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SUMMARY

The functional organization of eukaryotic genomes
correlates with specific patterns of histone methyla-
tions. Regulatory regions in genomes such as
enhancers and promoters differ in their extent of
methylation of histone H3 at lysine-4 (H3K4), but it
is largely unknown how the different methylation
states are specified and controlled. Here, we show
that the Kdm5c/Jarid1c/SMCX member of the
Kdm5 family of H3K4 demethylases can be recruited
to both enhancer and promoter elements in mouse
embryonic stem cells and in neuronal progenitor
cells. Knockdown of Kdm5c deregulates transcrip-
tion via local increases in H3K4me3. Our data indi-
cate that by restricting H3K4me3 modification at
core promoters, Kdm5c dampens transcription, but
at enhancers Kdm5c stimulates their activity.
Remarkably, an impaired enhancer function acti-
vates the intrinsic promoter activity of Kdm5c-bound
distal elements. Our results demonstrate that the
Kdm5c demethylase plays a crucial and dynamic
role in the functional discrimination between en-
hancers and core promoters.

INTRODUCTION

Themethylation state of lysines in histones has been linked to the

establishment and maintenance of epigenetic and transcrip-

tional states of genes (Bonasio et al., 2010; Greer and Shi,

2012). Transcription start sites (TSSs) are marked by trimethyla-

tion of lysine 4 of histone H3 (H3K4me3), which facilitates access

and assembly of RNA polymerase II (pol II) transcription com-

plexes (Vermeulen et al., 2007;Wysocka et al., 2006). In contrast,

H3K4me1 modification combined with acetylated H3K27

(H3K27ac) is predictive of active enhancers (Bonn et al., 2012;
C

Buecker and Wysocka, 2012; Creyghton et al., 2010; De Santa

et al., 2010; Ernst et al., 2011; Heintzman et al., 2007; Zentner

et al., 2011), which can regulate the transcriptional activity of

genes over larger genomic distances (Banerji et al., 1981; Bulger

and Groudine, 2011; Ong and Corces, 2011). A variety of protein

complexes capable of binding H3K4me3 have been identified,

but specific H3K4me1 binders seem sparse (Jeong et al.,

2011; Ruthenburg et al., 2007). Several SET-domain-containing

enzymes, including the SET1/MLL proteins (Ruthenburg et al.,

2007; Shilatifard, 2008), can achieve methylation of H3K4 to all

three states. It was reported very recently that the Trithorax-

related (Trr) protein from fruit flies, and by analogy the mamma-

lian MLL3/4 proteins, are particularly important for maintaining

global levels of H3K4me1 (Herz et al., 2012). H3K4 methylations

can be reversed by members of the Kdm5/Jarid1 family (for

K4me3/2 to K4me1) or Lsd/Kdm1 (for K4me2/1 to K4me0) family

of histone demethylases (Cloos et al., 2008; Secombe et al.,

2007). Genome-wide studies revealed that Kdm5a (also known

as [a.k.a.] Jarid1a/Rbp2) and Kdm5b (a.k.a. Jarid1b/Plu-1)

localize to promoter regions (Lopez-Bigas et al., 2008; Peng

et al., 2009; Schmitz et al., 2011). In contrast, Lsd1/Kdm1a binds

to both promoter and distal elements (Whyte et al., 2012), and

Lsd2/Kdm1b colocalizes with H3K36 methylation in the gene

bodies of actively transcribed genes (Fang et al., 2010). Recruit-

ment of H3K4 demethylases to specific genomic loci could be

mediated via intrinsic ‘‘reader’’ domains for modified chromatin

(Greer and Shi, 2012), but gene-specific transcription factors

also seem to be involved (Blair et al., 2011; Secombe et al.,

2007; Tahiliani et al., 2007).

