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Abstract

Background Management of rheumatoid arthritis (RA) is
characterised by a sequence of disease-modifying anti-
rheumatic drugs (DMARDs) and biological response
modifiers (BRMs). In most of the Western countries, the
drug sequences are determined based on disease activity
and treatment history of the patients. A model for realistic
patient outcomes should reflect the treatment pathways
relevant for patients with specific characteristics.
Objective This study aimed at developing a model that
could simulate long-term patient outcomes and cost
effectiveness of treatment strategies with and without
inclusion of BRMs following a clinical guideline for
treatment decisions.

Methods Discrete event simulation taking into account
patient characteristics and treatment history was used for
model development. Treatment effect on disease activity,
costs, health utilities and times to events were estimated
using Dutch observational studies. Long-term progression

Electronic supplementary material The online version of this
article (doi:10.1007/s40273-014-0184-4) contains supplementary
material, which is available to authorized users.

A. Tran-Duy (B<)

Department of Clinical Epidemiology and Medical Technology
Assessment (KEMTA), Maastricht University Medical Center,
P.O. Box 5800, 6202 AZ Maastricht, The Netherlands

e-mail: an.tranduy@mumec.nl

A. Tran-Duy - A. Boonen

Division of Rheumatology, Department of Internal Medicine,
Maastricht University Medical Center, P.O. Box 5800,

6202 AZ Maastricht, The Netherlands

A. Tran-Duy - A. Boonen
Caphri School for Public Health and Primary Care, Maastricht
UMCH, P.O. Box 616, 6200 MD Maastricht, The Netherlands

of physical functioning was quantified using a linear
mixed-effects model. Costs and health utilities were esti-
mated using two-part models. The treatment strategy rec-
ommended by the Dutch Society for Rheumatology where
both DMARDs and BRMs were available (Strategy 2) was
compared with the treatment strategy without BRMs
(Strategy 1). Ten thousand theoretical patients were tracked
individually until death. In the probabilistic sensitivity
analysis, Monte Carlo simulations were performed with
1,000 sets of parameters sampled from appropriate proba-
bility distributions.

Results  The simulated changes over time in disease
activity and physical functioning were plausible. The
incremental cost per quality-adjusted life-year gained of
Strategy 2 compared with Strategy 1 was €124,011. At a
willingness-to-pay threshold higher than €119,167, Strat-
egy 2 dominated Strategy I in terms of cost effectiveness
but the probability that the Strategy 2 is cost effective
never exceeded 0.87.

Conclusions It is possible to model the outcomes of
complex treatment strategies based on a clinical guideline
for the management of RA. Following the Dutch guideline
and using real-life data, inclusion of BRMs in the treatment
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strategy for RA appeared to be less favourable in our model
than in most of the existing models that compared drug
sequences independent of patient characteristics and used
data from randomised controlled clinical trials. Despite
complexity and demand for extensive data, our modelling
approach can help to identify the knowledge gaps in clin-
ical guidelines for RA management and priorities for future
research.

Key Points for Decision Makers

Treatment strategies for patients with early-stage
rheumatoid arthritis (RA) are becoming increasingly
complex and it is therefore necessary to develop a
modelling approach that fully supports economic
evaluation of a wide range of real-life treatment
strategies

Treatment strategies including biological response
modifiers (BRMs) with treatment decisions based on
patient characteristics and treatment history have
been accepted in most of the Western countries, but
few cost-effectiveness models have attempted to take
the use of BRMs in clinical practice into
consideration

Modelling the outcomes of complex treatment
strategies based on a clinical guideline for the
management of RA is possible and helpful in
assessing the impact of changes in clinical practice
on disease progression, health and costs of the RA
patients, and cost effectiveness of the new treatment
decisions

Following the Dutch guideline for management of
RA and using real-life data, the simulated
incremental cost per quality-adjusted life-year
gained of the treatment strategy including BRMs
compared with the treatment strategy without BRMs
was higher than conventionally accepted
willingness-to-pay thresholds, and the probability
that the treatment strategy including BRMs is cost
effective never exceeded 0.87

1 Introduction

In the management of rheumatoid arthritis (RA), early
treatment with synthetic disease-modifying antirheumatic
drugs (DMARDs) and subsequent use of biological
response modifiers (BRMs) to achieve low disease activity
or remission have been recommended for clinical practice
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in both American and European treatment guidelines [1-4].
Because BRMs are far more expensive than DMARDs, the
incremental costs per quality-adjusted life-year (QALY)
[5] gained (ICERs) of treatments with BRMs have been
discussed extensively.

Despite the growing number of published studies on the
cost effectiveness of BRMs, few have attempted to take the
use of BRMs in clinical practice into consideration. The
sequence of drugs in the real-life management of RA is
determined based on characteristics, notably disease activity
using the Disease Activity Score for 28 joints (DAS28) [3, 6,
71, and treatment history of the patients. It is well recognised
that the effectiveness of different drugs and of the same drug
at different positions in a drug sequence are most likely
different. Additionally, early or late administration of a drug
affects the course of disease and thus the health and costs of
the patients. Therefore, a model for realistic patient out-
comes should reflect the treatment pathways relevant for
patients with specific characteristics. Recently, there has
been an increasing tendency of adopting sequential treat-
ment strategies instead of single drugs as comparators in the
cost-effectiveness models for RA in different European
countries [8-15]. However, the order of the drugs in the
existing models was determined independently of disease
activity and treatment history of the patients.

The present study aimed at developing a model that
could simulate long-term patient outcomes and cost
effectiveness of treatment strategies with and without
inclusion of BRMs; following a formal clinical guideline
and rheumatologist opinion for treatment decisions based
on patient characteristics and treatment history, and using
real-life data to parameterize the model.

