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Large scale international replication and meta-analysis study
confirms association of the 15q14 locus with myopia.
The CREAM consortium
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Abstract Myopia is a complex genetic disorder and a

common cause of visual impairment among working age

adults. Genome-wide association studies have identified

susceptibility loci on chromosomes 15q14 and 15q25 in

Caucasian populations of European ancestry. Here, we

present a confirmation and meta-analysis study in which

we assessed whether these two loci are also associated with

myopia in other populations. The study population com-

prised 31 cohorts from the Consortium of Refractive Error

and Myopia (CREAM) representing 4 different continents

with 55,177 individuals; 42,845 Caucasians and 12,332

Asians. We performed a meta-analysis of 14 single

nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on

15q25 using linear regression analysis with spherical

equivalent as a quantitative outcome, adjusted for age and
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sex. We calculated the odds ratio (OR) of myopia versus

hyperopia for carriers of the top-SNP alleles using a fixed

effects meta-analysis. At locus 15q14, all SNPs were sig-

nificantly replicated, with the lowest P value 3.87 9 10-12

for SNP rs634990 in Caucasians, and 9.65 9 10-4 for

rs8032019 in Asians. The overall meta-analysis provided

P value 9.20 9 10-23 for the top SNP rs634990. The risk

of myopia versus hyperopia was OR 1.88 (95 % CI 1.64,

2.16, P \ 0.001) for homozygous carriers of the risk allele

at the top SNP rs634990, and OR 1.33 (95 % CI 1.19, 1.49,

P \ 0.001) for heterozygous carriers. SNPs at locus 15q25

did not replicate significantly (P value 5.81 9 10-2 for top

SNP rs939661). We conclude that common variants at

chromosome 15q14 influence susceptibility for myopia in

Caucasian and Asian populations world-wide.

Introduction

Refractive errors are common optical defects of the visual

system. An important refractive error is myopia (near-

sightedness), which occurs when the eye elongates beyond

the focal plane. The prevalence of myopia is high, affecting

about one-third of the world’s population, and reaching

over 70 % in certain Asian ethnic groups (He et al. 2004;

Kempen et al. 2004; Lin et al. 2004; Vitale et al. 2008; Wu

et al. 2001). High degrees of myopia are associated with

pathologic ocular changes, such as myopic macular

degeneration, retinal detachment, and glaucoma (Curtin

and Karlin 1971; McBrien and Gentle 2003; Saw 2006;

Saw et al. 2005; Tano 2002). Due to the limited treatment

options, myopia is a common cause of visual impairment

(Tano 2002; Young 2009).

Refractive errors, and myopia in particular, are complex

genetic traits with a largely unknown etiology. Established

environmental factors are education, early reading, and

reduced outdoor exposure (Dirani et al. 2009; Ip et al. 2008;

McBrien et al. 2008; Morgan and Rose 2005; Rose et al. 2008;

Saw et al. 2001; Young 2009). Although heritability estimates

are high [50–90 % (Young et al. 2007)], the search for myopia

genes is still ongoing. Previous linkage and association studies

have led to the identification of at least 18 myopia (MYP) loci,

10 additional chromosomal regions, and several candidate

genes (Baird et al. 2010; Young 2009). Replication of these

associations has been inconsistent, and their application to the

general population is limited (Baird et al. 2010).

Recent genome-wide association studies (GWAS)

reported several susceptibility loci for refractive error and
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myopia (Hysi et al. 2010; Li et al. 2011a, b; Nakanishi

et al. 2009; Shi et al. 2011; Solouki et al. 2010). Solouki

et al. (2010) and Hysi et al. (2010) were the first to perform

a GWAS in a general Caucasian population, and identified

susceptibility loci on chromosomes 15q14 and 15q25,

respectively. In both studies, carriers of single nucleotide

polymorphism (SNP) rs634990 at 15q14 (OR 1.83, 95 %

CI 1.42–2.36) and of SNP rs8027411 at 15q25 (OR 1.16,

95 % CI 1.02–1.28) had a higher risk of myopia. Confir-

mation of these findings was obtained in various replication

studies (Hayashi et al. 2011; Hysi et al. 2010; Solouki et al.

2010). However, these replication cohorts were relatively

limited in size, increasing the chance of a type 1 error.