Members of the Kdm5 family have distinct biological functions

(Blair et al., 2011; Varier and Timmers, 2011). Several studies

have shown a direct involvement of Kdm5a and Kdm5b in

cancer. Loss of Kdm5a inhibited tumorigenesis in a mouse

model (Lin et al., 2011). Also, Kdm5a is overexpressed in gastric

cancer and high levels of Kdm5b have been observed in breast

and prostate cancer (Blair et al., 2011; Varier and Timmers,

2011). Kdm5a and Kdm5b are involved in maintenance of a

slow-growing, drug-resistant population of cancer cells (Roesch
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et al., 2010; Sharma et al., 2010). Other reports, however,

showed that Kdm5a is required for induction of cellular senes-

cence in several cell types (Chicas et al., 2012; Nijwening

et al., 2011). Knockout of Kdm5b, but not of Kdm5a, results in

early embryonic lethality in mice (Catchpole et al., 2011). The

role of Kdm5b in embryonic stem cells (ESCs) and their differen-

tiation is controversial. One study showed that Kdm5b knock-

down triggers differentiation and loss of self-renewal of ESCs

(Xie et al., 2011), whereas another study showed that although

knockout of the Kdm5b gene does not affect ESC growth or

morphology, Kdm5b is important for differentiation along the

neuronal lineage (Schmitz et al., 2011). The KDM5C gene

(a.k.a. SMCX or JARID1C) has been implicated in different

human diseases, such as renal cancer and X-linkedmental retar-

dation (Blair et al., 2011; Dalgliesh et al., 2010). Based on their

biochemical activity (me3/2 to me1), all of the Kdm5 members

are expected to act as transcriptional repressors, and studies

on Kdm5a and Kdm5b support this model (Blair et al., 2011;

Dey et al., 2008; Iwase et al., 2007). In light of these studies,

the genetic classification of the Kdm5 homolog from Drosophila

melanogaster, Lid, as a Trithorax-group type of gene activator

(Gildea et al., 2000) could be explained by a global increase of

H3K4me3 and redistribution of H3K3me3 binding proteins

such as CHD1 (Eissenberg et al., 2007).

To gain insights into the function of Kdm5c, we determined its

genomic distribution in both mouse ESCs and neuronal progen-

itor cells (NPCs). In addition, we profiled messenger RNA

(mRNA) expression and H3K4me1 and H3K4me3 chromatin

marks before and after Kdm5c knockdown in ESCs. Our results

indicate that transcriptional regulation by Kdm5c is dependent

on the genomic element bound. At promoters, Kdm5c restricts

transcriptional output, whereas Kdm5c binding to enhancers

stimulates their activity. In addition, our results stress the impor-

tance of H3K4 methylation states in the control of gene expres-

sion. We propose that the functional identity of transcription

regulatory regions in mammalian genomes is achieved through

balancing enzymes that deposit and remove histone H3K4

methylations.

RESULTS

Genome Localization of Kdm5c in Mouse ESCs and
NPCs Reveals Both Promoter-Proximal and
Promoter-Distal Binding
The Kdm5c demethylase protein is expressed in mouse ESCs

and NPCs. To determine the genomic localization of Kdm5c,

we expressed a biotinylated version of this protein via BAC

recombineering (Poser et al., 2008) in BirA-ESCs (Figures S1A–

S1E). This IB10-derived ESC line coexpresses the bacterial

BirA biotin ligase (Driegen et al., 2005), allowing highly selective

chromatin immunoprecipitation (ChIP; van Werven and Tim-

mers, 2006). NPCs were derived from the tagged ESC line and

immunoblot analysis showed that the tagged Kdm5c protein

is expressed to similar levels in NPCs compared with ESCs

(Figures S1E and S2A). Streptavidin purification of Kdm5c

crosslinked chromatin combined with deep sequencing identi-

fied 3,668 high-confidence Kdm5c-binding sites for ESCs and

6,656 for NPCs (false discovery rate [FDR] < 0.05). A total of
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1,224 binding sites were common to both ESCs and NPCs.

The accuracy of the ChIP sequencing (ChIP-seq) signals was

verified for a random selection of Kdm5c peaks by ChIP-PCR

(Figure S2B).

