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ABSTRACT

Motivation: Automatic tracking of cells in multidimensional time-lapse

fluorescence microscopy is an important task in many biomedical ap-

plications. A novel framework for objective evaluation of cell tracking

algorithms has been established under the auspices of the IEEE

International Symposium on Biomedical Imaging 2013 Cell Tracking

Challenge. In this article, we present the logistics, datasets, methods

and results of the challenge and lay down the principles for future uses

of this benchmark.

Results: The main contributions of the challenge include the creation

of a comprehensive video dataset repository and the definition of ob-

jective measures for comparison and ranking of the algorithms. With

this benchmark, six algorithms covering a variety of segmentation and

tracking paradigms have been compared and ranked based on their

performance on both synthetic and real datasets. Given the diversity

of the datasets, we do not declare a single winner of the challenge.

Instead, we present and discuss the results for each individual dataset

separately.

Availability and implementation: The challenge Web site (http://

www.codesolorzano.com/celltrackingchallenge) provides access to

the training and competition datasets, along with the ground truth of

the training videos. It also provides access to Windows and Linux

executable files of the evaluation software and most of the algorithms

that competed in the challenge.

Contact: codesolorzano@unav.es

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Cell migration is an essential process in normal tissue development,

tissue repair and disease (Friedl andGilmour, 2009). The dynamics

of cell movement (e.g. speed, directionality) and migration type

(i.e. the morphological changes that the cell undergoes during the

movement) are closely related to the biomechanical properties

of the surrounding environment (Friedl and Alexander, 2011).

Therefore, accurate quantification of both is the key to understand-

ing the complex mechanobiology of cell migration.

Traditionally, cell migration experiments have been performed

in two dimensions (2D) using phase or differential interference

contrast microscopy. Nowadays, it is increasingly acknowledged

that proper evaluation of the cellular movement, as well as related

forces, requires looking at the cells in their three-dimensional (3D)

tissue environment (Legant et al., 2010). This can be done by

taking advantage of the versatility of fluorescence labeling and

the optical sectioning capability of multidimensional fluores-

cence in vivo microscopy (Fernandez-Gonzalez et al., 2006).

Fluorescence microscopy has several advantages (e.g. multidimen-

sionality, specificity). However, tracking fluorescent cells poses

specific challenges compared with more traditional phase contrast

enhancing techniques: non-homogenous staining, low signal-to-

noise ratio, uneven background illumination, photobleaching,

phototoxicity, etc. Moreover, an important challenge, specific to

the use of green fluorescent protein (GFP) transfection-based*To whom correspondence should be addressed.
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staining, is the cell-to-cell intensity variability caused by differen-
tial transfection efficiency. Therefore, tracking of fluorescent cells
requires specialized tools.

Several methods have been described for the segmentation of
cells in static 3D fluorescence microscopy images (Indhumathi
et al., 2011; Lin et al., 2005; Long et al., 2007; Ortiz-de-

Solorzano et al., 1999). These methods have been extended to
account for the temporal variable in multidimensional time-
lapse microscopy, combining accurate segmentation of the cells
with proper tracking of their movements and lineage events (e.g.

apoptosis, mitosis, cell merging and overlapping). They can be
classified into two broad categories: tracking by detection and
tracking by model evolution (Meijering et al., 2009; Rohr et al.,

2010; Zimmer et al., 2006). In the former paradigm, cells are first
detected in all the frames of the video independently using gradi-
ent features (Al-Kofahi et al., 2006), intensity (Li et al., 2010) or

wavelet decomposition (Padfield et al., 2011). Subsequently, an
optimization strategy, such as multiple-hypothesis tracking
(Chenouard et al., 2013), integer programming (Li et al., 2010),

dynamic programming (Magnusson and Jaldén, 2012) or coupled
minimum-cost flow tracking (Padfield et al., 2011), is used to de-
termine themost likely cell correspondence between frames. In the

latter paradigm, cells are segmented and tracked simultaneously,
using the final result of each frame as the initial condition for the
analysis of the following frame. This is mostly done by evolving

the contours of the cells, represented either parametrically
(Dufour et al., 2011; Zimmer et al., 2002) or implicitly (Dufour
et al., 2005; Dzyubachyk et al., 2010; Li et al., 2008; Maška et al.,

2013), using a velocity term defined by the content of the ‘‘target’’
frame (e.g. gradient features or intra- and inter-region heterogen-
eity) and by the internal properties of the evolved contours (e.g.

mean curvature, shape or topology). The main benefit of the first
paradigm is the mutual independence of detection and association
steps, which allows straightforward tracking of new cells entering

the field of view as well as forward-backward spatiotemporal data
association (Bise et al., 2011). On the contrary, the tracking by
model evolution approaches is popular for easy accommodation

of morphological and behavioral clues into the model to inher-
ently deal with the topologically flexible behavior of live cells.
Bridging both paradigms together to take advantage of their bene-

fits, Li et al. (2008) proposed a complex cell tracking system that
combines a fast level set framework with a local spatiotemporal
data association step.

