
PAPERS IN REGIONAL SCIENCE: The Journal of the RSAI 71, 3:331-52
© 1992 by Regional Science Association International

ALGORITHMIC AND TECHNICAL
IMPROVEMENTS: OPTIMAL SOLUTIONS TO THE
(GENERALIZED) MULTI-WEBER PROBLEM

Kenneth E. Rosing
Economisch-Geografisch Instituut
Erasmus Universiteit Rotterdam
Postbus 1738
3000 DR Rotterdam
The Netherlands

Britton Harris
Department of City and Regional Planning
University of Pennsylvania
Philadelphia, Pennsylvania 19104
USA

ABSTRACT Rosing has recently demonstrated a new method for obtaining optimal
solutions to the (Generalized) Multi-Weber Problem and proved the opümality of the
results. The method develops all convex hulls and then covers the destinaüons with
disjoint convex huUs. This paper seeks to improve implementation of the algorithm to
make such solutions economically attractive. Four areas are considered: sharper decision
rules to eliminate unnecessary searching, bit pattem matching as a method of recording
a history and eliminaüng duplication, vector intrinsic functions to speed up comparisons,
and profiling a program to maximize operating efficiency. Computaüonal experience is
also presented.

1. INTRODUCTION
The Generalized Multi-Weber Problem consists of finding the locations of

some specified num ber of centers (two or more) such that the total distance of
each f rom the group of weighted fixed points assigned to it (fixed points are
assigned to their closest center) is at a min imum and such that the total aggregate
distance, fixed points to centers, is at an absolute minimum. It is analogous to
the p-median problem; however, because it is not on a network, the theorem
of Hakimi (1964, 1965; Levy 1967) is not applicable and the Multi-Weber
Problem cannot be reduced to a combinatorial problem in this way.

This paper analyzes some practical difficulties and their solutions in finding
optimal (and potentially opümal) solutions for the (Generalized) Multi-Weber
Problem (Rosing 1992a).

Motivation
The model form of the (Generalized) Multi-Weber Problem is applicable to

problems such as regionalization and the districting of territories. For example,
it was proposed by Rosing (1992b) as the most appropriate model for assigning

An earlier version of this paper was presented at the 37th North American Meeüngs, Boston,
November 1990.

332 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

injection wells to steam generators (to be located and built) in a heavy oil fiel&
Several methods for finding good solutions are known. However, some of these
depend on a restatement of the problem while others depend on the use of
heuristics. This paper presents the first potentially usable method for finding
optimal solutions for strictly defined problems of moderate size that meet the
original terms of reference of the problem. Such a capability provides an
opportunity to examine in depth the performance of heuristics by measuring
their approach to optimality in solving Multi-Weber problems of realistic size.

The success of this approach depends upon an original formulation (dis-
cussed in Rosing 1992a), on the increasing availability of very fast computers,
and on a number of programming innovations. In most practical applications,
the method converts a very difficult nonlinear mixed integer programming
problem (Garey and Johnson 1979) into a relatively easy integer programming
problem, but one that retains the type of high-order complexity that is not
feasible to explore without a great deal of computing power. At the same time,
fast computers (such as many desktops) are not effective unless continued
attention is given to the overall structure and details of the programming. This
paper discusses the application of this dictum to arrive at a practical and
workable approach to a previously theoretical approach to solution.

Definitions of the Problem, Method, and Approaches to Programming
Consider a set of points fixed on a plane. Following Cooper (1963) these

fixed points are called destinations and are indexed k = 1, 2, 3 n. Other
points, whose location is to be determined, are called sources and are indexed
j = 1 , 2 , 3 p;p<n.

The problem of locating a single source to minimize (in Euclidean space)
the distance to some number of destinations is generally referred to as the
Fermat problem or the Weber problem. While the problem initially involved
three destinations, it was soon extended to n destinations. Later it was extended
to the consideration of n weighted destinations and termed the Generalized
Weber Problem. This problem was solved by Weiszfeld (1937) and others.
Elements of the history of this problem can be found in Kuhn and Kuenne
(1962), Cooper (1963), Kuhn (1967), Ostresh (1978a, 1978b), Love, Morris, and
Wesolowsky (1988), and Rosing (1991, 1992a).

Miehle (1958) first stated and Cooper (1963) first formalized the Multi-
Weber Problem. In the extension of the Weber Problem to multiple sources, an
optimal partitioning of the destinations taust first be found and then the location
of the one single source for each set must be found that minimizes the sum of
the distances from each destination to its assigned source. When the n destinations
are weighted, the problem becomes the Generalized Multi-Weber Problem.
Kuenne and Soland (1970, 1972) and Ostresh (1973a) have published implicit
enumeration algorithms for this problem. While both fail to converge in any
except small and trivial problems (due to lack of computer time and space),
their performance would undoubtedly improve in a modern computing envi-
ronment.

The solution method used here for the (Generalized) Multi-Weber Problem
depends on a theorem, first stated by Harris, Farhi, and Dufour (1970, 1972),

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 333

that requires any optimal solution to consist solely of disjoint convex sets (or
hulls), each with an optimally located center, where the convex sets have been
chosen from an exhaustive partitioning of the destinations.

A convex hull is a set of boundary lines around one or more points with
the property that the line segment connecting any two points in the hull lies
entirely within the hull. Each destination is, by itself, a separate convex hull.
Each pair of destinations has a convex hull consisting of a straight line connecting
the two points. Any set of three or more non-collinear destinations have a
convex hull that encloses an area. This convex hull is composed of straight lines
connecting the outermost points of the set in such a way that no interior angle
is greater than 180 ° (that is, it is a convex polygon). Non-overlapping or disjoint
convex hulls have distinctly different memberships where no member of one
convex hull lies on or within another convex hull, so that no destination has
membership in two or more convex hulls.

In any feasible solution to the Multi-Weber Problem, including the optimal
solution, all destinations must be contained in non-overlapping convex hulls.
One source will correspond to each of the convex hulls (Galvani 1933) and will
also be inside that convex hull (Kuhn 1967). Convex hulls are indexed i = 1, 2,
3 m.

2. THE OPTIMAL SOLUTION METHOD
Rosing's (1992a) method is to identify all possible convex hulls (which

could, geometrically, form an element of the optimal solution), find the (Gen-
eralized) Single-Weber point of each, and calculate the partial objective funcüon
associated with each such hull. Lists of memberships of convex hulls, and their
associated functional value, are kept and used to write a constraint set for a
Set Covering Problem (SCP). A linear program (LP) is then used to cover the
destinations with convex hulls, minimizing the sum of distances from destinations
to sources (the objective function).

