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Abstract

An important feature of panel data is that it allows the estima-
tion of parameters characterizing dynamics from individual level data.
Several authors argue that such parameters can also be identified from
repeated cross-section data and present estimators to do so. This pa-
per reviews the identification conditions underlying these estimators.
As grouping data to obtain a pseudo-panel is an application of instru-
mental variables (IV), identification requires that standard IV condi-
tions are met. This paper explicitly discuss the implications of these
conditions for empirical analyses. We also propose a computationally
attractive instrumental variables estimator that is consistent under a
relatively weak set of conditions. A Monte Carlo study indicates that
this estimator may work well in practice.
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1 Introduction

An important feature of panel data is its facilitation of the estimation of pa-
rameters capturing the dynamic relationships in individual data. Recently,
Moffitt (1993), Collado (1998), Girma (2000) and McKenzie (2001) have
argued that the same parameters can also be estimated via repeated cross-
section (RCS) data. However, although these papers are concerned with
essentially the same model, namely the first order autoregressive model with
exogenous variables, the proposed estimators and their presentations are very
different.! This makes it difficult to compare these procedures and their
underlying assumptions. While there are differences across estimators the
approach employed is either explicitly, or implicitly, instrumental variables
(IV). The estimators first aggregate the individual data into cohorts com-
prising individuals with similar observed characteristics (e.g. year of birth).
Using this pseudo panel the lagged dependent variable is then replaced by
a predicted value from an auxiliary regression and the dynamic model is
subsequently estimated via IV.

As the ability to estimate dynamics from RCS data is useful, and the
proposed estimators are all quite different, it is important to understand
how they are related and under which conditions one might be employed
in favor of the others. Accordingly, this paper reviews the identification
conditions for consistent estimation of a linear dynamic model from RCS
data and puts the respective assumptions of these different procedures into
perspective. One of our conclusions from doing so is that it appears that
these estimators are either too simplistic or too elaborate to be useful in
realistic settings. Moreover, we are able to propose fairly simple alternatives
that are preferable under comparable conditions.

We begin our analysis with an examination of the estimator in Moffitt
(1993). In this procedure the dynamic relationship is estimated via ordinary
least squares (OLS) where the lagged dependent variable is replaced by a
predicted value. We show that the resulting estimator is inconsistent un-
less strong, and often unrealistic, conditions are imposed on the exogenous
variables. This is true even if the instruments used to predict the lagged
dependent variable satisfy the standard IV requirements. We propose that
this inconsistency can be overcome by instrumenting the other explanatory

!The models considered by Girma (2000) and McKenzie (2001) differ as they allow for
heterogeneity of the parameters across cohorts.



variables.

When the instruments are correlated with the unobservables these es-
timators are inconsistent. However, if one is willing to assume that the
correlation between the unobservables and the (time-invariant) instruments
is time-invariant, one can correct for this by including the instruments, with
time-invariant coefficients, in the model. When the instruments comprise a
group of dummies corresponding to mutually exclusive cohorts, the result-
ing estimator is simply the standard within estimator applied to a dynamic
model in terms of cohort averages rather than individual observations. While
this estimator is often used in empirical work for both the dynamic and sta-
tic model (see, for example, Dargay and Vythoulkas, 1999), it has received
surprisingly little attention in the theoretical literature.

Although the conditions required for consistency of the proposed esti-
mators are relatively weak, they are not trivially satisfied. Estimation via
grouping is an IV technique and, accordingly, the grouping variables should
satisfy the appropriate conditions, including a rank condition, for an IV esti-
mator to be consistent. This requires that the chosen set of cohort dummies is
appropriately instrumenting each of the explanatory variables in the model.
For the within estimator at the cohort level, this requires that all explana-
tory variables have time-varying cohort effects which, in addition, are not
collinear.

The literature on estimation from RCS data is characterized by a range
of alternative asymptotics (compare Verbeek, 1996, McKenzie, 2001). Con-
sistency in this paper will refer to large N and small 7. That is, the number
of individuals in each cross-section is assumed to be large, while the number
of cross-sections is fixed. An additional important issue is how the number of
cohorts is treated as the number of individuals increases. In many applica-
tions, cohorts are defined on the basis of year of birth, in which case it seems
natural to treat their number as fixed (compare Moffitt, 1993, Girma, 2000,
and McKenzie, 2001). Such an approach has two advantages. First, it sim-
plifies the analysis. Second, and more importantly, it is difficult to think of
appropriate sequences of instruments that grow with the number of individu-
als in a sample (compare McKenzie, 2001), unless the data generating process
is formulated at the cohort level. This, however, seems unnatural. For exam-
ple, it seems inappropriate to assume that the distribution of cohort-specific
means is unaffected by the level of aggregation that a researcher employs in
constructing cohorts.

The remainder of this paper is organized as follows. Section 2 presents
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the model of interest and shows that OLS using the pseudo panel with a pre-
dicted lagged dependent variable will generally lead to inconsistent estima-
tors. Section 3 discusses some potentially suitable IV estimators, including
those suggested by Moffitt, Collado and Girma, and critically reviews the
necessary conditions for consistency. Sections 4 and 5 provide an illustra-
tive example and a Monte Carlo experiment, respectively, while Section 6
concludes.