2 Methods
2.1 Model Structure

Discrete event simulation (DES) was used to track changes
over time in disease measures, utilities and costs of the
individual patients. This modelling approach can overcome
intractable problems in conventional models for a chronic
disease (e.g. numerous chance nodes in a decision tree or a
large number of states in a Markov model) [16-18].
Moreover, memorising changes in patient characteristics
over time is possible in DES, which permits simulation of
the rheumatologist decisions on starting and switching
treatments based on patient history [19].

The main components of the DES model consist of
entities, states and events, An entify is an RA patient with a
set of characteristics (e.g. age, gender, rtheumatic factor,
disease duration, disease activity and physical functioning),
which influence the simulation outcomes.
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States in our model were defined based on trends of
change in DAS28 and by on-going treatments to help
determine potential events that may occur during tracking
disease progression and treatment decisions, Different from
those in a Markov model, these states are not necessarily
mutually exclusive. Conceptually, a patient can be in three
different disease activity phases (DAS28-related states)
while treated with a specific drug [20]. First, the decreasing
phase is characterized by a steady decrease in DAS28 as a
response to the treatment. Second, the maintenance phase
is characterized by small fluctuations of DAS28 sur-
rounding a constant level. Third, the increasing phase is
characterized by a continuous increase in DAS28 after the
patient stops responding to the drug. In this case, DAS28
was assumed to return to the patient’s baseline level within
12 weeks. When the patient is receiving ‘palliative’ ther-
apy, ie. the use of only low-dose corticosteroids after
failure of all drugs in a treatment strategy, DAS28 was
assumed to be stable. These DAS28-related states were
used to determine the events that may occur given a trend
of change in DAS28 (see Table 1).

Regarding the treatments, a patient can be in one of
eight states, referred to as treatment-related states, which is
being treated with the first or second DMARD, the first or
second tumour necrosis factor oo (TNF) inhibitor BRM, the
first or second non-TNF BRM, the DMARDs after failure
of the first two DMARDs, or ‘palliative’ therapy. Treat-
ment-related states were used to determine changes in
DAS28, times to DAS28-related events and a new treat-
ment when the current drug fails.

Events in the model were classified as DAS28-related
events and DAS28-neutral events. DAS28-related events
consisted of “End of DAS28 decrease”, “Loss of response
to the current drug” (which caused an increase in DAS28)
and “DAS28 reaching 1.2 unit higher”. The last event was
formulated to help calculate the rate of DAS28 increase
based on the assumption that DAS28 returned to the

Table 1 Interdependency of the model states and events

baseline level in 12 weeks after a loss of response to the
current treatment, and that a 1.2-unit change in DAS28 was
significant [21]. DAS28-neutral events consisted of
“Severe toxicity of the current drug”, “Visit a rheumatol-
ogist”, “Select a new treatment”, “Start a new treatment”
(i.e. first administration of a new treatment) and “Death”.
A summary of the interdependence among states and events
is given in Table 1. For competing events, the patient will
“jump” to the event to which the sampled time is shortest.
When an event occurred, an associated procedure was
invoked for implementation where the patient characteris-
tics were updated and times to the next events were com-
puted. It should be noted that “Select a new treatment” and
“Start a new treatment” may immediately follow “Visit a
rheumatologist”, but “Visit to a rheumatologist” does not
necessarily lead to the occurrence of “Select a new treat-
ment” and therefore not “Start of a new treatment™ as the
next events. This is the reason for a separation of these
three events, The general simulation process is depicted in
Fig. 1. Details on the simulation process can be found in
the online supplementary appendix.

2.2 Treatment Strategies

We compared the treatment strategy recommended by the
Dutch Society for Rheumatology where both DMARDs
and BRMs were available (Strategy 2) with the treatment
strategy without inclusion of BRMs (Strategy 1). Avail-
ability and order of the drugs in these two strategies were
as follows:

e Strategy 1: eight DMARDSs available in the following
sequence: methotrexate followed randomly by sulpha-
salazine or leflunomide, which was followed by

azathioprine, cyclosporin A, cyclophosphamide,
hydroxychloroquine and injectable gold at a random
order;

DAS28-related state Possible DAS28-related event

Possible DAS28-neutral event Possible treatment-related state

End of DAS28 decrease®
Loss of response®
DAS28 reaching 1.2 unit higher"

On DAS28 decrease
On DAS28 maintenance
On DAS2S8 increase

On DAS28 stability -

On DMARDs
On anti-TNF BRMs
On non-TNF BRMs

Visit a rheumatologist®
Severe toxicity”

Select a new treatment®
Start a new treatment®
Death?®

Visit a theumatologist*
Death®

On ‘palliative’ therapy

DAS28 Disease Activity Score for 28 joints, DMARD disease-modifying antirheumatic drug, TNF tumour necrosis factor, BRMs biological
response modifiers, ‘palliative’ therapy the use of only low-dose corticosteroids after failure of all drugs in a treatment strategy

* Competing events
® Events that occur only when a visit to a rheumatologist occurs
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Fig. 1 Flow chart of the
general simulation process. The
triangle at the top represents the
entry of the simulation. The
rectangles with double-line and
single-line borders represent
procedures and instructions,
respectively. The diamonds
represent decisions. The boxes
with dotted borders provide
extra information for the flow
chart. See text and the online
supplementary appendix for
details. DAS28 Disease Activity
Score for 28 joints, HAQ Health
Questionnaire Assessment
Disability Index

e Stirategy 2: eight DMARDs as those in Strategy 1, and
two anti-TNF and two non-TNF BRMs, available in the
following sequence: methotrexate followed randomly

A\ Adis

Sampled attributes

Age

Gender

DAS28

HAQ

Rheumatic factor-positive
Disease duration

Work disable

On-DAS28-decrease

DAS28-related states  @ereermmereene,

Create a
new patient

Start methotrexate "

Visit a rheumatologist lk—

Eligible for a new
treatment?