To address potential inaccuracies and to investigate gener-

alizability, we investigated the associations between refractive

error, and the 15q14 and 15q25 susceptibility loci in a large

international replication and meta-analysis study (Consortium

of Refractive Error and Myopia, CREAM) including 31

cohorts with various ethnicities from 4 different continents.

Results

Meta-analysis of allelic effects on spherical

equivalent (SE)

Complete data on refractive error and genome-wide SNPs

were available in all 29 population-based studies com-

prising 49,364 subjects: 42,224 Caucasians and 7,140

Asians (Table 1; Fig. 1, Supplementary Table 1). This

includes the previously reported discovery set consisting of

15,608 (Solouki et al. 2010) and 17,608 subjects (Hysi

et al. 2010), respectively.

Table 2 shows the results of the meta-analysis of the 14

SNPs (Hysi et al. 2010; Solouki et al. 2010) at locus 15q14

and 5 SNPs at locus 15q25. The frequency of the effect

allele C for top SNP rs634990 at locus 15q14 ranged from

0.38 to 0.64, while frequency of the effect allele A for top

SNP rs939661 at 15q25 showed a larger variation, ranging

from 0.28 to 0.63 (Supplementary Figure 1). The sample

size of each SNP per study is provided in Supplementary

Table 1. For locus 15q14, the magnitude and direction of

the effects were consistent in all cohorts except Croatia Vis

and SIMES. For locus 15q25, there was less consistency;

for top SNP rs939661 8 cohorts—both Caucasian and

Asian (Australian Twins, Croatia Split, Croatia Vis,

EGCUT, FITSA, GHS II, ORCADES, and SIMES)—had

a regression beta coefficient in the opposite direction to

that of the other studies.

For locus 15q14, the replication set, consisting of all

studies except the ones previously used in the discovery

analysis, showed a statistically significant association

between SE and all SNPs with a best P value 4.53 9 10-14

for top SNP rs634990. Confirmation was achieved in 23

out of 25 Caucasian studies (overall P 3.87 9 10-12 for

SNP rs634990), and in 3 out of 4 Asian studies (overall
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P 2.21 9 10-3 for SNP rs634990). Meta-analysis of the

discovery and replication cohorts together provided

P value 9.20 9 10-23 for SNP rs634990.

For locus 15q25, neither Caucasian nor Asian validation

studies replicated the original association. Meta-analysis of

the combined set of the 5 SNPs yielded a lowest

P 1.22 9 10-4 for SNP rs939661. As a subsequent analysis,

we investigated locus 15q25 in more detail, and tested another

26 SNPs in 26 out of 29 cohorts (no data available in

ALSPAC, AREDS 1, and EGCUT). This set of SNPs was not

replicated either, however, meta-analysis including the dis-

covery cohort was still significant (best P 2.07 9 10-4 for

SNP rs1915726; Supplementary Table 3).

Meta-analysis of risk of myopia for top SNP

Genotype distributions for rs634990 at locus 15q14 were

available for 28 out of 31 studies (all but FITSA, Australian

Twins, and SORBS). There was no evidence of heteroge-

neity in the analyses of homozygote carriers [v2 21.35 (d.f.

26), P 0.724, I2 0.0 %] or heterozygote carriers [v2 24.22

(d.f. 26), P 0.564, I2 0.0 %]. Therefore, only results from

fixed effects meta-analysis were used. Figure 2 shows the

forest plots for the risk of myopia for homozygous and

heterozygous carriers of the top SNP rs634990. The OR of

moderate to high myopia (SE B-3 D) versus moderate to

high hyperopia (SE C?3 D) was 1.88 (95 % CI 1.64, 2.16,

P \ 0.001) for homozygous carriers of the risk allele at the

top SNP rs634990, and 1.33 (95 % CI 1.19, 1.49,

P \ 0.001) for heterozygous carriers.

Discussion

Chromosome 15q was first implicated in refractive error

and myopia by genome-wide analysis of two large studies

located in Northern Europe (Hysi et al. 2010; Solouki et al.

2010). Here, in an international meta-analysis consisting of

31 independent studies from the CREAM consortium, we

provide further support that the association with locus

15q14 is robust and present in both Caucasians and Asians.

