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ABSTRACT Rosing has recently demonstrated a new method for obtaining optimal 
solutions to the (Generalized) Multi-Weber Problem and proved the opümality of the 
results. The method develops all convex hulls and then covers the destinaüons with 
disjoint convex huUs. This paper seeks to improve implementation of the algorithm to 
make such solutions economically attractive. Four areas are considered: sharper decision 
rules to eliminate unnecessary searching, bit pattem matching as a method of recording 
a history and eliminaüng duplication, vector intrinsic functions to speed up comparisons, 
and profiling a program to maximize operating efficiency. Computaüonal experience is 
also presented. 

1. INTRODUCTION 
The Generalized Multi-Weber Problem consists of finding the locations of 

some specified num ber  of centers (two or more) such that  the total distance of 
each f rom the group of weighted fixed points assigned to it (fixed points are 
assigned to their closest center) is at a min imum and such that the total aggregate 
distance, fixed points to centers, is at an absolute minimum.  It is analogous to 
the p-median  problem; however,  because it is not on a network,  the theorem 
of Hakimi  (1964, 1965; Levy 1967) is not applicable and the Multi-Weber 
Problem cannot  be reduced to a combinatorial  problem in this way. 

This paper  analyzes some practical difficulties and their solutions in finding 
optimal  (and potentially opümal)  solutions for the (Generalized) Multi-Weber 
Problem (Rosing 1992a). 

Motivation 
The model  form of the (Generalized) Multi-Weber Problem is applicable to 

problems such as regionalization and the districting of territories. For example,  
it was  proposed by  Rosing (1992b) as the most  appropriate  model  for assigning 

An earlier version of this paper was presented at the 37th North American Meeüngs, Boston, 
November 1990. 
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injection wells to steam generators (to be located and built) in a heavy oil fiel& 
Several methods for finding good solutions are known. However, some of these 
depend on a restatement of the problem while others depend on the use of 
heuristics. This paper presents the first potentially usable method for finding 
optimal solutions for strictly defined problems of moderate size that meet the 
original terms of reference of the problem. Such a capability provides an 
opportunity to examine in depth the performance of heuristics by measuring 
their approach to optimality in solving Multi-Weber problems of realistic size. 

The success of this approach depends upon an original formulation (dis- 
cussed in Rosing 1992a), on the increasing availability of very fast computers, 
and on a number of programming innovations. In most practical applications, 
the method converts a very difficult nonlinear mixed integer programming 
problem (Garey and Johnson 1979) into a relatively easy integer programming 
problem, but one that retains the type of high-order complexity that is not 
feasible to explore without a great deal of computing power. At the same time, 
fast computers (such as many desktops) are not effective unless continued 
attention is given to the overall structure and details of the programming. This 
paper discusses the application of this dictum to arrive at a practical and 
workable approach to a previously theoretical approach to solution. 

Definitions of the Problem, Method, and Approaches to Programming 
Consider a set of points fixed on a plane. Following Cooper (1963) these 

fixed points are called destinations and are indexed k = 1, 2, 3 . . . . .  n. Other 
points, whose location is to be determined, are called sources and are indexed 
j = 1 , 2 , 3  . . . . .  p;p<n. 

The problem of locating a single source to minimize (in Euclidean space) 
the distance to some number of destinations is generally referred to as the 
Fermat problem or the Weber problem. While the problem initially involved 
three destinations, it was soon extended to n destinations. Later it was extended 
to the consideration of n weighted destinations and termed the Generalized 
Weber Problem. This problem was solved by Weiszfeld (1937) and others. 
Elements of the history of this problem can be found in Kuhn and Kuenne 
(1962), Cooper (1963), Kuhn (1967), Ostresh (1978a, 1978b), Love, Morris, and 
Wesolowsky (1988), and Rosing (1991, 1992a). 

Miehle (1958) first stated and Cooper (1963) first formalized the Multi- 
Weber Problem. In the extension of the Weber Problem to multiple sources, an 
optimal partitioning of the destinations taust first be found and then the location 
of the one single source for each set must be found that minimizes the sum of 
the distances from each destination to its assigned source. When the n destinations 
are weighted, the problem becomes the Generalized Multi-Weber Problem. 
Kuenne and Soland (1970, 1972) and Ostresh (1973a) have published implicit 
enumeration algorithms for this problem. While both fail to converge in any 
except small and trivial problems (due to lack of computer time and space), 
their performance would undoubtedly improve in a modern computing envi- 
ronment. 

The solution method used here for the (Generalized) Multi-Weber Problem 
depends on a theorem, first stated by Harris, Farhi, and Dufour (1970, 1972), 
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that requires any optimal solution to consist solely of disjoint convex sets (or 
hulls), each with an optimally located center, where the convex sets have been 
chosen from an exhaustive partitioning of the destinations. 

A convex hull is a set of boundary lines around one or more points with 
the property that the line segment connecting any two points in the hull lies 
entirely within the hull. Each destination is, by itself, a separate convex hull. 
Each pair of destinations has a convex hull consisting of a straight line connecting 
the two points. Any set of three or more non-collinear destinations have a 
convex hull that encloses an area. This convex hull is composed of straight lines 
connecting the outermost points of the set in such a way that no interior angle 
is greater than 180 ° (that is, it is a convex polygon). Non-overlapping or disjoint 
convex hulls have distinctly different memberships where no member  of one 
convex hull lies on or within another convex hull, so that no destination has 
membership in two or more convex hulls. 

In any feasible solution to the Multi-Weber Problem, including the optimal 
solution, all destinations must be contained in non-overlapping convex hulls. 
One source will correspond to each of the convex hulls (Galvani 1933) and will 
also be inside that convex hull (Kuhn 1967). Convex hulls are indexed i = 1, 2, 
3 . . . . .  m. 

2. THE OPTIMAL SOLUTION METHOD 
Rosing's (1992a) method is to identify all possible convex hulls (which 

could, geometrically, form an element of the optimal solution), find the (Gen- 
eralized) Single-Weber point of each, and calculate the partial objective funcüon 
associated with each such hull. Lists of memberships of convex hulls, and their 
associated functional value, are kept and used to write a constraint set for a 
Set Covering Problem (SCP). A linear program (LP) is then used to cover the 
destinations with convex hulls, minimizing the sum of distances from destinations 
to sources (the objective function). 

