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Large Quantile Estimation in a Multivariate Setting
LAURENS DE HaaN* AND XIN Huang'

Erasmus University, Rotterdam, The Netherlands

An asymptotic theory is developed for the estimation of high quantile curves, ie.,
sets of points in higher dimensional space for which the exeedance probability is p,,,
with np, = 0 (1> o). Here n is the number of available observations. This is the
situation of interest if one wants to protect against a calamity that has not yet
occurred. Asymptotic normality of the estimated quantile curve is proved under
appropriate conditions, including the domain of the attraction condition for
multivariate extremes. € 1995 Academic Press, Inc.

1. INTRODUCTION

In de Haan and Rootzén [6] we constructed confidence intervals for
extreme quantiles, i.e., quantiles outside the scope of the sample under
extreme-value conditions. Estimation of extreme quantiles is necessary, e.g.,
when determining the height of a projected sea-dike: on the basis of high
tide water levels observed during 100 years one has to design the height of
the dike in such a way that the return period of a flood is 10,000 years.

In this paper we consider the multi-dimensional problem. The require-
ment is now, e.g., that the return period of a flood at either one of two places
along the coast is 10,000 years. This leads to the problem of estimation of
extreme quantile curves in two-dimensional distributions. We formulate the
problem and its solution in two dimensions in order to keep the notation
relatively simple. Generalization to higher dimensions is straightforward.

Our aim is to estimate the curve of all values (x(p), y(p)) for which
p=1—F(x(p), y(p)), where F is some unknown distribution function from
which a sample has been taken.
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The main requirement is that the probability distribution is in the
domain of attraction of a two-dimensional extreme-value distribution. That
is, if Fis the underlying distribution, for some positive functions @, and «a,
and functions b, and b,,

lim F"(a,(n) x+bi(n), axn) y +by(n))=G(x, y) (1.1

n-— o

weakly with G a non-degenerate distribution function. We choose b,
(i=1,2) such that 1 — F(b,(1), )~ 1 —F(loc, by(t))~t "' (1= o) and a,
such that the marginal distribution of G are standard, that is,
G(x, 0)=exp— (1 +y,x)" " and G(«, y)=exp— (1 +y,y) "7, where
y, and y, are the extreme-value indices (cf. [3]) of the two marginal dis-
tributions, both of which are in the domain of attraction of an extreme-
value distribution by (1.1). We also assume that the upper endpoints of the
marginal distributions of F are positive. Recall that the limit distriution G
n (1.1} satisfies [4, 8] the relation

X 1o l {}‘2_1 bal _] 32
_1ogG<(a‘) ay) >=a’]{—logG<x 2 1>} (12)
Y1 Y2 ba 2

for a, x, y>0.

We have estimators for y,,7,, and G: Let k=k(n)— o, k(n)/n—0
(n—oc), then if (X,,Y,), (X,.Y,),.. are iid. F and {X,,}",,
{ Y.} -, are their nth order statistics, we define

}31:=M£,”-+—1—%{1~(M£,“)2/M‘"2'}71 (1.3)
with M7 =(1/k) 242 {log X, ,—log X, _, .} (r=1,2),
fy = PV 41— 11— (PP - (14)
n 2

with P\ = (1/k) 3 g {log ¥, . ,—log Y, .} (r=1,2),

n
_log G Y ,) Z >h|(n k) + xdy(nik) or Y,>i;3(ng“k) + vaxink)| (15)

with

(1.6)
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N n
bZ <E> = Yn—k,n

&, <£> =Y, 4, P, max(1,1—7,).

and

(1.7)

One has the asymptotic normality result under some extra conditions on
F, G, and the sequence k(n) (see [2,5]):

anik)
(G (18)
b (nfk) — b (njk)
ﬁ( a,(n/k) ”)HB"

Jk($,—y)—>T,  in distribution (i=1, 2),
Vk(—log G(x, y) +1og G(x, y) = V(x, y) 1= W(x, y)
+ (B, +x4,}(~log G), (x, )
+ (B, + yA,)(—log G), (x, ¥) (1.9)

in D-space, where W(x, y) is a zero-mean Gaussian random field
(—{max(0, )} ' <x<oo, —{max(0,7,)} '<y< o) with covariance
function

Cov(Wi(x, y), Wis, 1)) =v({[xo, x]x [yo, ¥))*
N ([ X0, sTx [y, 11)) (1.10)
and v is a o-finite measure such that [4]
—log G(x, y) =w([xo, x]x [ y0, ¥1)5