Select a new treatment

¥

Start a new treatment

based on the trend of change in DAS28

On-DAS28-maintenance

On-DAS28-increase
On-DAS28-stability

DASZS-felated events i en}

DAS28 reaching 1.2 unit higher >

Loss of response to current drug:-

Assign a relevant DAS28-related state

¥

Procedure for DAS28-related states

Sample times to all possible events
that can occur given the disease state

¥

Find event to which time is shortest

(Enext)
Y

Calculate time at which Epext 0ccurs

(Tevent)
]

Advance time to Teyent

Update patient attributes at Teyent

End of DAS28 decrease

Yes

Enext = Visit a

rheumatologist

Enest = a DAS28-
related event?

End simulation for

urlrient patient

by sulphasalazine or leflunomide, two anti-TINF BRMs,
and two non-TNF BRMs,
by azathioprine, cyclosporin A, cyclophosphamide,

which were followed
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hydroxychloroquine and injectable gold at a random
order. The two anti-TNF BRMs comprised one mono-
clonal antibody and one soluble receptor fusion protein,
which were randomly chosen from etanercept, ada-
limumab, infliximab, golimumab and certolizumab.
The two non-TNF BRMs were randomly chosen from
rituximab, abatacept and tocilizumab. For patients with
a positive rtheumatic factor, rituximab must be available
at the first position of the non-TNF BRMs; for patients
with a negative rheumatic factor, abatacept or toc-
ilizumab must be available at the first position of the
non-TNF BRMs.

The order of the drugs and random selections between
sulphasalazine and leflunomide, among anti-TNF BRMs,
among non-TNF BRMs and among DMARDs other than
sulphasalazine and leflunomide in the above-mentioned
treatment strategies agreed well with those recorded in the
observational cohorts used for model inputs (see Sect. 2.3).
The algorithm for treatment decisions in the model was
formulated based on the Dutch guidelines and rheumatolo-
gist opinion for the treatment of RA. First, a flow chart of
treatment decisions was drawn based on the general guide-
lines and delivered to the rheumatologists at the Universities
of Maastricht, Nijmegen and Twente in The Netherlands.
Second, several meetings were organized among the stake-
holders to discuss and refine the flow chart based on personal
experience and knowledge about daily clinical practice.
Finally, the algorithm was concluded based on a consensus
on the treatment decisions that reflect the predominant
clinical practice of the management of RA in The Nether-
lands. In this algorithm, methotrexate, in combination with
intramuscularly injected corticosteroids to bridge the time of
action on disease activity of the first DMARD, was started as
soon as RA is diagnosed. The next treatment based on the
order of the drugs in the respective strategy was considered
when a drug failed primarily or secondarily, or caused severe
toxicity. Primary failure was assumed if DAS28 was still
higher than 3.2 after 3-6 months (random) since the start of
the treatment. Secondary failure was assumed when DAS28
went back to a level >3.2 after a primary response to the
treatment. In Strategy 2, BRMs were combined with meth-
otrexate if the patient did not experience severe toxicity
when receiving methotrexate monotherapy after RA diag-
nosis. When there were no DMARDs left in the sequence,
‘palliative’ therapy was given in both strategies.

2.3 Model Inputs and Data Sources
2.3.1 Patients’ Baseline Characteristics

The initial cohort to be simulated consisted of patients who
were newly diagnosed with RA. We used the registry of the

Radboud University Nijmegen Medical Centre (Nijmegen
Inception Cohort) [22] to estimate the empirical distribu-
tions of baseline age and gender, DAS28 and the presence
of positive rheumatic factor. This observational study was
started in 1985 to collect information on the long-term
course of RA in patients with disease duration <1 year and
being DMARD naive on the inclusion date. Because the
course of disease in RA patients has become milder in
recent years [23], only data of patients who entered the
registry after 2002 were used for parameter estimation.
Between January Ist, 2003 and May 22nd, 2012, there
were 231 patients with a mean follow-up of 1.5 years
(minimum 0 year; maximum 9.2 years),

Percentages of male and female patients with paid jobs
were estimated based on a Dutch cross-sectional study on
labour force participation [24]. Based on these distribu-
tions, the baseline characteristics of each patient were
sampled using the sampling methods described in the
online supplementary appendix.

2.3.2 Treatment Effectiveness and Toxicity

Data from the Dutch RhEumatoid Arthritis Monitoring
(DREAM) biologic registry [25] (BRM treatment) and the
Nijmegen Inception cohort (DMARD treatment) were used
to estimate: treatment effect on DAS28, time to end of
DAS28 decrease and time to occurrence of severe toxicity
since the start of a drug; and time to loss of response since
the end of DAS28 decrease. The DREAM biologic registry
was started in April 2003 to monitor and evaluate the use of
BRM:s in patients who had not responded to methotrexate
(optimal dose) and at least another DMARD before the
inclusion date from 13 hospitals in The Netherlands. Up to
June 28th, 2011, 1,799 patients had been included in this
cohort with a mean follow-up of 2.2 years (minimum
0 year; maximum 8.2 years).