The algorithm for the identification of all convex hulls is fully described in
Rosing (1992a). Briefl)~ it is to divide and divide again. Given a set of destinations
in a plane, a single straight line, passing through the set, will divide it into two
subsets, each contained within one of two disjoint (non-overlapping) convex
hulls (Harris, Farhi, and Dufour 1970, 1972; Ostresh 1975; Drezner 1984). For
a set of n destinations there are n(n - 1)/2 possible such lines, and thus possible
pairs of convex hulls. Enumerating the objective function of all such pairs (and
choosing the minimum value) provides the optimal solution to the (Generalized)
Multi-Weber Problem when the number of sources equals 2 (Harris, Farhi, and
Dufour 1970, 1972; Ostresh 1975; Drezner 1984). Take one such line (and thus
two convex hulls); call the hulls I and II. Considering sub-set I first consisting
of nr members, obviously there are n~(n~- 1)/2 such lines and half-lines (half-
lines are now introduced because some lines terminate at the line between I
and Il); there are also a like number of pairs of non-overlapping sub-sub-sets,
each contained within its own convex hull. This first set of divisions comprises
level 1. Again take one such line (or half-line) and the two associated convex
hulls and call them A and B. This is division level 2 and is referred to as deeper
than level 1 (because this second level of division takes place within the former).

334 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

Considering first sub-sub-set A, composed of n1A members, there are now
n»~(n1A - 1)/2 pairs of convex hulls within a sub-sub-sub-set that can be created
by passing a line, a half-line, or a line segment (line segments are now introduced
because a dividing line can terminate on one end at the line between I and I I

and on the other at the line between A and B) through the points contained in
convex hull A. Name an arbitrary pair of these i and ii. Taking sub-sub-sub-
sub-set i, there are n»~i(niA~ - 1)/2 pairs again; this is level 3. The process could
be continued in the same manner to deeper and deeper levels.

At level 1, complete enumeration of all possible lines creates all possible
pairs of convex hulls and the optimal solution for the Two-Weber Problem. At
level 2, complete enumeration of all possible lines and half-lines within I and
then within I I gives all possible convex hulls within I and II. Choosing a new
I and I I and repeating the procedure at level 2 until all possible lines at level
1 have been employed gives a list of all possible convex hulls that could form
an element of the solution for the Three-Weber Problem. Similarly, complete
enumeration within /A of all possible pairs i and ii, followed by comple te
enumeration of all possible pairs i and ii within Iß, followed by I I A and I IB,

the choosing of a new dividing line between A and B until all pairs in them
have been enumerated (and the pairs at level 3 each time as well) will, upon
exhaustion of possible pairs I and I I (and each time exhaustion of all possible
pairs at level 2 and level 3), create all possible convex hulls that could be a
member of the solution for the Four-Weber Problem. Each time a new convex
hull is identified, its Single-Weber Point must be found and recorded, its partial
objective function must be found and recorded, and the membership must be
recorded.

The number of different disjoint convex hulls is a function of the geometry
(spatial arrangement) of the destinations, the number of destinations, and the
number of sources to be located (since the more sources there are, the more
levels of division exist and hence the more complex the identified geometry is).
As has been frequently noted (for example, Fisher 1969; Cooper 1963; Ostresh
1975; Keane 1975), the combinatorial solution space of the Multi-Weber Problem
is a Sterling Number of Type II, symbolized S(ù.p). While the number of convex
hulls is large, it is much smaller than the corresponding Sterling Number. For
example, S~2».7) = 227,832,482,998,716,310 (Abramowitz and Stegun 1972) while
the number of distinct convex hulls for n = 25, p = 7 is approximately 84,000
(the exact number is arrangement-dependent).

The three proven methods for the identification of pairs of convex hulls
(Harris, Farhi, and Dufour 1970, 1972; Ostresh 1973b, 1975; and Drezner 1984)
differ in technical approach. Their results, however, are the same: they repeatedly
divide the full set of sources into two disjoint convex hulls, enumerate all
n (n - 1)/2 pairs, and declare the pair with the minimum functional value to be
the optimum solution to a Weber problem with two sources. Rosing (1992a)
proves that by dividing each part of a partition in two, dividing each of these
again, then again dividing each of these, etc., one will find, with p - 1 divisions,
all feasible convex hulls for p sources. Any of the three methods listed above
may be used in this division process. The TWAIN algorithm (Ostresh 1973b,
1975) was used in this experiment.

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 335

This new method for finding the optimal partitioning of the destinations
into p parts now consists of two steps. First, all feasible convex hulls (feasible
for a given number of sources) in a set of n points are found; in the process,
all duplicates are discarded. Second, this large set of convex hulls is used to
solve the problem with a set covering formulation in a discrete linear program.
Two stages are involved.

A preparation program first generates all possible convex hulls, for a given
value of p, discarding the duplicates found. As each unique (new) convex hull
is found its Single-Weber Point is found, using the improved (Kuhn and Kuenne
1962; Ostresh 1978a, 1978b; Weiszfeld 1937) algorithm. The potential contri-
bution to the objective function and the appropriate set of constraints are then
written to disk in Mathematical Programming Standard (MPS) format.

The completed constraint set is then submitted to a set covering formulation
and solved by a standard LP package. This set covering formulation, given by
Rosing (1992a), is so well known that a discussion of it is not necessary, except
to say that the full set of points must be covered by selected convex hulls. The
formulation is

Minimize: Z = ~ ciXi (1)
i=1

subject to: ~ Xi = p*

~ X ~ _ < I Vk
ielvI k

(2)

(3)

where

x, = (0, 1)

i = the index number of the convex hull and of the functional value of
that convex hull;

m = the number of convex hulls;
k = the index number of the fixed points;

Xi = is a decision variable that equals one if the /th convex hull is chosen,
and zero otherwise;

ci = the summed weighted distances of all fixed points to the one Single-
Weber point of that convex hull (the point of minimum aggregate
travel of that convex h u l l - that is, the cost associated with each
hull); and

Mk = {/[the set of convex hulls of which k is a member}.

The problem of improving the efficiency of the programs that perform these
tasks was approached using four main methods. First, various bounds were
greatly sharpened, thus reducing the amount of work in both parts of the
solution method (see Section 3). Second, bit coding and bit pattern rnatching
of lists of points (destinations) in various subsets of the destinations were
employed to very striking effect (see Section 4). Third, the capabilities of
advanced computers were used to great advantage for vector processing (see

336 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

Section 5). And fourth, modern methods of program profiling were used as a
guide to increasing the efficiency of the code produced (see Section 6).

All results presented here were obtained using the Linear and Mathematical
Programming System (LAMPS) (Advanced Mathematical Software 1986) on a
Convex 210 computer with a UNIX 7.1.0.1 operating system. LAMPS is a new,
modern, and very powerful implementation of the revised simplex algorithm.
Fortran programs were compiled using Convex (1988a) UNIX Fortran version
5.0 with optimization level two (vector processing).

The 15-point data set is that published by Cooper (1964). The 20- and 25-
point data sets are Cooper 's 15-point set, each time augmented by an additional
5 random points. These later data sets were published by Rosing (1992a).

3. SHARPER DECISION RULES
In the preprocessing program two resulting diagnostic numbers are important

for measures of speed and thus for the efficiency of the convex hull algorithm
and the speed and efficiency of the LP. The first number is the total number of
convex hulls identified (which affects the efficiency of the preparation program)
and the other is the number of unique convex hulls (which affects the efficiency
of the LP). Good decision rules are rules that are simple in the sense that they
have a low level of complexity of calculation and thus will significantly increase
the efficiency of the total process. If a decision rule is very complex to compute,
it can easily take more time to use than the time saved by employing it. (See
Table 1 for solutions to problems not given in Rosing 1992a.)