The tracking methods described until this date have been
tested in one or few private datasets using different metrics and
have seldom been compared against other algorithms. A note-

worthy attempt toward a formalization of the evaluation of cell
tracking algorithms was described by Kan et al. (2011). They
compared a novel cell tracking strategy to a publicly available

probabilistic tracker using a customized tracking measurement
and mostly publicly available data. Similarly, Rapoport et al.
(2011) partly addressed this issue by providing a method for

the validation of the accuracy of cell tracking results and a data-
set composed of two manually annotated brightfield microscopy
videos. Finally, two recent studies (Dima et al., 2011; Held et al.,

2011) presented two rigorous comparisons of algorithms de-
veloped for the segmentation of fluorescently labeled cells from
static 2D images, using their own image repositories and adapted

accuracy measures.

The limitations of these studies, such as being monomodality,

using 2D or static images, one or two cell types only, or compar-

ing with none or few competing algorithms, highlight the need

for common standards to evaluate new and existing algorithms.

Bearing this in mind, we organized the first Cell Tracking

Challenge (http://www.codesolorzano.com/celltrackingchallenge)

hosted by the 2013 IEEE International Symposium on

Biomedical Imaging (ISBI 2013, http://www.biomedicalima-

ging.org/2013/). In this article, we present the methods used

in the challenge, briefly describe the competing algorithms

and report on the results of the comparison, which was based

on common accuracy measures and datasets covering a wide

variety of scenarios of live cell imaging in fluorescence

microscopy.

2 METHODS

2.1 Logistics

The challenge was organized by members of three research institutions:

Center for Biomedical Image Analysis, Masaryk University, Brno, Czech

Republic (CBIA-CZ); Center for Applied Medical Research, University

of Navarra, Pamplona, Spain (CIMA-ES); and Erasmus University

Medical Center, Rotterdam, The Netherlands (ERASMUS-NL). The

challenge, announced via various media including targeted emails,

mailing lists and the ISBI 2013 Web site, was opened for registration

through the challenge Web site. Four weeks after opening the challenge

for registration, all registered participants were given individual access to

the challenge FTP server, where they could download the training data-

sets, along with the ground truth, and self-evaluation software. The regis-

tered participants worked on the training datasets during the 4 weeks

before the competition datasets were released. The participants were

then given six additional weeks to submit their results and the algorithms

used to produce them. After the deadline, the consistency and the com-

pliance of the submissions were verified by the organizers before the

presentation of the preliminary results at ISBI 2013. After the ISBI

2013 workshop, the organizing committee confirmed the accuracy of

the submitted results and compiled the final rankings presented in this

article.

2.2 Datasets

Forty-eight time-lapse sequences used in the challenge were evenly dis-

tributed between the training and competition phases. Each group of

24 videos consisted of 12 real microscopy time-lapse sequences and 12

computer-simulated videos, 6 2D and 6 3D, with various cell densities

and noise levels. The acquisition setup for each dataset is listed in Table 1,

and representative regions of each dataset are displayed in Figure 1.

Representative sample videos can also be found as Supplementary

Videos S1–S8. The complete raw data are available at the challenge

Web site. The datasets were named using the following convention: a

four-letter prefix (LNDR) identifies the labeling (L) method -cytoplasmic

(C) or nuclear (N); the dimensionality (ND) -2D or 3D; and the reso-

lution (R) -low (L) or high (H). The suffix, separated by a hyphen from

the prefix, describes the cell line.

2.2.1 Real videos The real video repository consists of six datasets.

C2DL-MSC (Fig. 1A and Supplementary Video S1). GFP transfected

rat mesenchymal stems cells on a flat polyacrylamide substrate, acquired

using a Perkin Elmer UltraVIEWERS spinning disk confocal microscope

(courtesy of Dr F. Prósper, CIMA-ES). The difficulty of the dataset is

high because of the low signal-to-noise ratio and the presence of filament-

like protruding areas caused by cell stretching, which sometimes appear
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as discontinuous extensions of the cells. Further complicating the ana-

lysis of the scenes, these protrusions often come in contact with other

cells.

C3DH-H157 (Fig. 1B and Supplementary Video S2). GFP transfected

H157 human squamous lung carcinoma cells embedded in a 3D matrigel

matrix, acquired using a Perkin Elmer UltraVIEW ERS spinning

disk confocal microscope (courtesy of Dr A. Rouzaut, CIMA-ES).

The difficulty of the dataset is low because of low cell density and high

resolution. However, the presence of cell blebbing and cells entering and

leaving the field of view impose a certain degree of complexity for seg-

mentation and tracking.

C3DL-MDA231 (Fig. 1C and Supplementary Video S3). MDA231

human breast carcinoma cells infected with a pure Murine Stem Cell

Virus (pMSCV) vector including GFP. The cells were embedded in a

3D collagen matrix and acquired using an Olympus FluoView F1000

laser scanning confocal microscope (courtesy of Prof R. Kamm,

Massachusetts Institute of Technology, Cambridge, MA, USA). The dif-

ficulty of the dataset is high because it was acquired under high-through-

put conditions (i.e. low signal-to-noise ratio, low resolution, especially in

the axial direction, and large time step). Moreover, there are a high

number of colliding elongated cells as well as cells entering and leaving

the field of view.

