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Genome-wide study of association and interaction with maternal
cytomegalovirus infection suggests new schizophrenia loci
AD Børglum1,2,3, D Demontis1,3, J Grove1,3,4, J Pallesen1,3, MV Hollegaard5, CB Pedersen3,6, A Hedemand1,3, M Mattheisen7,8,9

GROUP investigators10, A Uitterlinden11, M Nyegaard1,3, T Ørntoft12, C Wiuf4,13, M Didriksen14, M Nordentoft3,15, MM Nöthen7,16,17,
M Rietschel18, RA Ophoff19, S Cichon7,16,20, RH Yolken21, DM Hougaard5, PB Mortensen3,6 and O Mors2,3

Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant
to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and
follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the
same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs)
and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up
investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch
(1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish
samples were rs4757144 in ARNTL (P¼ 3.78� 10� 6) and rs8057927 in CDH13 (P¼ 1.39� 10� 5). Both genes have previously been
linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and
German-Dutch samples, was rs12922317 in RUNDC2A (P¼ 9.04� 10� 7). A region-based analysis summarizing independent signals
in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P¼ 7.0� 10� 7).
This signal was replicated in the follow-up analysis (P¼ 2.3� 10� 2). Significant interaction with maternal CMV infection was found
for rs7902091 (PSNP�CMV¼ 7.3� 10� 7) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of
including environmental factors in genetic studies.
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INTRODUCTION
Schizophrenia is a severe life-long mental disorder, which affects
approximately 1% of the population worldwide. Several studies
have documented a strong genetic component in the etiology
and the heritability is estimated to be around 80%.1 Besides the
genetic component, environmental factors as well as gene–
environment interactions are believed to contribute to the disease
risk.2 Numerous linkage, candidate gene studies and genome-
wide association (GWA) studies have been performed in order to
elucidate the genetic architecture of the disease.3–8 These studies
have implicated several genes in disease risk but seldom
unambiguously across different studies and populations. In the
GWA studies, only a few loci have passed the generally accepted
level of Po5� 10� 8 for genome-wide significance.4,5,9–11 From
the GWA studies, it can be concluded that only moderate levels of
association of common variants with schizophrenia can be
expected, and recent results suggest that a high number of

common susceptibility variants of small effect are involved,
collectively capturing around 30% of the genetic risk.12,13 The
remaining genetic risk could involve de novo mutations, rare
variants and gene–environment interactions.14–18 Due to the low-
effect sizes of the common risk variants, the heritability that can
be accounted for by those identified so far has been estimated to
be between 1% and 2%.19,20

It is well documented that the environment has an important
role in the development of schizophrenia.21 Especially early in life
the susceptibility to environmental risk factors may be increased,
supported by several studies demonstrating an association of
maternal infection with increased risk of the child developing
schizophrenia later in life.22–25 It has also been reported that
interaction between genetic variation in the offspring and markers
of maternal infection (maternal antibodies) may influence the risk
of schizophrenia,26 stressing the importance of taking environ-
mental factors into account in genetic studies.
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The Danish population is, in general, considered ethnically
homogenous with only recent immigration of non-Caucasian
individuals, which makes it suitable for genetic studies. In
Denmark, all newborn babies (around 65,000 each year) are
screened for metabolic diseases and since 1981 the surplus of the
analyzed blood spot samples have been stored in the Danish
Newborn Screening Biobank (DNSB).27 Coupling with information
from the Danish Psychiatric Central Research Register28 allows for
the unique opportunity to obtain DNA from all individuals who
have been diagnosed with schizophrenia since 1981. Furthermore,
as the DNSB samples are obtained from babies before they are
able to produce their own antibodies and hence the antibodies in
the blood reflect the mother’s antibodies, it is possible to
investigate how maternal infections and their interactions with
genetic variations in the offspring influence the risk of
schizophrenia. Infection with cytomegalovirus (CMV), a neuro-
trophic virus of the herpesvirus family, has been associated with
schizophrenia in several studies, and interactions between
selected genes and CMV have been reported,29,30

Here we report the results of a GWA study and follow-up
investigation of all Danish individuals born since 1981 and
diagnosed with schizophrenia, including single variant as well as
regional analyses. In addition, as the first genome-wide gene–
environment interaction study in schizophrenia, we examine
interaction between single nucleotide polymorphisms (SNPs) and
maternal CMV infection (maternal anti-CMV immunoglobulin G
(IgG) antibody titer).