Because of insufficient data, we assumed that the
effectiveness of a specific drug was independent of the
identities and the causes of failure of the drugs that had
been given previously. We found a linear relationship
between the absolute change in DAS28 during the
decreasing phase and DAS28 at the start of a treatment. For
the same BRM, we found different effectiveness between
its first and second administration. Therefore, absolute
changes in DAS28 were sampled for each drug or drug
class, distinguishing the first and second BRM, using a
statistical linear model with DAS28 at the start of the
treatment as an explanatory variable (Table 2). The
assumption on normal distribution of the errors was veri-
fied using the Shapiro-Wilk test [26]. Because this
assumption was satisfied for any linear model for DAS28
change, the assumption on homoscedasticity of the errors
was further verified using the Breusch—Pagan test [27]. We
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Table 2 Model parameters for sampling patient characteristics and times to events, and estimating treatment effectiveness, and costs and

QALYs
Parameters Estimate Distribution®  Source
Proportion of male patients who have paid jobs 0.85 Beta(249, 43) Chorus
et al. [24]
Proportion of female patients who have paid jobs 0.42 Beta(318, Chorus et al.
444) [24]
Intercept (o) and slope (J) in the linear regression model for estimating absolute change in DAS28 based on DAS28 at the start of:
Methotrexate (17 = 91) o=—1.08; f=0.73 MVN NIC
Sulphasalazine (n = 27) o= —098; f=0.68 MVN NIC
Leflunomide (n = 21) o=-—142; f =0.71 MVN NIC
Other DMARDs (n = 18) a=—0.67; f =032 MVN NIC
Adalimumab, first position in sequential use of anti-TNF BRMs o = —0.95; # = 0.72 MVN DREAM
(n = 226)
Adalimumab, second position in sequential use of anti-TNF o=—148; f =075 MVN DREAM
BRMs (n = 120)
Etanercept or certolizumab, first position in sequential use of anti- « = —0.87; f = 0.70 MVN DREAM
TNF BRMs (n = 267)
Etanercept or certolizumab, second position in sequential use of o = —0.81; f =0.53 MVN DREAM
anti-TNF BRMs (n = 167)
Infliximab or golimumab, first position in sequential use of anti- o = —0.33; f = 0.46 MVN DREAM
TNF BRMs (7 = 188)
Infliximab or golimumab, second position in sequential use of o« = —0.36; f = 0.41 MVN DREAM
anti-TNF BRMs (n = 19)
Non-TNF BRM, first position in sequential use of non-TNF o= -071; f# =057 MVN DREAM
BRMs (n = 73)
Non-TNF BRM, second position in sequential use of non-TNF ¢ = —0.72; f = 0.53 MVN DREAM
BRMs (n = 18)
Coefficients in the linear mixed models for predicting HAQ, HAQ
= (a + mp) + f; x DAS28 + B, 3 AGE 4 (B3 + 1;) x DR 4 fiy x SEX + ¢* in patients receiving a:
DMARD (n = 185) o= —039; f; =0.14; f, = 0.01; MVN NIC
f3=0.03; g, =0.29
BRM (n = 1,579) o= —031; f; =0.15; f; = 0.01; MVN DREAM

By =001; f, = 0.24

Scale parameter in the exponential distribution of time to end of DAS28 decrease (in year) in patients receiving a/an:
N(0.53, 0.09)° NIC
N(0.48, 0.53)° DREAM

DMARD (n = 157)
Anti-TNF BRM (n = 987)
Non-TNF BRMs (n = 91)

Scale parameter in the exponential distribution of time to loss of response (in year) of patients receiving a:

DMARD (n = 121)

Anti-TNF BRMs (n = 726)
Non-TNF BRMs (n = 52)

Coefficients in the parametric survival regression model for time to severe toxicity (in year), log(y) = o + f x AGE, of%:

Methotrexate (n = 139)

Sulphasalazine (n = 42)

Leflunomide (n = 39)

Other DMARD:s (n = 23)

Anti-TNF BRM, first position in sequential use of anti-TNF
BRMs (n = 1,136)

Anti-TNF BRMs, second position in sequential use of anti-TNF
BRMs (n = 510)

1.69
1.61
0.49

0.97

2.38
0.58

o= 246, f = —0.021
o =295, f = —0.025
o= 1.62; f = —0.014
o= 2.44; f = —0.019
o =162 f=—0012