N2DH-GOWT1 (Fig. 1D and Supplementary Video S4). GFP trans-

fected GOWT1 mouse embryonic stem cells on a flat substrate, acquired

using a Leica TCS SP5 laser scanning confocal microscope (courtesy of

Dr E. Bártová, Academy of Sciences of the Czech Republic, Brno, Czech

Republic). The difficulty of the dataset is considered medium because of

heterogeneous staining, prominent nucleoli, mitoses, cells entering and

leaving the field of view and frequent cell collisions.

N2DL-HeLa (Fig. 1E and Supplementary Video S5). Histone 2B

(H2B)-GFP expressing HeLa cells on a flat substrate, acquired using

an Olympus IX81 inverted epifluorescence microscope. The videos were

obtained with permission from the Mitocheck consortium video reposi-

tory (http://www.mitocheck.org). The difficulty of the dataset is classified

as high because of the high cell density and low resolution. In particular,

the videos display frequent mitoses, both normal and abnormal, in add-

ition to the presence of colliding, entering and leaving cells with low

fluorescence intensity.

Fig. 1. Representative regions from the video dataset repository. (A) C2DL-MSC; (B) C3DH-H157 (selected z-slice); (C) C3DL-MDA231 (selected

z-slice); (D) N2DH-GOWT1; (E) N2DL-HeLa; (F) N3DH-CHO (selected z-slice); (G) N2DH-SIM (also representative of a selected z-slice of

N3DH-SIM)

Table 1. Acquisition parameters and properties of the datasets

Name Objective lens/Numerical aperture Frame size (grid points) Voxel size (mm) Time step (min) Number of frames Difficulty

C2DL-MSC 20� Plan-apochromat/0.75 992� 832 (1200� 782) 0.397� 0.397 20 (30) 48 High

C3DH-H157 63� Plan-apochromat/1.2 water 992� 832� 35 (80) 0.126� 0.126� 0.5 1 (2) 60 Low

C3DL-MDA231 20� Plan/0.7 512� 512� 30 1.242� 1.242� 6.0 80 12 Very High

N2DH-GOWT1 63� Plan-apochromat/1.4 oil 1024� 1024 0.240� 0.240 5 92 Medium

N2DL-HeLa 10� Plan/0.4 1100� 700 0.644� 0.644 30 92 High

N3DH-CHO 63� Plan-apochromat/1.4 oil 512� 443� 5 0.202� 0.202� 1.0 9.5 92 Medium

N2DH-SIM 40� Plan-apochromat/1.3 oil 505–755� 535–775 0.125� 0.125 28.8 (57.6) 56–100 Medium

N3DH-SIM 40� Plan-apochromat/1.3 oil 520–755� 520–730� 49 (60) 0.125� 0.125� 0.2 28.8 (57.6) 56–100 Medium

Note: The numbers in parentheses indicate particular values for the second half of a given dataset.
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N3DH-CHO (Fig. 1F and Supplementary Video S6). Chinese hamster

ovarian cells overexpressing proliferating cell nuclear antigen tagged with

GFP, acquired using a Zeiss LSM 510 laser scanning confocal microscope

(courtesy of Dr J. Essers, ERASMUS-NL). The dataset is considered of

medium difficulty because of nuclei with heterogeneous staining, the pres-

ence of prominent nucleoli, mitotic cells with unstained nuclear periods,

colliding cells and cells entering and leaving the field of view.

2.2.2 Simulated videos The synthetic image data, along with the in-

herent ground truth, were generated using a simulation toolkit based on

our previous work in CBIA-CZ (Svoboda and Ulman, 2012; Svoboda

et al., 2009). As this challenge was dedicated to cell tracking, special

attention was paid to the accuracy of cell movement during the cell

cycle and to the mitotic events. The simulated videos displayed fluores-

cently labeled nuclei of the HL60 cell line migrating on a flat 2D surface

(N2DH-SIM) and in a 3D matrix (N3DH-SIM) (Fig. 1G and

Supplementary Videos S7 and S8). They differ in the level of noise, cell

density of the initial population, the number of cells leaving and entering

the field of view and the number of simulated mitotic events, yielding up

to 70 cells in the field of view. Therefore, both datasets are considered of

medium difficulty.

2.3 Ground truth generation for real datasets

One expert from CIMA-ES annotated all the real datasets used in the

training phase. For the competition phase, all real videos were manually

annotated by three experts from three sites (CBIA-CZ, CIMA-ES and

ERASMUS-NL). Each expert created ground truth for tracking (TRA-

GT) and ground truth for segmentation (SEG-GT) for each video. Each

pair of SEG-GT and TRA-GT was manually revised by its creator to

correct for automatically detected inconsistencies of two types: a segmen-

tation mask either overlapping with multiple tracking markers or without

any complete tracking marker. Finally, to account for inter-subject vari-

ability, two final ground truths (SEG-GT-F and TRA-GT-F) were created

by combining the three existing ground truths, using a majority-voting

scheme, as suggested, for instance, by Foggia et al. (2013). The way the

majority voting was performed is described in detail in the Supplementary

Note.

