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Abstract 

 

We examine if US inflation rates series can be characterized by a long-memory model, 

by a model with occasional level shifts or by a new model, which jointly captures the 

two features. Through simulations we show that this new model can be usefully 

applied in practice. For 23 inflation rate series we find that generally the long-memory 

model is best, both in terms of in-sample fit and out-of-sample forecasts.  
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1. Introduction and motivation 

 

Applied time series econometrics usually involves the analysis of models for 

economic time series, which can capture their salient features. Preferably, these 

models can be reliably used for out-of-sample forecasting or for subsequent 

multivariate modeling. A typical concern for time series econometrics is that there are 

usually many possible models for these features, and indeed, to make a selection 

across these models is an important issue. For example, there are several ways to 

describe a trend in economic data and the choice between models for trends 

(including the unit root models ) amounts to an important practical decision.  

It sometimes happens that time series features seem to require the use of 

models from different classes. A well-known example, which has attracted much 

recent interest, concerns the long-memory feature in various economic time series. 

Loosely speaking, long memory entails that shocks or innovations to a time series do 

not have a persistent nor a short-run transitory effect, but that they last for a long 

while. It appears from studies like Granger and Hyung (1999), Bos, Franses and 

Ooms (1999), and Diebold and Inoue (2001) that apparent long memory can also be 

caused by neglected occasional level shifts. Indeed, one might intuitively understand 

that an occasional level shift mimics the effect of a long- lasting shock, and hence one 

might easily be inclined to think that the data have long memory. Of course, it does 

matter for out-of-sample forecasting whether one opts for one or the other model, as 

the forecast generating equations are completely different. Hence, it seems of 

practical relevance to examine which model, that is, a long-memory model or a model 

with occasional level shifts, is more appropriate for a given time series at hand.  

Several recent studies acknowledge the possibility that occasional level shifts 

can be confused for long memory. The inclusion of dummy variables can  

accommodate this, where the locations of the shifts are determined from the outset, 

see for example Bos, Franses and Ooms (1999). Of course, one might prefer that these 

level shift locations are determined at the same time as that one estimates the long-

memory model parameters. Hence, there seems to be a need to have a joint model (at 

least to allow for a more systematic comparison of models), which incorporates both 

long memory and occasional level shifts. In this paper we put forward such a model, 

which we will label as the FI-BREAK model. This model extends the intriguing new 
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model proposed in Engle and Smith (1999). Once we have examined its properties, 

we will use this model to see if various US inflation rate series have long memory, 

have occasional level shifts or have both.  

The outline of the paper is as follows. In Section 2, we discuss the 

representation of the FI-BREAK model. We discuss an estimation method, and 

through simulations we show that the estimation method is reliable. In Section 3, we 

consider the model for 23 monthly US inflation rate series, and we compare its fit 

with nested models for long memory or occasional shifts only. We find that in many 

cases there is no need to consider the joint model, as one of its nested versions yields 

a better fit. In fact, we find that the long-memory model generally outperforms in 

terms of fit. In an out-of-sample forecasting exercise, we find that these in-sample 

findings carry through. In Section 4, we conclude with some remarks.  

 

2. The FI-BREAK model 

 

We exploit the possibility that the occasional structural break model (or simply 

BREAK model) and I(d) model can be summarized into one single model. One 

motivation for this joint model is that both individual models can capture a long-

memory component to some extent, and hence that a joint model would be able  to 

capture all long memory components. 

 

2.1. Preliminaries 

 

To construct such a joint model for a time series yt, one can think of, for example,  
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where qt follows an i.i.d. binominal distribution, that is, 
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For simplicity, we assume ε t ~ i.i.d. (0, σε
 2), and ηt ~ i.i.d. (0, ση

 2). Here, we may 

first identify multiple breaks, remove these, and then the residual series contains I(d) 

components. In other words, the series yt is decomposed into a break component mt 

and a long memory component ut ~ I(d). One may rewrite this model as 

 

ttt
d myL ε=−− )()1(  

 

Clearly, the unconditional mean of yt is constant up to moments that breaks appear as 

discrete steps. As the mt series is a random walk, the series yt is explosive in the long 

run unless the number of breaks is finite.   

