pr(}’:; a,, Xl'):

where Y, ={y;,j=1,...,s} X, ={x;,J =1, ..., 5;}, in which y; is the status of subject j, x;; is
the vector of explanatory variables for this subject and s, the size of the family. The random effect
«; can be written:

"7
a,=a + 0'4v,,

where v; has a distribution G and E(v;) = E(v,v;) = 0; E(v?) = 1. The distribution G need not be
specified. The null hypothesis of no-aggregation, adjusted on the values of x;; is ““6 = 0" and the
alternative 1s ‘6 > 0.

In order to obtain more specific results we shall later make the hypothesis of independence of the
y,; values conditionally on «; and specify a model relating their distribution to the values of the x;;
values.

The model for the selection procedure will be that of single ascertainment: each affected (respec-
tively, non-affected) subject in the population has the same probability 7 (respectively, 7') of being
selected as an index case (respectively, control); 7 and 7' are supposed to be small.

2.2 The Likelihood

The data consist of the statuses of the subjects Y; ={y,,j =1, ..., s,} together with the explanatory
variables X; fori = 1, ..., n. The sample 1s divided into two subsamples: the subsample of n,
families selected via a case index, and the subsample of n, families selected via a control index, so
that n = n, + n,. We shall use the group label function k(i ) which takes the value 1 1f family ; was
selected via a case index, 0 if selected via a control index. Without loss of generality we rank the
families so that k(i) = 1,i = 1, ..., n, and we give the rank 1 to the index subject in each family
so that y,, = k(i).

[t is necessary to condition on the event that the family has been selected in the case or control
group. We introduce the selection variable g which takes the value k(:). It 1s also natural to
condition on the event that among the members of the family, this is the subject j = 1 which is the
index subject, event which we denote “‘j, = 17’. This latter conditioning does not affect the likelithood
if all the subjects in the same family have the same probability of being a case, but it does in the
general setup. The likelihood (marginal relatively to «;) for family i/ of the case group is

pr(j;=1le; =1, Y)) pr(e; = 1{Y))
pr(j;=1|8,=1) pI'(E,_;:l)

L;=pr(Yile,=1,jr=1) = pr(Y;).

Under the hypothesis of single ascertainment (Elandt-Johnson, 1971) each affected subject has a
small probability 7 of being selected and we have

pI'(S,- — 1‘)1) — 1 =) (1 S T)dl — 'Tdf'

and

Si

PT(E,- =1) = E(Tdt) =T 2 Tij-

j=1
where d; is the number of affected in family ; and m; = pr(y; = 1). We have also

pr(j; = 1le; = 1) = pr(subject {i, 1} be selected |e; = 1)

= *n'“/ 2 m; and pr(j, = lle; =1, Y;) = 1/d,.

Jj=1
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Thus we obtain

pr(¥;)
L= = pr(Yi|y: = 1).

Til

This result, although restricted to random effect models is stronger than the result obtained by
Tosteson et al. (1990), since it says not only that this conditional likelihood is independent of the
selection event but that it is the natural likelihood to consider.

Under the null hypothesis of independence we have pr(Y,y,, = 1) = pr(Y,_), where Y,_ =
{yij»J] = 2,...,s;} is the observation of the relatives ot the index.

For families of the control group, we obtain

pr(Y;)
" ]. B ’IT“

L:’ o PT(K‘U’H = O)

In terms of conditional probability, we have pr(Y,) = [ pr(Y;|v;) dG(v;) and m; = [ p;(v,)dG(v;). Thus
the total loglikelihood 1s

L = 2 log J pr(Yilv;) dG (v;) — E log IP?{j](Uf)QEll—k(f)(vf) dG(v;). (1)
7= =1

Note that the second term in this likelihood is the correction for selection. If we assume a particular
model and distribution G, this likelihood can be computed by numerical integration and it is possible
to estimate all the parameters in the model by maximizing it. Also, a likelihood ratio statistic for the
hypothesis ‘6 = 0’ can be computed using the difference between the maximized loglikelihood (1)
and the maximized loglikelihood of the model under this hypothesis. Since the value of 6 to be tested
is on the boundary of its domain, the correct test is to consider the square root of the conventional
likelihood ratio statistic; under the null hypothesis it has asymptotically a standard normal distri-
bution and the null hypothesis is rejected for large positive values of this statistic (Self and Liang,

1987).