The algorithm for the identification of all convex hulls is fully described in 
Rosing (1992a). Briefl)~ it is to divide and divide again. Given a set of destinations 
in a plane, a single straight line, passing through the set, will divide it into two 
subsets, each contained within one of two disjoint (non-overlapping) convex 
hulls (Harris, Farhi, and Dufour 1970, 1972; Ostresh 1975; Drezner 1984). For 
a set of n destinations there are n(n - 1)/2 possible such lines, and thus possible 
pairs of convex hulls. Enumerating the objective function of all such pairs (and 
choosing the minimum value) provides the optimal solution to the (Generalized) 
Multi-Weber Problem when the number  of sources equals 2 (Harris, Farhi, and 
Dufour 1970, 1972; Ostresh 1975; Drezner 1984). Take one such line (and thus 
two convex hulls); call the hulls I and II. Considering sub-set I first consisting 
of nr members, obviously there are n~(n~- 1)/2 such lines and half-lines (half- 
lines are now introduced because some lines terminate at the line between I 
and Il); there are also a like number  of pairs of non-overlapping sub-sub-sets,  
each contained within its own convex hull. This first set of divisions comprises 
level 1. Again take one such line (or half-line) and the two associated convex 
hulls and call them A and B. This is division level 2 and  is referred to as deeper 
than level 1 (because this second level of division takes place within the former). 
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Considering first sub-sub-set  A, composed of n1A members, there are now 
n»~(n1A - 1)/2 pairs of convex hulls within a sub-sub-sub-set  that can be created 
by passing a line, a half-line, or a line segment (line segments are now introduced 
because a dividing line can terminate on one end at the line between I and I I  

and on the other at the line between A and B) through the points contained in 
convex hull A. Name an arbitrary pair of these i and ii. Taking sub-sub-sub- 
sub-set  i, there are n»~i(niA~ - 1)/2 pairs again; this is level 3. The process could 
be continued in the same manner  to deeper and deeper levels. 

At level 1, complete enumeration of all possible lines creates all possible 
pairs of convex hulls and the optimal solution for the Two-Weber Problem. At 
level 2, complete enumeration of all possible lines and half-lines within I and 
then within I I  gives all possible convex hulls within I and II. Choosing a new 
I and I I  and repeating the procedure at level 2 until all possible lines at level 
1 have been employed gives a list of all possible convex hulls that could form 
an element of the solution for the Three-Weber Problem. Similarly, complete 
enumeration within /A of all possible pairs i and ii, followed by comple te  
enumeration of all possible pairs i and ii within Iß, followed by I I A  and I IB,  

the choosing of a new dividing line between A and B until all pairs in them 
have been enumerated (and the pairs at level 3 each time as well) will, upon 
exhaustion of possible pairs I and I I  (and each time exhaustion of all possible 
pairs at level 2 and level 3), create all possible convex hulls that could be a 
member  of the solution for the Four-Weber Problem. Each time a new convex 
hull is identified, its Single-Weber Point must be found and recorded, its partial 
objective function must be found and recorded, and the membership must be 
recorded. 

The number  of different disjoint convex hulls is a function of the geometry 
(spatial arrangement) of the destinations, the number  of destinations, and the 
number  of sources to be located (since the more sources there are, the more 
levels of division exist and hence the more complex the identified geometry is). 
As has been frequently noted (for example, Fisher 1969; Cooper 1963; Ostresh 
1975; Keane 1975), the combinatorial solution space of the Multi-Weber Problem 
is a Sterling Number  of Type II, symbolized S(ù.p). While the number  of convex 
hulls is large, it is much smaller than the corresponding Sterling Number. For 
example, S~2».7) = 227,832,482,998,716,310 (Abramowitz and Stegun 1972) while 
the number  of distinct convex hulls for n = 25, p = 7 is approximately 84,000 
(the exact number  is arrangement-dependent).  

The three proven methods for the identification of pairs of convex hulls 
(Harris, Farhi, and Dufour 1970, 1972; Ostresh 1973b, 1975; and Drezner 1984) 
differ in technical approach. Their results, however, are the same: they repeatedly 
divide the full set of sources into two disjoint convex hulls, enumerate all 
n ( n  - 1)/2 pairs, and declare the pair with the minimum functional value to be 
the optimum solution to a Weber problem with two sources. Rosing (1992a) 
proves that by dividing each part of a partition in two, dividing each of these 
again, then again dividing each of these, etc., one will find, with p - 1 divisions, 
all feasible convex hulls for p sources. Any of the three methods listed above 
may be used in this division process. The TWAIN algorithm (Ostresh 1973b, 
1975) was used in this experiment. 
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This new method for finding the optimal partitioning of the destinations 
into p parts now consists of two steps. First, all feasible convex hulls (feasible 
for a given number  of sources) in a set of n points are found; in the process, 
all duplicates are discarded. Second, this large set of convex hulls is used to 
solve the problem with a set covering formulation in a discrete linear program. 
Two stages are involved. 

A preparation program first generates all possible convex hulls, for a given 
value of p, discarding the duplicates found. As each unique (new) convex hull 
is found its Single-Weber Point is found, using the improved (Kuhn and Kuenne 
1962; Ostresh 1978a, 1978b; Weiszfeld 1937) algorithm. The potential contri- 
bution to the objective function and the appropriate set of constraints are then 
written to disk in Mathematical Programming Standard (MPS) format. 

The completed constraint set is then submitted to a set covering formulation 
and solved by a standard LP package. This set covering formulation, given by 
Rosing (1992a), is so well known that a discussion of it is not necessary, except 
to say that the full set of points must be covered by selected convex hulls. The 
formulation is 

Minimize: Z = ~ ciXi (1) 
i=1  

subject to: ~ Xi = p* 

~ X ~ _ < I  Vk 
ielvI k 

(2) 

(3) 

where 

x,  = (0, 1) 

i = the index number  of the convex hull and of the functional value of 
that convex hull; 

m = the number  of convex hulls; 
k = the index number of the fixed points; 

Xi = is a decision variable that equals one if the /th convex hull is chosen, 
and zero otherwise; 

ci = the summed weighted distances of all fixed points to the one Single- 
Weber point of that convex hull (the point of minimum aggregate 
travel of that convex h u l l -  that is, the cost associated with each 
hull); and 

Mk = {/[the set of convex hulls of which k is a member}. 

The problem of improving the efficiency of the programs that perform these 
tasks was approached using four main methods. First, various bounds were 
greatly sharpened, thus reducing the amount  of work in both parts of the 
solution method (see Section 3). Second, bit coding and bit pattern rnatching 
of lists of points (destinations) in various subsets of the destinations were 
employed to very striking effect (see Section 4). Third, the capabilities of 
advanced computers were used to great advantage for vector processing (see 
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Section 5). And fourth, modern methods of program profiling were used as a 
guide to increasing the efficiency of the code produced (see Section 6). 