2 Model and Data

The observed data consist of T" independent cross-sections at different points
in time with each being a random sample of some underlying population.
As individuals in different periods are not the same people, we follow the
convention in this literature and index the variables by a double subscript.
The ¢ denotes the cross-section, while i(t), 1, ..., N; indexes the individuals
in cross-section t. The model is:

Yi(t)t = OYi(t),t—1 T x;(t)7t6 + i), t= L..,T; ’l(t) =1,..., Ny, (1)

where the K-dimensional vector ;) may include an intercept, and time-
invariant and time-varying variables. Here, y;() -1 refers to the value of y at
t — 1 for an individual observed in cross-section ¢ noting that it is unobserved
in the available data. We assume the error term has the following properties:

E{a‘?z’(t),tmi(t),t} =0,t=1,...,T. (2)

As the lagged values for y are not observed for any individual, we con-
struct an estimate by using information on the y-values of other individuals
observed at ¢ — 1. To do so, let z;;) denote a set of time-invariant variables,
including an intercept term.? Now, consider the orthogonal projection in
cross-section t of y;): upon zy),

E*{yi(t),t|zi(t)} = zi(t)ét, t=1,...,T, (3)

where E* denotes the orthogonal projection (for a given t). This “reduced
form” can be estimated consistently (for Ny — 0o) by regressing ;) on z;q)

2 Actually, the requirement that 2i(¢) is time-invariant is unnecessary. Time-varying
variables that can be backcasted with reasonable accuracy may also be included (for ex-
ample, number of children). For the sake of notation, we abstract from this.
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to give 5. Following Moffitt (1993), one obtains an estimate of y;(),—1 as the
predicted value from this regression, substituting the appropriate z values
for the individuals in cross-section ¢. That is,

Qi(t),t—l = Zi(t)st—h (4)

noting that St_l is estimated from data on different individuals than those
indexed by i(t). For later reference, we also define the population equivalent of

*

this as y/,) ;1 = Zit)61—1. In the sequel, we shall assume that asymptotics are

such that plim St_l = 0;_1. In many circumstances it is convenient to think
of 7y as a vector of dummy variables, corresponding to mutually exclusive
cohorts (see Deaton, 1985, Collado, 1998, Girma, 2000). For example, with
RCS data, it is common to use year-of-birth cohorts (see, e.g., Blundell,
Browning, Meghir, 1994, or Alessie, Devereux and Weber, 1997). In this case,
the orthogonal projection in (3) corresponds to the conditional expectation
and (4) corresponds to taking sample averages within person i’s cohort. Note
that a difference between the approaches of Moffitt (1993) and Girma (2000)
is that rather than using the average within a cohort, Girma (2000) suggest
using the values of one or more arbitrarily chosen persons within the cohort.
We discuss the significance, and merits, of this variation below.
Now, insert these predicted values into the original model to get:

yi(t),t = Oégi(t),t—l + x;’(t),tﬁ + gf(t),h t= ]_, ciey T, 2(t) = ]_, ciey Nt, (5)

where

5f(t),t = Ei(t)t T Oé(yz'(t),t—1 - Qi(t),t—l)- (6)
No matter how g —1 is generated, its inclusion implies that one of the
explanatory variables is measured with error, although the measurement er-
ror will be (asymptotically) uncorrelated with the predicted value.> Given
assumption (2) and the result that prediction error and predictor are or-
thogonal, consistency of OLS applied to this equation requires that &), is
uncorrelated* with Yi).e—1 as well as that the prediction error Y 1—1— Y1) ¢ 1
is uncorrelated with ;). However, both assumptions may be problematic.
While the assumption that £;), is uncorrelated with y,, ,_; can be defended
by the usual IV assumption that

E{Ez’(t),tzi(t)} =0,t=1,..,T, (7)

3Unlike the standard textbook measurement error examples.
4Recall that gi(t),t—l is the sample counterpart of y;."( 0

1"
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it excludes the possibility that there are “cohort effects” in the unobservables.
While this may appear unreasonable, and too restrictive for empirical analy-
ses, this assumption is made in Moffitt (1993) and Girma (2000).°> Second,
it is inappropriate to argue that ;) is uncorrelated with the “prediction
erTor” Yi(s) t—1 — Yy —1- Consider, for example, where high z-values in one
period on average correspond with high z-values in the next period. If the
0 coefficients are positive this will generally imply that a high value for
Ti(),i—1, which is unobservable, will result in an underprediction of y;()—1-
On the other hand, x;);— is positively correlated with z;);. Consequently,
this will produce a positive correlation between gf(t),t and ;) ¢, resulting in
an inconsistent estimator for . This inconsistency carries over to o unless
Yi()—1 is uncorrelated with ;). As a result, the estimator suggested by
Moffitt (1993), based on applying OLS to (5), is typically inconsistent unless
there are either no time-varying exogenous regressors or the time-varying
exogenous variables do not exhibit any autocorrelation.

3 Instrumental variables estimators

To overcome the problem of correlation between the regressors and the error
term in (5) one may employ IV. Note that now we need instruments for z;)
even though these variables are exogenous in the original model. Let w;q);
denote an R-dimensional vector of potential instruments that can be used
to estimate (5). Standard IV conditions require that the instruments are
uncorrelated with the equation’s error term. This requires that®

E{eipwipy = 0, t=1,..,T (8)
E{(yi(t),t—l - y;‘(t%t,l)wi(t)’t} = 0, t = 1, ,T (9)

The first condition says that the instruments should be exogenous, which is
similar to condition (7). The second condition, (9), implies that the predic-
tion error is orthogonal to the instruments. That is, the instruments w;)
should not be able to predict any of the variation in ;)1 left unexplained
by zi). Consequently, a natural choice is wj); = zi(), such that both (8)

5The majority of the results in McKenzie (2001) is also based on this assumption.