MATERIALS AND METHODS
Study design and power calculation
A two-stage design was applied in this study. In stage 1, a GWA analysis of
888 cases and 882 controls was performed and, in stage 2, a follow-up
analysis of the strongest associated SNPs was performed on an
independent sample consisting of 1396 cases and 1803 controls. Com-
bined association analysis of both samples achieves a power of 80% to
detect a disease allele with a frequency of 0.36 and odds ratio (OR) of 1.35
assuming prevalence of 0.01 at a significance level of 5� 10� 8.31 The SNPs
strongest associated with schizophrenia were analyzed further by
combining stage 1 and stage 2 individuals with a German-Dutch sample,
a sample genetically closely related to the Danish.32

Study subjects and phenotype definition
Stage 1: It was possible to identify the samples of interest based on the
unique personal identification number (CPR-number), which is assigned to
all live-born babies in Denmark. This number is stored in the Danish Civil
Registration System (DCRS)33 and is used in all the contacts with the public
sector. In this study, information from the DCRS was linked with the
information stored in the nationwide Danish Psychiatric Central Register28

in order to identify all individuals born in 1981 and onwards that in 2006
had been diagnosed with schizophrenia according to ICD-10-DCR (The
ICD-10 Classification of Mental and Behavioural Disorders Diagnostic
Criteria for Research; F20). For each schizophrenia case, one matched
control individual was randomly selected with the same gender, date of
birth and age and with no history of schizophrenia on the date of first
diagnosis of schizophrenia of the case. Using this procedure, 915 cases and
915 controls were identified and subsequently dried blood spots from the
individuals were obtained from the DNSB.

Stage 2: All individuals born since 1981 and onwards diagnosed with
schizophrenia according to ICD-10-DCR, F20 between 2006 and 2010 and
matched controls were identified as described above. In all, 1149 cases and
1303 controls were identified and subsequently blood spots were obtained
from the DNSB. Furthermore, a sample of 247 schizophrenia cases fulfilling
ICD-10 criteria and 500 controls were included as described previously.7,26

The cases and controls were Danish Caucasians.
German-Dutch replication sample: A total of 1169 schizophrenia cases

(464 German and 705 Dutch) and 3714 ethnically matched controls (1272
German and 2442 Dutch) were used in the replication analysis (details on
criteria for inclusion can be found in Rietschel et al.5). Descriptive data for
the three samples can be found in Supplementary Table S1. This study has

been approved by the Danish Data Protection Agency and the local ethics
committees in Denmark and abroad.

Genotyping and quality control (QC)
Stage 1: Sufficient biological material was available for 909 cases and 899
controls. DNA was extracted from the dried blood spots using Extract-N-
Amp Blood PCR kit (Sigma Aldrich, Seelze, Germany) and subsequently
whole genome-amplified in triplicates using the RepliG kit (Qiagen, Venlo,
The Netherlands).34 The three separate reactions were pooled before
genotyping, which was done using the Illumina Human 610-quad
beadchip (San Diego, CA, USA). In all, 1774 individuals (892 cases, 882
controls) with gender in concordance with the register information were
successfully genotyped with a call rate 40.97. Stringent QC was applied to
data from samples with a call rate 40.97. The QC excluded SNPs with a call
rate o0.99, SNPs with a deviation from Hardy–Weinberg equilibrium
(Po0.0001 in controls) and a minor allele frequency (MAF) o0.0015.
Furthermore, test for relatedness, estimation of individual heterozygosity
and test for non-random missingness of SNPs between cases and controls
were conducted (Supplementary Table S2). After QC, 1770 individuals (882
controls, 888 cases) and 541,148 SNPs were left for further analysis.