We combined the results with those of the initial study into

a powerful meta-analysis of highly associated SNPs with a

total study population of 55,177 participants. The com-

bined results showed that all tested SNPs for locus 15q14

were associated with refractive errors, and that homozy-

gous carriers of the top SNP rs634990 had approximately

twice the risk of myopia. SNPs at the other locus, 15q25,

could not be convincingly replicated.
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This study has strengths and limitations. Major strengths

of the study include the sample size and the inclusion of

different ethnicities. The CREAM consortium represents

the largest study on refractive error known to date. Previ-

ous replication studies have not been large scaled and

focused on populations of the same ancestry (Gao et al.

2012; Lu et al. 2011; Wang et al. 2011). Another advantage

of our study is the incorporation of clinical relevant end-

points such as high myopia and high hyperopia. Among the

limitations are differences in designs and methods of the

studies. (1) Population-based as well as case control studies

were incorporated. However, the latter were only two

(Kyoto Study and SORBS) and both had results within the

same range as the population-based studies. (2) Different

types of equipment and measurement methods were used to

detect refractive error. These differences are generally

subtle, and are not likely to cause false findings. (3) Var-

ious methods of genotyping and imputation were used, and

genotyping was not complete in all studies. All SNPs at

15q14 had similar effect; thus, we do not think this has

influenced these associations. SNPs at 15q25 showed larger

variation, and the incomplete genotyping may have

underpowered this analysis.

Earlier replication of the 15q14 locus was reported by

Hayashi et al. (2011) in a Japanese sample of high myopic

probands and controls. In a comparison of 1,125 high

myopes (axial length[26.1 mm) versus 1,295 controls, the

risk of high myopia was increased for the carriers of the

initial top SNP rs634990 [OR 1.84 in homozygotes (95 %

CI 1.44–2.36)]. Taken together with the current findings,

this suggests that 15q14 plays a role in both common and

high myopia.

The 15q14 associated region contains two interesting

genes that are both well expressed in the retina, GJD2 and

ACTC1. GJD2 encodes the Connexin36 protein, which

plays a crucial role in the transmission and processing of

visual signals in the retina by enabling intercellular trans-

port of small molecules and ions in photoreceptors, ama-

crine and bipolar cells (Deans et al. 2002; Guldenagel et al.

2001; Kihara et al. 2009; Striedinger et al. 2005). We

speculated that the protein encoded by the other candidate

gene, ACTC1, could play a role in scleral remodeling,

given the fact that similar actin proteins have been shown

to be increased in developing myopic tree shrew eyes

(Jobling et al. 2009). Previous GJD2 (Solouki et al. 2010)

and ACTC1 (unpublished data) direct sequencing experi-

ments did not reveal a functional variant, but the 15q14

locus appeared to harbor regulatory elements which may

influence transcription of these genes (Solouki et al. 2010).

The 15q25 region contains the interesting candidate

gene RASGRF1, which is highly expressed in the retina and

has previously been implicated in photoreception and

visual sensory processes (Fernandez-Medarde et al. 2009;

Jones and Moses 2004). The association with this locus and

gene is not robust, since none of the initial SNPs replicated

significantly, and determination of more SNPs did not

increase significance. A type 1 error may explain the initial

finding. Another potential cause for the non-replication is a

large variation in allele frequencies. The range of allele

frequencies at 15q25 (0.28–0.63) was only slightly larger
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than at 15q14 (0.38–0.64) in our consortium, making this

an unlikely explanation (Supplementary Figure 1). Finally,

population stratification within cohorts did not appear to

play a major role, since only two cohorts had significant

principal components, which were addressed in the

analyses.

Other GWAS loci were only found for high myopia in

Asian case control studies, and they were located on

chromosomes 11q24.1 (Nakanishi et al. 2009), 5p15 (Li

et al. 2011a), 4q25 (Li et al. 2011b), and 13q12.12 (Shi

et al. 2011). The locus on chromosome 5p15 harbors the

excellent candidate gene CTNND2 which is involved in

retinal morphogenesis, adhesion, retinal cell architecture

integrity (Duparc et al. 2006; Paffenholz et al. 1999), and

was replicated in subjects of the same ethnicity (Lu et al.