o= 2.24; B = —0.026

N(=0.71,
0.170)°

N(—0.03,
0.18)°

DREAM

NIC

N(0.87, 0.13)* DREAM

N(—0.54,
0.17)°

MVN
MVN
MVN
MVN
MVN

MVN

DREAM

NIC
NIC
NIC
NIC
DREAM

DREAM
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Table 2 continued

Parameters Estimate Distribution®  Source
Non-TNF BRMs, first position in sequential use of non-TNF o= —021; f =0019 MVN DREAM
BRMs (n = 121)
Non-TNF BRMs, second position in sequential use of non-TNF o = —2.98; § = 0.072 MVN DREAM
BRMs (n = 32)
Coefficients in the two-part model for predicting 3-month non-drug healthcare cost (€) (n = 425)
Ist part: logit[P(non-zero cost)] = ¢+ f; x DR + f3» o= —0.87; f; =0.02; f, = 0.78; MVN DREAM
x HAQ + f3 x SEX + fi; x HAQ x SEX f3 = =031 f, = 0.67
2nd part: log(cost) = o + ff; x DAS28 + f» x HAQ + f33 o =15.93; f, =0.18; f, = 042; MVN DREAM
fis =0093; i, =-024
x SEX + fi; x DAS28 x SEX + ¢
Coefficients in the two-part model for predicting 3-month sick MVN DREAM
leave cost (€) (n = 425)
Lst part: logit[P(non-zero cost)] = o 4+ f; x AGE + f, x SEX « = 1.90; i, = —0.07; > = —091 MVN DREAM
2nd part: log(non-zero cost) = o + ff; x HAQ + f, =787 fi; = 0.85; fl =—1.53 MVN DREAM
X SEX + ¢
Coefficients in the two-part model for predicting health utility (HU) MVN DREAM
(n = 425)
Ist part: logit[P(class 2)] = o + fi; x AGE + f, x DAS28 a = 4.33; f; = 0.04; f» = —0.56; MVN DREAM
+ f5; x HAQ f; = —1.69
2nd part: HUgpss ) = o + ) x HAQ + 5 x SEX + ¢ o =0.17; i, = —0.11; f, = 0.04 MVN DREAM
HUgus 2 =0 + f; x HAQ + ff, x SEX + f3 x DAS28 +¢ o =0.82; f, = —0.11; §, = 0.03; MVN DREAM

By = —0.01

DMARD disease-modifying antitheumatic drug; TNF tumour necrosis factor; BRM biological response modifier; SEX takes on a value of 1 or Q if
the patient is female or male, respectively; DR disease duration; HAQ Health Questionnairc Assessment Disability Index; DAS28 Disease
Activity Score for 28 joints; n number of observations in the data set used for model fitting; N/C Nijmegen Inception Cohort; DREAM Dutch
RhEumatoid Arthritis Monitoring registry

* Distribution used to sample parameter values in the probabilistic sensitivity analysis; N(mn, s), normal distribution with mean m and standard
deviation s; Beta(a, b), beta distribution with scale parameters a and b, which were estimated using the method of moments [55]; MVN,
multivariate normal distribution with mean and variance-covariance matrix estimated by fitting the regression models

® 11y and 1, followed bivariate normal distribution with a mean vector 0 and the variance-covariance matrix estimated by fitting the linear mixed
model

¢ Distribution of the logarithm of the scale parameter; see Selvin [57] for method of parameter estimation
9 1t is the scale parameter in the exponential distribution of time to toxicity

analysed all the DMARDs that a patient received after
failure of methotrexate and sulphasalazine (or leflunomide)
as one class, referred to as ‘other DMARDSs’, because the
numbers of observations for some drugs were too small
(n < 5) and the effectiveness of the drugs with more
observations were found to be similar; the effect of ‘other
DMARDs’ on DAS28 was assumed to be the same in both
treatment strategies 1 and 2. For the same reasons, all non-
TNF BRMs at the same position in the treatment sequence
were grouped, and specific pairs of anti-TNFs also grouped
(see Table 2).

Times to end of DAS28 decrease and to loss of response
followed exponential distributions. We found similar
parameter values in the distributions among DMARDs,
among anti-TNF BRMs and among non-TNF BRMs.
Therefore, times to the above-mentioned events were
sampled for different classes of drugs instead of individual
drugs. Because the Pearson’s correlation coefficients

between the absolute changes in DAS28 and times to end
of DAS28 decrease for different drugs were small (<0.3),
we assumed that a change in DAS28 was independent of
the time taken to achieve this change. Therefore, we
sampled the time to end of DAS28 decrease separately
from sampling the change in DAS28. Time to severe tox-
icity for each treatment was linked to age, gender and
disease duration using a parametric survival model with
assumed exponential distribution of the dependent variable.
To obtain a parsimonious model, we performed backward
variable selection using the Akaike Information Criterion
(AIC) [28]. As a result, age was the only predictor of time
to severe toxicity in the final model (see Table 2).
Long-term progression of physical functioning, mea-
sured by the Health Assessment Questionnaire Disability
Index (HAQ) [29-31], was simulated based on the longi-
tudinal relationship between DAS28 and HAQ. The chan-
ges in DAS28 and HAQ over time were linked to costs and
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health utility (HU) using statistical models (see next sec-
tions and Table 2).

2.3.3 Costs and Quality-Adjusted Life-years

Data from the DREAM biologic registry were used for
statistical modelling of healthcare and sick leave costs and
HU. Costs incurred by each patient were calculated based
on the amounts of resource use and unit costs. The amounts
of resource use were reported every 3 months by each
patient participating in the DREAM registry and included:
numbers of diagnostic and laboratory tests; days in hospi-
tals; numbers of surgical procedures; visits to rheumatol-
ogists and other specialists, to general practitioners, to
nurse specialists, to physiotherapists, and to psychologists;
and hours of formal and informal care. The unit costs
published by the Dutch Health Care Insurance Board [32]
were used and adjusted using a consumer price index [33].
The human capital approach was used for estimating sick
leave cost [34].

For healthcare and sick leave costs, we used two-part
models as recommended by Mullahy [35] and Manning and
Mullahy [36] to link cumulative costs over 3 months to
age, gender, disease duration and mean DAS28 and HAQ.
Because of the excessive zeros in the cost data, logistic
regression models were used in the first part to estimate the
probability that the costs were non-zeros. Conditional on
non-zero costs, log-linear regression models were used in
the second part to evaluate the costs. The assumptions on
normality and homoscedasticity of the errors in these log-
linear models were verified using the same tests as in the
linear models for changes in DAS28. Because the DREAM
registry did not contain data related to permanent work
disability (PWD), we estimated time to PWD based on
Chorus et al. [24]. The productivity cost due to PWD was
estimated using the human capital approach based on the
duration of PWD in patients with paid jobs, and average
wages derived from Statistics Netherlands [33] for men and
women in different age categories. The total productivity
cost was calculated as the sum of costs due to sick leave
and PWD.