 An alternative model may be  
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with the same assumptions for qt, ε t and ηt as before. If d = 1, occasional events in 

ttq η  would establish permanent breaks. When d < 1 but close to 1, mt ~ I(d) is a non-

stationary but mean-reverting process. In this representation, events would have a 

long-memory effect, not a permanent effect. The time series can then be decomposed 

into a long-memory and a structural break component (mt) and a transitory or short 

memory component (ε t).  

 Finally, one may consider  
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with again the same assumptions for qt, ε t and ηt as before. Equation (3) can be 

rewritten as  
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The time series yt can be decomposed into a long-memory break component tm~  and 

a long memory component ut. This model generalizes the model in van Dijk, Franses 

and Paap (2002), which is  
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where the transition function G(⋅) is assumed to be logistic function.  
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where γ > 0, st is the transition variable and σst is the standard deviation of st. This 

fractionally integrated smooth transition autoregressive model allows only two 

different regimes corresponding with G(⋅) = 0 and G(⋅) = 1. One may extend this 

model to have more regimes, but then one should know the number of regimes in 

advance. And, another related model is the STOPBREAK model of Engle and Smith 

(1999), that is,  
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where the function qt is specified as 
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for some value s > 0, see Smith (2000) for further details. This model includes an 

endogenous smooth transition function to indicate structural breaks, and it can be seen 

as a contender to the discrete break model. 



 6

 

2.2. Representation 

 

Based on the discussion above, we consider the following representation of a FI-

BREAK model, that is,  
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where )...1()( 1
p

p LLL ααα −−−= . This general model can be seen to nest several 

related models by imposing certain parameter restrictions.  

 

I. When d = 0 and γ → ∞, the model becomes an AR(p) model. Indeed, as γ →  

∞, qt = 0 for all t, which implies that mt = m0 for all t. Furthermore, if 

additionally d = 0, one has tt myL εα += 0)( . 

II. When 0 < d < 1 and γ → ∞, the model becomes an ARFI(p,d) model, that is, 

tt
d myLL εα +=− 0)1)(( . 

III. When d = 0 and 0 < γ < ∞, the model is the familiar STOPBREAK model. 1 If 

γ < ∞, this process contains an endogenous smooth break, see Engle and 

Smith (1999). 

IV. When 0 < d < 1 and 0 < γ < ∞, the FI-BREAK model combines an I(d) model 

and a break model. 

 

We summarize the various results in Table 1. In this paper, we consider only AR 

models, for estimation convenience. Also, there are other parameter combinations, 

such as γ = 0 and d = 1, but we choose to consider only the above models I, II, III and 

IV. Indeed, if we would know the degree of integration of a series (1 or 2), we can 

take proper differences, and return to one of the models above.  

                                                 
1 The original specification of STOPBREAK model of Engle and Smith (1999) is 
slightly different from ours as they consider 111,))(( −−− +==− ttttttt qmmmyL εεα . 
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2.3. Estimation 

  

We can rewrite the FI-BREAK model (7) as 
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with probability 1. Hence, we can estimate the model parameters using the AML 

method of Beran (1995), see also van Dijk, Franses and Paap (2002). Similarly, we 

can claim that the AML estimator for the FI-BREAK model is consistent and  

asymptotically normal. 

We now examine the empirical performance of the estimation procedure for 

the FI-BREAK model. We simulate three different types of long-memory processes 

with occasional break of the equation (3). The numbers of ε t and ηt are generated 

from the standard Gaussian distribution and σε
 2 = 1 and p = 0.01.  