Reducing Total Number of Convex Hulls Identified
Each time a convex hull is identified, its membership list (list of destinations)

must be compared with all previously identified unique convex hulls to determine
whether it is a new, unrecorded convex hull; that is, whether it is a unique

TABLE 1.
Problem Objective

n p Function
15/7 70.633

Solutions to Problems 15,7; 20,7; 25,7

20/7 100.033

25/7 136.513

Group Memberships
a. 1, 4
b. 2, 5
c. 3
d. 7
e. 13, 14, 15
f. 10, 11, 12
g. 6 , 8 , 9

a. 3
b. 16
c. 6 , 7 , 8 , 9
d. 10, 11, 12, 18
e. 13, 14, 15
f. 2, 5, 17, 19
g. 1, 4, 20
a. 3
b. 16
c. 10, 11, 18, 22
d. 6, 7, 8, 9, 24
e. 12, 13, 14, 15, 21, 23
f. 2, 17, 19
g. 1, 4, 5 , 2 0 , 2 5

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 337

convex hull or a duplicate. Duplicates need not be recorded, their Single-Weber
point need not be found, and they do not need to be included in constraints.
For unique convex hulls, all these steps must be performed. Although compar-
isons are very fast (see below, Sections 4 and 5) significant savings are made
by reducing the number of duplicates found.

Single-member convex hulls are referred to hereafter as one-hul ls , just as
two-member convex hulls are referred to as two-hul ls , etc. One-hulls can be
found simply by listing the points 1 to n. Two-hulls can be found nearly as
simply. Each combination of two points forms a two-hull; there are n(n - 1)/2
such two-hulls. Simply listing these hulls saves many later comparisons to
identify unique and non-unique hulls. At any level of division a three-hull must
be compared, and possibly be recorded (if unique), but it need not be further
subdivided. Since no new two-hulls and one-hulls will be found, their identity
need not be held in the main storage array. This increases the speed and
efficiency of the preparation program but can have a small deleterious influence
on the LP. This is because all one-hulls and two-hulls are listed including,
probably, ones which could not be generated at the value of p being used.

The removal from the search of the one- and two-hulls leads, however, to
the addition of a corollary improvement. At level 1 a number of different convex
hulls of all different sizes will be found, some small, some large. When a large
hull is passed down (that is, subjected to further subdivision), a number of
hulls already found at level 1 will be found again, and then again at each lower
level. Large hulls, but not small hulls, taust be divided or passed down. At
level 1 the smallest hull that must be divided has p members, and the smallest
hull that must be passed down is of size p + 1. At level 2 the smallest hull
investigated is size p - 1, and size p and larger groups are passed down, etc.
This is because any hull smaller than p (at level 1) will be found at one of the
lower levels. This saves the repetition of finding small hulls over and over
again. Table 2 compares the results with and without the elimination of the
one- and two-hulls in the preparation program. In each of these tables all other
improvements, discussed below, are operational unless some interrelationship
prevents it; in such cases what has been disabled is noted. The column under
each value of n labeled "Disabled" contains the number of hulls found and the
total CPU time for the preparation program without elimination. The column
labeled "Enabled" gives the equivalent values with the elimination of one- and
two-hulls and a halt in the checking of small hulls at high levels (which will
be enumerated at lower levels). In the rows after each value of p on the line
labeled "Hulls," the total number of hulls enumerated is given. (Note that, in
the "Disabled" column, it is the total number of hulls generated; in the "Enabled"
column, it is the number that passed the size test and continued to the history
comparison step.) The line labeled "Time" contains the total CPU time in
seconds. The lines labeled "%red" give the percent reduction in hulls and time,
respectively. As Table 2 shows, although the number of hulls found is dramatically
reduced, this has less effect on total time than had been hoped. However, even
a 2 to 10 percent reduction of the total time is still significant. In certain cases
(for very small problems), the improvement is negative. This is because the
work of writing out to disk, in MPS format (the most time-consuming portion

338 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

TABLE 2. Savings From Screening to Remove One- and Two-Member
Convex Hulls

n = 15 n = 2 0 n = 2 5

p Disabled E n a b l e d Disab led E n a b l e d D i sab l ed Enabled
~" Hulls 3684 3226 9424 8719 16720 15979
~% r e d 12.43% 7.48% 4.43%

3 I Time 2.44 3.78 11.94 12.21 25.35 26.55
L %red -54.92% -2.26% -5.15%

~" Hulls 18140 14672 59586 52612 121706 112792
~% r e d 19.12% 11.70% 7.32%

4 J Time 8.70 8.50 37.07 36.47 101.58 97.26
L %red 2.30% 1.69% 4.25%

~" Hulls 49350 37004 202788 172958 512572 466645
~% red 25.02% 14.71% 8.96%

5 | Time 13.23 12.81 71.00 69.92 248.06 247.84
L %red 3.17% 1.50% 0.02%

~" Hulls 92594 63345 470870 384529 1463272 1304992
~ % r e d 31.16% 18.34% 10.87%

6 ITime 17.08 15.64 112.98 110.68 513.91 498.47
L %red 8.43% 2.04% 3.00%

[" HuUs 134838 81763 864848 666508 3201198 2777167
~% r e d 39.36% 22.93% 13.25%

7 I Time 19.49 17.53 161.17 150.51 924.90 902.67
L % r e d 10.06% 6.61% 2.40%

Note: All times are given in seconds.

of the program), all one- and two-hulls is greater than finding a much smaller
number of such hulls.

Another series, not summarized here, was also run in which only one- and
two-hulls were eliminated and no minimum pass-down size criterion was
imposed. Of the improvement shown in Table 2, the majority (up to approxi-
mately 75 percent) is a result of eliminating one- and two-hulls. This is probably
due to the imposition of a size criterion requiring an additional logical decision
for each hull developed (see Table 2, "Hul ls" "Enabled" column). The additional
time required nearly cancels the improvement yielded.

Using Upper Bounds on Cost to Determine Eligible Convex Hulls
The highest-cost convex hull (cost being the total weighted distance from

destinations to their source) in an optimal solution must be less than the objective
value of the best solution that a heuristic has obtained for the full problem.
Take the example where n = 15, p = 4, and a functional value, from a heuristic,
is 100. If any single convex hull has a functional value higher than 100 it
cannot be a component of the optimal solution. If a hull has a functional value
of exactly 100 it can be a component only if the other three hulls are one-hulls
and thus do not contribute to the functional value. Cooper 's (1964) heuristic
for the Multi-Weber Problem, ALTERNATE, still seems to be one of the most
efficient algorithms for this problem. In our implementation ALTERNATE, as

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 339

coded by Ostresh (1973c), and modified to permit random starts, was used to
find heuristic solutions to each problem. The heuristic was run 200 times on
each problem and the best objective function value obtained was used as the
upper bound for removal of any hull.