2011). Replication studies for the 4q25 (Gao et al. 2012)

and 11q24.1 (Wang et al. 2011) loci were only successful

in case of the 4q25 locus; these loci did not have prominent

candidate genes.

What should be the next steps? For 15q14, compre-

hensive resequencing of the entire associated region and

the flanking genes can reveal the responsible gene

Table 1 Descriptives of all study cohorts

Study n Mean age (SD) Age range Men (%) Mean SE (SD)

1958 British Birth Cohort 1,658 42 (0.0) 40–50 54.2 -0.96 (2.00)

AGES Reykjavik 2,986 76.3 (5.4) 60–80? 35.3 1.22 (2.05)

ALSPAC 3,804 15.4 (0.3) 14.25–17.08 47.2 -0.38 (1.28)

AREDS 1 816 79.5 (5.1) 60–80? 43.5 0.68 (1.94)

AREDS 2 1,506 68.0 (4.7) 55–81 41.1 0.54 (2.25)

Australian Twins 1,819 22.2 (12.7) 5–90 44.0 -0.22 (1.28)

Blue Mountains Eye Study 1,574 64 (7.9) 50–80? 43.4 0.59 (1.96)

Croatia Split 366 49.8 (14.4) 18–85 46.0 -1.83 (1.83)

Croatia Vis Island 544 55.8 (14.0) 18–83 40.0 -0.16 (1.93)

Croatia Korcula Island 836 56.0 (13.8) 18–98 35.0 -0.25 (1.92)

ERF 2,032 48.5 (14.3) 18? 43.1 0.07 (2.13)

EGCUT 338 34.8 (15.2) 18–85 36.9 -2.60 (2.00)

Finnish Twin Study on Aging 127 68.2 (3.8) 63–76 0.0 1.68 (1.54)

Framingham Eye Study 1,500 55.5 (9.0) 20–80 42.5 -0.17 (2.40)

Gutenberg Health Study I 2,745 55.7 (11) 35–74 51.5 -0.38 (2.44)

Gutenberg Health Study II 1,142 55.0 (10.9) 35–74 49.8 -0.41 (2.58)

KORA 1,867 55.6 (11.7) 35–84 49.6 -0.29 (2.27)

MESA 1,462 62 (9.4) 46–86 49.5 -0.28 (2.62)

ORCADES 505 54.8 (13.7) 22–88.5 43.0 0.01 (2.14)

Rotterdam Study 1 5,328 68.5 (8.6) 55? 41.3 0.86 (2.45)

Rotterdam Study 2 2,009 64.2 (7.4) 55? 45.9 0.48 (2.51)

Rotterdam Study 3 1,970 56.0 (5.5) 45? 43.9 -0.35 (2.62)

OGP Talana 623 44.5 (21.1) 5–89 51.8 -0.15 (1.78)

SCORM 929 10.8 (0.8) 10–15 48.0 -2.02 (2.26)

SiMES 2,226 57.7 (10.8) 40–80 49.3 -0.08 (1.98)

SINDI 2,055 55.7 (8.7) 40–80? 51.2 0.01 (2.13)

SP2 1,930 47.5 (10.9) 20–80 45.4 -1.67 (2.89)

TwinsUK 4,270 55.0 (12.0) 20–82 7.4 -0.39 (2.73)

Young Finns 397 37.6 (5.2) 25–50 45.0 -1.20 (2.29)

Kyoto Study 5,192 na na na na

Cases 1,143 58.4 (14.3) 20–91 33.3 -10.50 (6.44)

Controls 1 3,120 58.5 (13.6) 20–90 61.7 na

Controls 2 929 38.8 (11.8) 0–74 41.3 na

SORBS 621 na na na na

Cases 100 45.4 (6.6) 18–40 36.4 na

Controls 521 28.3 (15.16) 18–80 45.0 na
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defects which determine the association. Novel tech-

niques such as next-generation sequencing are promising

in this regard. Functional studies in knockout animals

will shed light on potential protein effects. Finally,

evaluation of gene-environment interactions may explain

phenotypic variation and help identify high risk groups.

For myopia genetics in general, performance of a gen-

ome-wide meta-analysis is a logical next step. The cur-

rent CREAM collaboration is an excellent platform for

this project.

