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ANALYSIS OF PRODUCTION AND LOCATION DECISIONS 

BY MEANS OF MULTI-CRITERIA ANALYSIS 
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Free University Erasmus University 
Amsterdam Rotterdam 

During the last few years economists and operations researchers have paid 
much attention to multi-criteria analysis as a tool in modern decision- 
making. The basic feature of multi-criteria analysis is the fact that a 
wide variety of relevant decision aspects can be taken into account 
without a necessity to translate all these aspects in monetary terms. 
This article will give a brief survey of these new methods in both a 
quantitative and in a qualitative sense. After this survey the relevance 
of multi-criteria analysis for entrepreneurial decisions in the field of 
production and investments will be exposed. The analysis will be illustra- 
ted by means of two examples of entrepreneurial decision-problems, which 
have been solved by means of multi-criteria analysis. 

I. INTRODUCTION 
During the last few years economists and 
operations researchers have paid much atten- 
tion to multi-dimensional optimization 
methods as a tool in modern decision- 
making. The background of this deepgoing 
interest for new decision analyses is the 
lack of operationality of traditional deci- 
sion techniques. A frequently felt shortco- 
ming of almost all these techniques is the 
fact that all dimensions of a decision pro- 
blem have to be translated into a common de- 
nominator (like income, profit, efficiency 
etc.) or at least have to be made commen- 
surate with the primary objective of a 
decision problem. 

The awareness of a multiplicity of 
different objectives in decision-making 
and management has evoked the need of more 
adequate techniques which take into account 
the multidimensionality and heterogeneity 
of individual, social or entrepreneurial 
behaviour. The need of such adjusted 
methods is even more apparent due to the 
mutually conflicting or non-commensurable 
nature of many objectives. The presence of 
(partially) incompatible priorities can be 
considered as an essential characteristic 
of a wide variety of modern planning and 
decision problems. 

Therefore, recently several attempts 
have been made to develop more adequate 
theories and methods which take explicitly 

into account the existence of multiple 
criteria in decision-making (see for 
example, Cochrane and Zeleny 119731, Van 
Delft and Nijkamp 119771, Haimes et al. 

I / 

1975 , Keeney and Raiffa 119761, Nijkamp 
1977 , Nijkamp and Rietveldl19761, Nijkamp 

and Spronk 119771, Ray/19711, Thiriez and 
Zionts / 19761, Wallenius 119751, Wilhelm 
/ 19751 and Zeleny 11974, 19761). The basic 
feature of these techniques is that a wide 
variety of relevant decision aspects is 
included without translating them into mone- 
tary units or any other common denominator. 
These multidimensional optimization methods 
are able to integrate also intangibles nor- 
mally falling outside the realm of the 
traditional price and market system. 

It is clear that these new approaches 
are extremely relevant for entrepreneurial 
decision-making in the sphere of production, 
investment, location, marketing etc. In all 
these cases pecuniary elements (like profi- 
tability) play an important role, but in 
addition several other elements are inpor- 
tant as well like social aspects, environ- 
mental impacts of production, use of scarce 
natural resources, risk characteristics, 
labour conditions etc.). 

This paper will first present a (brief) 
survey of these multidimensional optimiza- 
tion methods, based on a systematic typology 
of these methods (section 2). Next a plea 



286 

will be made in favour of the use of goal- 
programming methods in the area of manage- 
rial decisions (section 3). Then a new 
optimization technique, based on interac- 
tive goal programming methods, will be pro- 
posed as a useful tool for managerial 
decision-making (section 4). Finally, the 
analysis will be illustrated by means of 
some examples from the field of production 
planning and location problems. 

2. TYPOLOGY OF MULTIDIMENSIONAL 
OPTIMIZATION METHODS 

Multidimensional optimization (MO-)methods 
are based on the presence of a set of 
different (conflicting or at least diver- 
ging) objectives instead of one primary 
objective like in the traditional single- 
objective optimization models. Clearly, the 
treatment of several non-commensurable 
objectives implies that a compromise has to 
be found between diverging priorities of 
one decision-maker or between diverging 
interests of multiple decision-makers. 

The general formulation of a MO-model is: 

(2.1) max w (x) 

XSR -, _ 

where w is a vector (or profile) enccmpas- 
sing t%e various objective functions w. 

(i=l ,...,m) and x a vector with decisi& _ 

arguments Xj (j=l,...,n). R represents the 
feasible area for the decision arguments. 