0We interpret these conditions as being required for each period t. On the pooled
sample, this implies that the instruments in w;(;),; may be interacted with time dummies.
Alternatively, the conditions can be imposed to hold over the pooled sample only. In this
case, consistency is to be interpreted for T' (or both T" and N;) going to infinity.
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and (9) are automatically satisfied under condition (7). Given this result,
and to simplify the discussion, we assume that w;y), = 2. Thus, (9) is
automatically satisfied and conditions (7) and (8) are identical.

It is well known that taking group averages is equivalent to instrumental
variables estimation with the group dummies as instruments (Angrist, 1991,
Moftitt, 1993). Thus, when the instruments z;;) are a set of cohort dummies,
estimation of (5) by instrumental variables is identical to applying OLS to
the original model where all variables are replaced by their (time-specific)
cohort sample averages.

However, imposing (7) may not be sufficient to identify the model para-
meters. To see this, consider the orthogonal projection of (1) upon the set
of instruments:

E{yiwelziey} = aE {Yiw 11 |zi0 } FE{ @i ol 2oy Y BHE™ {€i0) | 2iey - (10)

While (7) implies that the last term in this expression is zero, it is clear that
in order to identify o and (3, the first two terms should not exhibit perfect
collinearity. Consequently, a rank condition needs to be also satisfied. This
can be formulated as:

ZiTi1  ZYi),0 o
2i(2) T, Zi(2)Yi(2),1 by

E . . ()2 ( )_ @ = ,2 =Y hasrank K +1. (11)
Zi(T)mg(T),T Zi(TYi(T), T—1 Xr

This condition says that TR x (K + 1) cross-moment matrix ¥ has full
column rank. It requires that the instruments capture variation in ;)1
independent of the variation in z;y),. It is important to note that the rank
condition for identification in (11) is in terms of the population moments. As
a result, this order condition cannot be directly verified from the data and
estimation error may thereby provide spurious identification.”

The pairwise quasi-differencing approach of Girma (2000) deviates from
the above estimation strategy in two respects, although it essentially makes
the same assumptions. First, the lagged value of y is not approximated by

"For example, if the instruments are cohort dummies, it is required that the population
cohort means exhibit sufficient variation. In practice, the cohort sample averages will vary
across cohorts due to sampling error even if all cohorts have the same mean and the model
is not identified.



the lagged cohort average but by an arbitrarily selected observation from the
cohort. Second, the instruments are not the cohort dummies, but individual,
or averaged, observations from the cohort. As a result, Girma’s approach
employs a noisy approximation to the unobserved lagged values as well as
noisy instruments. Although, under appropriate assumptions, this noise will
cancel out asymptotically, there does not seem to be any gain in doing so.
One can easily see this by noting that for an arbitrarily individual j that is
in the same cohort as individual 7,

E*{ i) el v iy} = E{@iwelzin }- (12)

The only reason why individual j’s observation provides information about
individual ¢ is because they are in the same cohort and this is already cap-
tured by the cohort dummies. A similar argument holds for the approxima-
tion of yi(t),t—l-

The availability of appropriate instruments satisfying condition (7) may
be rather limited. Thus it is natural to ask whether we can somewhat relax
the requirements on the instruments. One possibility is to explicitly capture
the cohort effects by including cohort fixed effects, as in Deaton (1985) and
Collado (1998). This is done by including z;;) as additional regressors in (5)
but with time-invariant coefficients.® Thus, we allow for “cohort effects” by
replacing assumption (7) with

E*{Ei(t)7t|zi(t)} = Z:(t))\ (13)
so that we can write’
Yit)t = Wieye—1 + m;(t),tﬂ + Zé(t))‘ + Mict) 00 (14)
where
E{m(t),tzi(t)} = O, t = 1, ,T (15)

replaces condition (7). This allows one to relax assumption (2) to

E{ni(t),txi(t),t} =0,t=1,..T. (16)

8The vector 2i(s) not necessarily consists of cohort dummies. Alternative functional
forms, that are either more flexible or more parsimonious, may be employed (see Moffitt,
1993). In the discussion we shall abstract from this possibility.

9The model presented here is a special case of McKenzie (2001)’s general model.




Under these conditions, one would estimate (14) by IV using zy), in-
teracted with time dummies, as instruments. We shall refer to this as the
augmented IV estimator noting that a time-varying A would make the model
unidentified. To achieve identification, we need to assume that £*{y;) 1]z }
and E*{x;() |z } exhibit time-variation and are not collinear. This imposes
additional restrictions upon the moment matrices ¥; in (11). In particular,
we need to strengthen (11) to:

2y — X
: has rank K + 1. (17)
Yr—3

If 3; does not vary sufficiently over the cross-sections, the variation of the
instruments is collinear with z;;) and estimation will break down. A direct
implication of this is that one needs at least three cross-sections (¢t = 0, 1, 2)
to identify the model under these assumptions.