 

DGP A: d = 0.1 and ση
 2 = 0.5 

This DGP gives data with clear (visual) breaks but weak long memory 

 

DGP B: d = 0.4 and ση
 2 = 0.5 

This DGP gives data with clear breaks and evident long memory 

 

DGP C: d = 0.4 and ση
 2 = 0.1  

This DGP gives data with evident long memory, but with weak evidence of breaks 

 

For each DGP, we set the number of Monte Carlo replications to 250 with sample 
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length T = 300, 600, and 1500. The sample size 300 is similar to the ones used in the 

empirical analysis below. For DGP B, we also simulate series with length T = 3000 in 

order to investigate the properties of FI-BREAK estimators in large samples. The 

DGPs do not contain AR parameters, and when we estimate the models we also 

impose the AR order to be zero. We estimate the FI-BREAK model parameters while 

imposing that 0 < γ ≤ ∞ and d ≥ 0. For comparison purposes, we also estimate d in an 

ARFIMA(0,d,0) model by Beran's (1995) AML method, which corresponds with a 

FI-BREAK model with γ → ∞.  

The simulation results are summarized in Figure 1 to Figure 3 and in Tables 

2-1 and 2-2. The kernel densities in the graphs are computed using the Epanechnikov 

function. The first column in figures concerns the estimated values of d in a FI-

BREAK model, and the second column shows the densities of the estimated d in an 

ARFI model. We can observe a clear upward bias in the estimation of d in the ARFI 

model, which is of course due to neglected level shifts. As the sample size increases, 

this bias in the ARFI model is getting worse, that is, the distribution moves further to 

the right. The FI-BREAK model appears to be quite successful in filtering out the 

break components when estimating d. Table 2-1 shows that for DGPs A and C, the 

increase of the sample size from 300 to 1500 provides substantial evidence of 

improvement  of estimating d in the FI-BREAK model. For DGP C, that is the DGP 

with strong long memory but with a weak break component, the estimation of d in the 

FI-BREAK model is improving quickly as sample size increases. On the other hand, 

the convergence speed is slow in DGP B, as shown in Table 2-1. We therefore also 

consider this DGP with a sample size of 3000. For 51 series out of 250 replications  

(see Table 2-2) we obtain an estimated value of d close to zero with γ → 0. From 

Table 1, we can see that this is the case of γ → 0 and d = 0. In this case, qt = 1 for all t, 

which means 11 −− += ttt mm ε . After simple algebra, we get ttyL εα =∆)( , that is, we 

have an ARI(p,1) process. As DGP B has clear long memory and clear break 

components together, this process has properties very similar to a unit root process, 

even in large samples.  

Overall, we conclude from the simulation results that the AML estimation 

method for the FI-BREAK model is reliable. This holds particularly true for data with 

weak break components but with clear long memory components. 
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3. US inflation 

 

We now turn to the question in the title of the paper. To answer this question, we will 

evaluate the empirical merits of the model I to IV, discussed above.  

We consider 23 monthly US Consumer Price Index series. These series were 

randomly chosen from the U.S. City Average data set. The sample period covers 

1967:01 - 2000:08 and  the base years are 1982 - 1984. All series are seasonally 

adjusted. Inflation rates are constructed from the price indices by taking 100 times the 

first differences of the logarithmic transformed series. The series concern All items, 

Durables, Commodities, Energy Commodities, Commodities less Food, Commodities 

less Food and Energy, Commodities less Food, Energy and Used Cars and Trucks, 

Services, Medical care services, Transportation services, Transportation, Housing, 

Electricity, Fuels, New vehicles, Men’s and Boys’ apparel, Footwear, Alcoholic 

Beverages, Eggs, Beef and veal, Fish and seafood, Fruits and vegetables and Potatoes.  

First we estimate the FI-BREAK model for all 404 observations with various  

restrictions. We fix the AR order p for each model at 1, 6 and 12, in order to avoid the 

effect of an AR order selection procedure. Secondly, we split the sample into two 

parts. For the in-sample period we estimate the parameters with AR order p = 3 and 

use the estimated values for all one-step-ahead out-of-sample forecasts. We choose 

1967:01-1990:12 as the in-sample period, which has 288 observations, and hence the 

out-of-sample period is 1991:01-2000:08 with 116 observations.  