All results presented here were obtained using the Linear and Mathematical 
Programming System (LAMPS) (Advanced Mathematical Software 1986) on a 
Convex 210 computer with a UNIX 7.1.0.1 operating system. LAMPS is a new, 
modern,  and very powerful  implementation of the revised simplex algorithm. 
Fortran programs were compiled using Convex (1988a) UNIX Fortran version 
5.0 with optimization level two (vector processing). 

The 15-point data set is that published by Cooper (1964). The 20- and 25- 
point data sets are Cooper 's  15-point set, each time augmented by an additional 
5 random points. These later data sets were published by Rosing (1992a). 

3. SHARPER DECISION RULES 
In the preprocessing program two resulting diagnostic numbers are important 

for measures of speed and thus for the efficiency of the convex hull algorithm 
and the speed and efficiency of the LP. The first number  is the total number  of 
convex hulls identified (which affects the efficiency of the preparation program) 
and the other is the number  of unique convex hulls (which affects the efficiency 
of the LP). Good decision rules are rules that are simple in the sense that they 
have a low level of complexity of calculation and thus will significantly increase 
the efficiency of the total process. If a decision rule is very complex to compute, 
it can easily take more time to use than the time saved by employing it. (See 
Table 1 for solutions to problems not given in Rosing 1992a.) 

Reducing Total Number of Convex Hulls Identified 
Each time a convex hull is identified, its membership list (list of destinations) 

must be compared with all previously identified unique convex hulls to determine 
whether  it is a new, unrecorded convex hull; that is, whether  it is a unique 

TABLE 1. 
Problem Objective 

n p Function 
15/7 70.633 

Solutions to Problems 15,7; 20,7; 25,7 

20/7 100.033 

25/7 136.513 

Group Memberships 
a. 1, 4 
b. 2, 5 
c. 3 
d. 7 
e. 13, 14, 15 
f. 10, 11, 12 
g. 6 , 8 , 9  

a. 3 
b. 16 
c. 6 , 7 , 8 , 9  
d. 10, 11, 12, 18 
e. 13, 14, 15 
f. 2, 5, 17, 19 
g. 1, 4, 20 
a. 3 
b. 16 
c. 10, 11, 18, 22 
d. 6, 7, 8, 9, 24 
e. 12, 13, 14, 15, 21, 23 
f. 2, 17, 19 
g. 1, 4, 5 , 2 0 , 2 5  
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convex hull or a duplicate. Duplicates need not be recorded, their Single-Weber 
point need not be found, and they do not need to be included in constraints. 
For unique convex hulls, all these steps must be performed. Although compar- 
isons are very fast (see below, Sections 4 and 5) significant savings are made 
by reducing the number of duplicates found. 

Single-member convex hulls are referred to hereafter as one-hul ls ,  just as 
two-member convex hulls are referred to as two-hul ls ,  etc. One-hulls can be 
found simply by listing the points 1 to n. Two-hulls can be found nearly as 
simply. Each combination of two points forms a two-hull; there are n(n - 1)/2 
such two-hulls. Simply listing these hulls saves many later comparisons to 
identify unique and non-unique hulls. At any level of division a three-hull must 
be compared, and possibly be recorded (if unique), but it need not be further 
subdivided. Since no new two-hulls and one-hulls will be found, their identity 
need not be held in the main storage array. This increases the speed and 
efficiency of the preparation program but can have a small deleterious influence 
on the LP. This is because all one-hulls and two-hulls are listed including, 
probably, ones which could not be generated at the value of p being used. 

The removal from the search of the one- and two-hulls leads, however, to 
the addition of a corollary improvement. At level 1 a number of different convex 
hulls of all different sizes will be found, some small, some large. When a large 
hull is passed down (that is, subjected to further subdivision), a number of 
hulls already found at level 1 will be found again, and then again at each lower 
level. Large hulls, but not small hulls, taust be divided or passed down. At 
level 1 the smallest hull that must be divided has p members, and the smallest 
hull that must be passed down is of size p + 1. At level 2 the smallest hull 
investigated is size p - 1, and size p and larger groups are passed down, etc. 
This is because any hull smaller than p (at level 1) will be found at one of the 
lower levels. This saves the repetition of finding small hulls over and over 
again. Table 2 compares the results with and without the elimination of the 
one- and two-hulls in the preparation program. In each of these tables all other 
improvements, discussed below, are operational unless some interrelationship 
prevents it; in such cases what has been disabled is noted. The column under 
each value of n labeled "Disabled" contains the number of hulls found and the 
total CPU time for the preparation program without elimination. The column 
labeled "Enabled" gives the equivalent values with the elimination of one- and 
two-hulls and a halt in the checking of small hulls at high levels (which will 
be enumerated at lower levels). In the rows after each value of p on the line 
labeled "Hulls," the total number of hulls enumerated is given. (Note that, in 
the "Disabled" column, it is the total number of hulls generated; in the "Enabled" 
column, it is the number that passed the size test and continued to the history 
comparison step.) The line labeled "Time" contains the total CPU time in 
seconds. The lines labeled "%red" give the percent reduction in hulls and time, 
respectively. As Table 2 shows, although the number of hulls found is dramatically 
reduced, this has less effect on total time than had been hoped. However, even 
a 2 to 10 percent reduction of the total time is still significant. In certain cases 
(for very small problems), the improvement is negative. This is because the 
work of writing out to disk, in MPS format (the most time-consuming portion 
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TABLE 2. Savings From Screening to Remove One- and Two-Member 
Convex Hulls 

n = 15  n = 2 0  n = 2 5  

p Disabled E n a b l e d  Disab led  E n a b l e d  D i sab l ed  Enabled 
~" Hulls 3684 3226 9424 8719 16720 15979 
~% r e d  12.43% 7.48% 4.43% 

3 I Time 2.44 3.78 11.94 12.21 25.35 26.55 
L %red -54.92% -2.26% -5.15% 

~" Hulls 18140 14672 59586 52612 121706 112792 
~% r e d  19.12% 11.70% 7.32% 

4 J Time 8.70 8.50 37.07 36.47 101.58 97.26 
L %red 2.30% 1.69% 4.25% 

~" Hulls 49350 37004 202788 172958 512572 466645 
~% red 25.02% 14.71% 8.96% 

5 | Time 13.23 12.81 71.00 69.92 248.06 247.84 
L %red 3.17% 1.50% 0.02% 

~" Hulls 92594 63345 470870 384529 1463272 1304992 
~ % r e d  31.16% 18.34% 10.87% 

6 ITime 17.08 15.64 112.98 110.68 513.91 498.47 
L %red 8.43% 2.04% 3.00% 

[" HuUs 134838 81763 864848 666508 3201198 2777167 
~% r e d  39.36% 22.93% 13.25% 

7 I Time 19.49 17.53 161.17 150.51 924.90 902.67 
L % r e d  10.06% 6.61% 2.40% 

Note: All times are given in seconds. 

of the program), all one- and two-hulls is greater than finding a much smaller 
number  of such hulls. 