2.3 The Score Statistic
Applying L.’Hospital’s rule as in Liang (1987), we obtain the score statistic:

1

S == {00 log pr (Y]a,)/da,}’ + o> log pr (Yia,)/0a]}
=1

9 |

152
—5 2 {[a log pI’ (yfl‘af)jaaj]z r 62 103 PI (Ml'f’f:)/aaf}a

=1
where all the derivatives are taken at 8 = 0. If we make the hypothesis of conditional independence,
we have pr(Y|e;) = Ilpr(y;|e;) and then:

S

d log pr(Yie,)/da; = > U, and a*log pr(Yi|e,)/0af=—-) Vi

j=1 j=1
where

U, =0 log pr(y,j|la;)/da; and V= —0° log pr(yfjlaf)/aaf.

]

S can then be written

M Ay

Fi LY Y 1
5=3 3 3 UUp+53 305V,

i j=1j'=j+1 i j=2

The first term appears as a covariance term and is the numerator of the pair-wise correlation
coefficient computed on all the subjects. The second term is the score statistic for overdispersion
(Cox, 1983) applied to the relatives. Yet another way to write the formula 1s



Score Test for Familial Aggregation 545

=TS R LU

=1 j=2
where S75 is the score statistic of homogeneity applied to the relatives and ignoring the selection, that
1S

r -

'| AY LY
= Z %4
j=2

)

J=2

1 n
=§2:

The second term then represents the information brought by the selection procedure.
The most natural model for pr(y;;) 1s the logistic model

eﬁ; " ﬁ r,t';".-

1" eSIt R >

PU(UE) =
where B is a vector of regression coefficients. It 1s easy to verity that with this model

Ur’j = Yips Ph and V = Pidij>

where p,; is the value of p;(v;) at 6 = 0. The statistic can then be written

2

AY

l rt AY] rl Y
=- 21| 2 0s-p)| — 2 Py + E 20y =Pyl =P 2 Uy —Py):
=1 _j=2 =1 j=2 i 2

J=2

Note that the summations on j are on the relatives.

In general @« and B are unknown and will be replaced by their maximum likelihood (ML)
estimators under the null hypothesis. Under the null hypothesis the likelihood of tamily 7 1s simply
pr(Y,;_). Thus the ML estimators of the regression parameters are obtained by conventional logistic
regression applied to the relatives (that is, all the subjects excluding the index subjects). When the
p;; values are replaced by p;;, we have X" X', (y; — p;) = 0 so that

E 2 yii — pi;) = D, — E(D,) = E(D,) — D,

where D, and D, are the total numbers of cases in the case and control relatives groups and E(D,)
and E(D,) are their expectations.
Finally the score statistic 1s

[ 12
Si

2 d:‘ = E(dr) z ;qg E(Dl) g 2 pil[df F E(d,)], (2)

Jj=2 (=1

= -

where d; = 2., y.;; D, = 21, d;; E(d,) = Z}., p;; E(D,) = Z/1, E(d;) and the p,; values are
computed from the conventional logistic regression model.

If there are no explanatory variables, the last term is null and the term brought by the selection
takes the form

: \ NN, : ]
Dl_E(Dl)=N1(7T1_P)= N (7, — 179)

where N,, k = 0, 1 are the number of relatives in group k, N = N, + N,, 7. = D,/N,, k =0, 1, and
5 = (D, + D,)/N. In this case the term brought by the selection involves the difference of
proportions of affected relatives—the naive test statistic—weighted by N,Ny/N; 7, and m, are
estimates of the marginal probabilities 7, and m, in the two groups under the alternative hypothesis.
The statistic takes the form

| i1 s . NNy
S == > [(d;:—m;p)’ —m;pq] + =

p=1]

(ﬁ'l R ﬁ.ﬂ):

0o |

where m; is the number of relatives (m; = s, — 1).
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2.4 Variance of the Score Statistic
For more concise results denote

z;=[1,x;] and ¥’ = [a, B']-

The variance of 9//980 1s

I=dgs: =Tl T58

Oy vy

where I,, = =7, E(al,/06)*; 1, = 2| E(3l,/dy)(dl,/dy)'; and I, = 2", E(dl/d6)(dl;/dy)" where both
dl./06, al./dy and the expectations are calculated at 6 = 0. After some computations (Appendix),
we obtain

2-
1 rl LY Y] | AY
Z 2 E Piiqii(1 — 6p;iq;) + 2( E PU%) | + 2 E Z P:‘;‘qﬁ'
— : |

rl Y 1 rj Ay n AY]
- Z D uqu(--m)zu + 2 E Piqizi — 2 Pin 2, PiidiZi-
=1 j=2 i=1 j=2

An estimate of I is obtained in replacing p;; values by their ML estimators and the test statistic 18
i = S/Te

3. Asymptotic Efficacy

Using the fact that (S — 6I')/I'"? is asymptotically distributed as N(0, 1) when 6 tends toward zero
and n, and n, tend toward infinity, it can be seen that the Pitman asymptotic efficacy (PAE) (Zacks,
1985) of S is just I/N. In the case where n, = ny and m; = m and there is no explanatory variable
(p;; = p), 1t reduces to

1 1
PAE(S) = 7 pq + 5 (m — 1)p°q”.