 

3.1. In-sample fit 

 

For the comparison of different  types of models, we impose restrictions on the 

parameters of FI-BREAK model, that is, we consider 

 

I. The AR model:    d = 0 and γ → ∞,  

II. The ARFI model:   d > 0 and γ → ∞, 

III. The STOPBREAK model:  d = 0 and 0 < γ < ∞, 

IV. The new FI-BREAK model:  d ≥ 0 and 0 < γ ≤ ∞. 

 

Evidently, the ARFI model is close to (or “nests”) the AR model, the STOPBREAK 
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model nests the AR model, but the ARFI model and the STOPBREAK model are not 

nested. The four models are to be compared by using AIC, BIC, and the log likelihood 

for three AR orders. The results are summarized in Tables 3, 4 and 5 for the AR lag 

length of 1, 6 and 12.  

For most cases we find that the ARFI model is the best using any of the three 

model selection criteria. There are only a few cases where the FI-BREAK model is 

estimated to be different from the STOPBREAK model or the ARFI model. In most 

cases, the estimated FI-BREAK models are equivalent with the AR, the ARFI or the 

STOPBREAK model. When p = 1 or p = 6, the FI-BREAK model sometimes ends up 

to equal the STOPBREAK model. Moreover, when the AR order increases, a linear 

AR specification apparently captures nonlinear features of inflation. Indeed, when p = 

12, there is more evidence in favor of a linear AR model, that is, 12 out of 23 series 

can be fitted well by an AR model in terms of the log likelihood.  

Overall, we find that the ARFI model is the best model for the US inflation 

series. There is mild evidence of neglected break components, for example for series 

2, 6, and 7. For those series, the STOPBREAK model is the best model in terms of in-

sample fit. As the ARFI and STOPBREAK models are not nested, one may maintain 

a FI-BREAK model for these three cases.  

 

3.2. Out-of-sample forecasting 

 

We now turn to an evaluation of the out-of-sample forecasting performance of the 

four models, where we set the forecast horizon at 1, 3, 12 and 24. Table 6 presents the 

results of cumulative forecasts. The models are estimated only once using the in-

sample period 1967:1-1990:12. We compute the root mean squared forecast errors 

(RMSFE). For comparison, we report the ratios of the RMSFEs for the AR model, 

ARFI model, and STOPBREAK model over the RMSFE of FI-BREAK models.  

Generally, we find that the ARFI model or the FI-BREAK model performs 

better than the STOPBREAK model for almost all inflation series. This can be noticed 

from the fact that the ratios in the columns of ARFI model are almost always 1, and 

that these are less than the ratios of the STOPBREAK model. For the series with 

evidence of breaks (that is, series 2 and 6), we see that the STOPBREAK model can 

deliver better forecasts than the ARFI model. For the other 21 series, the ARFI model 
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is not only the best model in terms of in-sample fit, it is also the best model in terms 

of out-of-sample forecasting for 19 inflation series. For series 7 and 21, the AML 

estimation results of the FI-BREAK model point towards the ARFI model, but its 

forecasts are not better than the forecasts of the STOPBREAK model. We also 

estimate linear AR models, but their forecasts are far from accurate.  

 

4. Conclusion 

 

In this paper we examined the usefulness of a new and general FI-BREAK model for 

the purpose of determining whether inflation rates have long memory, levels shifts or 

both. We used a range of estimation results and forecast evaluations to investigate the 

relative performance of the FI-BREAK model to a BREAK or an I(d) model.  

 Our simulation results indicate that the long-memory parameter in the FI-

BREAK model can be consistent ly estimated, in the case that there is an unknown 

break component. This contribution of our paper may be relevant for other economic 

data as well.   