Total drug cost for each patient was computed based on
the simulated durations that the patient received specific
drugs. Doses and unit prices of the drugs were determined
based on documentation of the Dutch Institute for Health
Care [37].

In the DREAM registry, HU was measured using the
EuroQoL five dimensions questionnaire (EQ-5D) [38, 39].
The histogram of the observed HU values showed bimodal
normal distributions and therefore we performed a com-
puter-assisted analysis of mixtures to divide the data into
two latent classes [40]. Then, we used a two-part model to
link HU to age, gender, disease duration, DAS28 and HAQ.
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In the first part, a logistic regression model was used to
predict the probability that a patient belonged to a specific
class. In the second part, a linear regression model, fitted
for each specific class, was used to predict the HU (see
Table 2). Predicted values of HU that fell outside of the
realistic ranges were adjusted using the approach devel-
oped by Herndndez Alava et al. [41]. In fitting each of the
models for costs and HU, we performed backward variable
selection using the AIC (see Table 2 for the final models).

QALYs were computed based on the predicted HU
values at discrete time points. We selected QALY as an
outcome because it is recommended for use as a standard
measure of health effects in the Dutch and other guidelines
for conducting and reporting economic evaluation [42-44].
Despite controversial assumptions underlying QALY, it
has been by far the only generic measure of health that
allows comparisons between diseases. Extensive discussion
on the advantages and limitations of the QALY approach
can be found in Loomes and McKenzie [45], Wagstaff
[46], Broome [47] and Dolan [48]. Following the Dutch
guidelines for pharmacoeconomic studies, annual discount
rates for costs and QALYs were set at 4.0 and 1.5 %,
respectively [42].

2.34 Predicting the Health Assessment Questionnaire
Disability Index

Because costs and QALYs are non-linearly related to
DAS28 and HAQ (see previous section), we predicted
HAQ based on disease duration, DAS28, age and gender
using a linear mixed-effects model with random effects of
intercept and disease duration. According to the rheuma-
tologists’ opinion, the long-term beneficial effect on HAQ
of BRMs might be larger than that of DMARDs. Therefore,
the models for HAQ progression in patients receiving
DMARDs and BRMs were fitted separately using the
Nijmegen Inception Cohort and DREAM registry, respec-
tively. An overview of the model parameters, their esti-
mates and distributions for probabilistic sensitivity analysis
(PSA), and data sources for parameterisation is provided in
Table 2.

2.4 Modelling Tools, Model Implementation
and Output Analysis

The DES model was written using the Delphi language
(Embarcadero Delphi XE 15.0; Em-barcadero Technolo-
gies Inc., San Francisco, CA, USA). R [49] and SAS 9.2
(2008; SAS Institute Inc., Cary, NC, USA) were used for
data handling and statistical analyses. The package
C.A.MAN was used for the mixture analysis of HU [50].
The algorithms provided by Ripley [51], Genz [52] and
Press et al. [53] were used to generate random variables.
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The model was rigorously verified for coding logics and
correctness, and debugged based on extreme value
scenarios.

Because RA is a chronic disease and the sequential
treatment strategies included high numbers of drugs, a
lifetime horizon was chosen to capture any differences in
the long-term outcomes between the treatment strategies as
recommended by the ISPOR Task Force on good research
practices for modelling studies [54]. Therefore, the simu-
lation was run until death of patients. The size of the initial
cohort was determined by repeatedly running the simula-
tion with increasing initial population size until means and
standard deviations (SDs) of costs and QALYs became
stable. As a result, an initial cohort of 10,000 patients was
used for the first- and second-order uncertainty analyses.
ICER was calculated according to Briggs et al. [55].
Ninety-five-percent confidence interval (CI) of ICER was
computed using the non-parametric bootstrapping method
[56] with 100,000 times of sampling. Simulated results
were face-to-face validated by experts in RA and health
€COnomists.

For PSA, values of the model parameters were sampled
1,000 times from appropriate distributions. The beta dis-
tributions of the proportions (see Table 2) were estimated
using the method of moments [55]. The multivariate nor-
mal distributions of the parameters in the regression
models were obtained from the model fitting. The distri-
bution of the logarithm of the scale parameters in the
exponential distributions were estimated based on survival
analyses [57]. The net-benefit framework was used to
construct the cost-acceptability curves from the Monte
Carlo simulation results [55].

3 Results
3.1 Disease Progression

The simulated results showed equal or better DAS28 and
HAQ (as population averages) in Strategy 2 over time
compared with Strategy 1 (Fig. 2). During the first 2 years,
DAS28 and HAQ in both strategies decreased rapidly.
After this period, DAS28 in Strategy 1 started to increase
but that in Strategy 2 continued to decrease slightly until
year 6. After year 6, DAS28 in both strategies increased
until year 28 and then became stable. The differences in
DAS28 between the two strategies were negligible during
the first 2 years, increased quickly from year 2 to year 12,
decreased steadily from year 12 to year 28, and became
negligible again after year 28.

Similar to the case of DAS28, HAQ (as population
averages) in both strategies decreased during the first
2 years, but at a slower rate than the change in DAS28.

After this period, however, HAQ in both strategies
increased over time, The differences in HAQ between the
two strategies were negligible during the first 2 years,
increased gradually from year 2 to year 12, decreased
gradually from year 12 to year 22, and became very small
(<0.1) again after year 22.