2.3.1 Field of interest To simplify dealing with incomplete objects,

entering or leaving the image frame, only objects that had substantially

advanced into the image frame were analyzed. This is equivalent to defin-

ing a virtual inner field of interest (FoI) and analyzing only those objects

that are at least partially inside the FoI. The distance in grid points (pixels

or voxels) between the image frame border and the FoI border varied

between datasets depending on the size of the objects of interest (50 grid

points in C2DL-MSC, C3DH-H157, N2DH-GOWT1 and N3DH-CHO;

25 grid points in C3DL-MDA231 and N2DL-HeLa).

2.3.2 Ground truth for segmentation The task for annotators was to

mark grid points belonging to cells as accurately as possible. Therefore,

each cell was segmented as a set of grid points with the same unique label.

The length of the videos and the high number of cells per frame in some

of the datasets prevented from having a complete manual annotation of

all the cells. Therefore, we first randomly permutated all the frames of

each video to unbiasedly select the cells that were used as ground truth. In

the 3D videos, we also randomly selected at least one of its 2D z-slices,

excluding empty slices. Then, the annotators were asked to segment all

the cells within each frame in the given random order until at least 100

cells were segmented and two frames were fully segmented. The segmen-

tation masks were drawn in the entire image frame and not just in the

FoI. Cells visible only outside the FoI were not segmented at all. After

reaching the limit of 100 cells and two full frames, the annotators in-

spected the remaining frames in the random order provided, and they

were asked to identify and annotate cells that in their opinion were prone

to causing segmentation problems, such as cells undergoing abnormal

mitoses, dimly stained cells, oddly shaped cells and colliding pairs of

cells. They segmented at least 20 instances of each problematic event.

2.3.3 Ground truth for tracking The task for the annotators was to

draw a quintessential ‘‘marker’’ (i.e. a set of grid points with the same

unique label) inside each cell and in every frame where the cell consecu-

tively appears entirely or partly within the limits of the FoI. These mar-

kers do not need to accurately follow the boundaries of the cells. Markers

of a given label located in consecutive frames are called ‘‘tracks’’. Tracks

end when a cell entirely leaves the FoI, the video reaches the final frame or

the cell divides into two, or abnormally more than two, daughter cells.

When this happens, new tracks are created, one for each daughter cell,

and the parental connection is stored in the TRA-GT file.

2.4 Evaluation

2.4.1 Segmentation measure The main purpose of the segmentation

(SEG) accuracy measurement is to understand how well the segmented

cells match the actual cell regions. To quantify it, we used the Jaccard

similarity index, defined as:

J R,Sð Þ ¼
R \ Sj j

R[Sj j

where R is a reference segmentation of a cell in SEG-GT-F and S is an

automatic segmentation of the particular cell provided by a participant.

A reference cell, R, and a segmented one, S, are considered matching if

the following condition holds:

R \ Sj j40:5 � Rj j

Note, for each reference cell, there can be one segmented object at

most. If there is no significant overlap with any segmented object, the

matching function is set to empty. The Jaccard index always falls in

the [0, 1] interval, where 1 means perfect match and 0 means no match.

The final SEG measure for a particular video is calculated as the mean

of the Jaccard indices of all the reference objects in the video.

2.4.2 Tracking measure The goal of the tracking (TRA) measure-

ment is to evaluate the ability of the tracking algorithms to detect the

cells and follow them in time. Although TRA does not evaluate the

segmentation accuracy, reliable cell detection is the key to this measure-

ment. To the best of our knowledge, there is no standardized, commonly

used cell tracking accuracy measure currently available. Two popular

approaches for measuring the performance of tracking algorithms are

based on either the ratio of completely reconstructed tracks to the total

number of ground-truth tracks (Li et al., 2008) or the ratio of correct

temporal relations within reconstructed tracks to the total number of

temporal relations within ground-truth tracks (Kan et al., 2011).

Obviously, both approaches quantify, at different scales, how well the

cell tracking algorithms are able to reconstruct a particular ground-truth

reference. However, they neither penalize for spurious tracks nor account

for division events, which are often evaluated separately (Kan et al., 2011;

Li et al., 2008). Therefore, we developed a novel cell tracking accuracy

measure that penalizes for all possible errors in tracking results and com-

bines them with different weights, reflecting the manual effort needed to

correct a particular error, into a single number.

Cell tracking results can be represented using an acyclic oriented

graph. The nodes of such a graph correspond to the detected cells,

whereas its edges coincide with temporal relations between them. They

are of two kinds: track links (the cell continues with the same label in the

consecutive frames) and parent links (the cell continues with a different

label not necessarily in the consecutive frames). Non-dividing cells have

one successor at most, whereas those that undergo division have two or

even more successors in the case of abnormal division. The TRA
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measurement computes the difference between the acyclic oriented graph

provided by a participant algorithm and the reference TRA-GT-F. To this

end, we automatically quantify how difficult it is to transform the com-

puted graph into the reference one as the least number of operations

needed to make the graphs identical. The operations allowed (split/

delete/add a node; delete/add or change the semantics of an edge) are

penalized differently based on the effort that would be required if manu-

ally performed. The correspondence between operations and weights (w)

is as follows: delete a node (w¼ 1, requires one mouse click); split a node

(w¼ 5, requires drawing a divider); add a node (w¼ 10, requires adding a

whole mask); delete an edge (w¼ 1, requires one mouse click); change an

edge semantics (w¼ 1, requires one mouse click); add an edge (w¼ 1.5, it

is slightly more difficult than deleting an edge, as it requires to determine

both nodes of the edge). The TRAmeasure is defined as the weighted sum

of graph operations, normalized by the number of markers (i.e. by the

number of nodes in the reference graph) to facilitate the comparison

between videos (datasets) with different numbers of cells. The best

result, which requires no changes, has a TRA measure equal to zero.