In summary, we have convincingly demonstrated that

common variants at chromosome 15q14 influence suscepti-

bility for myopia in both Caucasian and Asian populations

around the world. Identification of functional variants and

responsible genes that explain this association will provide

more insight in the complex etiology of myopia.

Materials and methods

Subjects and phenotyping

A total of 31 study cohorts from the Consortium of Refrac-

tive Error and Myopia (CREAM) participated in this meta-

analysis. 29 population-based as well as 2 case–control

studies were included. General methods, descriptives and

phenotyping and genotyping methods of the study cohorts

can be found in Table 1, the Supplementary Material and

Supplementary Table 1, respectively. In short, 22 cohorts

consisted of Caucasian, and 5 of Asian study subjects. All

studies were performed with the approval of their local

Medical Ethics Committee, and written informed consent

was obtained from all participants in accordance with the

Declaration of Helsinki.

Fig. 1 Mean age and distribution of spherical equivalent in all study cohorts
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Table 2 Meta-analysis of allelic effects on spherical equivalent at locus 15q14 and 15q25

SNP Position Effect allele Non effect allele Freq. Discovery (n = 15,608)a Replication (n = 33,755)b Caucasian (n = 26,615)c

beta se P beta se P beta se P

Locus 15q14

rs634990 32793365 C T 0.49 -0.23 0.03 1.35 x 10-14 -0.09 0.01 4.53 x 10-14 -0.08 0.01 3.87 x 10-12

rs560766 32788234 A G 0.48 -0.20 0.03 4.82 x 10-12 -0.09 0.01 3.53 x 10-14 -0.08 0.01 3.91 x 10-12

rs524952 32793178 A T 0.48 -0.23 0.03 1.19 x 10-14 -0.08 0.01 9.05 x 10-13 -0.08 0.01 1.07 x 10-11

rs688220 32786167 A G 0.48 -0.20 0.03 4.43 x 10-12 -0.08 0.01 1.01 x 10-13 -0.08 0.01 1.38 x 10-11

rs580839 32786121 A G 0.48 -0.20 0.03 4.39 x 10-12 -0.08 0.01 1.05 x 10-13 -0.08 0.01 1.34 x 10-11

rs11073060 32777143 A C 0.48 -0.21 0.03 1.12 x 10-12 -0.08 0.01 2.46 x 10-13 -0.08 0.01 2.47 x 10-11

rs4924134 32781857 G A 0.45 -0.21 0.03 1.20 x 10-12 -0.08 0.01 3.01 x 10-13 -0.08 0.01 2.96 x 10-11

rs7176510 32786771 T C 0.45 -0.20 0.03 1.70 x 10-11 -0.09 0.01 8.31 x 10-14 -0.08 0.01 7.81 x 10-12

rs619788 32782398 A C 0.44 -0.20 0.03 3.94 x 10-12 -0.08 0.01 2.21 x 10-13 -0.08 0.01 2.29 x 10-11

rs7163001 32777866 A G 0.44 -0.21 0.03 1.26 x 10-12 -0.08 0.01 6.28 x 10-13 -0.08 0.01 4.16 x 10-11

rs11073059 32776966 A T 0.44 -0.21 0.03 1.98 x 10-12 -0.08 0.01 8.78 x 10-13 -0.08 0.01 4.85 x 10-11

rs11073058 32776918 T G 0.44 -0.20 0.03 2.23 x 10-12 -0.08 0.01 8.52 x 10-13 -0.08 0.01 4.84 x 10-11

rs685352 32795627 G A 0.46 -0.21 0.03 4.55 x 10-13 -0.08 0.01 4.32 x 10-12 -0.08 0.01 2.09 x 10-10

rs8032019 32778782 G A 0.40 -0.19 0.03 1.00 x 10-10 -0.08 0.01 5.81 x 10-12 -0.08 0.01 7.00 x 10-10