(—log G), and ( —log G}, are the first-order derivatives of —log G.
The joint distribution of A4,, B,, I'; (i=1,2) and W is given as

(1-7)*(1-25)°

Fiz{yi_fi-*-z(l+fi)2(l__2}_’i)} P+ 5 Q.
w0y WU 20 (P 0
(1-47) -7, 2 (L11)
C16(1-27)+2(1 —7)(1 —27)* = 8(1 — 7))’ '

r;,
2 (1—45)* (1= 7)(1 —27,)

B,= W,(0),
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where

P, ::J“x‘ Wi(s)iif— W.(0)
L N
(1.12)
Q,:=2r W,»(s)(logAv)%—ZWi(O) (i=1,2).
1

Converge in D-space means that (according to Skorohod’s a.s. construc-
tion) one can find a sequence of processes G* and a process W, (with its
functionals A¥ and B¥ as in (1.11)) defined on one sample space and such
that as.

lim ﬂ( ~log G,(x, y) +log G(x, y))

= W*(x, y) + (BF + xAF)( —log G), (x, y)
+(B¥ +xA4F)(~log G), (x, y)

locally uniformly for (x, y) e (— {max(0, y,)} ', oc] x (— {max(0, y,)} ~*, = ].

Note that here and in the rest of the paper we do not indicate explicitly
the dependence of the estimators on n, the number of observations.

We now proceed to give a heuristic introduction of our estimators for
extreme quantiles and begin with a review of the one-dimensional
case [ 3, 6]. One has to estimate a value x, such that

_ L _k[ng AW CAR LIS
per-sa -5 ()2

.\_,‘IS xp_bl(n/k) _Ii " xp—'b‘(n/k) — Lt
Nn{_logG'< a,(n/k) )}_n{<1+” a,(n/k) ) }

by (1.1}, where F, and G, are the distribution functions of the first
marginal distributions in (1.1).

It follows that
n n\ (k/np)"—1
x,xb, (1:) +a, (1?) —/—’;*
1

Hence we introduce the estimator

. /N, (n\ (kinp)" —1
,\’p.=bl<z)+al<lz>'—*f‘—*, (113)

where we can take §, as in (1.3} and I;l and @, as in (1.6).
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In de Haan and Rootzén [6] we gave an asymptotic confidence interval
for x, based on the estimator X, in the situation p=p,—0, np,—0
{n — o0), which is the situation of interest. In the proof of the main result
in [6] we made extensive use of the inverse function of the distribution
function which is not availabe in the multidimensional situation.

Moving now to the two-dimensional case it will prove useful to
introduce a parameterization of the quantile curve (x(p, 6), y(p, 8)) for
0 <0< mn/2, ie., the curve for which

p=1—F(x(p, &), y(p,6))

and a sequence of positive functions p,(#) by means of the equalities

xX(p) = x(p. 0) = b, <%> +a, (%)(kpn(ﬁ) cos /np)”" — 1 (1.14)
71
_ . [(n n\ (kp,(6)sin 6/np)” —1
y(p)=y(p,0)=b, <k)+a2 <k> s . (1.15)

That is, the function p,(8) is the solution of Egs. (1.14) and (1.15).

Remark 1.1. By considering the cases y,>0, y,<0, y,=0 separately
and by using a;(t}~7y,b;(t) for y,>0 and a,(t) ~ —y,(b,(cc)—b,(1)) for
7; <0 (¢ — oc), one sees that Eqgs. (1.14) and (1.15), indeed, admit a positive
solution p,(8) for all choices of y, (i=1, 2). To see this, e.g., for the case
y, >0, replace a,(¢) by y,b,(¢) in (1.14) so that the equation becomes

kp, (0 A
st)=rr', () (A2

Since x{p) and b,(n/k) are positive in this case,

1/7
p(0) =np {yl x(p)/b, (2)} /(k cos 0)

is a positive solution of (1.14).

Remark 12. Note that the function p,(#) characterizes the quantile
curve.