As discussed above, each hull developed must be checked for size to see
if it should be passed down. Hulls surviving this test must be checked against
the history matrix of already developed hulls, and, if unique, recorded for future
reference. For the unique hulls the Single-Weber Point must then be calculated,
and the cost taust be tested against the cost criteria from the heuristic. The
savings in the preparation program consist only of the elimination of writing
to disk one column of the simplex tableau for the set covering formulation.
Each column, corresponding to one unique convex hull, has an entry in Objective
Function (1), an entry in one row for the summation of p (Constraint 2), and
one entry per member of that convex hull in that members row (Constraint 3).
Table 3 shows the comparison of problems in which a bound was employed
and in which no bound was employed. The columns headed "No Bound" come
from the problems reported in Table 2. Times remain the same but the "Hull"
lines now show the number of unique hulls, whereas the Table 2 "Enabled"
column reports the total number of hulls found. For each value of p, the row
labeled "Bound" gives the functional value of the best solution found by

TABLE 3. Savings From Employing a Heuristic Upper Bound
Preparation Program

n = 15 n = 20 n = 25
p No Bound Up. Bound No Bound Up. Bound No Bound Up. Bound

r Bound 143.196 210.196 252.245
] Hulls 1370 837 3764 2392 7118 4586

3 ~ %red 38.91% 36.45% 35.57%
IT|me 3.78 2.38 12.21 7.44 26.55 15.85
L %red 37.04% 39.07% 40.30%

~" Bound 113.567 169.433 207.411
| Hulls 2930 1303 10601 5035 23982 11635

4 "~ %red 55.53% 52.50% 51.15%
| Time 8.50 4.47 36.11 18.86 97.26 49.64
L %red 47.41% 47.77% 48.96%

f Bound 97.289 134.262 169.841
| Hulls 4042 1436 17611 5948 50316 18334

5 ~ %red 64.47% 66.23% 63.56%
| Time 12.81 6.82 69.92 36.02 247.84 131.76
L %red 46.76% 48.48% 46.84%

~" Bound 81.263 116.312 152.672
/ Hulls 4398 1113 21659 5789 71982 22935

ó ~ %red 74.68% 73.27% 68.14%
/ Time 15.64 8.50 110.68 64.01 498.47 331.44
L %red 45.65% 42.17% 33.51%

{ Bound 70.633 102.734 a 137.156 b
Hulls 4482 876 23507 4940 84111 22553

7 %red 80.46% 78.98% 73.19%
Time 17.53 9.82 150.51 101.40 902.67 700.37
%red 43.98% 32.63% 22.41%

Note: All ümes are given in seconds.
a ALTERNATE non-optimal; F V = 100.033 (2.70% error).
b ALTERNATE non-optimal; F V = 136.513 (0.47% error).

340 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

ALTERNATE. (Non-optimal heuristic solutions have a footnote giving the optimal
value and show the error as a percentage.) It should be remarked that in only
two cases, the two largest problems (p = 7, n = 20, 25), was the best of 200
runs of ALTERNATE non-optimal. This may imply a significant degradation of
the power of ALTERNATE as n and p increase. The remaining lines have the
same meaning as the corresponding lines in Table 2.

Looking at the "No Bound" column of n = 15 as p increases, it can be
seen that the rate of increase in the number of unique hulls decreases. Obviously
there is a finite number of unique hulls. Even though as one goes to deeper
and deeper levels in the division process the number of total hulls continues
to grow, initially at an increasing rate, the number of undiscovered unique huUs
begins to be depleted. The same can be seen in the "No Bound" columns n = 20
and n = 25, although the effect occurs at higher values of p. Looking now at
the corresponding "Up. Bound" columns, the bound, of course, becomes tighter
with higher values of p. More and raore hulls are eliminated (those that are
above the upper bound) at higher values of p.

It had been expected that the major savings of bounding would be on the
LP which, with fewer columns in the tableau, would solve in less time; however,
the savings in writing out the constraint set are 20 percent to 50 percent,
certainly not inconsiderable.

Table 4 shows the comparison between problems in which a bound was
employed and those in which no bound was employed. Each cell shows the
results of solving a problem using the constraint set generated as described in
Table 3. In each case the tableau has n + 2 rows, and the number of unique

TABLE 4. Savings From Using a Heuristic Upper Bound
Linear Program

n = 15 n = 20 n = 25

p No Bound Up. Bound No Bound Up. Bound No Bound Up. Bound
{ Convt 6.1 3.0 21 10 47 23

Priml 1.4 0.75 3.8 2.0 4.8 4.8
3 Total 8.94 4.76 27.80 14.45 61.41 31.79

%red 46.00% 48.02% n.c. 29.62%

{ Convt 13 4.4 59 21 164 58
4 Priml 2.5 0.98 8.9 3.5 28 19

Total 17.77 6.56 75.87 27.95 212.07 85.83
%red 63.08% 63.16% n.c. 59.53%

{ Convt 17 4.5 96 23 85
Priml 3.1 0.99 15 4.3 n.c. 19

5 Total 23.21 6.79 124.47 30.67 116.89
%red 70.75% 75.36% n.c. n.c.

r Convt 18 3.3 115 20 102
Priml 3.6 0.74 17 3.8 n.c. 20

6 | Total 25.11 5.06 148.36 27.97 137.33
1%red 79.85% 81.15% n.c. n.c.

Convt 19 3.3 127 16 96
Priml 3.4 0.74 20 3 n.c. 19

7 |Total 24.27 5.07 160.23 22.62 129.46
L %red 79.94% 85.88% n.c.

Note: All t imes are given in seconds, n.c. = not calculated, general ly because the comparative
problem or this problem was not or could not be so lved because of technical difficulties.

ROSING AND HARRI$: GENERALIZED MULTI-WEBER PROBLEM 341

hulls (see Table 3) is the number of columns. The time required to read in and
translate the constraint set is given on the line "Convrt" of Table 4 and the
time required for the actual solution is given on the line "Priml." Total time is
indicated on the line "Total" and the difference between the sum of "Convrt"
time plus "Priml" and "Total" time is roughly one-half system overhead and
time to set the problem up. As expected, large savings are made in the reading
and converting step. However, the savings in solution time are also notable. In
general, total time is reduced by 50 percent to 85 percent in addition to the
savings reported in Table 3. It is also encouraging that the largest savings are
made in the larger problems.

Reducing Still Further the Number of Unique Convex Hulls
For any given n, the objective function is a monotonic decreasing function

with increases in p. By solving a series of problems, one can develop a trade-
off curve showing the effectiveness of each additional investment in facilities.
Since, for a fixed n, as p increases the average number of destinations assigned
to each source decreases, a problem solved for p facilities can provide information
for the problem with p + 1 facilities. Moving to a higher level of p does not
involve extensive reorganization of the clustering pattern. Rather, as inspection
of the solutions in detail reveals, generally one large (expensive) convex hull is
split into two cheaper hulls, sometimes with the addition of one or two
destinations from another hull. The partial functional values, and memberships,
of most convex hulls remain the same. The partial functional value of one or
two convex hulls are reduced. For the problems solved here, the partial functional
value did not increase for any convex hull; that is, no hull increased in total
weighted distance. This is not surprising since the functional value must decrease
(or remain the same) when moving from p - 1 to p sources. Given these
observations, the partial functional value of the most expensive hull of the
solution of p - 1 can be used as the upper bound on the cost/size of convex
hulls of p. This is, generally, a rauch tighter bound than that described for using
upper bounds on cost (see above). The results from using this bound for the
preparation program are shown in Table 5.