Stage 2: DNA from the 1149 cases and 1303 controls obtained from the
DNSB was extracted and whole genome-amplified using the kits described
above. DNA was isolated from blood samples from the additional 247
cases and 500 controls following standard procedures. In all, 193 follow-up
SNPs (Supplementary Table S3) were genotyped as well as five SNPs on the
sex-chromosomes, using the Sequenom MassARRAY genotyping platform
(Sequenom, San Diego, CA, USA) following the protocol described in
Nyegaard et al.7 It was checked that the estimated gender, based on the
genotypic information, was in concordance with the gender given in the
DCRS. In order to exclude the presence of identical samples, an identity by
state analysis was performed using the software Graphical Relationship
Representation.35 After QC, 3142 individuals (1370 cases, 1772 controls)
with a call rate 40.8 were genotyped for 168 SNPs (Supplementary Table
S3). The SNPs had a call rate 40.9, no significant deviation from Hardy–
Weinberg equilibrium (P40.0001 in controls) and a MAF40.0015.

German-Dutch replication sample: The individuals were genotyped
using the Illumina HumanHap550v3 BeadArray (Illumina). After QC
genotypes for 475,427 SNPs were available in 1169 cases and 3714
controls (for details on genotyping and QC, see Rietschel et al.5).

Antibody measurements
Measurements of type-specific IgG antibodies to CMV were obtained by
enzyme immunoassay36 for a subsample of stage 1 individuals (488 cases
(216 females and 272 males) and equally many controls. The blood spots
stored in the DNSB were taken when the neonates were 2–7 days old. At
that age a child has not yet produced any significant amount of IgG
antibodies, but while in utero maternal IgG antibodies are transferred
across the placenta to the fetus. Hence, the antibodies measured can be
assumed to be mainly maternal.37 The measurements were dichotomized
at 0.2 optical density units, yielding a prevalence consistent with those
measured in European populations.38

Statistical analysis
All analyses were performed using the software PLINK (http://pngu.mgh.
harvard.edu/Bpurcell/plink/)39 unless otherwise stated.

Population stratification
In order to minimize the effect of spurious association originating from
population, stratification association analysis was performed using logistic
regression with principal component one as covariate derived from
principal component analysis40 (Supplementary Figure S2). This lowered
the genomic inflation factor from 1.047 to 1.013. A deviation of l from 1
can be expected under polygenic inheritance even when there is no
population structure,41 so in order to avoid unnecessary correction only
principal component one was used to correct for population stratification
(more information is provided in the Supplementary Information).

Single-marker association analysis
GWA analysis was performed using logistic regression with principal
component one as a covariate applying an additive genetic model. The
SNPs demonstrating the strongest association with schizophrenia in the
GWA analysis (2843 SNPs with a P-value o0.005), were further evaluated in
a meta-analysis by including data from a German-Dutch replication
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sample.5 The meta-analysis implemented in PLINK was used, and a fixed
effect model was considered.

Two types of analysis were applied in order to identify follow-up SNPs
for genotyping in the stage 2 sample: (1) based on the GWA analysis, a set
of 100 SNPs were identified using a top-down approach, and (2) based on
the meta-analysis, a set of 100 SNPs were identified using a top-down
approach. Association with schizophrenia was analyzed in the stage 2
sample by logistic regression using an additive genetic model. A binomial
sign test was performed in order to test for evidence of directionally
consistent replication.

A meta-analysis (as described above) was used to test for association of
follow-up SNPs with schizophrenia in two combined data sets: (1) the
combined stage 1 and the stage 2 samples, and (2) the combined stage 1,
stage 2 and German-Dutch replication sample (referred to as extended
meta-analysis from now), which in total included 3453 cases and 6399
controls.

Region-wise association analysis
All chromosomes were divided into overlapping regions of 100 kb, each
overlapping its neighboring regions by 50 kb. For each region, a combined
P-value was calculated by Fisher’s method:42 X¼ � 2

Pk
i=1 loge(pi), where

k is the number of SNPs in the region and pi is the P-value for each
SNP calculated by a standard w2 test, using an additive model. The
P-value for each region was calculated by permutation test shuffling
the case–control status. (see supplementary Material for details).