We now proceed heuristically. Note that (1.1) implies that

,,lirr:c% {l —F(bl <;{—1) + xa, (%), b, (%) + ya, <%>>} = —log G(x, y).
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Hence,

B ok x(p) —by(nfk) y(p)— by(n/k)
"”“F‘X”’”””)“n{ ’°gG< anfk) " agmk) >}
_K { log G ((kmm cos O/np)" — 1 (kp,(0) sin Ojnp)” ~ 1>}
n Y1 Y2
P (cos )" —1 (sin ())"'3—1>
=———log G s .
p.(6) o8 <

71 )
The later equality follows by (1.2). Hence,

{cos )" —1 (sin@g)?—1
p,,(())z—logG( , >
1 72

This leads us to define a parameter p(8) by

(cos )" —1 (sin 0)"—1) (1.16)

pe) = —logG< ,
Y1 V2
Note that the curve ({{p(0)cos8)" —1}/y,, {{p(6)cos 8y —1}/y,) for
0 <@ <mnr/2 is the ¢ '-quantile curve of G. A little reflection shows that all
quantile curves of G have the same shape.
A natural estimator of p(8) i1s p(8) defined by

R <(cos 0" —1 (sin8)2— I>

p(6):= —log G (1.17)

o
We shall later show that p,(0) is close to p(f) and that p(d) is a good
estimator for p(#). This leads us to introduce the following estimators for
x(p, 0) and y(p, 8) (cf. (1.14) and (1.15)):

5 71 _
2(p. 0):=b, <§>+d1 (5> (kpA0) cos bjnp)” -~ 1 (1.18)
k k 7
P p. 0):=b, <'-’> +a, ('—’) (kpL0) sin O/np)” — 1 (1.19)
k k 7,

It will further be useful to introduce the functions x,(p, ) and y,(p, 0)
defined as (cf. (1.14) and (1.15))

(p.0):=b, <%) +a (%)(kﬂ(()) cosyﬂ/np)“ —1
1

: kp(0)sin 0 ]
ol p. 0) = b, (g) ta @ MJS“%/BLM
2
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We shall prove (Theorem 2.1) the asymptotic normality of (%(p, 0)—
x(p, ), $(p, 8) — y(p, 6)), normalized, and we sketch now the course of the
proof.

First it is proved (Lemma 2.1) that g(f)— p(8), normalized, is asymp-
totically normal. This will imply (Lemma 2.2) that (£(p, 8)— x,(p, 0),
P(p, 0) — y.(p, 8)), normalized, is asymptotically normal. Next it is proved
(Lemma 2.3) that p,(#)— p(8), normalized, converges to zero. This will
imply (Lemma 2.4) that (x,(p, 8) — x(p, 8), y.{p, 0) — y(p, 8)), normalized,
also converges to zero.

The result is then proved by combining the statements of Lemmas
22 and 24 We shall need a strong second-order condition on F
in the spirit of conditions (1.5) and (1.6) of the Haan and Rootzén
[6] resulting in (2.7) of the same paper. The condition is needed
in two forms. The equivalence of the two forms is proved in an
appendix.

The problem of estimating quantiles in the tail of a multidimensional
distribution has been considered before in Joe, Smith, and Weissman [7].
See also Coles and Tawn [1]. The setup there is somewhat different: it is
assumed that the marginal distributions and the dependence structure coin-
cide exactly with the limiting situation from some point on; further a
restricted parameteric model is considered for the dependence structure,
whereas the present paper is non-parameteric. Joe, Smith, and Weissman
confront their models and methods with real data. Also they have a
method for testing the model. This has not yet been done with the methods
in the present paper.

2. THE RESULT

Note that (1.1) is equivalent to

lim {1 —F(b,(¢) + xa,(t), b,(t) + ya,(1))} = —log G(x, y). (2.1)

{ — oC

A second-order (rate of convergence) condition for (2.1) is (cf [5])

. H{L=F(b\(1)+ xa (1), by(t) + yay (1)} +log G(x, y)
lim =y(x, y) (2.2)
e(b(1), b)) Vi
locally uniformly for x, ye(x,, «c] for some non-constant function
and a positive function ¢, where c(b,(1), b,(t)) is regularly varying,
c(by(1), b5(2)) > 0 (1 o0).
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THEOREM 2.1. Let a,:=k(n)/np,. Suppose that (2.2) holds and,
moreover, the following strong second order condition:

. n n (a,x)"—1 n n
g [ (o (o e ()2 0)
(any)y:_l ﬁ
e =a )}
e | LI I
+log G ) fHelbiiz )b,
yl y?. / k

x W ((anl‘)“ - 1’ ta, y)”=— 1)}
71 V2

i

(2.3)

locally uniformly for 0 < x, y < o0, where ¢(b,(1), b,(1)) is a regularly varying
function tending to zero (1 — oc) and \y is a non-constant function. Write

"7I - 1 W F2 1
wo(.x-,.v>:=w(‘ ? )