Using the same argument for S7 (Wthh is the score statistic for a marglnal likelihood i1gnoring the
groups labels), we find PAE(SR) = E(m — 1)p°g*. The PAE of 7, — 7r, can be computed noting that
its expectation is equal to the intracluster correlation coefficient p (Commenges and Letenneur,
1992) and its variance to 4pqg. Using the relation between p and 6 and making use of L’Hospital’s
rule, we find that dp/d8 computed at 6 = 0 is equal to pg and thus, PAE(7, — 7,) = pgq/4. Thus we

have the relation
PAE(S) = PAE(#, — 7o) + PAE(SY)
and the increase in PAE of S relative to that of 7, — 7,18 2(m — 1)pq.

4. Simulation Study of the Power of the Test

We studied the power of the proposed test in the case of no covariate for different values of 6 and
for three different distributions of v: i) normal; ii) double exponential; iii) a discrete distribution. This
last distribution 1s defined as follows

w
—\/ with probability 1 — w
1=

‘U:

ls—cmih
with probability w

w
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We used the value w = .10, which, for instance, is a plausible value of the proportion of people
presenting a defective allele which increases the risk of late-onset Alzheimer’s disease. We give the
correspondence between 6 and the intracluster coefficient p (computed by simulation) for the three
distributions with a choice of the intercept « such that the probability of the disease is .05 for v =
0 (Table 1). The intracluster correlation coefficient is particularly attractive in proband studies
because of the relation 7, — m, = p. Very different values of p are achieved for the same value of
6 in the three distributions.

Table 1

Correspondence between the value of 6 and the value of the intracluster coefficient p in three
different distributions of v.

6 i | 22 % 4 D .6 ) .8 9 1

Discrete:distributionis,. .010 .4:..026... ....048 . . 14073 . 0:0:10201 133 beeetii1 6671 1 k.- 199.4 4. 233 .266
Double exponential 0060013, . -023 " 033 = 044 " .053, 075 ..007  ...003 .105
Normal distribution 005 .011 016 ° 024 .. 03] 039 2049, . 057 . ™.064 076

For performing the simulations we should normally simulate a population and draw at random
Index cases and controls. We avoided this stage by using a rejection sampling algorithm. The
distributions of the disease probability P in the two groups are given by (Commenges and Letenneur,
1992): dGp|.—i(p) = pdG(p)/E(P) and dGp._o(p) = (1 — p)dG(p)/[1 — E(P)]. We generate a
variable from Gp|._, using the comparison function dG,/E(P): that is, we generate p from G, and
we accept it with probability p. For € = 0 we accept p with probability 1 — p.

We compared the power of H, at level .05 for the same value of p, .026, obtained with values of
fequal to .1, .35, .45 for the discrete, double exponential, and normal distributions, respectively; the
estimated powers were .508, .501, and .538, respectively. Thus the power depends highly on the
distribution for given value of 6 but seems to be fairly independent of the distribution for given value
of p.

Since the results depend essentially on the value of p, we performed the main simulations only for
the discrete distribution (for simplicity of computations), for values of 8 = 0, .1, .2, .3, .4, .5
(corresponding to values of p = 0, .01, .026, .048, .073, .102), for sample sizes n, = n, = n/2 = 100
and number of relatives in each family m;, = m = 2; 4; 6. Each case was replicated 1,000 times. Table
2 gives the powers for the three statistics z (the conventional test for comparison of proportions)
based on 7r; — 7y, H,, based on S¢, and H,, based on S. It appears that the power of H_, is always
the largest; as expected the difference of power between H,, and z increases with m, while H,
becomes more competitive.

Table 2
Power for the discrete distribution of the score test, H,, compared to the power of the test z
based on the comparison of proportions, i, — 1, and the pure test of homogeneity H, based

on S¢. The powers are for n, = n, = 100 and have been estimated with 1000 replications.