SNP�maternal CMV infection interaction analysis
The two-step method of Murcray et al.43 was applied in order to test
whether genetic variation interacts with maternal CMV infection
influencing the risk of schizophrenia in the offspring. First, the full set of
SNPs was screened for association with maternal CMV infection in the
combined sample of cases and controls at a significance level of 0.05.
Second conditional logistic regression with inclusion of an interaction term
in the regression on the m SNPs selected in step 1, was performed using
Stata 10.0, College Station, TX, USA: StataCorp LP. Because the tests
performed in steps 1 and 2 are (asymptotically) independent,43 Bonferroni
correction for the m tests in step 2 preserves the family-wise error rate.

RESULTS
Single-marker association analysis
In the GWA analysis 26,863 SNPs demonstrated an association
with schizophrenia with a P-value o0.05 (Figure 1a). In all, 54 SNPs
showed P-values o1� 10� 4, and the SNP demonstrating the
strongest association with schizophrenia was rs2836518 (P¼ 1.32
� 10� 5), located on chromosome 21q22 in the intron of ERG
(list of all SNPs with P-values o1� 10� 4 can be found in
Supplementary Table S5).

In the stage 2 sample, 165 SNPs were successfully genotyped, of
which nine demonstrated a directionally consistent association at
nominal significance (Table 1). At the experiment level, the
associations of the SNPs genotyped in stage 2 demonstrated
significant directional consistent evidence of replication (binomial
sign test Po0.0096). The SNP showing the strongest association in
the stage 2 sample was rs4757144 (P¼ 0.0059) located on
chromosome 11 in the intron of ARNTL on chromosome 11p15.

In the combined analysis of stage 1 and stage 2, four SNPs
showed P-values o1� 10� 4. The SNP demonstrating the
strongest association in this analysis was also the ARNTL SNP
rs4757144 (P¼ 3.78� 10� 6; Figure 1b). The other three markers
were rs8057927 located in the intron of CDH13 on chromosome
16q23 (P¼ 1.39� 10� 5; Figure 1c), rs2121783 located in the
intron of FOXP1 on 3p13 (P¼ 8.86� 10� 5) and rs3123688 on
10p11 located between ZEB1 and ZNF438 upstream transcription
start for both genes (P¼ 9.05� 10� 5; Table 1).

In the extended meta-analysis, including both the Danish and
German-Dutch individuals, four SNPs demonstrated P-values
o1� 10� 5: rs12922317 located in the intron of RUNDC2 on
16p13 (P¼ 9.04� 10� 7; Figure 1d), rs8057927 located in the intron
of CDH13 on 16q23 (P¼ 1.20� 10� 6), rs6485671 located upstream

CREB3L1 on 11p11 (P¼ 5.08� 10� 6) and rs4757144 in the intron of
ARNTL (P¼ 5.35� 10� 6; Table 1). Additional results of the
combined analyses can be found in Supplementary Table S6.

Region-wise association analysis
In total, 55,561 overlapping regions were tested for association with
schizophrenia (Figure 2), requiring a region-based genome-wide
significant level of P¼ 9.6� 10� 7 if Bonferroni correction is applied.
One region at chromosome 10p11:31,566,070–31,666,070 (hg18)
overlapping ZEB1 was genome-wide significant (P¼ 7.0� 10� 7;
Figure 2, Supplementary Table S7). Five genotyped SNPs were
located in this region (rs1314004, rs7083727, rs1314013, rs12242798
and rs3123688). Two of the SNPs are in high linkage disequilibrium
(rs3123688 and rs12242798, r2¼ 0.642374). The five SNPs were
genotyped in the stage 2 sample. However, rs12242798 failed geno-
typing and was therefore imputed using the software MaCH 1.0
(http://www.sph.umich.edu/csg/abecasis/MACH/)44 with HapMap
phase III, Release #2, CEU, as reference population. The resulting
genotypes were imputed with good quality (quality¼ 0.99,
Rsq¼ 0.34). Significant region-wise association was found in the
stage 2 sample (P¼ 0.023), thereby establishing formal replication of
this locus in the Danish population.