To establish the optimal transformation of a participant graph into the

reference graph, we have implemented the following automatic proced-

ure. First, correspondences between the nodes of both graphs are deter-

mined using the same criterion that is used for finding matching

segmentation masks. Then, the nodes are classified into four categories:

false negatives (ground-truth nodes without any match to the participant

nodes), false positives (participant nodes without any match to the

ground-truth nodes), true positives (ground-truth nodes that match to

some participant nodes) and non-split nodes (participant nodes that

match to multiple ground-truth nodes). Knowing the category of each

node, the procedure directly computes how many edges need to be

removed from the participant graph. They are either connected to at

least one false-positive node or they connect two correctly detected

nodes, which are not linked in the ground-truth graph. Analogously, it

counts the number of missing edges in the participant graph. These are

the ground-truth edges without counterpart in the participant graph.

Finally, the number of edges between matching nodes, which differ in

semantics, is counted. The optimal transformation making the participant

graph identical to the reference graph first involves separating all non-

split nodes, adding false-negative nodes and removing all false-positive

nodes. Having the sets of nodes of both graphs unified, redundant edges

are removed, missing edges added and finally those with wrong semantics

corrected. The whole procedure is fully automatic, requires no optimiza-

tion and is easy to implement.

2.4.3 Time consumption Time consumption (TIM) was evaluated on

a common workstation (Intel Core i7-3770 3.40GHz, 24GB RAM) run-

ning the 64-bit Windows 7 or the Ubuntu 13.10 operating system. The

total execution time needed to analyze each video of a given dataset was

measured. The memory consumption was not considered for the perform-

ance evaluation, but the participants were asked to ensure that their

algorithms would not require more than the given physical memory

limit on that PC configuration.

2.4.4 Evaluation tools Two command-line executable programs, one

for segmentation and one for the tracking accuracy evaluation, were

provided along with the training datasets to help the participants with

the self-evaluation and refinement of their algorithms. These programs

were also used by the organizers to evaluate SEG and TRA for the results

submitted by the participating teams for the competition datasets. Both

programs were written in Cþþ and are publicly available at the challenge

Web site.

2.4.5 Compilation of rankings First, for each method, the SEG,

TRA and TIM measures were averaged over all the videos of a given

dataset. For each dataset, all the methods were ranked (1¼best) and,

subsequently, a final ranking was compiled based on the following

formula:

Final rank ¼ rankSEGþ rankTRAþ
1

N
� rankTIM

where N is the number of ranked methods for a particular dataset. The

reason for using different weights for accuracy (SEG and TRA) and speed

(TIM) is to prefer more accurate, but possibly slower, methods to faster,

but less accurate, ones.

The best performing method is that with the lowest Final rank for a

particular dataset. Note that the methods having partial or empty sub-

mitted results for a particular dataset were not ranked for that dataset.

Instead, their Final rank was established as NA (not applicable).

3 RESULTS AND DISCUSSION

3.1 Participants and algorithms

At the time the challenge was closed, six groups had uploaded

consistent results to the challenge FTP server. The main

principles of the competing algorithms are briefly described in

Table 2 and are fully described in Supplementary Methods.

Furthermore, executable versions of most of the competing al-

gorithms, along with the instructions of use, are available

through the challenge Web site.

3.2 Submissions and rankings

The percentage of submissions received for each dataset is listed

in Supplementary Table S1. This table also displays the mean

and standard deviation of the SEG, TRA and TIM measures

obtained for each dataset, combining all the submissions

received.
Table 3 presents a summary of the rankings obtained for each

dataset, considering each measurement separately, and also com-

bined, as described in Methods. The specific results for each

dataset, including the values of the three performance measures

for each video are listed in Supplementary Table 1. Sample

results are presented as Supplementary Videos 9–16.

3.3 Discussion

In the next paragraphs, we will discuss the main contributions of

the challenge.
Datasets. We have created a public data repository composed

of 24 annotated time-lapse sequences obtained from conven-

tional and confocal fluorescence microscopes, along with 24 real-

istic computer simulations of moving nuclei. The cell types

selected are relevant in the context of cell migration, being cells

with stem-like properties involved in embryonic and adult organ

development and homeostasis, or cancer cell lines with metastatic

properties. These videos cover a wide variety of cell types,

microscopy and experimental setups, cell density and motility,

resolution, image quality and dimensionality. There are 2D

sequences of nuclearly stained cells, commonly used in cell popu-

lation studies (e.g. N2DL-HeLa), and 3D sequences of cytoplas-

mically stained cells, more appropriate for single-cell studies that

demand a realistic rendering of the cellular environment (e.g.