The results of our analysis of 23 US inflation series broadly indicate the 

usefulness of the FI-BREAK model. Overall, however, we find that the ARFI model 

best captures the features of US inflation rates, and hence we are inclined to state that 

the dominant feature in inflation is long memory and that level shifts are less 

important. 
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Table 1. Parameter Space and Models 
 d = 0 0 < d < 1 d = 1 
γ → 0 ARI(p,1) ARFI(p,1+d) ARI(p,2) 
0 < γ < ∞ STOPBREAK FI-BREAK Integrated BREAK 
γ → ∞ AR(p) ARFI(p,d) ARI(p,1) 
 
 
Table 2-1. Estimated values of memory parameter d 
  300 600 1500 3000 

ARFI 0.253 
(0.109) 

0.311 
(0.089) 

0.373 
(0.066) 

-  
DGP A 
(d = 0.1) FI-BREAK 0.126 

(0.064) 
0.135 

(0.044) 
0.141 

(0.028) 
- 

ARFI 0.697 
(0.131) 

0.720 
(0.116) 

0.767 
(0.091) 

0.788 
(0.074) 

 
DGP B 
(d = 0.4) FI-BREAK 0.175 

(0.202) 
0.201 

(0.199) 
0.183 

(0.188) 
0.225 

(0.180) 
ARFI 0.564 

(0.116) 
0.589 

(0.102) 
0.634 

(0.085) 
-  

DGP C 
(d = 0.4) FI-BREAK 0.298 

(0.172) 
0.313 

(0.161) 
0.332 

(0.124) 
- 

Note: The entries are values averaged over 250 replications. The values in parentheses 
are the standard deviations for the simulated data. 
 

 

Table 2-2. Estimated models by class of parameters 
 Sample Size 300 600 1500 3000 
 
DGP A 

d ≈ 0 
γ ≈ 0 

d ≈ 0, γ ≈ 0 

3 
0 
0 

2 
0 
0 

0 
0 
0 

- 
- 
- 

 
DGP B 

d ≈ 0 
γ ≈ 0 

d ≈ 0, γ ≈ 0 

109 
142 
109 

87 
126 
87 

83 
132 
83 

51 
96 
51 

 
DGP C 

d ≈ 0 
γ ≈ 0 

d ≈ 0, γ ≈ 0 

38 
59 
37 

30 
46 
30 

13 
25 
13 

- 
- 
- 

Note: The entries are the numbers out of 250 replications. We consider d ≈ 0 case 
when d < 0.001, and γ ≈ 0 if Σqt > (0.25 times the sample size).
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Table 3. Estimation results in case p = 1 
 AIC BIC Log likelihood 
 I II III IV I II III IV I II III IV 
1 2.041 1.894 1.929 II 2.061 1.924 1.958 II 979 948 955 II 
2 2.376 2.305 2.277 III 2.396 2.335 2.307 III 1046 1031 1025 III 
3 2.853 2.763 2.816 II 2.873 2.793 2.846 II 1142 1123 1133 II 
4 6.587 6.592 I II 6.607 6.622 I II 1892 1892 I II 
5 3.084 3.051 3.086 II 3.104 3.081 3.116 II 1188 1181 1188 II 
6 1.960 1.821 1.782 III 1.979 1.850 1.812 III 962 933 926 III 
7 1.988 1.792 1.771 III 2.008 1.822 1.801 III 968 928 923 III 
8 2.232 2.046 2.173 II 2.252 2.075 2.203 II 1017 979 1004 II 
9 2.164 1.982 2.058 II 2.184 2.012 2.088 II 1003 966 981 II 
10 3.283 3.199 3.262 II 3.303 3.229 3.292 II 1228 1210 1223 II 
11 3.917 3.907 I II 3.937 3.937 I II 1356 1353 I II 
12 2.346 2.201 2.242 II 2.366 2.131 2.272 II 1040 1010 1018 II 
13 4.373 4.278 4.299 II 4.393 4.308 4.329 II 1447 1427 1432 II 
14 4.351 4.248 4.286 II 4.371 4.278 4.316 II 1443 1421 1429 II 
15 3.429 3.426 I II 3.449 3.455 I II 1258 1256 I II 
16 3.388 3.365 3.358 3.360 3.408 3.395 3.388 3.400 1249 1244 1242 1242 
17 3.647 3.611 3.598 3.602 3.667 3.641 3.628 3.642 1301 1293 1291 1290 
18 2.987 2.973 I II 3.007 3.003 I II 1169 1165 I II 
19 8.032 8.036 I II 8.052 8.066 I II 2183 2183 I II 
20 5.596 I I I 5.616 I I I 1693 I I I 
21 4.538 4.456 4.454 4.457 4.558 4.486 4.484 4.497 1481 1463 1463 1462 
22 6.212 I I I 6.237 I I I 1818 I I I 
23 8.070 I I I 8.090 I I I 2190 I I I 