3.2 Costs and Effectiveness

Mean societal costs per patient per year varied between
€9,127 and €18,121 in Strategy 1, and between €10,731
and €18,027 in Strategy 2 over a period of 70 years.
Overall mean (SD) of the non-drug direct cost per patient
per year was €8,717 (2,937) in Strategy 1 and €8,548
(2,806) in Strategy 2, implying a marginally positive effect
of BRMs on the non-drug resource use. Overall mean (SD)
of the productivity costs per patient per year was €3,618
(9,101) in Strategy 1 and €3,379 (9,105) in Strategy 2.
Overall mean (SD) of drug cost per patient per year was
€155 (224) in Strategy 1 and €1,422 (2,242) in Strategy 2.
Productivity and drug costs accounted for 48 and 4 % of
the total costs in Strategies 1, respectively, and 34 and
31 % of the total costs in Strategy 2, respectively.
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Fig. 2 Changes in means and standard deviations of DAS28 (a) and
HAQ (b) of the patients in two treatment strategies over time,
Strategy 1 consists of eight available DMARDs and Strategy 2
consists of the same available DMARDs as in Strategy | plus two
anti-TNF and two non-TNF biological response modifiers, DAS28
Disease Activity Score for 28 joints, HAQ Health Questionnaire
Assessment Disability Index, DMARDs disease-modifying antirheu-
matic drugs, TNF tumour necrosis factor
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Fig. 3 Scatter plot of incremental mean costs against incremental
mean QALYs of Strategy 2 compared with Strategy [. Strategy |
consists of eight available DMARDs and Strategy 2 consists of the
same available DMARDSs as in Strategy | plus two anti-TNF and two
non-TNF biological response modifiers. Each data point was obtained
from one simulation for 10,000 patients with a set of random
parameter values sampled from appropriate probability distributions.
The data points lie in both north-west and north-east quadrants of the
plane. The colour intensity of the dot cloud represents the density of
the dots: the stronger the intensity is, the denser the dots are. ICER
incremental cost-effectiveness ratio, DMARDs disease-modifying
antirheumatic drugs, QALYs quality-adjusted life-years, TNF tumour
necrosis factor

In agreement with the trends of change in mean DAS28
and HAQ, mean HU in both strategies increased during the
first 2 years and then steadily increased over time. The
differences in mean HU between the two strategies were
negligible during the first 4 years, increased from year 4 to
year 12, decreased from year 12 to year 30, and became
negligible (<0.01) again after year 30. Mean QALY per
patient since RA diagnosis until death was 11.51 in Strat-
egy 1 and 11.93 in Strategy 2 (95 % CI of the difference
0.08-0.86). When combing costs and effects, ICER was
€124,011. Bootstrapped 95 % CI of ICER was
(€62,193-597,857).

3.3 Probabilistic Sensitivity Analysis

The scatterplot of the joint uncertainty in the incremental
mearn costs against incremental mean QALY's of Strategy 2
compared with Strategy 1 showed that 23 % of the data
points lied in the north-west and remaining points lied in
the north-east quadrants of the cost-effectiveness plane
(Fig. 3). At a WTP threshold of €10,080, the probability
that the Strategy 2 was cost effective was zero. At a WTP
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Fig. 4 Cost-effectiveness acceptability curves for two treatment
strategies. Strategy | consists of eight available DMARDs and
Strategy 2 consists of the same available DMARDs as in Strategy |
plus two anti-TNF and two non-TNF BRMs. DMARDs disease-
modifying anticheumatic drugs, TNF tumour necrosis factor, BRMs
biclogical response modifiers

of €119,167, the probabilities that the Strategies 1 and 2
were cost effective were equal (0.5). At thresholds above
€119,167, Strategy 2 cost-effectively dominated Strategy 1
but the probability that the Strategy 2 was cost effective
never exceeded (.87 (Fig. 4).

4 Discussion

As the treatment strategies for patients with early RA are
becoming more and more complex, it is necessary to
develop a modelling approach that fully supports economic
evaluation of a wide range of real-life treatment strategies.
While the ultimate goal of treating RA is to achieve
remission, the desired treatment target may differ among
countries. In our study, a clinical guideline was used to
formulate the decisions when to change treatment and
which drug should be used to maintain low disease activity
(i.e. DAS28 <3.2) in RA patients. Low disease activity is
accepted in international guidelines as a more realistic
target compared with remission [58]. Using this treatment
target, failure and switching of a treatment in the model
were determined by DAS28, rheumatic factor and treat-
ment duration. This approach is more realistic than using
fixed sequences because it better reflects the practice of
rheumatologists.

Owing to the flexible simulation approach, our model
can be used to assess the effects of a number of factors on
disease progression, costs and effectiveness such as: the
number of BRMs available for a treatment strategy, the
position of a specific drug in the sequential treatment, the
cut-point of DAS28 as a criterion for switching treatment
to reach low disease activity and the time interval between
two assessments of disease activity. In addition, the model
can be adapted to simulate the rheumatologist decisions on
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drug use based on potential patient characteristics, of which
values can be obtained, for example, using biomarkers.
Although the model was developed for the current Dutch
situation, it can be easily extended to incorporate different
treatment algorithms based on new guidelines and guide-
lines from other healthcare systems.