We also profiled H3K4me1 and H3K4me3 modifications in

ESCs, which indicated colocalization of Kdm5c with some, but

not all, of the peaks for H3K4me1 or H3K4me3 (Figure 1A). Clus-

tering analysis using our data sets and published data sets for

ESCs (Creyghton et al., 2010; Min et al., 2011; Peng et al.,

2009; Schnetz et al., 2010) indicated that Kdm5c binding over-

laps within regions of high, intermediate, or low levels of

H3K4me3 (Figure 1B). As expected, high H3K4me3 regions

(�1/3 of the total) correspond to active promoters and these

regions also display with high signals for H3K27ac and for global

run-on sequencing (GRO-seq), which measures ongoing tran-

scription (Min et al., 2011). Indeed, the vast majority of these

regions localize close to a TSS (Figure 1C). In contrast, regions

with intermediate or low H3K4me3 levels contain lower but

significant H3K27ac or GRO-seq signals and are clearly positive

for H3K4me1. In addition, H3K27me3 is absent from these

regions (data not shown). This pattern corresponds to putative

intergenic enhancers (Buecker and Wysocka, 2012; Creyghton

et al., 2010; Ernst et al., 2011; Heintzman et al., 2009; Pekowska

et al., 2011; Zentner et al., 2011) and these Kdm5c peaks localize

mostly >5 kb from a TSS (Figure 1C). Enhancer proteins such as

p300 and Chd7 (Buecker and Wysocka, 2012; Creyghton et al.,

2010; Schnetz et al., 2010) are enriched at all Kdm5c binding

sites (Figures 1B and S3). Differentiation into NPCsmainly results

in loss of Kdm5c binding for regions with enhancer-like charac-

teristics (Figure 1B). Interestingly, binding of the Kdm5a paralog

(Peng et al., 2009) overlaps with Kdm5c at high H3K4me3

promoter regions, but not at the putative enhancers (Figure 1B).

In conclusion, Kdm5c localizes to both promoter- and enhancer-

like genomic elements in ESCs.

Kdm5c Can Interact with the Gene-Specific
Transcription Factors c-MYC and ELK1
Previous investigations of several Kdm5 demethylases revealed

interactions with gene-specific transcription factors, such as

REST and MYC, that could mediate their recruitment to specific

genomic loci (Blair et al., 2011; Secombe et al., 2007; Tahiliani

et al., 2007). To investigate chromatin localization for Kdm5c

in ESCs, we examined the ChIP-seq peaks for enrichment of

specific DNA sequences using the GREAT algorithm (McLean

et al., 2010). Unexpectedly, we observed no enrichment of

REST motifs in ESCs, and we also could not confirm previous

interactions of Kdm5c with the CoREST complex (Tahiliani

et al., 2007) in this cell system (data not shown). Instead,

Kdm5c peaks for high H3K4me3 regions are enriched for

DNA motifs of gene-specific transcription factors binding to

proximal promoters such as SP1, MYC, and ELK1 (Figure 2A).

In contrast, regions with intermediate H3K4me3 are enriched

for binding motifs for the GATA transcription factors (Fig-

ure 2A), which are typical enhancer pioneering factors (Zaret

and Carroll, 2011). Next, we compared the enrichment of

these sequence motifs with the Kdm5c binding strength. This

showed that the fraction of regions bearing binding sites for

MYC and ELK1 increases with the Kdm5c ChIP-seq signal
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Figure 1. Kdm5c Binds to Promoters and Enhancers in Mouse ESCs

(A) Genome browser representation of the Kdm5c binding sites in ESCs and

NPCs with H3K4me1 and H3K4me3 profiles of ESCs.

(B) Heat maps of ChIP-seq signals (as indicated above) surrounding the 3,668

high-confidence (FDR < 0.05) Kdm5c binding sites (±5 kb) in ESCs. Regions

were classified into high-, intermediate-, or low-H3K4me3 categories. Color

scales are indicated below the columns.

(C) Genes linked to the genomic regions in the three categories are shown as

percentage of binding sites and ranked on the distance (in kb) from the gene

nearest to the binding site. Please note that in some instances, more than one

gene associates with a Kdm5c binding, resulting in a total percentage of more

than 100%.