Note: Sample period, 1967:01 - 2000:08 with 404 observations. I, II, III, and IV denote the AR model, the ARFI model, the 
STOPBREAK model and the FI-BREAK model, respectively. When an entry contains an I, II or III, it means that the estimation results 
are the same as for that model.  
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Table 4. Estimation results in case p = 6 
 AIC BIC Log likelihood 
 I II III IV I II III IV I II III IV 
1 1.909 1.895 1.909 II 1.979 1.976 1.989 II 935 932 934 II 
2 2.349 2.315 2.295 III 2.419 2.396 2.376 III 1023 1015 1010 III 
3 2.785 2.771 I II 2.855 2.852 I II 1109 1105 I II 
4 6.591 6.596 I II 6.661 6.676 I II 1865 1865 I II 
5 3.064 3.055 I II 3.135 3.135 I II 1165 1162 I II 
6 1.858 1.844 1.806 1.811 1.928 1.924 1.886 1.901 925 921 914 914 
7 1.788 1.792 1.776 III 1.858 1.872 1.856 III 911 911 908 III 
8 2.033 2.027 I II 2.103 2.107 I II 960 958 I II 
9 1.981 1.985 I II 2.051 2.065 I II 950 949 I II 
10 3.218 3.215 I II 3.288 3.295 I II 1195 1193 I II 
11 3.923 3.910 I II 3.993 3.990 I II 1335 1331 I II 
12 2.221 2.216 I II 2.292 2.296 I II 997 995 I II 
13 4.330 4.303 4.323 II 4.400 4.383 4.403 II 1416 1409 1413 II 
14 4.286 4.273 4.290 II 4.356 4.353 4.371 II 1407 1403 1407 II 
15 3.444 3.441 I II 3.515 3.521 I II 1240 1238 I II 
16 3.376 3.368 3.367 II 3.446 3.448 3.448 II 1226 1224 1224 II 
17 3.592 3.561 3.585 II 3.663 3.641 3.665 II 1269 1262 1267 II 
18 2.992 I I I 3.062 I I I 1150 I I I 
19 8.043 I I I 8.114 I I I 2153 I I I 
20 5.605 5.609 I II 5.676 5.689 I II 1669 1669 I II 
21 4.476 4.433 4.461 II 4.546 4.513 4.542 II 1445 1435 1441 II 
22 6.185 I I I 6.256 I I I 1784 I I I 
23 8.085 I I I 8.156 I I I 2161 I I I 