At this time we are unable to prove that a single convex hull will never
increase in partial functional value as p increases, but we firmly believe this to
be the case. Thus, we can no longer guarantee optimality when this bounding
method is used, since we cannot prove that one convex hull could not increase
in partial functional value in some particular problem. (If a partial functional
value did increase, the convex hull(s) that compose a portion of the optimal
solution would be rejected by the preparation program and would not be
available to the set covering step, perhaps resulting in a non-optimal solution.)
The bounding methods discussed above do, however, guarantee optimality.

Column headings in Table 5 have the same interpretation as in Table 3, as
do the labels of the lines, except that "%red1" is the time improvement
calculated with the times in the Table 3 "Up. Bound" column (thus giving the
relative improvement between the two upper bounds), while "%red2" is
calculated from the Table 3 "No Bound" column (thus giving the total improve-
ment over the unbounded program).

342 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

TABLE 5. Savings From Costliest Hull Upper Bound
Preparation Program

n = 15 n = 2 0 n = 25

p Lrgst Hull Lrgst Hull Lrgst HuU

~" Bound 120.361 196.197 245.499
[Hulls 671 2183 4435

%red 19.83% 8.74% 3.29%
3 | Time 2.05 6.81 15.63

] %red1 15.55% 8.47% 1.39%
k. %red2 45.77% 44.23% 37.69%

[" Bound 65.207 91.412 109.839
| Hulls 483 1667 3979
.~ %red 62.93% 66.89% 65.80%

4 I Time 3.03 11.32 29.01
| %red1 32.21% 39.98% 41.56%
k. %red2 62.35% 68.65% 70.17%

[~ Bound 43.313 45.415 80.415
| Hulls 296 630 3987
.~ %red 79.39% 89.41% 78.25%

5 | Time 4.96 25.85 97.02
| %redl 27.27% 28.23% 26.37%
[, %red2 61.28% 63.03% 60.85%

[~ Bound 34.680 43.404 56.650
| Hulls 226 659 2382

%red 79.69% 82.62% 21.13%
6 | T i m e 7.22 54.87 286.14

[%red1 15.06% 14.28% 13.67%
I,. %red2 53.38% 50.42% 42.60%

[~ Bound 27.034 43.313 56.650
| Hulls 178 698 2621
.~ %red 79.68% 85.87% 88.38%

7] Time 8.90 94.18 658.42
[%red1 9.35% 7.12% 5.99%
L. %red2 49.23% 37.43% 27.05%

Note: All times are given in seconds. %red, %red1 were calculated from "Up. Bound" column of
Table 3; %red2 was calculated from "No Bound" column of Table 3.

Percentage improvements in time over the previous bound vary widely
because the largest hull of the solution for p - 1 provides, in some cases, a
relatively loose bound on the current problem, while in other cases the strength
of the bound increases considerably.

Table 6 records, in the same manner as Table 4, the improvement of the
LP. These improvements are, again, significantly greater than those of the
preparation program. Again, the rapid lowering of the bound as p increases
results in the greatest time reduction in the larger problems, enabling the solution
of problems which were, with other steps discussed thus far, unsolvable.

Summary
From this work it is obvious that both the preparation program and the

LP are input/output bound. An upper bound eliminates only the writing-to-
disk step in the preparation program. The main steps of the program are
accomplished very quickly. The estimated 8,000 hulls per second handled in
the n = 15 problem was confirmed by analysis of the profile of execution of
the program.

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 343

TABLE 6. Savings From Costliest Hull Upper Bound
Linear Program

n = 15 n = 2 0 n = 2 5

p Lrgst Hull Lrgst Hull Lrgst Hull
~" Convrt 2.2 9.3 22
| Primal 0.69 1.8 4.4

3 ~ Total 3.85 12.86 30.24
1%red1 19.12% 11.00% 4.88%
L %red2 56.94% 53.74% 50.76%

~Convrt 1.3 5.3 14
|Primal 0.4 1.4 3.6

4 "~ Total 2.56 8.12 20.73
| %red1 60.98% 70.95% 75.58%
L %red2 85.59% 89.30% 90.22%

~'Convrt 0.70 1.6 13
|Primal 0.24 0.39 3.1

5 ~Total 1.73 2.90 18.50
| %red1 74.52% 90.54% 84.17%
L %red2 92.25% 97.67% n.c.

['Convrt 0.51 1.6 6.8
IPrimal 0.13 0.45 1.6

6 ~ Total 1.45 3.13 10.16
|%red1 71.34% 88.81% 92.60%
L %red2 94.23% 97.89% n.c.

~'Convrt 0.39 1.7 7.4
|Primal 0.13 0.40 1.8

7 ~Total 1.27 3.11 10.94
|%red1 74.95% 86.25% 91.55%
L%red2 94.77% 98.06% n.c.

Note: All times are given in seconds. %red1 was calculated from "Up. Bound" column of Table 4;
%red2 was calculated from "No Bound" column of Table 4. n.c. = not calculated, generally because
the comparative problem or this problem was not or could not be solved because of technical
difficulties in using LAMP.

Several ways to improve the time come immediately to mind. The first is
to modify the setup of the operating system so that a single user is using all
the available disk drives; then several, in our case four, controllers are employed
instead of one. The reduction is close to 75 percent. The second way is to write
the constraint set in the binary output format of the data input routine (convert)
instead of writing it as ASCII card images. This would eliminate the convert
step of the LP completely, which, as shown in Tables 2 through 6, is the most
t ime-consuming portion of the LP. Work on this problem is continuing. The
third way is to attack the number of hulls that taust be checked (Table 2).
Three- and four-hulls are relatively simple to identify and then screen out.
Work on this algorithm is also in process. At this time, we see no way to further
tighten the upper bound.

4. BIT-CODED LISTS
It is sometimes desired, as in this problem, to repeatedly represent classes

that are subsets of a fixed and ordered set of items, such as a list of n points.
One convenient method of doing this is to designate one or more computer
words as potentially defining the whole original set; this would be done by
setting the n bits all to 1 in order to represent the entire given set. Subsets

344 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

could then be represented by setting the bit corresponding to each element to
1 if it is a member of the subset or to 0 if it is not.

This procedure has the benefit of greatly reducing storage requirements;
for instance, any subset of 32 elements can be represented (in a 32-bit computer)
in one computer word, while other representations would require either 32
words or a variable number of words equal to the cardinality of the subset.
There are many situations in which this representation presents great compu-
tational advantages. A few examples are discussed below, including three that
occur in the programming for the problem presented in this paper.