SNP�maternal CMV infection interaction analysis
Of the case mothers, 73.2% were CMV positive while that was the
case for 70.7% of the control mothers, corresponding to an OR of
1.13 (0.85� 1.50), P¼ 0.39, for CMV with respect to schizophrenia
in the offspring. A total of 29,082 SNPs passed step 1 inducing a
Bonferroni significance level of P¼ 1.72� 10� 6 at step 2. A single
SNP, rs7902091 (MAF 0.16 in cases and 0.15 in controls) located in
an intron of CTNNA3 on chromosome 10q21, demonstrated
experiment-wide significant interaction with maternal CMV
infection, with an interaction P-value of 7.3� 10� 7 and interaction
OR of 5.3 under an additive genetic model (Figure 3,
Supplementary Table S8). On its own, rs7902091 showed no
association with schizophrenia (OR¼ 1.04, P¼ 0.67). For non-
carriers of the minor allele, the risk of schizophrenia from maternal
CMV was not observed (OR¼ 0.72, P¼ 0.11) whereas for carriers
the risk increased to OR¼ 5.0 (P¼ 3.8� 10� 2). Furthermore, a
neighboring SNP, rs7919083 located 2206 bp from rs7902091,
demonstrated a relatively low interaction P-value (P¼ 5� 10� 4)
practically independent of rs7902091 (r2¼ 0.08).

DISCUSSION
Here we report the results of a GWA study of schizophrenia using
cases from a complete Danish birth cohort and follow-up
investigations in additional samples, applying single variant and
regional analyses, the latter identifying a novel locus at ZEB1.
Moreover, conducting the first genome-wide gene-environment
interaction survey in psychiatric disorders, we report significant
interaction between CTNNA3 and maternal CMV infection.

In the single variant analysis, none of the analyzed SNPs passed
the widely accepted genome-wide significance threshold of P¼ 5
� 10� 8. However, the results highlighted a number of loci with
the strongest signals located on 10p11, 11p15, 16q23 and 16p13
(Table 1). The SNP rs4757144, located in an intron of the circadian
rhythm-associated gene ARNTL on 11p15, demonstrated the
strongest association in the combined analysis of Danish stage 1
and stage 2 individuals and was the fourth most associated SNP in
the extended meta-analysis. ARNTL is expressed in several
regions of the human brain.45 Circadian-rhythm abnormalities in
schizophrenia patients have been reported.46–49 Several candidate
gene studies have investigated the involvement of circadian
genes in schizophrenia and other psychiatric disorders, with some
suggesting the involvement of ARNTL in disease risk50–52 and
others not.53 The SNP rs4757144 reported in this study is in high
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Figure 1. (a) Manhattan plot of genome-wide association (GWA) analysis. The blue line indicates P¼ 1� 10� 4. (b) Regional association plot of
rs4757144 located in ARNTL. (c) Regional association plot of rs8057927 located in CDH13. (d) Regional association plot of rs12922317 located in
RUNDC2A. The P-values in green are from the GWA analysis, P-values marked in blue are from the combined analysis of Danish individuals, P-
values marked in purple are from the extended meta-analysis. The linkage disequilibrium (LD; r2) between the SNP in focus and its flanking
markers genotyped in the GWA study are demonstrated in red (high LD) to white (low LD). The recombination rate is plotted in blue according
to HapMap (CEU).
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linkage disequilibrium (r240.8, HapMap release 22), with two
SNPs previously reported to be associated with schizophrenia
(rs198235051) and bipolar disorder (rs4757142,51 rs198235052).
ARNTL was also one of the top four candidate genes associated
with bipolar disorder identified by convergent functional
genomics data mining of existing GWAS data sets.54

The second most associated SNP in both the combined analysis
of the Danish samples and in the extended meta-analysis was
rs8057927 in the intron of CDH13 on 16q23. CDH13 encodes
cadherin-13, a member of the cadherin super family of molecules
that mediates Ca2þ -dependent cell–cell adhesion in solid
tissue.55–57 CDH13 is expressed in several parts of the adult
human brain58 and appears to have a negative role in neural cell
proliferation in the developing nervous system.58–60 The
implication of CDH13 in other psychiatric disorders has been
suggested. GWA studies of attention deficit/hyperactivity disorder
identified CDH13 as one of the most associated genes,61–64 and a
meta-analysis of attention deficit/hyperactivity disorder linkage
scans identified the region with CDH13 as the only genome-wide
significant.65 GWA studies have also indicated the involvement of
CDH13 in depression66 and autism,67 and a recent study
implicated CNVs encompassing CDH13 in autism susceptibility.68

The important role of cadherin-13 during brain development and
in maintaining neural circuitry together with the reports of
involvement of CDH13 in other psychiatric disorders therefore
support our result, which, for the first time, suggests the
involvement of CDH13 in schizophrenia (discussion of other top
hits from the extended meta-analysis can be found in the
Supplementary Material).