Another series, not summarized here, was also run in which only one- and 
two-hulls were eliminated and no minimum pass-down size criterion was 
imposed. Of the improvement shown in Table 2, the majority (up to approxi- 
mately 75 percent) is a result of eliminating one- and two-hulls. This is probably 
due to the imposition of a size criterion requiring an additional logical decision 
for each hull developed (see Table 2, "Hul ls"  "Enabled" column). The additional 
time required nearly cancels the improvement yielded. 

Using Upper Bounds on Cost to Determine Eligible Convex Hulls 
The highest-cost convex hull (cost being the total weighted distance from 

destinations to their source) in an optimal solution must be less than the objective 
value of the best solution that a heuristic has obtained for the full problem. 
Take the example where n = 15, p = 4, and a functional value, from a heuristic, 
is 100. If any single convex hull has a functional value higher than 100 it 
cannot be a component  of the optimal solution. If a hull has a functional value 
of exactly 100 it can be a component  only if the other three hulls are one-hulls 
and thus do not contribute to the functional value. Cooper 's (1964) heuristic 
for the Multi-Weber Problem, ALTERNATE, still seems to be one of the most 
efficient algorithms for this problem. In our implementation ALTERNATE, as 
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coded by Ostresh (1973c), and modified to permit random starts, was used to 
find heuristic solutions to each problem. The heuristic was run 200 times on 
each problem and the best objective function value obtained was used as the 
upper bound for removal of any hull. 

As discussed above, each hull developed must be checked for size to see 
if it should be passed down. Hulls surviving this test must be checked against 
the history matrix of already developed hulls, and, if unique, recorded for future 
reference. For the unique hulls the Single-Weber Point must then be calculated, 
and the cost taust be tested against the cost criteria from the heuristic. The 
savings in the preparation program consist only of the elimination of writing 
to disk one column of the simplex tableau for the set covering formulation. 
Each column, corresponding to one unique convex hull, has an entry in Objective 
Function (1), an entry in one row for the summation of p (Constraint 2), and 
one entry per member of that convex hull in that members row (Constraint 3). 
Table 3 shows the comparison of problems in which a bound was employed 
and in which no bound was employed. The columns headed "No Bound" come 
from the problems reported in Table 2. Times remain the same but the "Hull"  
lines now show the number of unique hulls, whereas the Table 2 "Enabled" 
column reports the total number of hulls found. For each value of p, the row 
labeled "Bound" gives the functional value of the best solution found by 

TABLE 3. Savings From Employing a Heuristic Upper Bound 
Preparation Program 

n = 15 n = 20 n = 25 
p No Bound Up. Bound No Bound Up. Bound No Bound Up. Bound 

r Bound 143.196 210.196 252.245 
] Hulls 1370 837 3764 2392 7118 4586 

3 ~ %red 38.91% 36.45% 35.57% 
IT|me 3.78 2.38 12.21 7.44 26.55 15.85 
L %red 37.04% 39.07% 40.30% 

~" Bound 113.567 169.433 207.411 
| Hulls 2930 1303 10601 5035 23982 11635 

4 "~ %red 55.53% 52.50% 51.15% 
| Time 8.50 4.47 36.11 18.86 97.26 49.64 
L %red 47.41% 47.77% 48.96% 

f Bound 97.289 134.262 169.841 
| Hulls 4042 1436 17611 5948 50316 18334 

5 ~ %red 64.47% 66.23% 63.56% 
| Time 12.81 6.82 69.92 36.02 247.84 131.76 
L %red 46.76% 48.48% 46.84% 

~" Bound 81.263 116.312 152.672 
/ Hulls 4398 1113 21659 5789 71982 22935 

ó ~ %red 74.68% 73.27% 68.14% 
/ Time 15.64 8.50 110.68 64.01 498.47 331.44 
L %red 45.65% 42.17% 33.51% 

{ Bound 70.633 102.734 a 137.156 b 
Hulls 4482 876 23507 4940 84111 22553 

7 %red 80.46% 78.98% 73.19% 
Time 17.53 9.82 150.51 101.40 902.67 700.37 
%red 43.98% 32.63% 22.41% 

Note: All ümes are given in seconds. 
a ALTERNATE non-optimal; F V  = 100.033 (2.70% error). 
b ALTERNATE non-optimal; F V  = 136.513 (0.47% error). 
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ALTERNATE. (Non-optimal heuristic solutions have a footnote giving the optimal 
value and show the error as a percentage.) It should be remarked that in only 
two cases, the two largest problems (p = 7, n = 20, 25), was the best of 200 
runs of ALTERNATE non-optimal. This may imply a significant degradation of 
the power of ALTERNATE as n and p increase. The remaining lines have the 
same meaning as the corresponding lines in Table 2. 

Looking at the "No Bound" column of n = 15 as p increases, it can be 
seen that the rate of increase in the number of unique hulls decreases. Obviously 
there is a finite number  of unique hulls. Even though as one goes to deeper 
and deeper levels in the division process the number of total hulls continues 
to grow, initially at an increasing rate, the number of undiscovered unique huUs 
begins to be depleted. The same can be seen in the "No Bound" columns n = 20 
and n = 25, although the effect occurs at higher values of p. Looking now at 
the corresponding "Up. Bound" columns, the bound, of course, becomes tighter 
with higher values of p. More and raore hulls are eliminated (those that are 
above the upper bound) at higher values of p. 

It had been expected that the major savings of bounding would be on the 
LP which, with fewer columns in the tableau, would solve in less time; however, 
the savings in writing out the constraint set are 20 percent to 50 percent, 
certainly not inconsiderable. 