C3DL-MDA231). The characteristics of the videos in terms of

contrast, resolution and signal-to-noise ratio are also diverse,

covering conditions ranging from those that could be considered
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‘‘high quality’’ (i.e. high numerical aperture lens, homogeneous

and bright fluorescent staining) to conditions that could be clas-

sified as ‘‘high-throughput’’ (i.e. low magnification, low numer-

ical aperture lens, heterogeneous and dim fluorescent staining).

All real videos used in the competition were manually annotated

at three different sites, and a final ground truth per video was

generated using a majority voting approach, to account for inter-

subject variability. The two additional simulated datasets provide

an absolute ground truth for the comparison of the algorithms,

eliminating the possible bias introduced by the annotators of the

real videos.
Measures and rankings. Key to the establishment of a credible

benchmark is the use of common measures for algorithm evalu-

ation and comparison. We have described and used measures

that account for two aspects of the cell tracking problem: seg-

mentation and tracking accuracy. The segmentation accuracy

measure was based on the Jaccard similarity index, which evalu-

ates how close the cell segmentations are to the ground truth.

Tracking accuracy was evaluated using a novel measure, based

on matching acyclic oriented graphs. This method automatically

assesses the difficulty of transforming a computed graph into the

ground-truth reference. The difficulty is measured as the

weighted sum of the least number of operations needed to

make the graphs identical. Therefore, the tracking accuracy

was measured by one comprehensive scalar measure, whereas

in most previous works it required evaluating multiple measures

to characterize various cell tracking events (Kan et al., 2011; Li

et al., 2008). The weights are not biologically motivated; there-

fore, the measure is application-independent. The highest weight

is put on missing nodes in the weighted sum; therefore, the ability

of the method to detect all the cells is important for achieving

low score. Because both parameters (i.e. segmentation and track-

ing accuracy) are of similar importance, they were weighted

equally in the final ranking function. Only when the algorithms

achieved the same rank in terms of accuracy, the faster one was

preferred, which was guaranteed by adding time performance

with a smaller adaptive weight.
Results: Participants and algorithms. Six algorithms were sub-

mitted to the first Cell Tracking Challenge, covering a wide var-

iety of methods, stemming from the two main tracking

paradigms: tracking by detection and tracking by model evolution.

Most of the existing state-of-the-art methods for filtering, en-

hancement, segmentation, particle analysis and track association

are represented. Four of the six participating groups (COM-US,

HEID-GE, KTH-SE and PRAG-CZ) provided results for all the

datasets. This is a remarkable fact that emphasizes the general-

ization of the results.
Results: Global analysis. Based on the numbers provided in

Supplementary Table S1, both SEG and TRA accuracy measures

were higher for nuclear labeling than for cytoplasmic labeling.

Furthermore, they both reflected the level of complexity pro-

vided in Table 1, along with the description of the datasets.

There were large differences in the segmentation accuracy, the

lowest mean values being for C2DL-MSC and C3DL-MDA231

(both with cytoplasmic labeling), the highest mean value being

for N3DH-CHO. This could be explained by the fact that the

algorithms seem to be developed and tuned for the segmentation

of nuclei, as they often incorporate cluster separation routines

Table 2. Summarized description of the algorithms competing in the challenge

Methods T Preprocessing Segmentation Tracking Post-processing

COM-US D Mean filtering Iterative histogram analysis Multiple-hypothesis tracking

of extracted cell

baricenters

Identification of parent links

HEID-GE D Gaussian and median

filtering

Region adaptive threshold-

ing followed by a water-

shed transform for

splitting clusters

Local optimization using a

cost function within spa-

tially-limited search

regions

Detection of mitotic events

based on likelihood

measurements

KTH-SE D Gaussian band-pass

filtering

Global thresholding fol-

lowed by a watershed

transform for splitting

clusters

State-space diagram opti-

mization in a greedy

fashion.

Seeded k-means clustering;

Merging segments without

tracks into adjacent segments

with tracks

LEID-NL M Not used Region-based contour evolution using the multi-phase level set

framework. Radon transform for splitting clusters;

Compensation for inter-frame cell motion

Improved handling of mitotic

events (for cytoplasmic label-

ing) based on shape solidity

measurements

PRAG-

CZ

D Gaussian filtering Adaptive k-means thresh-

olding followed by a

watershed transform for

splitting clusters

Nearest-neighbor tracking of

extracted centers of mass

Not used

UPM-ES D Median filtering;

Grayscale spatial

area opening

Stochastic spatio-temporal

morphological reconstruc-

tion combined with hier-

archical clustering

Iterative spatio-temporal

association based on

three-dimensional con-

nectivity for 2D data

Not used

Note: T, tracking paradigm (D: tracking by detection; M: tracking by model evolution).
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based on the circularity of segmented objects. Therefore, they are

not appropriate for cellular shapes, which are seldom uniform,

present protrusions and frequently establish contacts or overlaps.
The TRA measure generally provided more uniform re-

sults among datasets, with the exception of C2DL-MSC.