Computation of this augmented IV estimator is remarkably simple if z;)
is a set of cohort dummies. First, one simply aggregates the data into cohort
averages, which gives

it)t = ity o1 + Tiey 18 + ZipA + Nige) 1 (18)

where the hats denote predicted values from a period-by-period regression on
Zi(t), that is, they denote (sample) cohort averages. Second, applying OLS
to (18) corresponds to the standard within estimator for («, 3')" based upon
treating the cohort-level data as a panel. The usual problem with estimat-
ing dynamic panel data models (see Nickell, 1981)*°, does not arise because
under assumption (15) the error term, which is a within cohort average of in-
dividual error terms that are uncorrelated with w ), is asymptotically zero.!!
However, it remains whether suitable instruments can be found that satisfy
the above conditions.

The estimators presented in Moffitt (1993), Girma (2000) or McKenzie
(2001) do not allow for condition (15) to be relaxed. This means that time-
varying cohort effects in the unobservables are not allowed. Starting from the
case where 2y is a set of cohort dummies, Collado (1998) presents estimators

10With genuine panel data, the within estimator in the dynamic model has a substantial
bias for small and moderate values of T'.

Recall that, asymptotically, the number of cohorts is fixed and the number of individ-
uals goes to infinity.



that allow for a time-varying correlation between v, ; and ni(t)7t.12 Follow-
ing standard dynamic panel data IV procedures, the cohort fixed effects A
are first eliminated by first-differencing, to give

ityt — Uice—1)0-1 = Ti(e) =1 — Ji(t—1),6-2) (19)
+(@z’(t),t - ii(tfl),tfl)/ﬁ + (ﬁi(t),t - f?z’(tfl),tfl%

where, because of the definition of z;); as cohort dummies, §;;—1)—1 =
¥i(t),+—1 and similarly for the other variables and lags.'® In other words, in
(19) we have a standard first-differenced dynamic panel data model with the
unit of observation being a cohort. The population counterpart is given by

y:(t),t - y:(t—l),t—l = a(y:(t),t—l - :(t—l),t—Q) (20)
* k !/ k *
+(mi(t),t - xz'(t),tﬂ) B+ (nz’(t),t - 7h’(t71),t71)-

If condition (15) is not valid, the cohort means nj, , are asymptotically
nonzero and correlated with z;) in a time-varying way. Furthermore, Vi) i—1
and nj, ),  are correlated by construction, and OLS applied to (19) is in-
consistent. Consequently, equation (19) must also be estimated by instru-
mental variables techniques. For the genuine panel data model, Arellano
and Bond (1991) provide a list of instruments which is exploited by Collado
(1998). The essential condition for identification, however, is that y;'k(t—l),t—%

or one of its lags, is a valid instrument for ;) 1 — Y1), _o- This, as before,
requires time variation in y,), ;, but also requires that'*

E{(n;‘(t),t - nr(tfl),tfl)y;(t—l),th} =0, (21)

which is trivially satisfied if there are no cohort effects in 7, , (as with the
augmented IV estimator).!® In general, however, it is less obvious that this
condition is satisfied.!® If

E*{m(t),t|zi(t)} = Z;(t)Aty t = 1, ,T (22)

12We shall restrict attention to the estimator that is claimed to be consistent for fixed
T.

13Collado (1998) writes y. ¢, where ¢ indexes cohorts.

14The equality sign is to be interpreted as “asymptotically equal”.

5Note that any time-invariant cohort effects would have been eliminated by the first-
difference transformation.

16Recall that we ignore the measurement error problem in Collado (1998) by assuming
that St, and the other “reduced form” parameters, asymptotically converge to their true
values. In Collado’s approach (following Deaton, 1985) the number of cohorts is assumed
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we thus need that, for finite T,
B2y (M = A1) - 262} = 0, (23)

which, given the definition of z;(), requires that the two vectors A\; — A;_; and
8o are orthogonal. Collado (1998) imposes this condition while assuming
that the dimension of z, and thus the dimensions of \; and ¢;, increase with
sample size through imposing that there is no autocorrelation in the cohort
effects for any given cohort. Thus, this allows for time-varying cohort effects
in the unobservables provided they are uncorrelated over time.

It is hard to think of cases where (21) is satisfied while (13) is not, un-
less one is willing to make sampling assumptions at the cohort level.!” If
instruments can be chosen such that (13) is satisfied (as is done in Girma,
2000, and McKenzie, 2001) there are no time-varying cohort effects, and the
augmented instrumental variables estimator proposed above is not only com-
putationally attractive but also more efficient than Collado (1998)’s cohort-
level GMM estimator. The reason is simple: unnecessarily instrumenting
Ui(t),i—1 — Yi(—1),1—2 will lead to a loss in efficiency compared to the aug-
mented IV estimator. As a result, estimating a dynamic model from cohort
level data can be computationally much simpler than from genuine panel
data.