Table 4 shows the comparison between problems in which a bound was 
employed and those in which no bound was employed. Each cell shows the 
results of solving a problem using the constraint set generated as described in 
Table 3. In each case the tableau has n + 2 rows, and the number of unique 

TABLE 4. Savings From Using a Heuristic Upper Bound 
Linear Program 

n = 15 n = 20 n = 25 

p No Bound Up. Bound No Bound Up. Bound No Bound Up. Bound 
{ Convt 6.1 3.0 21 10 47 23 

Priml 1.4 0.75 3.8 2.0 4.8 4.8 
3 Total 8.94 4.76 27.80 14.45 61.41 31.79 

%red 46.00% 48.02% n.c. 29.62% 

{ Convt 13 4.4 59 21 164 58 
4 Priml 2.5 0.98 8.9 3.5 28 19 

Total 17.77 6.56 75.87 27.95 212.07 85.83 
%red 63.08% 63.16% n.c. 59.53% 

{ Convt 17 4.5 96 23 85 
Priml 3.1 0.99 15 4.3 n.c. 19 

5 Total 23.21 6.79 124.47 30.67 116.89 
%red 70.75% 75.36% n.c. n.c. 

r Convt 18 3.3 115 20 102 
Priml 3.6 0.74 17 3.8 n.c. 20 

6 | Total 25.11 5.06 148.36 27.97 137.33 
1%red 79.85% 81.15% n.c. n.c. 

Convt 19 3.3 127 16 96 
Priml 3.4 0.74 20 3 n.c. 19 

7 |Total 24.27 5.07 160.23 22.62 129.46 
L %red 79.94% 85.88% n.c. 

Note: All t imes are given in seconds, n.c. = not calculated, general ly  because  the comparative 
problem or this problem was  not  or could not  be so lved  because  of technical difficulties. 
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hulls (see Table 3) is the number of columns. The time required to read in and 
translate the constraint set is given on the line "Convrt" of Table 4 and the 
time required for the actual solution is given on the line "Priml." Total time is 
indicated on the line "Total" and the difference between the sum of "Convrt" 
time plus "Priml" and "Total" time is roughly one-half system overhead and 
time to set the problem up. As expected, large savings are made in the reading 
and converting step. However, the savings in solution time are also notable. In 
general, total time is reduced by 50 percent to 85 percent in addition to the 
savings reported in Table 3. It is also encouraging that the largest savings are 
made in the larger problems. 

Reducing Still Further the Number of Unique Convex Hulls 
For any given n, the objective function is a monotonic decreasing function 

with increases in p. By solving a series of problems, one can develop a trade- 
off curve showing the effectiveness of each additional investment in facilities. 
Since, for a fixed n, as p increases the average number of destinations assigned 
to each source decreases, a problem solved for p facilities can provide information 
for the problem with p + 1 facilities. Moving to a higher level of p does not 
involve extensive reorganization of the clustering pattern. Rather, as inspection 
of the solutions in detail reveals, generally one large (expensive) convex hull is 
split into two cheaper hulls, sometimes with the addition of one or two 
destinations from another hull. The partial functional values, and memberships, 
of most convex hulls remain the same. The partial functional value of one or 
two convex hulls are reduced. For the problems solved here, the partial functional 
value did not increase for any convex hull; that is, no hull increased in total 
weighted distance. This is not surprising since the functional value must decrease 
(or remain the same) when moving from p -  1 to p sources. Given these 
observations, the partial functional value of the most expensive hull of the 
solution of p - 1 can be used as the upper bound on the cost/size of convex 
hulls of p. This is, generally, a rauch tighter bound than that described for using 
upper bounds on cost (see above). The results from using this bound for the 
preparation program are shown in Table 5. 

At this time we are unable to prove that a single convex hull will never 
increase in partial functional value as p increases, but we firmly believe this to 
be the case. Thus, we can no longer guarantee optimality when this bounding 
method is used, since we cannot prove that one convex hull could not increase 
in partial functional value in some particular problem. (If a partial functional 
value did increase, the convex hull(s) that compose a portion of the optimal 
solution would be rejected by the preparation program and would not be 
available to the set covering step, perhaps resulting in a non-optimal solution.) 
The bounding methods discussed above do, however, guarantee optimality. 

Column headings in Table 5 have the same interpretation as in Table 3, as 
do the labels of the lines, except that "%red1" is the time improvement 
calculated with the times in the Table 3 "Up. Bound" column (thus giving the 
relative improvement between the two upper bounds), while "%red2" is 
calculated from the Table 3 "No Bound" column (thus giving the total improve- 
ment over the unbounded program). 
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TABLE 5. Savings From Costliest Hull Upper Bound 
Preparation Program 

n = 15 n = 2 0  n =  25 

p Lrgst Hull Lrgst Hull Lrgst HuU 

~" Bound 120.361 196.197 245.499 
[ Hulls 671 2183 4435 

%red 19.83% 8.74% 3.29% 
3 | Time 2.05 6.81 15.63 

] %red1 15.55% 8.47% 1.39% 
k. %red2 45.77% 44.23% 37.69% 

[" Bound 65.207 91.412 109.839 
| Hulls 483 1667 3979 
.~ %red 62.93% 66.89% 65.80% 

4 I Time 3.03 11.32 29.01 
| %red1 32.21% 39.98% 41.56% 
k. %red2 62.35% 68.65% 70.17% 

[~ Bound 43.313 45.415 80.415 
| Hulls 296 630 3987 
.~ %red 79.39% 89.41% 78.25% 

5 | Time 4.96 25.85 97.02 
| %redl 27.27% 28.23% 26.37% 
[ ,  %red2 61.28% 63.03% 60.85% 

[~ Bound 34.680 43.404 56.650 
| Hulls 226 659 2382 

%red 79.69% 82.62% 21.13% 
6 | T i m e  7.22 54.87 286.14 

[ %red1 15.06% 14.28% 13.67% 
I,. %red2 53.38% 50.42% 42.60% 

[~ Bound 27.034 43.313 56.650 
| Hulls 178 698 2621 
.~ %red 79.68% 85.87% 88.38% 

7 ] Time 8.90 94.18 658.42 
[ %red1 9.35% 7.12% 5.99% 
L. %red2 49.23% 37.43% 27.05% 

Note: All times are given in seconds. %red, %red1 were calculated from "Up. Bound" column of 
Table 3; %red2 was calculated from "No Bound" column of Table 3. 

Percentage improvements in time over the previous bound vary widely 
because the largest hull of the solution for p - 1 provides, in some cases, a 
relatively loose bound on the current problem, while in other cases the strength 
of the bound increases considerably. 

Table 6 records, in the same manner as Table 4, the improvement of the 
LP. These improvements are, again, significantly greater than those of the 
preparation program. Again, the rapid lowering of the bound as p increases 
results in the greatest time reduction in the larger problems, enabling the solution 
of problems which were, with other steps discussed thus far, unsolvable. 