It is clear that a pure maximization of 
one objective wi will prevent the remaining 
objectives from attaining their maxima. 
This conflict implies essentially a double 
choice problem: (a) the optimal values of 
the successive objective functions Wi, and 
(b) the optimal values of the successive 
arguments Xj. This choice problem can be 
attacked in several ways depending on the 
nature of the decision problem at hand. 
Therefore, first a typology of MO-models 
will be presented, based on a classifica- 
tion into discrete and continuous MO-models. 
Discrete MO-models are models in which the 
number of feasible alternative choices or 
strategies is finite; they are usually 
called multi-criteria models. Continuous 
MO-models are based on an infinite number 
of possible values for the decision argu- 
ments and hence for the objective func- 
tions; they are usually called multi- 
objective programming models. Both types 
of models can be further classified into 
quantitative and qualitative models, 
deterministic and stochastic models, and 
static and dynamic models. 
Quantitative MO-models are based on infor- 
mation measured on a cardinal (ratio or 

interval) scale, whereas qualitative 
MO-models include ordinal or nominal infor- 
mation. Hence the following typology may 
be made: 

Table I. A classification of MO-models 

2.1.Discrete MO-models 
There is a wide variety of discrete MO-mo- 
dels. An extensive survey of these multi- 
criteria analyses as well as several 
applications can be found in Van Delft and 
Nijkamp 119771. A first step in all these 
methods is the construction of an impact 
table which reflects the outcomes of all 
alternative plans for all relevant 
decision criteria: 

Table 2. An impact table 

i w.. 
1J 

, 
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The elements w.. reflect the values of the 
ith criterion ?ith respect to the jth plan 
and can be measured in any appropriate unit. 

The next step is the specification of a 
set of weights which reflect the relative 
importance attached by the decision-maker to 
the outcomes of each criterion. These 

weights, which may be linear or non-linear, 
reflect the priority scheme of a decision- 
maker. In several multi-criteria analyses 
these weights are not specified explicitly 
a priori, but can be derived from an 
interactive process during which the 
decision-maker specifies in a stepwise 
manner his preferences regarding the 
values of certain decision criteria (see 
section 4). 

Apart from a cost-benefit analysis and a 
cost-effectiveness analysis the following 
quantitative multi-criteria methods can be 
distinguished: 
I. Trade-off analysis 

A trade-off analysis attempts to 
identify the best means to attain a 
prespecified set of goals, so that one 
may analyse whether one alternative 
plan is better than another, given the 
same set of goals (see Edmunds and 
Letey 119731). A basic problem in the 
use of a trade-off analysis is the 
translation of the trade-offs between 
alternative outcomes into opportunity 
costs. A trade-off analysis is essen- 
tially the dual formulation of a cost- 
effectiveness analysis and has therefore 
the same shortcomings. 

II. Expected value method 
The expected value method assigns a 

set of weights to the criteria of a plan 
evaluation problem (see Kahne / 19751, 
Schimpeler and Grecco 11968) and 
Schlager 119681 and treats these weights 
as semi-probabilities, so that the ex- 
pected value of the plan outcomes of 
each alternative can be calculated by 
multiplying these semi-probabilities 
with the plan outcomes and next by 
aggregating them over all criteria. 
This method is a rather rigid approach 
which does not allow for the relative 
discrepancies and the relative priority 
differences among alternatives. 

III.Correspondence analysis 
Correspondence analysis focusses 

on the differences between alternative 
plans by means of generalized principal 
component methods (cf. Spliid 119741) 
and is essentially a technique for 
pattern recognition based on different 
criteria. The relationships between the 
decision criteria and the alternative 

plans are then examined on the basis of 
clustering procedures, so that the 
plan with a maximum correspondence to 
a priority profile can be identified. 
A drawback of this procedure is the 
fact that the inferences are mainly 
based on the statistical pattern of 
the impact table and less on the rela- 
tive weights of the decision criteria. 

IV. Permutation method 
The permutation method is based on 

successive rank orders of alternative 
plans (cf. Jacquet-Lagreze 11969) and 

Paelinck 119761). This method examines 
the dominance relationships resulting 
from permutations of the successive de- 
cision criteria, as well as of the 
weights assigned to these criteria. 
In this way the most probable ranking 
of plans may be derived. A possible 
difficulty in using these methods is 
that in case of a less apparent domi- 
nant plan rather complicated conditions 
for the values of the weights may arise. 

V. Entropy analysis 
Entropy analysis provides a measure 

for the diversification of the infor- 
mation contained in the project table 
(see Van Delft and Nijkamp 119771). By 
means of a diversification factor for 

weighted plan outcomes the most proba- 
ble one is identified. A possible draw- 
back of this analysis is the straight- 
forward aggregation in order to arrive 
at a conclusion about the most probable 
plan. 