4 A simple example

To illustrate and clarify the conditions for consistency of the respective esti-
mators, as discussed above, we consider a simple example, where the model
of interest contains only one exogenous variable. The next section presents a
Monte Carlo study based upon this example. Given that the definition of a
cohort is left to the researcher, it is important to start from a data generating
process at the individual level rather than the cohort level. It is convenient

to grow with sample size. This implies that the number of instruments is increasing with
N; and it is no longer obvious that 5y — &4 is asymptotically zero (note that the definition
of é; changes with sample size). Keeping the number of instruments fixed, as we shall
do, the estimation error in 8, results in a small sample bias, which may or may not be
negligible, depending upon the number of observations within a cohort. The Monte Carlo
study in Section 5 will address this issue. See also Verbeek and Nijman (1992, 1993) for a
discussion of this issue in the static model.
17Tn which case \; and §; are treated as random variables.
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to think of the population being a large panel data set, from which differ-
ent individuals are sampled each period. Assume that the data generating
process is given by!'®

Vit = Q¥ip 1+ BTy + i, 0<a<l, (24)
where the error term has the usual error components structure
Eit = 01 + Vjt. (25)

It is assumed that v;; is uncorrelated over time. Let z; denote a set of time-
invariant variables that are used as instruments. The main question is what
conditions need to be imposed upon the relationships between z; and the
other variables in the model to guarantee that one or more of the estimators
are consistent.

The first step is to approximate the lagged dependent variable by a linear
projection upon z;, denoted E*{y;, 1|2;}. Using recursive substitution, one
can easily derive that

t—2 t—2
E*{yi,t,1|zi} = ﬁ Z (XJE*{.fUi,t,j,ﬂZi} =+ (Z CKJ) E*{Gzlzl} (26)
7=0 7=0

t—2

‘|‘04t_1E*{yio|Zi} + Z OéjE*{Ui,t—j—l |2}
=0

In a first case, case A, we assume that the starting value y;, is exogenous and
independent of 6;.!” In a second case, case B, we assume that the process is
in equilibrium or - equivalently - that it started in an infinite past. For case
B, the expression for E*{y;_1|z;} simplifies to

E*{yi,tflyzi} = ﬁZOéjE*{%’,tfjfl’Zi} (27)
§=0

1 Eal
+EE*{01|ZQ} + Z(XJE*{?)Lt,j,l’Zi}.

J=0

18Because this and the following section discuss data generating mechanisms, rather than
the sample available for estimation, it is appropriate and preferable to use the standard
panel data notation.

19The starting date need not coincide with the beginning of the sample period.
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Note that in the first case the instruments z; may be predicting the lagged
dependent variable partly through the initial value y;,.

Let us consider the respective estimators. First, the OLS estimator re-
quires that the instruments are uncorrelated with the equation’s error terms.
That is

E*{0;|zi} = 0 (28)
E*{vy|zi} = 0. (29)

Further, it is required that the prediction error is uncorrelated with z;;, which
requires that z; ;1 — E*{x;;_j_1|z} is uncorrelated with z;; (j =0,1,2,..).
For a time-varying x;-variable, this imposes the strong restriction of the
absence of autocorrelation relative to the cohort-specific mean.

The standard IV estimator, using z; as instruments for z;; as well, also
imposes conditions (28)-(29). In addition, the rank condition requires that
E*{x;|z} is not collinear with E*{y;; 1|z }. For case A it is sufficient that
E*{zy|z;} # 0 (and B # 0) or that E*{y,»|z:} # 0 (and o # 0). For case
B we need that E*{x;|z} varies with ¢. For case B it is thus required that
the time-invariant variables in z; have a time-varying relationship with the
exogenous variables in the model. For case A this is not required as the
fixed starting date of the process induces variation over time even if the
relationship between z; and z;; is time-invariant.?’

For the augmented IV estimator, which extends the standard IV estimator
by including z; in the model, condition (28) is no longer required. Implicitly,
this allows for cohort-specific means in the processes for y; and z;. Both
case A and case B now require that E*{x;|z;} varies with ¢ (and 5 # 0). For
case A, this may again be replaced by E*{y;,|z;} # 0. It should be stressed
that, given the inclusion of z; in the model, the need for time-variation in
E*{z;|z} and E*{y; 1]z} is much stronger.

Finally, consider a simple variant of the estimator proposed by Collado
(1998), which restricts attention to discrete-valued z;. While this estimator
does not require conditions (28)-(29), it does require that

E*{vy|zi} — E*{vii-1]z}

is uncorrelated with E*{v;;_;|z;} for j = 2,3,.... Note that the case with
a non-zero time-invariant E*{v;|z} is already captured by the augmented

20Tf « is small or t is large, the impact of the initial values is small and time-variation
in E*{x;|w;} is recommended (as in case B).
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IV estimator through the inclusion of z;. The only relevant extension thus
occurs with a time-varying E*{v;|z;}. However, the only stationary process
that is consistent with this condition is characterized by equi-correlation and
implies that E*{v;|z;} is zero (given the presence of the cohort-specific effect
E{6;|z:}). As a result, the relaxed conditions seem to be no weaker than those
for the augmented IV estimator and the additional stage of instrumentation
in Collado (1998) appears unnecessary.

5 A Monte Carlo study

We now present the results of a Monte Carlo experiment that investigate
how large the cohort-specific variation in individual data need to be for the
instrumental variables estimators to work satisfactorily with reasonable sam-
ple sizes. Cohort-specific effects may be present in a number of places: in
the starting value of the process for y, in the process that generates the z-
variables, in the individual-specific heterogeneity #; and in the idiosyncratic
error terms v;;. We shall assume that v; has no cohort effects. This assump-
tion is stronger than that made by Collado, but is substantially weaker than
what is assumed in Moffitt (1993), Girma (2000) and in the simulation study
of McKenzie (2001). Note that the theoretical section of McKenzie presents
a general model that incorporates the one we simulate here. However, he
provides no simulation results for such a model.