See also Figures S1, S2, and S3.
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(Figures 2B and 2C). Please note that only 25 of the 6,656

Kdm5c peaks in NPC have a ChIP-seq score > 7; nine of

them have the MYC motif and five contain an ELK1 motif. The

correlation between GATA sites and Kdm5c binding is difficult

to determine because these sites occur frequently in the

mammalian genome.

Next, we examined the published c-MYC ChIP-seq data set

for ESCs (Chen et al., 2008) using the same criteria as for

Kdm5c. Of the 3,668 Kdm5c binding sites and 1,077 c-MYC

binding sites, 356 are overlapping. Other analyses (Figures

S3B and S3C) also showed a strong correlation between

Kdm5c and c-MYC binding in terms of ChIP-seq scores and

locations. Overlapping binding may result from a direct interac-

tion between Kdm5c and c-MYC protein, as indicated by coim-

munoprecipitation of these proteins after cotransfection in 293T

cells (Figure 2D). As expected (Secombe et al., 2007), Kdm5a

(and to a much lesser extent Kdm5b) also interacts with

c-MYC protein. Overrepresentation of the DNA-binding motifs

for ELK1 in Kdm5c regions (Figures 2A and 2C) may also result

from direct protein-protein interactions. Kdm5c and Kdm5b

(and to a lesser extent Kdm5a) coimmunoprecipitate with

transfected ELK1 protein (Figure 2E). In contrast to c-MYC and

ELK1, we could not detect Kdm5c interactions with GATA1,

GATA2, GATA4, or GATA6 in coimmunoprecipitation experi-

ments (data not shown). Recently, it was reported that recruit-

ment of Kdm5a and Kdm5b demethylases to transcribed regions

involves interaction with the chromo-domain protein MRG15

binding to H3K36me3 (Hayakawa et al., 2007; Xie et al., 2011).

In contrast to its family members, Kdm5c does not interact

with MRG15 (Figure S2C), and no Kdm5c peaks in the tran-

scribed regions are apparent in the ChIP-seq data set. Together,

our data indicate that c-MYC is a major recruiter for Kdm5c, and

that different members of the Kdm5 demethylase family display

distinct interaction profiles with several chromatin- or DNA-

binding proteins.

Knockdown of Kdm5c Results in Local Increases of
H3K4me3 and an Altered mRNA Expression Pattern
Recently, it was found that knockdown of Kdm5b expression in

mouse ESCs results in a strong increase in global H3K4me3 with

surprisingly little effect on mRNA expression (Schmitz et al.,

2011). To investigate the contribution of Kdm5c to H3K4 methyl-

ation levels, we created knockdown ESC lines using two

different small hairpin RNAs (shRNAs) against Kdm5c expressed

from lentiviruses (Figure 3A). Global H3K4me3 levels were not

affected by Kdm5c knockdown (Figure 3B), indicating that

Kdm5b, and not Kdm5c, is the predominant demethylase in

this cell system (Schmitz et al., 2011). This suggested a localized

function for Kdm5c, which we investigated by determining ChIP-

seq profiles for H3K4me3 and H3K4me1 after Kdm5c knock-

down. Indeed, analyses of these profiles revealed localized

increases in H3K4me3 and reductions in H3K4me1 modifica-

tions, both of which correlated with Kdm5c binding strength

(Figures 3C, 3D, S4, S5A, and S5B).

Parallel mRNA profiling by DNA microarrays revealed that

Kdm5c knockdown results in both activation and downregula-

tion of gene expression (Figure 4A). We investigated whether

this is correlated to the location of Kdm5c binding sites (Figures
ell Reports 3, 1071–1079, April 25, 2013 ª2013 The Authors 1073
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Figure 2. Direct Protein Interactions of

Kdm5c with c-MYC and ELK1

(A) DNA motif enrichment analyses for the regions

of different H3K4me3 categories in ESCs. Values

on the y axis correspond to the log10 values of the

binominal uncorrected p values. No motifs were

enriched in regions of low H3K4me3.

(B) Proportion of Kdm5c peaks with an E-box

(CACGTG) binding site for c-MYC. The dashed line

indicates the approximate threshold for significant

Kdm5c-binding sites (FDR < 0.05; see Extended

Experimental Procedures).