VI. Discrepancy analysis 
Discrepancy analysis is a statisti- 

cal correlation technique which attempts 
to find a rank order of plans according 
to their minimum discrepancy with 
respect to an a priori specified optimum 
plan (i.e., a plan which satisfies a set 
of prespecified targets) (see also 
Nijkamp 119781). This method should be 
used carefully, because it is not able 
to discriminate among discrepancies in 
plan outcomes and in weights. An alter- 
native way is to make use of a distance 
metric for pairwise plan discrepancies. 

VII.Concordance analysis 
Concordance analysis is a widely 

used multi-criteria analysis, based on a 
pairwise comparison of plans (see Van 
Delft and Nijkamp 139771). This method 
measures the degree at which plan out- 
comes and preference weights confirm or 
contradict the pairwise dominance 
relationships between alternatives. Both 
the differences in weights and in plan 
outcomes are analysed separately via a 
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concordance and a disconcordance proce- 
dure. This method uses the available 
information in an appropriate and 
efficient manner and can be considered 
as one of the most satisfactory multi- 
criteria methods, especially when the 
plan outcomes are related to a prespe- 
cified profile of achievement levels 
of criteria. 

VIII.Goals-achievement method 
The goals-achievement method is a 

technique which relates the objec- 
tives to quantative achievement levels 
(see Hill 119731). Each decision 
criterion is assigned a index of rela- 
tive importance. Then for each plan 
outcome an achievement index is 
calculated, on the basis of which an 
aggregate achievement index of each 
plan can be calculated. This procedure 
bears some resemblance to the first 
steps of a concordance analysis based 
on achievement levels. Clearly, a 
problem in all these analyses is the 
specification and the treatment of 
the set of weights, although inter- 
active techniques may be helpful to 
overcome this problem (section 4) 

The general feature of these multi-criteria 
methods is that they include a multiplicity 
of decision-criteria, so that they are more 
appropriate for modern planning and manage- 
ment problems. Especially the concordance 
method and the goals-achievement method 
appear to be rather successful. 

2.2.Continuous MO-models 
An extensive survey of continuous MO-models 
is contained in Nijkamp 119771. A central 
concept in these types of models is the 
notion of a Pareto solution (non-inferior, 
efficient or non-dominated solution). 
This notion is based on the fact that 
the value of one objective function 
cannot be improved without affecting the 
values of other objective functions. 
Any feasible solution that is not dominated 
by other points can be regarded as a Pareto 
solution. In formal terms: A Pareto solu- 
tion is a vector x* for which no other 
feasible solution-vector x does exist such - 
that: 

(2.2) _ _ w(x) 1. x(x") 

and 

Vi(X) # Wi(x") for at least one i. 

It has been proved among others by 
Geoffrion 139681 that a feasible solution 

vector is a Pareto solution, if and only 
if a vector of weights X does exist (with 

- +'h= I and XFO), such that this vector 
1s the optimal solution of the following 
single-objective model: 

(2.3) max Q = X'w(x) 

xf?K _ 

Since any appropriate solution of an 
MO-model should always be a (non-dominated) 
Pareto solution, the parameter vector x 
plays an important role in identifying-a 
compromise solution for an MO-problem, 

The following types of MO-models can be 
distinguished: 

I. Utility models 
Utility models are based on the 

assumption that the whole vector of 
relevant objectives can be translated 
by means of a weighing procedure into 
the master control of one unambiguous 
utility function. This assumption of 
explicit and known trade-offs between 
objectives is essential in neoclassical 
utility theory. This implies that (2.1) 
is re-specified as: 

(2.4) max Q {w(x)} 

XeR 2 - 

where Q is the master control of a 
scalar-valued welfare function. 

II. Penalty models 
Penalty models assume the existence 

of an achievement or ideal vector w", 
so that any discrepancy between an- 
actual value w and an ideal value w" is 
penalized by means of a penalty func- 
tion. A well-known specification of 
a penalty function is a quadratic one 
(see Theil 119681 among others): 

(2.5) min X = (w - yo,, 1 (w - x0) 

xeR 

where 2 is a diagonal matrix with 
coefficients ai (i=l,...,m) represen- 

.th ting the weights assigned to the 1 
deviation. 