Summary 
From this work it is obvious that both the preparation program and the 

LP are input/output bound. An upper bound eliminates only the writing-to- 
disk step in the preparation program. The main steps of the program are 
accomplished very quickly. The estimated 8,000 hulls per second handled in 
the n = 15 problem was confirmed by analysis of the profile of execution of 
the program. 
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TABLE 6. Savings From Costliest Hull Upper Bound 
Linear Program 

n = 15 n = 2 0  n = 2 5  

p Lrgst Hull Lrgst Hull Lrgst Hull 
~" Convrt 2.2 9.3 22 
| Primal 0.69 1.8 4.4 

3 ~ Total 3.85 12.86 30.24 
1%red1 19.12% 11.00% 4.88% 
L %red2 56.94% 53.74% 50.76% 

~Convrt 1.3 5.3 14 
|Primal 0.4 1.4 3.6 

4 "~ Total 2.56 8.12 20.73 
| %red1 60.98% 70.95% 75.58% 
L %red2 85.59% 89.30% 90.22% 

~'Convrt 0.70 1.6 13 
|Primal 0.24 0.39 3.1 

5 ~Total 1.73 2.90 18.50 
| %red1 74.52% 90.54% 84.17% 
L %red2 92.25% 97.67% n.c. 

['Convrt 0.51 1.6 6.8 
IPrimal 0.13 0.45 1.6 

6 ~ Total 1.45 3.13 10.16 
|%red1  71.34% 88.81% 92.60% 
L %red2 94.23% 97.89% n.c. 

~'Convrt 0.39 1.7 7.4 
|Primal 0.13 0.40 1.8 

7 ~Total 1.27 3.11 10.94 
|%red1 74.95% 86.25% 91.55% 
L%red2 94.77% 98.06% n.c. 

Note: All times are given in seconds. %red1 was calculated from "Up. Bound" column of Table 4; 
%red2 was calculated from "No Bound" column of Table 4. n.c. = not calculated, generally because 
the comparative problem or this problem was not or could not be solved because of technical 
difficulties in using LAMP. 

Several ways to improve the time come immediately to mind. The first is 
to modify the setup of the operating system so that a single user is using all 
the available disk drives; then several, in our case four, controllers are employed 
instead of one. The reduction is close to 75 percent. The second way is to write 
the constraint set in the binary output format of the data input routine (convert) 
instead of writing it as ASCII card images. This would eliminate the convert 
step of the LP completely, which, as shown in Tables 2 through 6, is the most 
t ime-consuming portion of the LP. Work on this problem is continuing. The 
third way is to attack the number of hulls that taust be checked (Table 2). 
Three- and four-hulls are relatively simple to identify and then screen out. 
Work on this algorithm is also in process. At this time, we see no way to further 
tighten the upper bound. 

4. BIT-CODED LISTS 
It is sometimes desired, as in this problem, to repeatedly represent classes 

that are subsets of a fixed and ordered set of items, such as a list of n points. 
One convenient method of doing this is to designate one or more computer 
words as potentially defining the whole original set; this would be done by 
setting the n bits all to 1 in order to represent the entire given set. Subsets 
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could then be represented by setting the bit corresponding to each element to 
1 if it is a member of the subset or to 0 if it is not. 

This procedure has the benefit of greatly reducing storage requirements; 
for instance, any subset of 32 elements can be represented (in a 32-bit computer) 
in one computer word, while other representations would require either 32 
words or a variable number of words equal to the cardinality of the subset. 
There are many situations in which this representation presents great compu- 
tational advantages. A few examples are discussed below, including three that 
occur in the programming for the problem presented in this paper. 

The utility of bit representation depends on the operations that are available. 
Most modern computers, including AT-class machines with the Microsoft Fortran 
Compiler, have a suite of logical operations that are very effective for these 
purposes. If each word is regarded as containing a set of bits that are either 
"true" (with a value of 1), or "false" (with a value of 0), three of these operations 
perform logical operations of pairs of sets. Within Convex (1988a) Fortran 
version 5.0, JIAND is an intrinsic function that produces a new word representing 
a set which itself is the intersection of two sets (words). JIOR produces the 
union. JIEOR, which is the "exclusive or," produces the d i s junc t ion-  i.e., the 
union minus the intersection of the two original sets. The unitary operator JNOT 
produces the complement of the original set (but also complements all the bits 
that are not used in representing the given universe). Two of these functions 
(JIAND and JIEOR), plus bit testing, are used when this step is incorporated. 
However, the most important application does not require them, and depends 
on the simple fact that identical subsets have identical representations that are, 
therefore, numerically equal. Care must be exercised in setting the sign since 
-0  is not numerically well-defined. Since, as described above, one-hulls and 
two-hulls have been removed, all hulls can be represented by some positive or 
negative number: a positive number if destination number 1 is not in the set 
and a negative number if destination 1 is in the set. 

Bit Pattern Matching 
Harris (1978) used bit-coded lists to represent a tree in the solution of the 

transportation problem of linear programming, the Hitchcock Problem. Most 
representations of this tree look toward the root node; the few that look away 
from the root node have been somewhat awkward to use. This new represen- 
tation mode (bit-coded lists) proved very efficient and economical of storage. 

In the problem discussed here, most of the original work revolved around 
checking hulls as they were discovered to determine whether they had been 
previously discovered or were new, unique hulls. This is a non-trivial problem 
for large n and p: for example with n = 30 and p = 5, one would explore about 
1,125,000 hulls to retain about 130,000 unique hulls. 

For this problem, the original description of these unique hulls were kept 
in lists of 30 words each. Each size of hull (number of members) was identified. 
The entire list of unique hulls had to be searched to find hulls of the same size. 
The length of the list grew as new members were added so that, on average, 
each of the 1.125 million candidates called for 65,000 queries--a total of 72 
billion logical comparisons. These queries discovered, on average, about 2.3 
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thousand (65/29 thousand) hulls of the same size. For hulls of the same size, 
membership lists had to be compared to determine if they were identical. On 
average, slightly more than half of the identically sized hulls had to be compared 
point by point, since about half the new hulls would be rejected, on average, 
about halfway through the list of unique hulls. The testing required far less 
than 30 comparisons since one mismatch would reject identity. Conservativel~ 
the average number of comparisons may have been about 10. Thus, these 
comparisons for matching hulls involved another 1.5 billion tests. 

The membership list of each hull was bit-coded into a single-integer word. 
The integer value of this number was unique to one particular hull membership. 
This reduced the storage by a factor of 30 since a single word of storage replaced 
30 required in the old method. Comparisons were reduced by a minimum factor 
of 30 since the old method required at least two comparisons, and now no 
more and no less than one comparison was always required. 