(C) Proportion of Kdm5c peaks with the ELK1motif

([GC]CGGAAG[CT] in both orientations) shown on

the y axis.

(D) Interaction of GFP-fused Kdm5a, Kdm5b, and

Kdm5c with c-MYC protein in HEK293T extracts.

GFP fusions were precipitated using anti-GFP

beads and analyzed with the indicated antibodies.

(E) Interaction of GFP fusions with ELK1.

See also Figures S2 and S3.
4B and 4C). Interestingly, genes associated with Kdm5c binding

sites in their promoters that contain high H3K4me3 (as deter-

mined in Figure 1B) are predominantly upregulated. In sharp

contrast, genes with distal enhancer-like binding sites (interme-

diate- and low-H3K4me3 regions in Figure 1B are combined) are

predominantly downregulated. This effect was consistent for

both Kdm5c knockdown cell lines.

Regulatory regions such as promoters and enhancers are

marked by an increased accessibility for DNase1 (Buecker and

Wysocka, 2012; Bulger and Groudine, 2011; Thurman et al.,

2012). We compared our Kdm5c ChIP-seq data with a public

ENCODE data set for DNase1 hypersensitive sites in mouse

ESCs (Figure 4D). Strikingly, binding of Kdm5c in both the high

and intermediate H3K4me3 regions strongly correlated with

DNase1 hypersensitivity. This supports the notion that the inter-

mediate H3K4me3 regions represent enhancers. Together with
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the Kdm5c knockdown, these results

suggest a model in which this demethy-

lase acts as a transcriptional repressor

at promoter sites to restrict mRNA output

and as an activator tomaintain the activity

from enhancer elements.

Kdm5c Acts As an Activator of
Enhancer Function and aRepressor
of Promoter Activity
We decided to test this model directly

in transient assays for promoter and

enhancer activity in ESCs. To this end,

selected Kdm5c binding regions with an

average size of �450 bp (270–693 bp;

Table S1; Figures 5A and S5C) were

cloned in two luciferase reporters:

pGL3-basic for promoter activity and

pPou5F1 for enhancer activity (with

a minimal Oct4-promoter active in

ESCs). One of the selected loci corre-
sponded to Kdm5c binding at two previously documented

enhancers at the Gata2 locus (Grass et al., 2006) and is shown

in Figure 5A. Genomic screenshots of the other tested regions

are shown in Figure S5C. In agreement with our hypothesis,

Kdm5c knockdown reduced the enhancer activity of these

regions in the pPou5F1-derived constructs (Figure 5B), and in

most cases their activity was increased as a promoter element

in pGL3 (Figure 5C). TFIID binding is a hallmark of active

promoters and can bind directly to the H3K4me3 mark via its

TAF3 subunit (Vermeulen et al., 2007). Indeed, Kdm5c knock-

down increased the ChIP signal of TAF1, the largest subunit of

TFIID, at most of the tested enhancer and promoter regions (Fig-

ure 5D). Together, our data show that by removingH3K4me3, the

Kdm5c demethylase restricts TFIID binding, thereby regulating

transcription complex assembly at both promoter and enhancer

sites.
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Figure 3. Knockdown of Kdm5c Affects H3K4me1 and H3K4me3

Levels around the Kdm5c Binding Sites

(A) qRT-PCR analysis of Kdm5c mRNA levels upon lentiviral knockdown.

(B) Immunoblot analysis of Kdm5c protein levels and global levels of the

H3K4me3 upon stable knockdown. Two independent Kdm5c-targeting

shRNAs (shKdm5c#1: 3812, and shKdm5c#2: 3813) and a nontargeting

control shRNAwere used. The parental ESC line (IB10) served as an additional

control.

(C) The levels of H3K4me1 and H3K4me3 as defined by a ChIP-seq analysis

within 500 bp of the Kdm5c peaks change upon Kdm5c knockdown. The fold

change is dependent on the strength of Kdm5c binding as indicated by the

Kdm5c ChIP-seq score. Values on the y axis represent the average ratios of

H3K4me3methylation in Kdm5c knockdown over nontargeting shRNA control

cells. The dashed line indicates the threshold for significant Kdm5c binding

sites (FDR < 0.05).