6 0 i 22 3 4 e

m = 2
z .042 LS 301 518 19 948
H, 066 .095 A2 272 405 5358
H .047 .129 326 581 .839 966

m = 4
z .060 155 424 784 .950 997
H, .055 133 363 .686 .880 986
H, .059 .184 .576 914 .994 1

m = 6
z .050 191 579 .891 .994 999
H, .050 180 578 919 995 .999
H..;: .052 279 782 987 1 ]

5. Familial Aggregation of Alzheimer’s Disease

We applied the test to a study of familial aggregation of early-onset Alzheimer’s disease (Hofman et
al., 1989; Van Duijn et al., 1993). Although the disease is clearly hereditary in some families, familial

- .
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aggregation in other families may result from clustering of longevity and the high risk ot disease at
old age. The design of the study we used is that of a case-control relatives study. The index cases
were subjects who were diagnosed with Alzheimer’s disease before the age of 70 years. The
diagnosis required was that of probable Alzheimer’s disease according to NINCDS-ADRDA (Mc-
Kahnn et al., 1984) criteria. Each index case was paired to an index control matched for age (within
S years), gender, and place of residence. Detailed data on family history were collected by
interviewing a next of kin of the index case or control, and the information was verified by a sibling.
The informants were asked specifically about the occurrence of dementia due to Alzheimer’s disease
in all first-degree relatives; subjects with a history of neurologic, psychiatric, or metabolic disorders
other than Alzheimer’s disease that may also lead to dementia were considered as unaffected. The
age of each subject at the time of the study or at death was collected. The required information was
available for 193 index cases and 194 index controls and for a total of 2421 relatives.

There were 32 affected among the 1142 relatives of index controls and 121 affected among the 1279
relatives of index cases. We computed the statistic H,, in two models: 1) unadjusted model, 11) model
adjusted for age and sex. For both models we computed also the pure homogeneity statistic H,,
based on S% and a test based on an ordinary logistic regression (OLR) model in which the status of
the index was entered as an explanatory variable; in the unadjusted model, this latter approach 1s
equivalent to a simple comparison of proportions of affected relatives in the two groups; thus OLR
1s the extension of the test z.

The results are shown in Table 3: all the test statistics are much larger than the .05 critical value
(1.64). However, it is necessary to adjust for age and sex, since both variables are significant. The
statistic H,, is higher than either H, or the OLR statistic in both the adjusted and non-adjusted
model; this is in agreement with the simulation study. For the adjusted model, the three terms of $
in equation (2) are, respectively, equal to 29.8, 44.5, and —.09; thus both the difference between
observed and expected numbers of cases and the homogeneity statistic Sg are important, while the
third term 1s negligible.

Table 3
Values of four statistics for testing familial aggregation of Alzheimer’s disease: H, pure statistic
of homogeneity; OLR ordinary logistic regression; H, proposed score statistic; RLR square-root
of the likelihood ratio statistic from the logistic normal model. For the adjusted ordinary logistic
regression model and for the logistic normal model, the odds ratios and (values of the Wald test
statistic) are given, for age, these are the odds ratios for a difference of ten years; for the
logistic normal model, the estimated value of 6 is also given.

Non-adjusted model Adjusted model Logistic normal model
Sex 1.62 (2.75) 1.82 (3.10)
Age 1.82 (7.82) 2.16 (8.27)
0 1.66
H, 4.70 6.06
OLR 6.34 6.81 RLR = 8.59
H . 8.15 9.46

We fitted also the logistic normal model proposed by Stiratelli, Laird, and Ware (1984) by
maximizing the likelihood (1) specialized to this model; numerical integration with Gaussian quadra-
ture was used to compute the likelihood as in Anderson and Aitkin (1985) and the Newton-Raphson
algorithm was used for maximization. The likelihood ratio test was computed as twice the difference
between the value obtained for (1) and the loglikelihood of an OLR model applied to the relatives.
The estimated values of the regression coefficients and of their standard deviations (sex: .598 (.193);
age: .0769 (.00930)) are slightly higher than those obtained by OLR (sex: .482 (.175); age: .0596
(.00762)); in Table 3 the more meaningful odds ratios and Wald statistics are given. The square root
of the likelihood ratio test is larger than either H, or the OLR statistic but smaller than H,.

We conclude that there is evidence of familial aggregation of early-onset Alzheimer’s disease. It
would be interesting to adjust for other explanatory variables which may also be aggregated in
families. The increased power of H,, should prove useful in studies of familial aggregation of
late-onset Alzheimer’s disease in which the familial aggregation 1s weaker.