Both Collado (1998) and Girma (2000) present a Monte Carlo study to
illustrate how well their respective estimators perform with realistic sample
sizes. Both studies find that for the estimators to work well it is necessary
that the amount of variation in the data that is due to cohort effects is sub-
stantial. For example, in some instances it needs to be up to 75% of the
total variation. There are some additional features of the design in Collado
(1998) that are worth noting. First, there are no exogenous variables in the
simulation. Second, she starts by assuming an autoregressive model at the
cohort level and then generates individual observations as the cohort obser-
vations plus a random noise term. We feel that there are some shortcomings
associated with such an approach. First, we prefer to think of the data gener-
ating process as something that operates at the individual level, where cohort
effects are affecting some of the individual variables, rather than at the co-
hort level, individual observations being random deviations from the cohort
means. Choosing cohorts is something done by the researcher when he/ she
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starts analyzing the data, not something determined by nature. In partic-
ular, when choosing cohorts one has to worry about similar issues as when
choosing instruments. Second, the cohort-level AR(1) model is inconsistent
with the individual data being generated from an AR(1) model (even though
Collado suggests otherwise). In fact, her data generating mechanism implies
that individual observations are generated by an AR(1) model plus white
noise, which — as is well-known in the time series literature, see Hamilton
(1994, Sect. 4.7) — does not correspond to an AR(1) process.

The data in our Monte Carlo experiment are generated as follows. First,
we generate a vector of cohort dummies z;. The exogenous variable is gener-
ated as

Ty = Qxi,t_l + IilltZi + gz’t? (30)

where &;; ~ NID(0,07) and £y, are vectors of cohort effects with elements
NID(0,0%).2 We shall assume that 50% of the variation in these cohort
effects is time-invariant. The total error variances and 6 are chosen in such a
way that the R? of the equation is 75%, (not taking into account the cohort
effect), while the total unconditional variance of x;; is set to one, without
loss of generality. An important element is the relative importance of the
cohort effects in (30), which we shall vary between 25 and 50%. Note that
in the absence of cohort effects in x;, none of the estimators is expected to
have good properties.
Second, we generate a starting value for the y process as

!/
Yio = KgZi + Vio,
and any subsequent observations are generated as
. /
Yit = QYit—1 + Bxi + K32i + var,

where v; ~ NID(0,02), vio ~ NID(0,0%)). Both ky and k3 are vectors of
cohort effects with elements N1D(0,03) and NID(0,0%), respectively. Note
that Girma (2000) and McKenzie (2001) assume k3 = 0 in their simulation
studies. Without loss of generality, parameter values are chosen such that
the total error variance (including the cohort effects) is normalized to one.
For the initial period, it is normalized to 1/(1 — a?). The relative importance
of the cohort effects varies between 0%, 25% and 50%. The first 10 periods
of data are discarded.

21The starting value of the z;; process is fixed at zero.
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Within this Monte Carlo set-up, there are three sources of cohort effects:
in the process for the exogenous variable, in the starting value ;o and in the
time-invariant unobserved heterogeneity ;. In our experiments we shall vary
the proportion of cohort-specific variation in these three sources from 0%,
25% to 50%. The values of o and 3 are fixed at 0.5. We consider situations
with T'= 5 and T = 10, where N = 2000 or N = 5000 individuals.?? The
number of cohorts is varied from 20 to 100.

For the case with five time periods available for estimation, average es-
timates over 1000 replications are presented in Table 1 for N = 2000, and
in Table 2 for N = 5000. Standard errors (in parentheses) are computed as
sample standard deviations of the Monte Carlo estimates. The corresponding
results for 7" = 10 are presented in Tables 3 and 4, respectively. The tables
present results for the IV estimator, determined as OLS at the cohort aggre-
gates, and the augmented IV estimator (AIV), based on the within estimator
on cohort averages.

An examination of the simulation results leads to a number of interesting
conclusions. First, the magnitude of the cohort effects in the starting value of
y;¢ has only a small impact on the estimators. This is expected as the starting
value dates back 10 periods from the beginning of the estimation sample. For
the case with T" = 5 estimation periods, the magnitude of cohort effect in the
starting value of y;; has a bigger impact, both in the reduction of the bias
and upon the standard errors of the estimators.

Second, when many cohorts are used, with a limited number of obser-
vations each, all estimators have a substantial bias. This bias is more pro-
nounced for the coefficient on the exogenous variable. This bias reduces
somewhat when the cohort effects are more important, but is still non negli-
gible. This conclusion is consistent with current practice of using cohorts of
at least 100 individuals and is also in line with the conclusion of Verbeek and
Nijman (1992) that 100-200 individuals per cohort are recommended in or-
der to ignore biases due to measurement error in the cohort averages (which,
in our terminology, corresponds to estimation error in the reduced form pa-
rameters). Somewhat surprisingly, having more time periods available for
estimation in some cases increases the bias that occurs from the small cohort
sizes. The augmented IV estimator typically suffers somewhat more from
this bias than does the IV estimator. For cases where the IV estimator is
inconsistent, cohort sizes are hardly related to the amount of bias that is

22Note that T' = 5 requires 6 cross-sections (t=0,1,...,T) while T = 10 requires 11.
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cohort effects (%)