(D) Upper panel: Genome browser screenshot of the Tfdp1 locus where

a highly localized increase of the H3K4me3 levels in region A is observed in the

ChIP-seq experiment. Lower panel: The data obtained from the ChIP-seq

experiment were confirmed in an independent ChIP-qPCR experiment with

three primers sets, indicated as A, B, and C. Data are presented asmean ± SE.

The significance of differences in H3K4me3 levels was determined by an

unpaired t test of the Kdm5c knockdown cell lines against the control shRNA

cell line (*p < 0.05, **p < 0.001).

See also Figures S4, S5, and Table S2.
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DISCUSSION

Distinct methylation states of histone H3K4 correlate with the

transcriptional roles of underlying DNA elements. Our study

reveals that the H3K4 demethylase Kdm5c is involved in speci-

fying the functional identity of transcription regulatory DNA

elements in the genome. Although Kdm5c can be recruited to

both promoter and enhancer elements via gene-specific tran-

scription factors (e.g., ELK1 and c-MYC), the transcriptional

responses upon knockdown of Kdm5c expression are predom-

inantly dependent on the initial H3K4 methylation state. In pla-

ces with a high H3K4me3 level (i.e., gene promoters), Kdm5c

binding acts to limit levels of H3K4me3, which leads to a reduced

binding of activator complexes, such as TFIID and possibly

others (Ruthenburg et al., 2007; Shilatifard, 2008; Vermeulen

et al., 2007; Wysocka et al., 2006), and hence restricts transcrip-

tion. Thus, Kdm5c has a repressive role at promoter sites similar

to that of its paralogs, Kdm5a and Kdm5b (Blair et al., 2011). In

contrast, at sites with relatively high levels of H3K4me1 (gene

enhancers), Kdm5c maintains this modification state by

removing spurious H3K4me3/2 modifications. This would

prevent inappropriate loading of transcription complexes, which

would compete with their binding to the nearby promoter. It is

interesting to note that of the small set of genes (185) with

Kdm5c peaks at both a promoter-proximal and a promoter-

distal position, 11 are downregulated upon Kdmc5c knockdown

and none are upregulated (data not shown). Taken together, our

findings indicate that Kdm5c activity supports enhancer func-

tion, which would be consistent with the previous classification

of its Drosophila paralog, Lid, as a Trithorax-group gene (Eissen-

berg et al., 2007; Gildea et al., 2000). This indicates that failure to

remove H3K4 methylation affects developmental mRNA expres-

sion programs.

Whyte et al. (2012) recently found that Lsd1 is required for

silencing of enhancers during differentiation of ESCs and

is essential for complete shutdown of ESC-specific genes.

Possibly, Kdm5 family members such as Kdm5b (Dey et al.,

2008; Schmitz et al., 2011) and Kdm5c (this work) collaborate

with Lsd1 to erase H3K4 methylation during ESC differentia-

tion, allowing switching of gene expression programs and tran-

sition to new cell states. Together, these findings raise ques-

tions about the stability of H3K4 methylation. Although global

turnover seems to be low (Zee et al., 2010), localized H3K4

methylation may be much more dynamic. Analogously to

histone deacetylases (Wang et al., 2009) and in support of

a dynamic turnover, the Kdm5a (Peng et al., 2009), Kdm5b

(Schmitz et al., 2011), and Kdm5c (Figures 1B and 1C) deme-

thylases colocalize with their substrates at active promoters.

To determine local turnover of H3K4me3/2 states and their

direct effects on transcription methylation, inhibitors targeting

the Kdm5 demethylases and/or the SET1/MLL methyltrans-

ferases are needed.

The proposal that histone H3K4methylation controls develop-

mental switches is further supported by the observation that

loss-of-function mutations in the human KDM5c gene are caus-

ative of X-linkedmental retardation (Blair et al., 2011). In addition,

somatic mutations of KDM5C in humans are linked to renal

cancers (Dalgliesh et al., 2010). We propose that some of
ell Reports 3, 1071–1079, April 25, 2013 ª2013 The Authors 1075
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Figure 4. Transcriptional Responses upon

Kdm5c Knockdown Depend on the Initial

Chromatin State

(A) Heat map of the significantly changing genes

that overlap in both Kdm5c knockdown cell lines,

analyzed for each cell line in quadruple.