SNP Position Effect allele Non effect allele Freq. Discovery (n = 17,806)a Replication (n = 31,557)b Caucasian (n = 24,417)c

beta se P beta se P beta se P

Locus 15q25

rs939661 77218118 A G 0.51 -0.15 0.03 3.85 x 10-9 -0.02 0.01 5.81 x 10-2 -0.02 0.01 7.73 x 10-2

rs939658 77238924 G A 0.51 -0.15 0.03 1.85 x 10-9 -0.02 0.01 1.60 x 10-1 -0.02 0.01 2.16 x 10-1

rs17175798 77251015 C T 0.51 -0.15 0.03 1.99 x 10-9 -0.02 0.01 1.81 x 10-1 -0.01 0.01 2.38 x 10-1

rs8033963 77242405 C C 0.51 -0.15 0.03 1.86 x 10-9 -0.01 0.01 2.18 x 10-1 -0.02 0.01 2.20 x 10-1

rs8027411 77248084 T G 0.51 -0.15 0.03 2.07 x 10-9 -0.01 0.01 2.49 x 10-1 -0.02 0.01 2.16 x 10-1

SNP Position Effect allele Non effect allele Freq. Asian (n = 7,140)d Meta-analysis (n = 49,363)e

beta se P beta se P

Locus 15q14

rs634990 32793365 C T 0.49 -0.12 0.04 2.21 x 10-3 -0.11 0.01 9.20 x 10-3

rs560766 32788234 A G 0.48 -0.12 0.04 1.47 x 10-3 -0.10 0.01 1.03 x 10-21

rs524952 32793178 A T 0.48 -0.18 0.07 9.52 x 10-3 -0.10 0.01 2.00 x 10-21

rs688220 32786167 A G 0.48 -0.12 0.04 9.80 x 10-4 -0.10 0.01 3.44 x 10-21

rs580839 32786121 A G 0.48 -0.12 0.04 1.10 x 10-3 -0.10 0.01 3.51 x 10-21

rs11073060 32777143 A C 0.48 -0.12 0.04 1.45 x 10-3 -0.10 0.01 5.13 x 10-21

rs4924134 32781857 G A 0.45 -0.12 0.04 1.60 x 10-3 -0.10 0.01 5.57 x 10-21

rs7176510 32786771 T C 0.45 -0.12 0.04 1.74 x 10-3 -0.10 0.01 6.09 x 10-21

rs619788 32782398 A C 0.44 -0.12 0.04 1.54 x 10-3 -0.10 0.01 6.97 x 10-21

rs7163001 32777866 A G 0.44 -0.11 0.04 2.81 x 10-3 -0.10 0.01 1.41 x 10-20

rs11073059 32776966 A T 0.44 -0.11 0.04 3.64 x 10-3 -0.10 0.01 2.63 x 10-20

rs11073058 32776918 T G 0.44 -0.11 0.04 3.50 x 10-3 -0.10 0.01 2.68 x 10-20

rs685352 32795627 G A 0.46 -0.11 0.04 4.14 x 10-3 -0.10 0.01 8.10 x 10-20

rs8032019 32778782 G A 0.40 -0.13 0.04 9.65 x 10-4 -0.10 0.01 1.78 x 10-18

Locus 15q25

rs939661 77218118 A G 0.51 -0.03 0.04 4.86 x 10-1 -0.04 0.01 1.22 x 10-4

rs939658 77238924 G A 0.51 -0.04 0.05 3.94 x 10-1 -0.04 0.01 4.32 x 10-4

rs17175798 77251015 C T 0.51 -0.05 0.06 3.70 x 10-1 -0.04 0.01 6.12 x 10-4
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All studies used a similar protocol for phenotyping. Exclu-

sion criteria were age B10 years, and bilateral cataract surgery,

laser refractive procedures or other intra-ocular procedures

which might alter refraction. Eligible participants underwent a

complete ophthalmologic examination including a non-dilated

measurement of refractive error (Table 1) of both eyes.

Spherical equivalent was calculated according to the standard

formula (SE = sphere ? � cylinder), and the mean of two

eyes was used for analysis. When data from only one eye were

available, the SE of this eye was used. SE was categorized into

low (SE from -1.5 to -3 D), moderate (SE from -3 to -6 D)

and high (SE of -6 D or lower) myopia; and also into low (SE

from ?1.5 to ?3 D), moderate (SE from ?3 to ?6 D) and high

(SE of ?6 D or higher) hyperopia. Emmetropia was defined as

SE equal to or between -1.5 and ?1.5 D.

Genotyping and imputation

DNA was extracted according to standard procedures, and

genotyping and imputation of SNPs across the entire gen-

ome was performed using various methods (Table 1).