The utility of bit representation depends on the operations that are available.
Most modern computers, including AT-class machines with the Microsoft Fortran
Compiler, have a suite of logical operations that are very effective for these
purposes. If each word is regarded as containing a set of bits that are either
"true" (with a value of 1), or "false" (with a value of 0), three of these operations
perform logical operations of pairs of sets. Within Convex (1988a) Fortran
version 5.0, JIAND is an intrinsic function that produces a new word representing
a set which itself is the intersection of two sets (words). JIOR produces the
union. JIEOR, which is the "exclusive or," produces the d i s junc t ion- i.e., the
union minus the intersection of the two original sets. The unitary operator JNOT
produces the complement of the original set (but also complements all the bits
that are not used in representing the given universe). Two of these functions
(JIAND and JIEOR), plus bit testing, are used when this step is incorporated.
However, the most important application does not require them, and depends
on the simple fact that identical subsets have identical representations that are,
therefore, numerically equal. Care must be exercised in setting the sign since
-0 is not numerically well-defined. Since, as described above, one-hulls and
two-hulls have been removed, all hulls can be represented by some positive or
negative number: a positive number if destination number 1 is not in the set
and a negative number if destination 1 is in the set.

Bit Pattern Matching
Harris (1978) used bit-coded lists to represent a tree in the solution of the

transportation problem of linear programming, the Hitchcock Problem. Most
representations of this tree look toward the root node; the few that look away
from the root node have been somewhat awkward to use. This new represen-
tation mode (bit-coded lists) proved very efficient and economical of storage.

In the problem discussed here, most of the original work revolved around
checking hulls as they were discovered to determine whether they had been
previously discovered or were new, unique hulls. This is a non-trivial problem
for large n and p: for example with n = 30 and p = 5, one would explore about
1,125,000 hulls to retain about 130,000 unique hulls.

For this problem, the original description of these unique hulls were kept
in lists of 30 words each. Each size of hull (number of members) was identified.
The entire list of unique hulls had to be searched to find hulls of the same size.
The length of the list grew as new members were added so that, on average,
each of the 1.125 million candidates called for 65,000 queries--a total of 72
billion logical comparisons. These queries discovered, on average, about 2.3

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 345

thousand (65/29 thousand) hulls of the same size. For hulls of the same size,
membership lists had to be compared to determine if they were identical. On
average, slightly more than half of the identically sized hulls had to be compared
point by point, since about half the new hulls would be rejected, on average,
about halfway through the list of unique hulls. The testing required far less
than 30 comparisons since one mismatch would reject identity. Conservativel~
the average number of comparisons may have been about 10. Thus, these
comparisons for matching hulls involved another 1.5 billion tests.

The membership list of each hull was bit-coded into a single-integer word.
The integer value of this number was unique to one particular hull membership.
This reduced the storage by a factor of 30 since a single word of storage replaced
30 required in the old method. Comparisons were reduced by a minimum factor
of 30 since the old method required at least two comparisons, and now no
more and no less than one comparison was always required.

The organization of the history was also revised. As discussed above, one-
hulls and two-hulls were enumerated rather than searched for. Therefore it was
not necessary in this step to record them. The history at this point was an array
of 20,000 by 30. Column 1 held all hulls of size 3, column 2 all hulls of size
4, column 3 all hulls of size 5, etc. Now only one column vector of integers
(this was also a contiguous piece of hardware computer space), one integer per
unique hull, had to be compared to the one integer representing one new hull.
Comparisons were here again reduced by an average factor of 30 since only
correct-sized hulls were tested.

Geometric Applications of Bit-Coded Lists
Our experience with the aforementioned processes prepared us for the

discovery of some interesting geometric applications of bit-coding. These arose
when we decided to pre-calculate all of the feasible hulls with three or four
members for later inclusion in the LP. In each significant case we undertook
considerable development and experimentation before we arrived at the present
results.

Three destinations define a triangle, and to be feasible they must not
enclose any other destination. Four-hulls can be of two types, with either three
or four destinations defining their convex hulls; but neither type may enclose
a fifth destination. The methods to be described depend for their efficiency
entirely upon bit-coded lists.

The computational complexity of finding both feasible triplets and feasible
quadruplets is proportional to n 3 for many practical problems. The method for
triplets involves examining all of the O(n 3) possible triplets. For feasible triplets,
the number of operations is proportional to n, while for non-feasible triplets it
is fixed. The method for quadruplets examines all triplets and finds feasible
quadruplets from them. The computational complexity then depends on the
number of feasible triplets, which we estimate from empirical experience to be
proportional to nL

Of course this conclusion is arrangement dependent. We can identify the
bizarre extreme case, where every node is on a circle, or on any other convex
closed curve. In this case, any subset of n points is a feasible hull, and the

346 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

number of feasible quadruplets is on the order of n 4, while the total number of
feasible hulls is 2 "-1. In this case the linear program for a 30-element problem
would have to deal with over a billion columns.

There are [n(n - 1)(n - 2)/6] triplets that can be found using n given points,
no three of which are collinear. Each triplet defines three lines, segments of
which make a triangle. A feasible triplet has no interior points from the original
set. At first glance, it might appear that it can be easily determined whether
there is an interior point by applying a "point-in-polygon" routine to the (n - 3)
points not defining each triangle. This involves a sizeable multiple of (n - 3)
operations for each triplet and is not economical.

A different procedure, described here, is followed, but first an important
notational convention must be described: if i, j, k, and l stand for destinations
or points, then for pairs, i< j, for triplets, i < j < k, and for quadruplets,
i < j < k < l .

The equations of the lines joining the order n 2 pairs of points are calculated,
each requiring a fixed number of operations. Substituting the coordinates of
every point into this equation gives quantities proportional to the distance of
each point from the line, and of opposite sign for locations on opposite sides
of the line. This requires a small multiple of n operations for each line. The
original pair of points are at zero distance, but it is quicker to calculate their
distances than to skip them by testing every point twice.

As the distances from a given line are calculated, two bit-coded lists are
built, one for the points on each side of the line. These bit-coded lists are then
used to determine whether a given triplet has an interior point. For each of the
three lines determined by two of the three points, it is determined which side
of the line the third point is on and the bit-coded list for this side of this line
is selected. In two operations, using JIAND, it is determined whether there is
any point which is on all three lists. If the intersection of words is not equal to
zero there is an included point. The triplet is rejected.

This procedure is repeated for all triplets, and the successful ones are
recorded, once again in a bit-coded list. Each word of this list corresponds to
an (i, j) pair and each of n bits is 1 for a k belonging to a feasible triplet, and
0 otherwise. This list is used further in finding feasible four-hulls.

A feasible hull with four members may be described as composed of four
triangles. If there are four members of its convex hull, so that none is interior,
the four triangles decompose the quadrilateral in two ways (see Figure 1). If
one point is interior, so that the group has three points on its convex hull, the
group is defined by one triangle, which is decomposed into three smaller ones
(see Figure 2). These situations enable analysis of two cases that arise in
examining all triplets using the lists made in the previous step. In Case I, (i, j,
k) does not form a feasible triplet. It is now necessary to determine if the
infeasibility consists of one, or more than one, interior point(s). If it consists of
one point, I, it is a feasible quadruplet; it is infeasible otherwise. To determine
this, the three words that denumerate all the points l with the lines defined by
the point pairs (i, j), (i, k), (j, k) are considered. The intersection of these words
is formed with two JIAND operations. If the resulting list is zero, there is no I
that forms a feasible triplet with each of the three lines; thus there is more than

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 347

//
/

/

FIGURE 1.

k EGI 158/90

A Quadrilateral Defined by the Sum of Either of Two Pairs of
Triangles: ijk + jkl or ijl + ikl

one interior point in (i, j, k) and this triplet is abandoned as a potential part of
a feasible quadruplet. If it is non-zero, the locus of the single 1-bit is found
and recorded as I in the quadruplet (i, j, k, l). Locating this 1-bit can be done
with masks in a binary search that is proportional to (log n); this, for our
purposes, is fixed at five steps.