(B) Significantly changing genes (microarray,

p < 0.05) associated to the Kdm5c binding regions

with high and intermediate/low H3K4me3 levels

are shown for the shKdm5c#1(3812) knockdown

cell line. Significance levels of p < 0.05 between the

gene expression changes of the high-H3K4me3

and intermediate/low-H3K4me3-region-associ-

ated genes are indicated with a star. The red lines

indicate the mean values. Duplicates of multiple

regions associated with the same gene were

removed.

(C) Same as in (B) but for the shKdm5c#2(3813)

knockdown cell line.

(D) Clustering of the DNase1 sensitivity peaks from

mouse ESCs (ES-E14 ENCODE data set NCBI

GEO: GSM1014154) around the Kdm5c binding

sites with high, intermediate, and low H3K4me3

levels. The right lane compares transcriptional

responses to Kdm5c knockdown of the nearest

gene as defined in the Extended Experimental

Procedures. Color code: gray, genes did not

change significantly (p > 0.05); red, genes were

significantly upregulated (p < 0.05); and green,

genes were significantly downregulated (p < 0.05)

genes. White indicates that no gene could be

associated with this region.
the effects of these KDM5C mutations relate to a disrupted

enhancer function. Enhancers were identified more than three

decades ago (Banerji et al., 1981), but the chromatin modifica-

tions that distinguish these elements from promoters were

recognized only recently (Buecker and Wysocka, 2012; Heintz-

man et al., 2009). This distinction may not be as clear-cut, since

active enhancers in primary lymphocytes and neurons are

also associated with H3K4me3 and pol II (Kim et al., 2010;

Pekowska et al., 2011). Moreover, enhancer-associated pol II

may not be a by-product of chromatin loops (Bulger and Grou-

dine, 2011; Ong and Corces, 2011), as enhancer-derived RNAs

resulting from bidirectional initiation events have been detected

(Core et al., 2008; Kim et al., 2010; Koch and Andrau, 2011; Ko-

walczyk et al., 2012). Such enhancers can act as alternative
1076 Cell Reports 3, 1071–1079, April 25, 2013 ª2013 The Authors
tissue-specific promoters (Kowalczyk

et al., 2012), which may be controlled by

the H3K4 methylation status. Accord-

ingly, we find that loss of Kdm5c can

activate a latent promoter activity in

enhancers.

An implication of enhancer control by

Kdm5c is that this demethylase would

act in concert with the H3K4 methyla-

tion enzymes to functionally catalog

genomic regions destined for enhancer

or promoter function. The highly localized

effects of Kdm5c reducing the H3K4me3
state to H3K4me1 demonstrate that Kdm5c is not primarily

responsible for establishing H3K4me1 states, but dynamically

modulates H3K4me3 levels in regions that are targeted by

the H3K4 methyltransferases. Recent results in Drosophila

suggest that the MLL3/4 complexes are involved in estab-

lishing the H3K4me1 state in mammals (Herz et al., 2012).

Interestingly, systematic sequencing in renal carcinoma, char-

acterized by inactivating mutations mostly in the VHL gene,

identified additional gene mutations in KDM5C, MLL2, and

the KDM6A/UTX H3K27me3 demethylase gene, whose protein

product is part of MLL3 and MLL4 complexes (Dalgliesh et al.,

2010; Lee et al., 2007).

Overall, our work provides insight into the modulation

and establishment of the different H3K4 methylation states
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Figure 5. Kdm5c Is a Negative Regulator of Promoter Activity and
a Positive Regulator of Enhancer Activity

(A) Genome browser screenshot of the Kdm5c binding sites in theGata2 locus

together with H3K4me1, H3K4me3, and DNase1 hypersensitivity profiles. The

regions analyzed in the luciferase experiments are encircled by a dotted

ellipse.