71 V2

One can show that Yo is a homogeneous function of degree x <0. Suppose
a=0. Suppose further that —log G has continuous first-order derivatives
(—log G), and (—log G),. Set

and

Suppose, finally, that
lim (log a,)//k =0 (2.4)

"n— x

S 1 ¥r__ ]
lim /E-c(bl <3> b, <3>> a, (”" et ):o (25)
n—x k k 71 72

(see also the Appendix about these conditions). Then

and

p, 0)—x(p, ) Sp, 0)—yip, )
\/Z <é,(n/k) for s =Y (log 5) ds” as(n/k) §n 57~ '(log ) ds) (26)
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converges in distribution to

({p(ﬁ) cos B}y' I''—(0Ay) A, +(0 A )’1)2 By,
(P(O)sin )2 T, — (0 ) A, +(0 A7) By (27)

Remark. Tt is surprising that the limit process does not depend
explicitly on the process V from (1.10): the limit process (2.7) depends on
just six random variables.

Remark. Relations (2.4) and (2.5) put limits on the growth of the
sequence {k(n)} related to the sequence {a,}; (2.4) gives a lower bound
and (2.5) gives an upper bound. Relation (2.3) is essentially a smoothness
condition on F related to the sequences {k(n)} and {a,}. Cf. the conditions
in the one-dimensional case [6].

ExampLE. The Cauchy distribution in R, has density

1 a

2r (1 4 x2 4 yhy2+1

and the distribution function can be written for x, y >0

1 n
1—Fx, y)=§-7;f~ L +R¥x, y,0)) = db,

where
cos 8 2 x
R(x, y, 0)= y
-, arctg—<0<n.
sin 6 gx

Note that R(zx, ty, 0)=tR(x, y, 0) for t, x, y > 0.
For x > 0 introduce

P(x)=x?** {(1 +x2)‘°‘/2—x‘“+%x*2°‘}.

it 1s easily checked that P (x) — 0 (x - o). Now
{1 —F(tx, ty)} —(1)2m) j"_n/z R ™(x, y,0)do
—(afdn)yt (", R™* *(x, y,0)do

4r ["n R7°72(x, ,60) P(1R(x, y. 0)) db
® {2 R %(x, ,0) db
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This expression tends to 1 uniformly for x A y>e& {1 —> o). Hence condi-
tions (2.2) and (2.3) hold. It is easily checked that condition (2.5) is fulfilled
for sequences k{r) and p, satisfying

lim /k p2*=0.

The proof of Theorem 2.1 is broken up into four lemmas.

Lemma 2.1. If —log G has continuous first-order derivatives ( —log G),
and { —~log G),, then

Jk(p(0) = p(0)) (28)
converges in D-space to

V((cos )" —1 (sin 8)" — 1>

k)

Y1 ¥a
- in 0)? — cos 8§
+(~log G), <(COS(;) 1, (sin y) 1)” (log sy s” ! ds} r,
Yl 2 .
oy — in 8)7 — ~sin 0
+-(—10g(”2<(cosh) 1,($n ; 1>{J “ogs)snflak}}ly‘
71 s )
2.9)
Proof.
SO = p(on)} =k {—log G‘<‘C°S 9) ~1 (sin ﬁn)h— 1>
/2
tlog G ((cos 0)" —1 (sin )72 — 1>}
i ’ 7,
(wwW—ummw_v
+ k-406< 'L (sin 0
f{ g n .
+logG<(COS )y —1 gsin 9))‘2_1)}
71 ’ Y2

The first part converges to V([ (cos )" — 11/y,, [(sin 8)2—1]/y,) by the
local uniformity in (1.9) and the second part clearly converges to the
second part of (2.9) (cf. 1.8)).

LEMMA 2.2, Under the conditions of the theorem,

{%(p, 0)—x,(p, O)}
\/E<ﬁl(n/k) S(;"Smil(log s) dS> (210)
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converges in distribution (n— o) to

(p(B)cos )" ' —(0 Ay ) A, +(0 A y)* By, (2.11)

and similarly for the second component )(p, 8).