Interestingly, the algorithms achieved significantly higher track-

ing accuracy on the simulated datasets than on the real ones.

This is likely because of the fact that the computer-simulated

nuclei are in general uniformly sized, and the simulated cell mo-

tility does not cover all possible random events that occur in real

live-cell experiments.
Finally, the TIM measure strongly depended on the size of

each video, being the lowest for C2DL-MSC and N2DH-SIM

and the highest for N3DH-SIM and C3DH-H157. Another

important factor influencing time consumption of the competing

algorithms was the number of objects to be analyzed. Note that

the standard deviations of the TIM measure indicate significant

differences in the speed of competing algorithms for all the

datasets.
Results: Rankings. The FINAL ranking in Table 3 shows that

KTH-SE performed best in four real datasets (C2DL-MSC,

C3DL-MDA231, N2DH-GOWT1 and N2DL-HeLa). HEID-

GE and PRAG-CZ performed best in one real dataset (N3DH-

CHO and C3DH-H157, respectively). LEID-NL performed best

in the two simulated datasets (N2DH-SIM and N3DH-SIM).

When we look at the number of appearances of each method

among the top three best performing methods, both KTH-SE

and HEID-GE appeared in all eight datasets, LEID-NL and

PRAG-CZ appeared in three datasets and finally UPM-ES

and COM-US appeared in one dataset.
It is also important to note that in the case of C3DH-H157,

N2DH-GOWT1, N2DL-HeLa and N3DH-SIM, the decisive

factor for establishing the final ranking was the speed of compet-

ing algorithms because multiple methods were evenly ranked

based on the SEG and TRA accuracy measures only.
Looking at each accuracy measure separately, HEID-GE and

KTH-SE ranked among the top three most accurate methods for

all the datasets, with the exception of the segmentation accuracy

for N3DH-CHO, where KTH-SE ranked fourth. However, one

should note that in this specific case, the difference in SEG be-

tween the most accurate method, HEID-GE, and KTH-SE was

small. The other two methods that often belonged to the top

three most accurate methods were PRAG-CZ and LEID-NL.

In terms of TIM measure, COM-US, PRAG-CZ and KTH-SE

were consistently the top three fastest methods for all the data-

sets. It is remarkable that KTH-SE was, at worst, second fastest

among the top three best performers in terms of SEG and TRA.
Results per dataset: We will now look at the results of each

particular dataset in detail, trying to extract relevant conclusions

about the best performing methods (see Table 3 and

Supplementary Table S1):
C2DL-MSC (Supplementary Video S9). The accuracy meas-

ures were generally poor, especially because of problems with the

segmentation of elongated protrusions, often incorrectly con-

sidered as whole cells. KTH-SE achieved significantly better

accuracy than the other methods because of the optimized

track-linking algorithm used, and an adaptive post-processing

step, which merges segmented object portions into adjacent seg-

ments with tracks. Regardless of this additional post-processing

step, the method was still fast, being the second fastest in terms

of TIM and42� faster than the other two top three best per-

forming methods, HEID-GE and UPM-ES.
C3DH-H157 (Supplementary Video S10). All the algorithms

that competed for this dataset achieved comparable segmenta-

tion accuracy, HEID-GE being the most accurate. Compared

with the segmentation accuracy, the tracking accuracy was

more spread out, PRAG-CZ being the most accurate. The de-

cisive factor for establishing the final ranking of the top three

best performing methods was TIM. Globally, PRAG-CZ was

ranked first, having the lowest time consumption, namely,

because the preprocessing step, involving Gaussian filtering, is

applied only in 2D, slice-by-slice.
C3DL-MDA231 (Supplementary Video S11). The calculated

accuracy measures were generally poor, because of the

Table 3. Summary of top-3 rankings per dataset and measure, along with the combined (FINAL) rankings

Rank C2DL-MSC C3DH-H157 C3DL-MDA231 N2DH-GOWT1 N2DL-HeLa N3DH-CHO N2DH-SIM N3DH-SIM

FINAL

#1 KTH-SE PRAG-CZ KTH-SE KTH-SE KTH-SE HEID-GE LEID-NL LEID-NL

#2 HEID-GE KTH-SE HEID-GE PRAG-CZ HEID-GE KTH-SE KTH-SE KTH-SE

#3 UPM-ES HEID-GE COM-US HEID-GE PRAG-CZ LEID-NL HEID-GE HEID-GE

SEG

#1 KTH-SE HEID-GE KTH-SE PRAG-CZ KTH-SE HEID-GE LEID-NL LEID-NL

#2 HEID-GE KTH-SE COM-US KTH-SE HEID-GE LEID-NL HEID-GE HEID-GE

#3 UPM-ES PRAG-CZ HEID-GE HEID-GE PRAG-CZ COM-US KTH-SE KTH-SE

TRA

#1 KTH-SE PRAG-CZ KTH-SE KTH-SE HEID-GE KTH-SE KTH-SE LEID-NL

#2 HEID-GE KTH-SE HEID-GE PRAG-CZ KTH-SE PRAG-CZ LEID-NL KTH-SE

#3 UPM-ES HEID-GE PRAG-CZ HEID-GE PRAG-CZ HEID-GE HEID-GE HEID-GE

TIM

#1 COM-US PRAG-CZ PRAG-CZ COM-US COM-US COM-US COM-US PRAG-CZ

#2 KTH-SE COM-US COM-US KTH-SE KTH-SE PRAG-CZ KTH-SE COM-US

#3 PRAG-CZ KTH-SE KTH-SE PRAG-CZ PRAG-CZ KTH-SE PRAG-CZ KTH-SE
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high-throughput acquisition conditions, making it difficult to