One SNP (rs10828623) out of the 10 most associated SNPs in the
combined analysis of Danish stage 1 and stage 2 individuals was
nominal significantly associated with schizophrenia in the data
from the Psychiatric Genomics Consortium (PGC; P¼ 0.002),11

resulting in a P-value¼ 4.54� 10� 6 in the combined analysis of
Danish stage 1 and 2 individuals and the PGC samples. The
German-Dutch sample was included in the PGC data. Thus, there
was no overlap in the discovery and follow-up samples. The
limited replication could be due to genetic heterogeneity
between the Danish and PGC samples, reducing the power to
detect variants with small effects. The single marker loci
demonstrating the strongest association in this study are
therefore only valid for Danish, German and Dutch populations.

Applying a regional analysis, summarizing independent signals
in relatively small segments of overlapping regions of 100 kb, we
found region-based genome-wide significant association at a
region on 10p11 containing ZEB1. The applied significance level
was based on Bonferroni correction of the total number of
analyzed regions, which is analogous to how the conventional
GWAS threshold for single-SNP association of 5� 10� 8 is deduced
but which in this case is conservative due to the regions being
50% overlapping and therefore far from independent. This
approach was able to identify a novel risk locus even though it
was performed using a small sample compared with recent GWA
studies, indicating that aggregating P-values in this fashion can be
a powerful approach. This is supported by the accumulating
observations of independent association signals from closely
positioned SNPs (see for example, Steinberg et al.4 and Ripke
et al.11). Moreover, the region showed significant association in the
Danish stage 2 sample, providing independent replication of this
locus in the Danish population. No replication was attempted in
the German-Dutch GWA data set or the PGC data as not all SNPs
(or proxies) in this region were present in these data sets. ZEB1
encodes an E-box binding zinc finger transcription factor, which is
widely expressed in the central nervous system and has an
important role in development of the brain69 and neuronal
differentiation.70 The associated region includes the promoter of
ZEB1 and could therefore be involved in or linked to variants
involved in regulation of expression. This is intriguing as it hasTa
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Figure 2. (a) Manhattan plot of region-wise association analysis. The blue line indicates genome-wide significance (P¼ 9.0� 10� 7). (b)
Regional association plot of rs3123688 located upstream of ZEB1. The P-values in green are from the genome-wide association (GWA) analysis
and P-values marked in blue are from the combined analysis of Danish individuals. The vertical lines represent the region-wise P-values. The
linkage disequilibrium (LD; r2) between the single nucleotide polymorphism in focus and its flanking markers genotyped in the GWA study are
demonstrated in red (high LD) to white (low LD). The recombination rate is plotted in blue according to HapMap (CEU).

Figure 3. Regional association plot of rs7902091. P-values of interaction between single nucleotide polymorphisms (SNPs) and
maternal cytomegalovirus infection. The linkage disequilibrium (LD; r2) between the SNP in focus and its flanking markers genotyped in
the genome-wide association study are demonstrated in red (high LD) to white (low LD). The recombination rate is plotted in blue according
to HapMap (CEU).
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been demonstrated that the expression of ZEB1 is regulated by
another transcription factor protein, TCF4,71 which is one of the
best validated schizophrenia susceptibility genes. Two
independent SNPs in this gene have passed the threshold for
genome-wide significant association,4,5,9 and several studies have
found TCF4 SNPs demonstrating close to genome-wide
significance.5,11,12 Notably, studies have also found strong
evidence for the involvement of both TCF4 and ZEB1 genetic
variants in another disorder, namely Fuch’s corneal dystrophy.72,73

Interestingly, ZEB1 is involved in regulation of cadherin-13
expression by physically binding to the E2-box in the promotor
region of CDH13 decreasing the expression of the gene;74

however, this finding still needs to be confirmed in nerve cells.
Our results together with previous findings could therefore
indicate that ZEB1, TCF4 and cadherin-13 are elements of a
common pathway involved in schizophrenia.