In this study, we sought to estimate costs and effec-
tiveness as they would occur in routine clinical practice.
While data from controlled clinical trials are ideal for
estimating treatment efficacy and for comparing outcomes
between treatments in selective patients, they may not be
relevant for economic evaluation studies in diverse patients
under conditions different from those in the controlled
trials [59]. Therefore, the use of real-life data for model
inputs in our study is an advantage. Because the Nijmegen
Inception Cohort and the DREAM registry were long-term
follow-up studies that included patients with a wide range
of disease severity, it was possible to link treatment
effectiveness to DAS28 at the start of the treatment. In this
way, the effectiveness is not overestimated in patients with
mild RA or underestimated in patients with severe RA as in
the case when the treatment effect is estimated indepen-
dently of disease severity. Because the assumptions of
normality and homoscedasticity of errors were satisfied for
any ordinary least squares-based model fitted in our study,
the predicted treatment effectiveness (using linear regres-
sion models) and costs (using log-linear regression models)
were unbiased. We applied statistical models based on
mixtures of parametric distributions for costs, which have
been shown to perform better than those based on single
distributions [60]. This approach was also applied for HU,
of which the histogram clearly showed a mixture of two
subpopulations. Recently, Herndndez Alava et al. [41] have
demonstrated that mixture models performed much better
than standard linear regression models in predicting HU
measured by the EQ-5D questionnaires. The simulated
changes in mean DAS28 and HAQ in the two treatment
strategies (Fig. 2) are plausible. During the first 2 years,
most of the patients in Strategy 2 received DMARDSs as
those in Strategy 1. Therefore, means of these disease
measures were almost identical. After 2 years, more and
more patients in Strategy 2 were eligible to receive BRMs.
Because the effectiveness of the first anti-TNF BRM was
larger than that of DMARDs, and BRMs on average
maintain DAS28 at low levels for a longer time than
DMARDSs, the numbers of patients having DAS28 return-
ing to the baseline levels and of patients receiving ‘palli-
ative’ therapy in Strategy | were increasingly higher than
in Strategy 2, leading to the divergence in the differences
between means of disease measures in the two strategies
over the next 10 years. After 12 years, more and more
patients in Strategy 2 received DMARDs after failures of
all BRMs, narrowing the differences between the two

strategies. After 25 years, a majority of the patients in the
two strategies have lost response to all the available drugs
and therefore the differences became negligible.

Our simulated ICER (€124,011) was higher than con-
ventionally accepted WTP thresholds (e.g. £23,000 in UK
and $62,000 in USA) [61]. In the models that evaluated
treatment sequences independent of patient characteristics
and used data from clinical trials for model parameterisa-
tion, estimated ICERs were lower than €100,000 [8, 9].
Inclusion of BRMs in a treatment strategy for RA appeared
to be less favourable in our model, which used a real-life
treatment algorithm and data. Analyses of the DREAM
registry showed that the beneficial effect on DAS28 of
BRMs was only slightly larger than those of DMARD:S,
Although in the long term,, a patient treated with BRMs
might have better physical functioning (i.e. lower HAQ)
than treated with DMARDs (given the same baseline
DAS28), this difference is rather small (see statistical
models for HAQ in Table 2). These statistical analyses
agree well with the simulated changes in DAS28 and HAQ
over time in the two treatment strategies.

It should be noted that our estimated ICER was com-
puted based on the expected costs and utilities of the whole
population. Given the fact that HAQ progression, utilities
and costs of patients with different ages, gender, disease
duration and DAS28 are different, net benefit of a patient
receiving a specific treatment clearly depends on his or her
characteristics. As a consequence, there are always patients
who do not benefit from the decided treatment strategy,
leading to benefit forgone from the population-based
decision. Thus, making a treatment decision for individual
patients or subgroups of patients with similar characteris-
tics would optimize the population welfare. Recently,
much attention has been paid to an individual-based deci-
sion and the potential value that a society is willing to pay
to realize the individualized care, the so-called expected
value of individualized care (EVIC) [62, 63]. As our model
took patient heterogeneity into consideration, it can be used
to compute EVIC,

Our modelling approach has some limitations. It is
complex and thus communication of the model structure
and results with the decision makers may be not straight-
forward. In addition, extensive data are required for model
parameterisation. Very large longitudinal studies are nee-
ded to quantify the effectiveness and toxicity profile of a
drug at different positions and after stopping treatment of
previous drugs because of different causes (primary failure,
secondary failure or severe toxicity) in a treatment
sequence. Because the contemporary management of RA
aims at reaching low disease activity, the use of a high
number of DMARDs is adopted. However, it currently
remains uncertain about the effect on DAS28 of a DMARD
after failure of several other DMARDSs and BRMs. Because
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of insufficient data, in our model all DMARDs after failure
of all BRMs were analysed as one class, and the effec-
tiveness of the second anti-TNF and non-TNF BRMs were
estimated independently of the causes of failure and of
toxicity of the first ones. Additionally, time to permanent
work disability was modelled independently of the types of
treatment. At the present time, it is still debatable whether
or not treatment with BRMs could reduce the risk of
becoming permanently work disabled [64]. Nevertheless,
while complexity and demand for data are limitations of
our model, they are helpful in identifying the knowledge
gaps in the current guidelines for the management of RA
and priorities for future research.

5 Conclusions

It is possible to model the outcomes of complex treatment
strategies based on a clinical guideline for RA. This
modelling approach allows assessment of the impact of
changes in clinical practice on disease progression, health
and costs of the RA patients, and cost effectiveness of new
treatment decisions. Following the Dutch guideline for the
management of RA and using real-life data, the simulated
ICER of the treatment strategy including BMRs compared
with a treatment strategy without BMRs was higher than
conventionally accepted WTP thresholds. Using an indi-
vidual-oriented approach, our model can serve as a tool for
individualized care analysis taking patient heterogeneity
into account and can be extended to assess total health and
budget impact of treatment strategies in different decision-
making contexts. Despite complexity and demand for
extensive data, our modelling approach can help to identify
the knowledge gaps in clinical guidelines for RA man-
agement and priorities for future research.
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