Note: See Table 3 
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Table 5. Estimation results in case p = 12 
 AIC BIC Log likelihood 
 I II III IV I II III IV I II III IV 
1 1.870 1.873 I II 2.002 2.015 I II 907 907 I II 
2 2.319 2.323 2.289 III 2.451 2.465 2.431 I 995 995 988 I 
3 2.760 2.765 I II 2.892 2.907 I II 1082 1081 I II 
4 6.579 I I I 6.711 I I I 1828 I I I 
5 3.054 I I I 3.186 I I I 1139 I I I 
6 1.869 1.871 1.831 III 2.001 2.013 1.974 III 907 907 899 III 
7 1.804 1.809 1.785 III 1.936 1.951 1.927 III 895 895 890 III 
8 2.028 I I I 2.160 I I I 938 I I I 
9 2.007 I I I 2.139 I I I 934 I I I 
10 3.210 I I I 3.342 I I I 1169 I I I 
11 3.891 I I I 4.023 I I I 1303 I I I 
12 2.224 2.229 I I 2.356 2.371 I I 977 977 I I 
13 4.135 4.320 I II 4.447 4.462 I II 1385 1385 I II 
14 4.289 I I I 4.421 I I I 1380 I I I 
15 3.446 3.422 3.412 III 3.578 3.564 3.554 III 1215 1210 1208 III 
16 3.371 3.367 3.365 II 3.503 3.509 3.507 II 1201 1199 1199 II 
17 3.577 3.577 I II 3.709 3.719 I II 1241 1240 I II 
18 3.026 I I I 3.158 I I I 1133 I I I 
19 8.010 I I I 8.142 I I I 2108 I I I 
20 5.614 I I I 5.746 I I I 1639 I I I 
21 4.461 4.461 4.463 II 4.593 4.603 4.605 II 1414 1413 1413 II 
22 6.201 6.206 I II 6.333 6.348 I II 1754 1754 I II 
23 7.995 I I I 8.127 I I I 2105 I I I 

Note: See Table 3.  
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Table 6. Root Mean Squared Cumulative Forecast Errors, relative to the FI-BREAK model 
 AR model ARFI model STOPBREAK model 
 1 3 12 24 1 3 12 24 1 3 12 24 
1 1.069 1.325 2.052 2.119 1.000 1.000 1.000 1.000 1.003 1.037 1.081 0.962 
2 1.158 1.504 2.349 2.216 1.038 1.109 1.289 1.326 1.000 1.000 1.000 1.000 
3 1.037 1.236 1.695 1.785 1.000 1.000 1.000 1.000 1.037 1.236 1.695 1.785 
4 0.999 1.002 0.997 1.006 1.000 1.000 1.000 1.000 0.999 1.002 0.997 1.006 
5 1.001 1.125 1.456 1.628 1.000 1.000 1.000 1.000 1.001 1.125 1.456 1.628 
6 1.135 1.545 2.777 2.862 1.068 1.248 1.598 1.699 1.000 1.000 1.000 1.000 
7 1.091 1.332 1.985 1.968 1.000 1.000 1.000 1.000 0.940 0.818 0.683 0.718 
8 1.159 1.442 1.972 1.887 1.000 1.000 1.000 1.000 1.159 1.442 1.972 1.887 
9 1.418 1.843 2.175 1.850 1.000 1.000 1.000 1.000 1.261 1.550 1.744 1.398 
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
11 0.993 1.075 1.244 1.348 1.000 1.000 1.000 1.000 0.993 1.075 1.244 1.348 
12 1.122 1.440 2.350 2.355 1.000 1.000 1.000 1.000 1.010 1.034 1.052 0.960 
13 1.045 1.188 1.475 1.444 1.000 1.000 1.000 1.000 1.045 1.188 1.475 1.444 
14 1.019 1.052 1.217 1.414 1.000 1.000 1.000 1.000 1.019 1.052 1.217 1.414 
15 1.074 1.152 1.155 1.104 1.000 1.000 1.000 1.000 1.074 1.152 1.155 1.104 
16 1.020 1.109 1.292 1.257 1.000 1.000 1.000 1.000 1.020 1.109 1.292 1.257 
17 1.049 1.172 1.515 1.482 1.000 1.000 1.000 1.000 1.000 1.025 1.114 1.086 
18 0.984 0.969 1.034 1.010 1.000 1.000 1.000 1.000 0.984 0.969 1.034 1.010 
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
21 1.040 1.169 1.637 1.687 1.000 1.000 1.000 1.000 0.983 0.944 0.781 0.660 
22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Note: The in-sample period is 1967:01 - 1990:12 with 288 observations and the out-of-sample period is 1991:1 - 2000:8 with 116 
observations. The AR order is fixed at 3.
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Figure 1. Kernel Density of Estimated Memory Parameter (DGP A)  
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Figure 2. Kernel Density of Estimated Memory Parameter (DGP B)  
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Figure 3. Kernel Density of Estimated Memory Parameter (DGP C)  
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