Case I (described above) is more common than case II, where (i, j, k) is a
feasible triplet, in the ratio of about n:l, given the assumption that the number
of feasible triplets is less than n 2. The subsidiary case where an infeasible triplet
is the hull of a feasible quadruplet is also relatively rare, so that this part of
the computation is small. Case II involves more work, which is offset by the
fact that it is less common.

In case II, any given (i, j, k) forms a feasible triplet. In this case there are
two sub-cases:

(a) Any exterior point that forms a feasible triplet with at least one pair out of
(i, j, k), and that forms a convex quadrilateral, is part of a feasible quadruplet.

(b) Any point that would not form a convex quadrilateral, if it forms a feasible
triplet with two pairs of (i, j, k), makes a feasible quadruplet. Applying the
rule from case (b) does not exclude any valid examples from case (a) (see
Figure 3).

Three new words are now formed by intersection, using the JIAND function
on the sets of valid triplets as given by the bit-lists for the pairs of pairs [(i, j),
(i, k)], [(i, j), (k, j)], and [(i, k), (j, k)]. Each of the new words contains a list of
the valid I indicators, but there may be duplication. The bit-wise union of these
three words is then formed, using JIOR. This new word is a list of exactly those

348 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

/
/

\
\

/ /
J

/
/

i ~ EGI 1 5 9 / 9 0

FIGURE 2. Four Points in Four Triangles as a Feasible Quadruplet

l-values that form feasible quadruplets with (i, j, k). Finally the resulting word
is decoded, finding the loci of all non-zero bits.

Case II thus arises in about 1/n of all triplets, but requires five operations
for comparisons and n operations for decoding, so that the work is of the order
nL Case I arises in most triplets O(n3), but requires, on average, a fixed number
of operations per case so that it is also of O(n3).

Summary and Extensions
This experience in finding very fast methods for analyzing what at first

seemed to be difficult or intractable problems suggests that there may be many
other geometric problems that could benefit from a similar approach. These
may include problems involving networks and trees, which lead into the realm
of graph theory. Of course, these methods are relatively more efficient for large
rather than small problems, so that they are, in general, applied, rather than
theoretical, considerations. At the same time, the underlying structure of the
problems, which for success must be discovered in every case, may have some
theoretical content, and perhaps may even be non-trivial.

5. VECTOR FORTRAN CODING
The Convex 240 is capable of vector processing but not of parallel processing.

In many cases the current problem could profit from parallel processing, for
example in investigating two complementary hulls at the same time. In any
case, using vector processing significantly improves the overall operation of the
program.

ROSING A N D HARRIS: GENERALIZED MULTI-WEBER PROBLEM 349

I
! %

% %lj
/ / /" "~

/
\

\
\ ' l

~ ~ ~ I i
I

I
I

000000000000000

%

EGI 160190

FIGURE 3. Other Configurations
Note: Triangle ijk is a feasible triplet if/jl~ is a feasible triplet and ijkl~ is a feasible quadruplet (ikll
and jklz are also feasible). If jkl2 and ikl2 are feasible triplets, qkl2 is a feasible quadruplet.

Veclib
Veclib (Convex 1988b) is a library of vector processing function subroutines

callable in a Fortran program. One of them, IISVEQ, compares a vector of
integers with an integer scalar. Upon equality it returns the position of the
integer in the vector. If no equality is found, it returns zero. After being called,
the result is tested, and if it is greater than zero, the current hull is non-unique.
Thus each 128 elements (each element representing a complete hull) are
compared in the same or less time than one size-of-hull test in the old method.
After the full length of the vector has been investigated (or as soon as equality
is found) IISVEQ returns. IISVEQ's result taust be compared only once. The
number of operations is thus 1/128 of the reduced number of operations
required in bit pattern matching (see above).

Profiling
Writing an effective Fortran program for vector processing entails good

judgment in structuring loops and placing logicals. Software to profile the
program is indispensable. Profiling a program entails obtaining counts of how
many times a subroutine is called and how much time, and what percent of
the total time, is spent in each subroutine during execution. More detailed
profiling provides the same information at the level of every loop in the program.
Profiling the subroutines first indicates which subroutines might be significantly

350 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

improved. Profiling the loops of such subroutines concentrates one's attention
on the least efficient portions of the program. Relatively simple adjustments can
then result in marked improvements in operation. For example, sometimes one
large loop can be replaced by a combination of one slightly smaller loop and a
very small loop containing a logical. Since an internal exit from a loop generally
prevents it from being handled in a vector mode, total execution time is
considerably diminished. Time improvements may be very significant. In the
preparation program, one such modification of TWAIN (Ostresh 1973b) reduced
its execution time by more than 10 percent.

Vector Programming
In order to compare the vector program with a program that did not include

vector processing, the program was recompiled with a normal Fortran routine
to replace IISVEQ and optimization was turned oft. As an economy measure
not all 20 programs were resolved. Rather, the preparation program was run
for n = 2 0 w i t h p - - 3 , 4, 5, 6, 7 and f o r p = 3 , n = 15, 20, 25, 30. W i t h p = 3
and n = 15 the program took 1.28 times as long, n = 20 took 1.36 times as
long, n = 25 took 1.37 times as long, and n = 30 took 1.67 times as long. When
n = 20 and p = 4, it took 3.45 times as long, p = 5 took 6.89 times as long,
p = 6 took 9.36 times as long, and when p = 7, it took 10.71 times as long as
the times reported in Table 5. In addition, several linear programs were solved
with the old non-vector processing version of LAMPS. The values of n and p
had no effect on the time. On average, in the unvectorized version of Convert
takes 1.27 times as long; Primal takes 1.73 times as long, and total time is 1.42.
Vector coding demonstrates very effective improvements, particularly as the
problem grows larger.

6. OVERALL IMPROVEMENT
The overall comparison of the improvements discussed here for the prep-

aration program was done by comparing results with the times reported by
Rosing (1992a) for the same problems. Based on the speed of generating and
investigating convex hulls, the improvement is on the order of 15- to 30-fold,
depending on problem size.

The improvernent of the LP is the improvement discussed for vector
programming (Section 5, above), plus the improvement caused by the exclusion
of convex hulls that cannot be in the optimal solution at the preparation step.
This drastically reduces both the Convert and Primal times.