Samples with a low call rate, with excess autosomal het-

erozygosity, with sex-mismatch, or outliers identified by

the identity-by-state clustering analysis were excluded.

Statistical analysis

Meta-analysis of allelic effects on spherical equivalent

We selected 19 SNPs within loci 15q14 (14 SNPs) and

15q25 (5 SNPs) with a P value of\10-6 from two previous

GWAS (Hysi et al. 2010; Solouki et al. 2010). Linear

regression models with a 1 degree of freedom trend test

were used to examine associations with SE as a quantita-

tive trait outcome, adjusting for age and gender and sig-

nificant principal components if applicable. From all

population-based cohorts, we obtained effect allele, non

effect allele, regression coefficient beta, standard error,

P value, minor allele and minor allele frequency for each of

these SNPs. METAL for Linux was used to perform a

meta-analysis on betas and standard errors for all SNPs.

First, discovery cohorts (Hysi et al. 2010; Solouki et al.

2010) and replication studies were analyzed separately,

followed by a combined meta-analysis. As a second anal-

ysis, 26 additional SNPs within the same linkage disequi-

librium (LD) block were selected and tested for association

using the procedures mentioned above. For these analyses,

Bonferroni corrected P values (0.05/number of tested

SNPs) of 3.57 9 10-3 for 15q14, and 1.0 9 10-2 (5 SNPs,

Table 2) or 1.92 9 10-3 (26 SNPs, Table 3 Supplementary

Material) for 15q25 were considered statistically

significant.

Meta-analysis of risk of myopia for top SNP

From all population-based and case control studies, we

obtained genotype distributions of the replicated top SNPs.

We calculated heterogeneity (v2, I2 calculated and corre-

sponding P values) between studies, crude OR with cor-

responding 95 % CI and P value of moderate and high

myopia versus moderate and high hyperopia with a random

as well as fixed effects meta-analysis using Stata 11. When

these analyses provided similar outcomes, data from fixed

effect analysis were used. For studies without subjects with

high or moderate hyperopia, emmetropia was used as a

Table 2 continued

SNP Position Effect allele Non effect allele Freq. Asian (n = 7,140)d Meta-analysis (n = 49,363)e

beta se P beta se P

rs8033963 77242405 C C 0.51 -0.01 0.04 8.42 x 10-1 -0.04 0.01 9.37 x 10-4

rs8027411 77248084 T G 0.51 0.00 0.04 9.12 x 10-1 -0.03 0.01 1.14 x 10-3

Freq average frequency
a For the 15q14 locus: RS1, RS2, RS3, ERF, TwinsUK; for the 15q25 locus: TwinsUK, RS1, RS2, RS3, ERF, 1958 British Birth Cohort, Australian Twins (adult samples only)
b For the 15q14 locus: 1958 British Birth Cohort, AGES, ALSPAC, AREDS 1, AREDS 2, Australian Twins, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT,

FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, SCORM, SiMES, SINDI, SP2, Young Finns; for the 15q25 locus: AGES, ALSPAC, AREDS 1,

AREDS 2, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT, FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns,

SCORM, SiMES, SINDI, SP2
c For the 15q14 locus: 1958 British Birth Cohort, AGES, ALSPAC, AREDS 1, AREDS 2, Australian Twins, BMES, Croatia Split, Croatia Vis, Croatia Korcula, EGCUT,

FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns; for 15q25 locus: AGES, ALSPAC, AREDS 1, AREDS 2, BMES, Croatia Split,

Croatia Vis, Croatia Korcula, EGCUT, FITSA, Framingham, GHS I, GHS II, KORA, MESA, ORCADES, OGP Talana, Young Finns
d Asian replication: SP2, SIMES, SINDI, SCORM
e All studies
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Fig. 2 Forest plots of odds ratios of myopia (spherical equivalent

B-3 diopters) versus hyperopia (spherical equivalent C?3 diopters)

for top SNP rs634990. *For studies without subjects with high or

moderate hyperopia, emmetropia was used as a reference group.

a Homozygotes carriers of alleles TT versus CC for SNP rs634990.

b Heterozygotes carriers of alleles TT versus TC for SNP rs634990
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reference group. A standard P value of \0.05 was con-

sidered statistically significant.
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