properly separate tightly packed clusters as well as accurately

segment elongated protrusions. Analogously to C2DL-MSC,

KTH-SE significantly outperformed the other methods in

terms of accuracy. This is due to the additional arcs included

in the state space diagram, which allow the delayed creation of

correct tracks originally blocked by incorrect preexisting tracks

(Magnusson and Jaldén, 2012). Moreover, this is also a benefit of

the track-free object merging used as an adaptive post-processing

step.

N2DH-GOWT1 (Supplementary Video S12). Both accuracy

measures were high, especially SEG. A decisive factor for achiev-

ing these good results was the use of a cluster separation routine

(e.g. watershed or the Radon transform), and a hole-filling ap-

proach to remove small background components within seg-

mented cells at places of prominent nucleoli. The top two best

performing methods, KTH-SE and PRAG-CZ, performed simi-

larly. Based on the SEG and TRA measures, they were assigned

the same rank of 3, with PRAG-CZ the best in segmenting and

KTH-SE the best in tracking. Globally, KTH-SE was ranked

first because it was �5� faster than PRAG-CZ.

N2DL-HeLa (Supplementary Video S13). The accuracy meas-

ures were high, especially TRA. Analogously toN2DH-GOWT1,

the use of a cluster separation routine resulted in more accurate

results, although such routine sometimes led to over-segmenta-

tion, especially when multiple touching nuclei formed clusters of

highly irregular shape. The top two best performing methods,

KTH-SE and HEID-GE, produced results of comparable accur-

acy. Based on the SEG and TRA measures, they were assigned

the same rank of 3, KTH-SE being the best in segmenting and

HEID-GE being the best in tracking, mainly because of the spe-

cific mitosis detection phase implemented in their method.

Globally, KTH-SE was ranked first as it was42� faster than

HEID-GE.
N3DH-CHO (Supplementary Video S14). The accuracy meas-

ures were the best among all the real datasets. This can be ex-

plained by the high magnification objective lens used and low cell

density. Furthermore, these videos contain little of noise.

Analogously to N2DH-GOWT1, a crucial factor for achieving

more accurate results was to involve a hole-filling approach to

deal with nucleoli. Globally, HEID-GE was ranked first, thanks

to its ability to deal with the presence of cell invaginations and a

morphology-based likelihood measure used to identify candi-

dates for mitotic events.
N2DH-SIM and N3DH-SIM (Supplementary Videos S15 and

S16). The obtained SEG measures were similar to those for the

real datasets displaying stained nuclei. This indicates that our

simulator generates images of realistic static content in terms

of cell texture, noise level and image degradations. However, in

terms of tracking accuracy, as mentioned before, the algorithms

performed generally better than in the real datasets. Globally,

LEID-NL was ranked first for both simulated datasets, fitting

with the idea that the model behind this method highly conforms

to computer-simulated nuclei of controlled cell motility.

However, it needs further optimization to properly work in

real scenarios. From the analysis of the submitted results, we

can finally stress the importance of the mitosis detection phase

implemented by HEID-GE, and the linking and adaptive track

post-processing phases implemented by KTH-SE, especially in

low signal-to-noise ratio conditions.

4 CONCLUSION

In this article, we have presented the implementation of a bench-

mark for objective comparison of cell tracking algorithms, based

on the use of a common diverse video dataset repository and

ground truth, specific measures for both the evaluation of the

segmentation and tracking accuracy, and unified criteria for

comparing and ranking the algorithms. This is something re-

cently highlighted by Carpenter et al. (2012) as a requirement

for the usability of biomedical imaging software. The logistics,

datasets, methods and results of the challenge have been

described herein. In the future, we expect this benchmark to

serve as a reference for the development and evaluation of

novel cell tracking algorithms. To this end, the training and

competition datasets are available to the general public, along

with the ground truth for the training datasets and the self-evalu-

ation software. Moreover, executable versions of most of the

competing algorithms will be available through the challenge

Web site. We expect the challenge to remain open for online

submissions, because there are open problems that need to be

addressed and new algorithms that can be developed to improve

the existing ones. Namely, accurately segmenting and tracking

cytoplasmically labeled cells is still something far from being

solved. Automated segmentation and tracking of other cell

types, other modalities (e.g. brightfield time-lapse microscopy)

and existing or new high-throughput modalities, such as selected

plane illumination microscopy, may require further algorithmic

developments, and therefore proper testing and validation that

could be achieved through this benchmark.
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