7. FUTURE DIRECTIONS OF RESEARCH
This method provides a way to solve the (Generalized) Multi-Weber Problem

in at least small and moderate cases. The screening out of three-hulls and four-
hulls, mentioned above, must still be fully implemented. This must greatly
reduce the total number of hulls that will found by TWAIN (or any of the three
available algorithms). There will be a small increase in time from adding this
step since it increases the complexity of calculation of the initial stage of the
preparation program. This step must be carried out only once for all values of
p (for any given data set) since it finds all one-, two-, three-, and four-hulls.

ROSING AND HARRIS: GENERALIZED MULTI-WEBER PROBLEM 351

Later, however , there is no increase in the a m o u n t of computa t ion to screen out
one-, two-, three-, and four-hul ls instead of only one-hul ls and two-hulls .

In any particular data set, this screening step need be done only once; the
informat ion can be pe rmanen t ly held and reused for var ious values of p. It is
also possible to develop the constraint set for p + 1 f rom p by increasing the
a m o u n t of data wri t ten to disk. The his tory of un ique hulls wou ld have to be
wri t ten out and an identification process w o u l d have to be deve loped for
de termining which level of the p rog ram deve loped each hull. Whe the r this
wou ld save t ime overall is, however , an uninves t iga ted point.

Implementa t ion and use of the n e w veclib (Convex 1989), wh ich permits
double precision integers, will then permit the solution of problems up to a size
of 64. A genuine test of the effectiveness of heuristic solutions to the Multi-
Weber Prob lem will then be possible.

A C K N O W L E D G M E N T S
The authors wou ld like to thank the two guest editors and the editor of

Papers. Their work has considerably improved the readabil i ty of this paper.
This paper was p repared while the first au thor was in the Depar tmen t of

G e o g r a p h ~ Universi ty of Manitoba, and a Fellow, G.W.C. Whi t ing Schoo l of
Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

REFERENCES

Abramowitz, M., and Stegun, I. A. 1972. Handbook of mathematical functions with graphs and
mathematical tables. 10th ed., with corrections. New York: Wiley Table 24.4, 835.

Advanced Mathematical Software. 1986. Lamps users guide. Version 1.56. London: Advanced
Mathematical Software Ltd.

Convex. 1988a. Convex Fortran User's Guide. 8th ed. Houston, Texas: Convex Corp. ug-C-10.
Convex. 1988b. Convex Veclib User's Guide. 3rd ed., revision 2. Houston, Texas: Convex Corp.

2-15, 2-16.
Convex. 1989. Convex Veclib User's Guide. 4th ed. Houston, Texas: Convex Corp. ug-C-17.
Cooper, L. 1963. Location-allocaüon problems. Operations Research 11: 331-43.
Cooper, L. 1964. Heuristic methods for location-allocation problems. SIAM Review 6: 37-53.
Drezner, Z. 1984. The planar two-center and two-median problems. Transportation Science

18: 351-61.
Fisher, W. D. 1969. Clustering and aggregation in economics. Baltimore, Maryland: Johns Hopkins

University Press.
Galvani, L. 1933. Sulla determinaxione del centro di gravitä edel centro mediano de una popolazione

con applicazioni alla popolazione Italina censita il 1 ° dicembre 1921. Metron 11: 17-28.
Garey, M. R., and Johnson, D. S. 1979. Computers and intractability: a guide to the theory of NP-

completeness. New York: W. H. Freeman.
Hakimi, S. L. 1964. Optimum distribution of switching centers and the absolute centers and medians

of a graph. Operations Research 12: 450-59.
Hakirai, S. L. 1965. Optimum distribution of switching centers in a communication network, and

some related graph theoretic problems. Operations Research 12: 462-75.
Harris, B., Farhi, A., and Dufour, J. 1970. Experimental investigations of a combinatorial problem.

Philadelphia, Pennsylvania: University of Pennsylvania, Institute for Environmental Studies
Discussion Paper.

Harris, B., Farhi, A., and Dufour, J. 1972. Aspects of a problem in clustering. Philadelphia, Pennsylvania:
University of Pennsylvania, Institute for Environmental Studies Discussion Paper.

Harris, B. 1978. A new algorithm for tree modification in the primal transportation problem.
Transportation Science 12: 271-76.

Keane, M. 1975. The size of the region-building problem. Environment and Planning A 7: 575-77.
Kuenne, R. E., and Soland, R. M. 1970. The multisource Weber problem: exact solutions by branch

and bound. Institute for Defense Analysis, Economic Series.

352 PAPERS IN REGIONAL SCIENCE, VOL. 71, NO. 3, 1992

Kuenne, R. E., and Soland, R. M. 1972. Exact and approximate solutions to the multisource Weber
problem. Mathematical Programming 3: 193-209.

Kuhn, H. W. 1967. On a pair of dual nonlinear programs. In Non-linear programming, ed. J. Abadie,
pp. 37-54. Amsterdam: North Holland Press.

Kuhn, H. W., and Kuenne, R. E. 1962. An efficient algorithm for the generalized Weber problem
in spatial economics. Journal of Regional Science 4: 21-33.

Levy, J. 1967. An extended theorem for location on a network. Operational Research Quarterly 18:
433-522.

Love, R. S., Morris, J. G., and Wesolowsky, G. O. 1988. Facilities location: models and methods.
Amsterdam: North Holland.

Miehle, W. 1958. Link-length minimisation in networks. Operations Research 6: 232-43.
Ostresh Jr., L. M. 1973a. MULTI. In Computer programs for Iocation-aUocation problems, eds. G.

Rushton and J. A. Kohler, pp. 29-53. Iowa City, Iowa: University of Iowa, Department of
Geography Monograph No. 6.

Ostresh Jr., L. M. 1973b. TWAIN. In Computer programs for location-allocation problems, eds. G.
Rushton and J. A. Kohler, pp. 15-28. Iowa City, Iowa: University of Iowa, Department of
Geography Monograph No. 6.

Ostresh Jr., L. M. 1973c. ALTERN. In Computer programs for location-allocation problems, eds. G.
Rushton, and J. A. Kohler, pp. 55-66. Iowa City, Iowa: University of Iowa, Department of
Geography Monograph No. 6.

Ostresh Jr., L. M. 1975. An efficient algorithm for solving the two center location-allocation problem.
Journal of Regional Science 15: 209-16.

Ostresh Jr., L. M. 1978a. Convergence and descent in the Fermat location problem. Transportation
Science 12: 152-64.

Ostresh Jr., L. M. 1978b. The multifacility location problem: application and descent theorems.
Journal of Regional Science 17: 409-19.

Rosing, K. E. 1991. Classical location theory: solutions to the generalized multi-Weber problem. In
The Dauphin papers: research by prairie geographers, eds. J. Welsted and J. Everitt, pp. 119-29.
Brandon, Manitoba: University of Brandon.

Rosing, K. E. 1992a. A method for optimal solutions to the (generalized) multi-Weber problem.
European Journal of Operations Research 57 (forthcoming).

Rosing, K. E. 1992b. The optimum location of steam generators in large heavy oil fields. American
Journal of Mathematical and Management Sciences (forthcoming).

Weiszfeld, E. 1937. Sur le point pour lequel la somme des distances de n points donn~s est
minimum. Tökohu Journal of Mathematics 43: 355-86.