Proof. The proof follows the line of the proof of the theorem in [6].
Note that (from Proposition A.1)

im LY1(@nxn/k) = by(nfk)J/a\(njk) —[(a,x)" = 11/y, _

n—oe c(by(nfk), by(nk)a,x) ([, x) —11y)

1 (2.12)

locally uniformly, 0 < x < oc. This, together with (2.4), suffices for the proof
of the theorem in [6] (since conditions (1.5) and (1.6) of that paper just
serve to derive (2.7) of the same paper and since our condition (2.5) implies
that \/k ¢(b,(n/k), by(n/k)) - 0 by (A.12)). Now

j(l” 9) —xn(p’ 9)

_ {(amw) cos @) — 1 _(a,p(0) cos 6)" - l}a, (z) (2.13)
N1 71 k

0) cos )" — 1
(@l )(;O,s ) {d]G)_al G)} (2.14)

+6, (%)—bl (g) (2.15)

B {Un (p(ﬁ) cos 0)_ v, <g)_~(anp(0) cos ) — 1
P k Ig!

xa, <%>} (2.16)

The parts (2.14), (2.15), and (2.16) can be treated as in [6].
Note that the present conditions are somewhat more general than the
conditions in [6]. The part (2.13) equals

app(0) cos @ .
a () e asa (1)

(A(0))" — (p(ﬂ))f'}.

X {(a,, cos §)" (2.17)

71
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The first term of (2.17) can be treated as the corresponding term in the
proof of the theorem in [6]. By Lemma 2.1 and since (log a,,)/\/l;—>0
(n— o) by (24), the second term is asymptotically equal to

i, (g) (a, cos )" 1! log p(O);yl log p(8) (p(0))"
1
. . PO) — p(8)
~d, <£> (a, p(8) cos )" 370—?—

. (n) al
=a,<z>7;0,,(1) as n— oo.
Hence the second term of (2.17) does not contribute to the asymptotic

normal distribution of %(p, ).

LeEMMA 2.3.  Under the conditions of the theorem

lim Jk{p,(0)—p(0)} =0  locally uniformiy. (2.18)

n—» x

Proof. A little reflection shows that p,(6) avoids a neighbourhood of
zero for 0 <@ < /2 (cf. Remark 1.1). The conditions of the theorem imply
(and we use the homogeneity relation (1.2) for G) that

im a2 (1= F (b (F) v () Copdfies 02

Vi

" 1\ (2,p,(0) sin 0)7 — 1
b, (k) ra, <k) o >}

{a,p ) ;:os oy — 1, (a,p,(0)sin 8) — 1>} ~0.(219)
gl Y2

n

+10gG<

Now by the definitions of p, and p

n n n\ (a,p,(0)cos )" —1 n
(e () " 5(5)
M Y __
ta, <%>(a,,ﬂ,,(0)ﬂsvm f) 1)}

=P ma = —(a,p(0))
() 7 1 (} 7
xlogG<(COS }) 1’(sm }) 1)
g 2
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Hence the left-hand side of (2.19) becomes

(cos @) —1 (sin §)? — 1)} { 1 1 }
—log G , k{—— — .
{ o8 < 71 72 vk p(8)  p.(0)

This completes the proof.

LemMma 2.4. Under the conditions of theorem,

. k{x,(p, 0)—x(p, 0)} ,
lim — \[ z - — =0 locally uniformly.
T dy(n) @ (@)~ 1))  wformly

Proof.

X(p, 0) —x,(p, 0) =a, (E) {(anpn(ﬂ) cos 8)" — 1

k Y1

—_ (anp({)) €os 0)“ — 1} ~a, <E> (a,, COoS 8)”
Vi k

x{p()} 7" (p0)—p(B))  (n—> x)

The result now follows from Lemma 2.3 (use Corollary A3 for «=0).

APPENDIX: THE STRONG SECOND-ORDER RELATION

The second-order condition (4.1) on the distribution function F from de
Haan and Resnick [5] reads

Jim t{1 — F(b,(2) + xa,(1), b,(1) + ya,(1)} +1og G(x, y)=
t— oo C(bl(t), bz(t))

vix, y) (A1)

locally uniformly for x, ye(x,, ov] for some non-constant function ¥
and a positive function ¢, where c(b,(¢), by(1)) is regularly varying,
o(by(1), by(1)) > 0 (t— o0), and

Recall that F; is the ith marginal distribution function of F.