T

25

25

25

50

50

25

25

50

25

25

50

50

40
0

25
30
25
20
25
20
25
25
20
25

20

Y
0

0

25

25

25

50

50

50

50

T =5; N =2000; = 0.5; 3=0.5

C =20

C =100

VR WL XL XL WL R WL LWL WL R we

0.444
0.534
0.464
0.523
0.474
0.517
0.480
0.513
0.484
0.510
0.869
0.281
0.830
0.304
0.805
0.317
0.961
0.228
0.929
0.246
0.907
0.258
0.882
0.272

0.439
0.592
0.452
0.587
0.460
0.582
0.474
0.539
0.477
0.537
0.474
0.576
0.477
0.575
0.483
0.534
0.484
0.572
0.486
0.571
0.489
0.530
0.491
0.530

0.316
0.614
0.367
0.584
0.399
0.566
0.417
0.551
0.433
0.542
0.820
0.319
0.792
0.335
0.774
0.338
0.940
0.248
0.915
0.263
0.897
0.266
0.876
0.278

0.296
0.714
0.330
0.707
0.357
0.702
0.397
0.631
0.409
0.626
0.398
0.694
0.412
0.692
0.432
0.618
0.436
0.687
0.444
0.686
0.454
0.609
0.460
0.607
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Table 1: Average estimates and standard errors, T'= 5, N = 2000



cohort effects (%)

T

25

25

25

50

50

25

25

50

25

25

50

50

40
0

25
30
25
20
25
20
25
25
20
25

20

Y
0

0

25

25

25

50

50

50

50

T =5; N =5000; « = 0.5; 3=0.5

C =20

C =100

VR WL XL XL WL R WL LWL WL R we

0.476
0.515
0.485
0.510
0.489
0.507
0.491
0.505
0.493
0.504
0.881
0.273
0.839
0.297
0.813
0.312
0.968
0.223
0.934
0.242
0.912
0.254
0.886
0.269

0.474
0.544
0.479
0.540
0.479
0.538
0.489
0.517
0.491
0.516
0.489
0.535
0.490
0.534
0.492
0.514
0.493
0.533
0.494
0.532
0.495
0.513
0.496
0.513

0.404
0.560
0.436
0.541
0.453
0.530
0.463
0.523
0.471
0.519
0.870
0.282
0.834
0.304
0.809
0.316
0.970
0.223
0.940
0.241
0.918
0.250
0.895
0.264

0.397
0.641
0.417
0.633
0.432
0.628
0.454
0.567
0.460
0.564
0.453
0.621
0.460
0.618
0.470
0.559
0.471
0.614
0.475
0.613
0.451
0.554
0.483
0.553
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Table 2: Average estimates and standard errors, T'= 5, N = 5000



cohort effects (%)

T

25

25

25

50

50

25

25

50

25

25

50

50

40
0

25
30
25
20
25
20
25
25
20
25

20

Y
0

0

25

25

25

50

50

50

50

T =10; N =2000; a = 0.5; 3 = 0.5

C =20

C =100

VR WL XL XL WL R WL LWL WL R we

0.431
0.555
0.447
0.543
0.456
0.536
0.472
0.523
0.476
0.520
0.894
0.195
0.875
0.210
0.840
0.234
0.957
0.147
0.944
0.157
0.919
0.174
0.908
0.183

0.428
0.586
0.441
0.579
0.450
0.574
0.469
0.536
0.472
0.534
0.466
0.565
0.470
0.563
0.480
0.530
0.479
0.558
0.481
0.557
0.487
0.525
0.488
0.524

0.289
0.669
0.322
0.644
0.347
0.625
0.392
0.587
0.404
0.578
0.841
0.245
0.829
0.255
0.808
0.262
0.933
0.175
0.924
0.183
0.906
0.186
0.898
0.192

0.278
0.728
0.306
0.717
0.329
0.709
0.381
0.631
0.392
0.626
0.374
0.694
0.387
0.670
0.418
0.612
0.416
0.679
0.424
0.677
0.444
0.599
0.448
0.597
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Table 3: Average estimates and standard errors, 7' = 10, N = 2000



cohort effects (%)

T

25

25

25

50

50

25

25

50

25

25

50

50

40
0

25
30
25
20
25
20
25
25
20
25

20

Y
0

0

25

25

25

50

50

50

50

T =10; N =5000; a = 0.5; 3 = 0.5

C =20

C =100

VR WL XL XL WL R WL LWL WL R we

0.470
0.524
0.478
0.518
0.482
0.515
0.489
0.509
0.490
0.508
0.906
0.184
0.886
0.199
0.849
0.227
0.963
0.140
0.950
0.151
0.923
0.170
0.912
0.179

0.469
0.539
0.475
0.539
0.479
0.533
0.487
0.515
0.489
0.514
0.486
0.529
0.487
0.528
0.492
0.512
0.491
0.526
0.492
0.525
0.495
0.510
0.495
0.510

0.386
0.592
0.409
0.574
0.424
0.562
0.450
0.540
0.456
0.535
0.891
0.198
0.875
0.211
0.844
0.232
0.960
0.145
0.949
0.154
0.926
0.167
0.916
0.175

0.381
0.640
0.400
0.630
0.414
0.623
0.446
0.565
0.451
0.561
0.440
0.611
0.447
0.608
0.464
0.554
0.462
0.600
0.465
0.598
0.476
0.547
0.478
0.545
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Table 4: Average estimates and standard errors, T'= 10, N = 5000



found.