The organization of the history was also revised. As discussed above, one- 
hulls and two-hulls were enumerated rather than searched for. Therefore it was 
not necessary in this step to record them. The history at this point was an array 
of 20,000 by 30. Column 1 held all hulls of size 3, column 2 all hulls of size 
4, column 3 all hulls of size 5, etc. Now only one column vector of integers 
(this was also a contiguous piece of hardware computer space), one integer per 
unique hull, had to be compared to the one integer representing one new hull. 
Comparisons were here again reduced by an average factor of 30 since only 
correct-sized hulls were tested. 

Geometric Applications of Bit-Coded Lists 
Our experience with the aforementioned processes prepared us for the 

discovery of some interesting geometric applications of bit-coding. These arose 
when we decided to pre-calculate all of the feasible hulls with three or four 
members for later inclusion in the LP. In each significant case we undertook 
considerable development and experimentation before we arrived at the present 
results. 

Three destinations define a triangle, and to be feasible they must not 
enclose any other destination. Four-hulls can be of two types, with either three 
or four destinations defining their convex hulls; but neither type may enclose 
a fifth destination. The methods to be described depend for their efficiency 
entirely upon bit-coded lists. 

The computational complexity of finding both feasible triplets and feasible 
quadruplets is proportional to n 3 for many practical problems. The method for 
triplets involves examining all of the O(n 3) possible triplets. For feasible triplets, 
the number of operations is proportional to n, while for non-feasible triplets it 
is fixed. The method for quadruplets examines all triplets and finds feasible 
quadruplets from them. The computational complexity then depends on the 
number of feasible triplets, which we estimate from empirical experience to be 
proportional to nL 

Of course this conclusion is arrangement dependent. We can identify the 
bizarre extreme case, where every node is on a circle, or on any other convex 
closed curve. In this case, any subset of n points is a feasible hull, and the 
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number of feasible quadruplets is on the order of n 4, while the total number of 
feasible hulls is 2 "-1. In this case the linear program for a 30-element problem 
would have to deal with over a billion columns. 

There are [n(n - 1)(n - 2)/6] triplets that can be found using n given points, 
no three of which are collinear. Each triplet defines three lines, segments of 
which make a triangle. A feasible triplet has no interior points from the original 
set. At first glance, it might appear that it can be easily determined whether 
there is an interior point by applying a "point-in-polygon" routine to the (n - 3) 
points not defining each triangle. This involves a sizeable multiple of (n - 3) 
operations for each triplet and is not economical. 

A different procedure, described here, is followed, but first an important 
notational convention must be described: if i, j, k, and l stand for destinations 
or points, then for pairs, i<  j, for triplets, i < j  < k, and for quadruplets, 
i < j < k < l .  

The equations of the lines joining the order n 2 pairs of points are calculated, 
each requiring a fixed number of operations. Substituting the coordinates of 
every point into this equation gives quantities proportional to the distance of 
each point from the line, and of opposite sign for locations on opposite sides 
of the line. This requires a small multiple of n operations for each line. The 
original pair of points are at zero distance, but it is quicker to calculate their 
distances than to skip them by testing every point twice. 

As the distances from a given line are calculated, two bit-coded lists are 
built, one for the points on each side of the line. These bit-coded lists are then 
used to determine whether a given triplet has an interior point. For each of the 
three lines determined by two of the three points, it is determined which side 
of the line the third point is on and the bit-coded list for this side of this line 
is selected. In two operations, using JIAND, it is determined whether there is 
any point which is on all three lists. If the intersection of words is not equal to 
zero there is an included point. The triplet is rejected. 

This procedure is repeated for all triplets, and the successful ones are 
recorded, once again in a bit-coded list. Each word of this list corresponds to 
an (i, j) pair and each of n bits is 1 for a k belonging to a feasible triplet, and 
0 otherwise. This list is used further in finding feasible four-hulls. 

A feasible hull with four members may be described as composed of four 
triangles. If there are four members of its convex hull, so that none is interior, 
the four triangles decompose the quadrilateral in two ways (see Figure 1). If 
one point is interior, so that the group has three points on its convex hull, the 
group is defined by one triangle, which is decomposed into three smaller ones 
(see Figure 2). These situations enable analysis of two cases that arise in 
examining all triplets using the lists made in the previous step. In Case I, (i, j, 
k) does not form a feasible triplet. It is now necessary to determine if the 
infeasibility consists of one, or more than one, interior point(s). If it consists of 
one point, I, it is a feasible quadruplet; it is infeasible otherwise. To determine 
this, the three words that denumerate all the points l with the lines defined by 
the point pairs (i, j), (i, k), (j, k) are considered. The intersection of these words 
is formed with two JIAND operations. If the resulting list is zero, there is no I 
that forms a feasible triplet with each of the three lines; thus there is more than 
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A Quadrilateral Defined by the Sum of Either of Two Pairs of 
Triangles: ijk + jkl or ijl + ikl 

one interior point in (i, j, k) and this triplet is abandoned as a potential part of 
a feasible quadruplet. If it is non-zero, the locus of the single 1-bit is found 
and recorded as I in the quadruplet (i, j, k, l). Locating this 1-bit can be done 
with masks in a binary search that is proportional to (log n); this, for our 
purposes, is fixed at five steps. 

Case I (described above) is more common than case II, where (i, j, k) is a 
feasible triplet, in the ratio of about n:l, given the assumption that the number 
of feasible triplets is less than n 2. The subsidiary case where an infeasible triplet 
is the hull of a feasible quadruplet is also relatively rare, so that this part of 
the computation is small. Case II involves more work, which is offset by the 
fact that it is less common. 

In case II, any given (i, j, k) forms a feasible triplet. In this case there are 
two sub-cases: 

(a) Any exterior point that forms a feasible triplet with at least one pair out of 
(i, j, k), and that forms a convex quadrilateral, is part of a feasible quadruplet. 

(b) Any point that would not form a convex quadrilateral, if it forms a feasible 
triplet with two pairs of (i, j, k), makes a feasible quadruplet. Applying the 
rule from case (b) does not exclude any valid examples from case (a) (see 
Figure 3). 

Three new words are now formed by intersection, using the JIAND function 
on the sets of valid triplets as given by the bit-lists for the pairs of pairs [(i, j), 
(i, k)], [(i, j), (k, j)], and [(i, k), (j, k)]. Each of the new words contains a list of 
the valid I indicators, but there may be duplication. The bit-wise union of these 
three words is then formed, using JIOR. This new word is a list of exactly those 
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FIGURE 2. Four Points in Four Triangles as a Feasible Quadruplet 

l-values that form feasible quadruplets with (i, j, k). Finally the resulting word 
is decoded, finding the loci of all non-zero bits. 