683/53/2-6
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We require here a stronger form of (A.l), namely,

. n n (a,x)'—1 'n
Jlj’ﬂ(lﬁ;\:{l—F(f)] <I‘\:>+~}'l a, <E>,
n m\ (a,y)*—1
na{3) e (2) )]
Fog (ML W], (1) ()
7 72 / k k

Xw(((l”.\‘)) _1’<an.y)/>—l>:l :1 (AZ)

71 Y2

locally uniformly for x, ve(0, c], where k=ki{n)—x, k(n)n—-0
(n— o0), and a,, =k/np,, as before.
Relation (A.2) can be specialized to (e.g.) the first marginal as
m nlk{1 = Flby(n/k) + a,(nfk)(a,x)" = 1)/y)} = la,x
. clby(nfk), by(nfk)) i ((la, )" — 1)) B

1 (A3)

locally uniformly, 0 <x<oc, where ¥ (x):=¢(x, lim,_ , ((y7—1)/y,).
Our aim is to translate (A.3) into a strong second-order condition for

()
"T\I—=F,)

which is needed in Lemma 2.3. The inversion is as folows.

ProOPOSITION A.l.  Suppose (A.3) holds locally uniformiy on (0, =) with
c(b,(1), by(8)) regularly varyving and tending to zero (t— = ). Suppose,
Surther, that \, is non-constant and

. n n a;l—1
fim (1 (g (5o (457) -0 A
n n\1|/ n (a,x)y"—1
| onfeosi) 2 )] ()0

lim - - =1 (AS5)

ne x| n n . +; (a,x)y"—1
()i ()

locally uniformly, x € (0, o), where

1 -
Uii=(——] .
(=)

Before giving the proof we first identify the function y,. The following
lemma is useful.

then
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Lemma A2, If

lim 1= F (b (t)+xa, (1))} — (1 +p,x)
1= c(by(1), by(1))

=y (x), (A6)

locally uniformly on (0, o), with ¢(b(1), b,(t)) >0 (t > ), then
Ultx)—-b(1) x"—1

, a(t) g N (x"‘—~1>
i =/t AT
r}»n:c C(bl(t), bz(t)) * /i 4 ( !

locally uniformly on (0, o).

Proof. Relation (A.6) implies that

lim £{1—F\(by(1)+xa,(1))} =(1+y,x) " (A.8)

[ o o
hence (A.6) is equivalent to

i W= RO +a (" =Dy —x |<x>‘1_1>,

P c(by(1), by(1))

which by Vervaat’s lemma [9] implies that

{4+ LU = b (D))a (D]} —x <x“~1>
Jim c(by(1), bo(1)) =<V - (A9)

1

Writing the second term of the numerator on the left-hand side as
(1+7,((x"—1)/y,))""" and using

. Ulte)y—=by(t) x"—1
lim =
t— a(t) 12

: (A.10)

we get (A7) from (A9).

COROLLARY A.3.  For some constants a <0, ¢, and c,,

X — 1 x s*—1 re—1
ll[/[(’( >:x),|.-[{clj S)'rflY ds+C2x } (All)
7 . o Nita

It follows, e.g., that, if x=0, as x — o0,

ey 'x ' log x, y >0

¥ __
l/u(x >~ ¢;27'x log x)%, ¥, =0 (A.12)

V1

IS P 3
XTIy, 71 <0.
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Proof. x"*'W,((x"—1)/y,) is the same as the function H(x) from
Appendix A in [2].

Proof of the Proposition. We give the proof for the case x =0 in (A.11).
The proof for o < 0 1s similar, Note that (A.3), (A4), and (A.7) imply that

. n n (a,x)t—1 n _
;.11111 [l,,};{l——Fl (b,<z>+—Ta,<;>>= ! {A.13)
locally uniformly. Hence (A.3) implies that
if n n (a,x)"—1 n
1\<cl,,E{l—F1(b|<z>+———«yl 01<Z>}>—x
. n n 3 (a,xy"—1
(b (£ (B) oo (=5)
locally uniformly. By (A.12) the denominator is asymptotic to ¢, times
n n
¢ (bl (;)vbl <E>> )Ylil"']og a, }'I>O
c(b,(ﬁ),bz <’—’)>2*1x(10ga,,)2 =0 (A.15)
k k
n n Y
¢ <bl (E) b, </;>> yp Ax! g ¥ <0.
So by (A4} we can apply Vervaat’s lemma and get from (A.14)
n n\]/ /m\7'"
I T R [
lim ( e
n— x n n 5 a” x)Pt—
(o) e (@)oo ()

Using again the fact that the denominator of (A.16) converges to zero
(n— o), we find from (A.16) that

{1 o [ v (g ”"’Y> ~h <'fﬂ a </g>}\(a,,x>“ -1

lim a1
7> o n n a,x)" —
ne (b () e (25)

1e, (A.5) holds.

=—1 (A.l4)

=1 (A.16)

N
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