A third conclusion is related to the size of the standard errors. In general,
the standard errors do not provide any indication of the degree of bias that
can be expected. When the number of cohorts is increased, standard errors
typically decrease somewhat, while the bias increases substantially. Note
that the sampling variation of all estimators is rather low. On the one hand,
this is a positive result as it indicates that the estimators are quite accurate,
even if the cohort effects are relatively unimportant. On the other hand, it
is of concern because in cases where the estimators are severely biased, high
standard errors are not warning against their use. Apparently, sampling
variation in the cohort averages produces estimates that have a low standard
error, even if this variation is hardly related to genuine cohort variation.

Fourth, when cohort effects are introduced in the main equation, the IV
estimator is severely biased. With the true autoregressive coefficient equal
to 0.5, IV produces estimates in the range of 0.80-0.95, depending upon the
importance of the cohort effects. Similarly, the coefficient estimates for the
exogenous regressor are in the range of 0.15-0.30, again with a true value of
0.5. It is interesting to note that the precision of the IV estimators is reduced
when cohort effects are introduced in the main equation, but insufficiently to
generate a potential warning for its bias. Also note that the augmented IV
estimator is hardly affected by the presence of cohort effects in the process
for y;;. Rather, its biases appears to be slightly smaller than in their absence.

Fifth, in the cases where the estimators are consistent, there generally
appears to be a negative small sample bias in the estimation of the autore-
gressive coefficient. Similar results are reported for alternative estimators
and data generating processes by their respective authors (Collado, 1998,
Girma, 2000). We also find a positive bias in the coefficient for the exoge-
nous regressor (which is not present in Collado’s simulations). These biases
become smaller when sample sizes increase (particularly when the number of
observations per cohort increase), and when the cohort effects become more
important. This is particularly true of the cohort effect in the process for
the exogenous variable. For reasonable cohort sizes, the biases seem to be
acceptable.

Sixth, for the genuine panel data case, the results of Nickell (1981) imply
that for 7' = 10 the within estimator has a probability limit (for N — o0) of
0.33. Clearly, the cohort-based estimators perform better in terms of small
T bias. This confirms our earlier remark that estimating a dynamic model
from cohort level data can be computationally simpler than from genuine
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panel data.

6 Concluding remarks

Several authors have argued that the estimation of dynamic models at the
individual level is possible on the basis of repeated cross-sections and present
alternative estimators that are consistent under appropriate conditions. The
proposed estimators vary widely in the degree of computational complex-
ity and in the way they are motivated and presented. For example, Moffitt
(1993) presents a simple estimator based on OLS where the lagged dependent
variable is replaced by a predicted value. In contrast, Collado (1998) requires
aggregation of all observations into cohorts, after which a GMM estimator,
with a measurement error correction, is employed using the cohort aggre-
gates. Girma (2000) presents an IV estimator that involves the use of other
observations from the cohort to approximate the lagged dependent variable
and to act as instruments. This paper reviewed the identification conditions
underlying these alternative estimators and presented computationally at-
tractive alternatives. Our main focus was upon the identifying conditions.
Consistency refers to the case where the time dimension is fixed and the
number of individuals grows, while the number of instruments is constant.
Note that McKenzie (2001) provides a detailed discussion of the asymptotic
properties of the estimators using alternative multidimensional limits.

The three most important conclusions from our analysis are the following.
First, one can only identify individual dynamics without having individual
time-series or panel data, by assuming the existence of a set of instruments
that is (1) observed for each person in the entire sample, and (2) appropriate
for each variable in the model of interest. Such instruments can be used
to aggregate the data in a number of mutually exclusive groups (cohorts).
While such an assumption may be unrealistic in certain applications, it is,
generally, not testable due to its identifying nature. The Monte Carlo study
illustrates the fact that imposing incorrect identifying assumptions may pro-
duce severely biased estimators that exhibit little sampling variation. Over-
all, the size of the standard errors is no indication for the amount of bias
that is present.

Second, if one assumes the absence of cohort effects in the unobservables
of the main equation, a simple IV estimator based upon OLS using the
cohort aggregates, is consistent (provided all variables exhibit genuine cohort-
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specific variation). The estimator proposed by Moffitt (1993) is inconsistent
in the presence of time-varying exogenous regressors, while the estimator
presented by Girma (2000) for this model is unnecessarily complicated. Given
moderate sample sizes, the sampling variation of the IV estimator is mainly
driven by the importance of the cohort effects in the exogenous variables.
The Monte Carlo study reveals that standard errors are fairly low, even
when only 25% of the innovations in the process for the exogenous variable
can be attributed to cohort-specific effects. When the number of instruments
(cohorts) is large relative to the number of individuals, a small sample bias is
present in the IV estimator. When cohort sizes are 100 or more, these biases
seem to be acceptable, provided sufficient cohort-specific variation is present
in the exogenous variables.

Third, if one allows for time-invariant cohort effects in the unobservables
of the main equation, an augmented IV estimator, based upon the within
estimator using cohort-aggregates, is consistent. This requires that all exoge-
nous variables exhibit genuine time-varying cohort-specific variation. Again,
sufficiently large cohorts are required to reduce the small sample bias in this
estimator. Notably, the bias that is present in the within estimator for the
dynamic model using genuine panel data (see Nickell, 1981), is much larger
than what is found for similar estimators employed upon cohort aggregates.
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