Case II thus arises in about 1/n of all triplets, but requires five operations 
for comparisons and n operations for decoding, so that the work is of the order 
nL Case I arises in most triplets O(n3), but requires, on average, a fixed number 
of operations per case so that it is also of O(n3). 

Summary and Extensions 
This experience in finding very fast methods for analyzing what at first 

seemed to be difficult or intractable problems suggests that there may be many 
other geometric problems that could benefit from a similar approach. These 
may include problems involving networks and trees, which lead into the realm 
of graph theory. Of course, these methods are relatively more efficient for large 
rather than small problems, so that they are, in general, applied, rather than 
theoretical, considerations. At the same time, the underlying structure of the 
problems, which for success must be discovered in every case, may have some 
theoretical content, and perhaps may even be non-trivial. 

5. VECTOR FORTRAN CODING 
The Convex 240 is capable of vector processing but not of parallel processing. 

In many cases the current problem could profit from parallel processing, for 
example in investigating two complementary hulls at the same time. In any 
case, using vector processing significantly improves the overall operation of the 
program. 
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FIGURE 3. Other Configurations 
Note: Triangle ijk is a feasible triplet if/jl~ is a feasible triplet and ijkl~ is a feasible quadruplet (ikll 
and jklz are also feasible). If jkl2 and ikl2 are feasible triplets, qkl2 is a feasible quadruplet. 

Veclib 
Veclib (Convex 1988b) is a library of vector processing function subroutines 

callable in a Fortran program. One of them, IISVEQ, compares a vector of 
integers with an integer scalar. Upon equality it returns the position of the 
integer in the vector. If no equality is found, it returns zero. After being called, 
the result is tested, and if it is greater than zero, the current hull is non-unique. 
Thus each 128 elements (each element representing a complete hull) are 
compared in the same or less time than one size-of-hull test in the old method. 
After the full length of the vector has been investigated (or as soon as equality 
is found) IISVEQ returns. IISVEQ's result taust be compared only once. The 
number of operations is thus 1/128 of the reduced number of operations 
required in bit pattern matching (see above). 

Profiling 
Writing an effective Fortran program for vector processing entails good 

judgment in structuring loops and placing logicals. Software to profile the 
program is indispensable. Profiling a program entails obtaining counts of how 
many times a subroutine is called and how much time, and what  percent of 
the total time, is spent in each subroutine during execution. More detailed 
profiling provides the same information at the level of every loop in the program. 
Profiling the subroutines first indicates which subroutines might be significantly 
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improved. Profiling the loops of such subroutines concentrates one's attention 
on the least efficient portions of the program. Relatively simple adjustments can 
then result in marked improvements in operation. For example, sometimes one 
large loop can be replaced by a combination of one slightly smaller loop and a 
very small loop containing a logical. Since an internal exit from a loop generally 
prevents it from being handled in a vector mode, total execution time is 
considerably diminished. Time improvements may be very significant. In the 
preparation program, one such modification of TWAIN (Ostresh 1973b) reduced 
its execution time by more than 10 percent. 

Vector Programming 
In order to compare the vector program with a program that did not include 

vector processing, the program was recompiled with a normal Fortran routine 
to replace IISVEQ and optimization was turned oft. As an economy measure 
not all 20 programs were resolved. Rather, the preparation program was run 
for n = 2 0  w i t h p - - 3 ,  4, 5, 6, 7 and f o r p = 3 ,  n =  15, 20, 25, 30. W i t h p = 3  
and n = 15 the program took 1.28 times as long, n = 20 took 1.36 times as 
long, n = 25 took 1.37 times as long, and n = 30 took 1.67 times as long. When 
n = 20 and p = 4, it took 3.45 times as long, p = 5 took 6.89 times as long, 
p = 6 took 9.36 times as long, and when p = 7, it took 10.71 times as long as 
the times reported in Table 5. In addition, several linear programs were solved 
with the old non-vector processing version of LAMPS. The values of n and p 
had no effect on the time. On average, in the unvectorized version of Convert 
takes 1.27 times as long; Primal takes 1.73 times as long, and total time is 1.42. 
Vector coding demonstrates very effective improvements,  particularly as the 
problem grows larger. 

6. OVERALL IMPROVEMENT 
The overall comparison of the improvements discussed here for the prep- 

aration program was done by comparing results with the times reported by 
Rosing (1992a) for the same problems. Based on the speed of generating and 
investigating convex hulls, the improvement is on the order of 15- to 30-fold, 
depending on problem size. 

The improvernent of the LP is the improvement  discussed for vector 
programming (Section 5, above), plus the improvement  caused by the exclusion 
of convex hulls that cannot be in the optimal solution at the preparation step. 
This drastically reduces both the Convert and Primal times. 

7. FUTURE DIRECTIONS OF RESEARCH 
This method  provides a way to solve the (Generalized) Multi-Weber Problem 

in at least small and moderate cases. The screening out of three-hulls and four- 
hulls, mentioned above, must still be fully implemented. This must greatly 
reduce the total number  of hulls that will found by TWAIN (or any of the three 
available algorithms). There will be a small increase in time from adding this 
step since it increases the complexity of calculation of the initial stage of the 
preparation program. This step must be carried out only once for all values of 
p (for any given data set) since it finds all one-, two-, three-, and four-hulls. 
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Later, however ,  there is no  increase in the a m o u n t  of  computa t ion  to screen out  
one-,  two-,  three-,  and  four-hul ls  instead of  only  one-hul ls  and  two-hulls .  

In any  particular data  set, this screening step need  be done  only  once; the 
informat ion  can be pe rmanen t ly  held and  reused for var ious values of  p. It is 
also possible to develop  the constraint  set for p + 1 f rom p by  increasing the 
a m o u n t  of  data wri t ten to disk. The his tory of  un ique  hulls wou ld  have  to be 
wri t ten out  and  an identification process w o u l d  have  to be deve loped  for 
de termining which  level of  the p rog ram deve loped  each hull. Whe the r  this 
wou ld  save t ime overall  is, however ,  an  uninves t iga ted  point.  

Implementa t ion  and  use of  the n e w  veclib (Convex 1989), wh ich  permits  
double  precision integers, will then  permit  the solution of  problems up  to a size 
of  64. A genuine  test of  the effectiveness of  heuristic solutions to the Multi- 
Weber Prob lem will then  be possible. 
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