(B) Normalized firefly luciferase activity in ESCs transfected with enhancer

constructs containing the Kdm5c binding sites in front of the Oct4 minimal

promoter (pPou5F1) in both the control and Kdm5c knockdown cell lines.

(C) Promoter activity of constructs of the same Kdm5c binding sites, driving

expression of the firefly luciferase construct lacking promoter sequences

(pGL3-basic).

C

throughout the genome, the functional specification of en-

hancers and promoters, and the dynamics of H3K4 methylation

states.

EXPERIMENTAL PROCEDURES

Cell Culture and BAC Recombineering

IB10 (E14-ESC) and its derivative BirA (Driegen et al., 2005) mouse ESCs were

cultured on gelatin-coated dishes under standard conditions. A Kdm5c con-

taining bacterial artificial chromosome (BAC: #RP23-391D18) was obtained

from the BACPAC Resources Center (http://bacpac.chori.org). The triple-tag

V5-FLAG-BIO cassette was inserted as a C-terminal in-frame fusion using

BAC recombineering (Poser et al., 2008) BirA ESCs were transfected with

the recombineered BAC using Lipofectamine 2000 (Invitrogen) and selected

on geneticin (G418 sulfate; GIBCO). BirA and transgenic derivatives containing

the tagged Kdm5c gene were differentiated into NPCs using the procedure

described in Conti et al. (2005). Cos7 and HEK293T were cultured using stan-

dard conditions.

ChIP-Seq Data analysis

All of the ChIP-seq experiments were performed in triplicate and analyzed in

a single lane on Hiseq2000. Sequence reads were mapped to the unmasked

M. musculus genome (NCBI37; ftp://ftp.ncbi.nih.gov/genomes/M_musculus)

using the SOAPv2 program (Ruffalo et al., 2011), allowing a maximum of two

mismatches. Read-enriched regions were detected using CSAR (Muiño

et al., 2011). Essentially, uniquely mapped reads were extended directionally

200 bp. Low-coverage regions in the control with fewer than a minimum of

eight extended reads were set to this number for both Kdm5c ESCs and

NPCs. Enrichment of sample to control was calculated using a ratio score.

FDR thresholds were estimated by permutation of reads between the IP

sample and control. Based on an FDR < 0.05, the thresholds were 2.45

for the ESC and 2.24 for the NPC line. Primers for ChIP-PCR are listed in

Table S2.

Antibodies

H3K4me3 (05-745R [Millipore] for ChIP-seq or ab8580 [Abcam] for ChIP-

quantitative PCR [ChIP-qPCR]), H3K4me1 (pAb-037-050; Diagenode) or H3

(ab1791; Abcam), Nanog (A300-397A-I; Bethyl), Nestin (611658; BD Bio-

siences), Kdm5c (A301-034A; Bethyl), GFP (11814460001; Roche), V5

(combined clones 5C5 and 10D11, a gift from Dr. Dies Meijer, Rotterdam),

TAF1 (ab51540; Abcam), Lin28 (ab460200; Abcam), and MYC (05-724, clone

4A6; Millipore) antibodies were used in this study.

Data analysis

Significantly enriched Kdm5c-binding regions (FDR < 0.05) were compared

with published data sets (see Results section) using seqMINER (Ye et al.,

2011). Genes associated to Kdm5c binding sites (FDR < 0.05) were identified

with GREAT (McLean et al., 2010) using standard basal plus extension search

settings (proximal 5 kb upstream, 1 kb downstream, plus distal up to 1,000 kb).

Motif enrichments within 1 kb of a Kdm5c-binding site were determined using

GREAT.

Further detailed information can be found in the Extended Experimental

Procedures.

ACCESSION NUMBERS

Raw data and .wig files can be found in the Gene Expression Omnibus (GEO)

under accession number GSE34975. Microarray data have been deposited in

ArrayExpress under accession number GSE38862.
(D) Knockdown of Kdm5c results in increased binding of TFIID. The presence

of TAF1 protein on the selected loci Kdm5c binding loci was quantified by

ChIP-qPCR. Data are presented as mean ± SD.

See also Figure S5 and Tables S1 and S2.
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