6. Discussion

The first point to be noted is that there is a significant increase in power using the score test H,
rather than methods which ignore the clustering of the data or which treat it as a nuisance like 1n
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Zhao and LeMarchand (1992). This has an implication on the choice of the sample size to achieve
a given power. Commenges and Letenneur (1992) recommended a formula giving a shightly larger
size than usually required when comparing proportions. If the score test is used however, the power
is higher for a given difference of marginal probabilities between the two groups m, — m,, than would
be obtained with independent samples; in this case, the usual sample size formulae are rather
conservative and can be used.

The last term of the formula of S depends on p,,: it will give a positive contribution if the p,, are
lower in the case-relatives group than in the control relatives group. Choosing index cases with low
probability and index controls with high probability of the disease would probably increase the
power of the design: for instance, in a proband study of Alzheimer’s disease one could choose older
control than case index subjects. However, epidemiologists might prefer pairing the case and control
index subjects: since the likelihood is conditional on the data of the index subjects, the statistic does
not need to be modified.

Finally, it is possible to fit the logistic normal model using the modified likelihood derived here to
take into account the design of the study.
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RESUME

Lorsque ’on étudie la concentration familliale d’'une maladie, on utilise souvent le plan a deux
étapes suivant: premiérement, selection de sujets index (case et témoins); deuxiemement, receull
des données concernant leurs apparentés. La vraisemblance correspondant a ce plan est donnée et
un test du score d’homogénéité est proposé pour tester I’hypothése de nonconcentration. Le test
tient compte de la procédure de sélection et permet d’ajuster sur des variables explicatives. I
apparait comme la somme de trois termes: un test d’homogéné¢ité pur, un test de comparaison des
effectifs observés dans les groupes par rapport a ’effectif attendu et un terme qui ajuste sur les
possibles différences entre sujets index. L’éfficacité asymptotique et une €tude de simulation montre
que le test proposé est supérieur a la fois au test d’homogénéité pur ou au test basé sur la
comparaisons des proportions d’affectés dans les deux groupes. La statistique de test, qui a
asymptotiquement une répartition normale centrée réduite, est appliquée a I’étude de la concentra-
tion familliale de la maladie d’Alzheimer a début précoce et une valeur hautement significative (9.46)
est atteinte: cette valeur est la plus grande parmi les trois tests utilisés, en accord avec I’étude de
simulation. Un modele logistique normal est ajusté aux données, en tenant compte de la procédure
de sélection: il permet d’estimer les paramétres de régression et la variance de I’effet aléatoire; le
test du rapport de vraisemblance semble moins puissant que le test du score.
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APPENDIX:

Variance of the Score Statistic for the Logistic Model

Computation of 14,
Noting that the score statistic can be written § = §,, + 2L, w,U, withw, = k(i) — 1, where U, =

5

i, Ujgand Sy, = S% is the score statistic for randomly chosen families applied to the relatives, we
SFIEI“ make use of the result obtained by Commenges et al. (1994):

| = 2-

2 Pyqi(1 = 6pyq;) + 2( )% PWJ)

i=1 |j=2

Jj=2

hJ
1

I

2 W,'U,‘

(=1

_+_

E(S)*=E|Sy + 25u( 2. wil,

=1

=E(S?)+ E (2 Uf')( >, wU,

= E(S3)+ > wEWU?) + Y w? var(U).
i=1 t=1

We have also E(U;) = E[(Z/%, U;)’] = 215 E(US) and E(UE}) = Piij> E(Uﬁ') =P/l ='2p;).
Finally we find

E(SE) r E(Sif) + E Wi Z P:;;qu(l I 2p:'j) + Z wrz 2 P:ﬂ:}‘-

i=1 Jj=2 1= 1 Jj=2
With w;, = k(i) — p;, we obtain
E(S2)=ES3)+2 Y X pigi—2 D pPa 2 Pidy
=1 j=2 =1 Jj=2

| LY

52 Z Pii 2 Piqij T z P,‘l(l +p“) 2 Diiqij-

i=1 j=2 i=1 j=2
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Computation of 1,

The information on y comes from the likelihood valid for the null hypothesis pr(Y_). Thus 7 has
the same value than for the unselected problem

n Si

I,,= 2 2 Piiqizijz}

i=1 j=2

Computation of I,
We have

p=1]

1=1

The term E|[S,(dl,/dy)'] was given by Commenges et al. (1994) as being equal to 2,
2, piqi; (V2 — p;)z;;. The additional term 1s

E (2 w1 22, U:}z;;f) =
AR

rn

=1 =1

Y
2
J=2

ok

i

LY
[
Wi 2 ZiiPidij
1 ]j=2

AY I

r AY]
) [}
= Z ZiiPidij — 2 Pi E ZiiPiqij-
i=1

=2 i=1 j=2