The interaction analysis of SNPs with maternal CMV infection
found a significant interaction at CTNNA3, using an efficient two-
step method where only SNPs passing step 1 were tested for
interaction.43 Thus, only SNPs showing nominal association with
CMV infection in the pooled sample of cases and controls were
tested for interaction. This amounted to around 29,000 SNPs
distributed across the genome. The interacting SNP was
rs7902091 located in an intron of CTNNA3, just upstream the
gene LRRTM3, which is nested within CTNNA3. CTNNA3 encodes
catenin alpha-3, which is predominantly expressed in heart and
testis but expression of the gene in the brain has also been
demonstrated.75 Catenin alpha-3 mediates cell–cell adhesion by
functioning as a link between cadherin-based cell–cell adhesion
complexes and the cytoskeleton.76,77 Biologically the interaction of
rs7902091 in CTNNA3 with maternal CMV makes sense, because
CMV during infection may disrupt cell-to-cell connections by
disconnecting the cadherin–catenin–actin complex within
endothelial cells,78 and in a study of human CMV in transgenic
Drosophila, expression of the regulatory virus genes caused
abnormal embryonic development by interfering with cell-to-cell
adherens junctions through an effect on catenins.79 The
interaction observed suggests that the region around rs7902091
in concert with maternal CMV infection may have a role in the
etiology of schizophrenia. However, this should be replicated in
additional studies. It is noteworthy, though, that neighboring SNPs
(in particular rs7919083) showed a low interaction P-value
independently of rs7902091, supporting the involvement of this
locus. CTNNA3 and its nested gene LRRTM3 (encoding the Leucine-
rich repeat transmembrane neuronal protein 3) have both
previously been found associated to Alzheimer’s disease80–84

and with autism spectrum disorder.67,85 In relation to Alzheimer’s
disease, CTNNA3 have been observed to have stronger effect in
females than in males.82 We therefore performed a secondary
analysis of gender differences in the interaction of CTNNA3 and
CMV. The results are shown in the Supplementary Material
(Supplementary Table S3).

As in any other observational study involving environmental
factors, confounding cannot be ruled out. With the apparent risk
from CMV being turned on and off by the presence or absence of
the variant, any confounder of CMV–schizophrenia association
would confound the interaction result. For instance, the pre-
valence of CMV infection has been reported to correlate with the
prevalence of other infections, including other members of the
Herpes family,86 and social-economic status87 that could be
potential confounders. However, regardless of whether the CMV–
schizophrenia association can be explained by confounding in
part or completely, there is still interaction at the CTNNA3
locus identifying sub-populations of different risk profiles for
schizophrenia.

We have reported the first GWA study and follow-up analysis of
all the Danish individuals born since 1981 and diagnosed with
schizophrenia up to 2010 and controls from the same birth cohort.

Furthermore, we have followed up in an additional sample from a
genetically related population. The results support the findings
from other GWA studies, suggesting the involvement of many
common variants each contributing only slightly to disease risk.
Applying a region-wise analysis, a new risk locus (at ZEB1) was
identified and replicated. Several other plausible susceptibility loci
were also suggested. This is also the first genome-wide study
analyzing how maternal CMV infection interacts with the
genotype of the progeny affecting the risk of schizophrenia,
identifying a significant interaction at CTNNA3, a gene not
previously implicated with schizophrenia. The result stresses the
importance of including environmental factors in the evaluation of
disease risk. Moreover, this is, to our knowledge, the first
significant gene–environment interaction identified in a gen-
ome-wide survey of a psychiatric disorder. Future studies should
confirm the associations of the genomic regions with schizo-
phrenia, demonstrating the strongest signals in this study, as well
as enlarge, the inclusion of environmental factors when identify-
ing genetic risk variants. The unique samples from the DNSB
together with information from Danish register systems makes it
possible to perform genetic studies with inclusion of a wealth of
potential environmental risk factors. Future studies of the
Danish population could therefore provide valuable insight
into how gene–environment interactions influence the risk of
schizophrenia.
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