III. Goal programming models 
Goal programming models are one of 

the most frequently used MO-models and 
essentially a sub-class of the above- 
mentioned penalty models. For all 
decision criteria an achievement level 
wo is specified which has to be at- 
tained as closely as possible by an 
appropriate choice of the decision 
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variables X. A linear goal programming 
model can be formalized as: 

(2.6) min X=1' (w + + w-1 

XeR 
+ - 

w-w 4-w 
0 

=w ) 
-- - _ 

where w 
+ 

and w are the respective 
over- and underachievements of w with 
respect to 5~'. If necessary, priority 
weights maybe specified to evaluate 
the successive deviations from the 
achievement levels. For a further 
discussion of goal programming models, 
see section 4. 

IV. Constraint models 
Constraint models are models in 

which one of the objectives is selec- 
ted as a primary objective to be maxi- 
mized, while the remaining objectives 
are included by means of lower and 
upper constraints. If the first objec- 
tive is taken as the primary one, the 
following model is obtained: 

(2.7) max w,(x) 

xeR - 

+n,,,w max 
- _ 

where wmln and Sax represent vectors 
with l&er and upper constraints on 
the objectives, respectively. 

V. Hierarchical optimization models 
Hierarchical optimization models 

can be regarded as more refined 
constraints models. The assumption of 
this class of models is that all 
objectives can be ranked according 
to their decreasing degree of 
relative priority. The optimization is 
carried out in a stepwise way, so that 
higher-ranking objective functions 
are maximized prior to lower-ranking 
objective functions. Assume that such 
a lexicographic ranking leads to the 
rank order w > w > . . . . > w . Then 

12 
a hierarchical MO-model can b't? forma- 
lized as: 

(2.8) A. max w](fi) 

xeR _ 

C. max w,(x) 

XGR 

where R. (i=l,. ..,m-I) is a tolerance 
parametkr indicating the maximum 
deviation from the optimum w.(x?) 
which is considered to be alio&ible by 

VI. 
the decision-maker (6; < I). 
Min-max models 

Min-max models are based on the use 
of a pay-off matrix for conflicting 
objectives (see Nijkamp and Rietveld 
119761). The first step is a separate 
optimization of all individual 
functions: 

(2.9) max w;(x) for all i 

xER _ 

The optimal value of each i th objec- 
tive function from (2.9) will now be 
denoted by $(x1) are denoted by 
x1. Then the pay-off table representing 
the conflicts between the successive 
objectives can be constructed as: 

Table 3. A pay off table for 
conflicting objectives. 

objectives 

arguments w, w2 . . . ..wm 

1 x _ q b_’ 1 w; (x1 1 
2 

w2(fz 1 wi(Lr2) 

m 
x w;(x", 

Next, the equilibrium solution of 
such a pay-off table may be calculated 
such that this solution is nearest 
to the set of ideal solutions represen- 
ted on the main diagonal of Table 3. 
One of the possibilities to derive an 
equilibrium solution is the use of 
the following model (see Benayoun et 
al. 119731): 

(2.10) min n 

fi c wO(x) - w(x) } ( n1 -_ __ 

xFR - 
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where i is a diagonal matrix with 
elements bi representing the weights 
attached to the discrepancy between the 
ideal value wp(xi) and the actual 
value w.(x). Other approaches to min- 
max modils are contained among others 
in Nijkamp and Rietveld / 19761. 

VII. Pareto compromise models 
Pareto compromise models are based 

on a distance metric for the 
deviation between ideal solutions 
w?(xi) on the one hand and the set of 
Pireto solutions w.(x*) on the other 
hand. A compromiseisolution is charac- 
terized by a minimum distance between 
the ideal solution and one point 
from the set of Pareto solutions. 
Such a distance metric requires a 
normalization of the objective 
functions: 

(2.11) w;($ = wi(x+y!&, 

so that the 'ideal' value of the 
normalized objective function is equal 

to I. Then the following (Minkowski) 
distance metric may be specified: 

(2.12) min $ = iii1 (,-w$d1"d, all 

w. 
1 

= wpp 
XSR _ 

The parameter of the Minkowski metric 
may be set equal, for example, to I 
(rectangular distance, 2 (Euclidean 
distance) or m. These Pareto models 
appear to be rather manageable tools 
in decision analyses. 

The basic problem in the use of these 
multi-objective programming models is the 
specification of the trade-offs. Especially 
the approaches described in I, II and IV 
require a lot of prior information about 
trade-offs between conflicting objectives. 
Particularly, the methods described in 
III, V, VI and VII appear to be very 
appropriate to deal with multiple objective 
functions. Clearly, any specification of a 
utility function, a contraint or an 
achievement level implies a certain implicit 
or explicit specification of the trade-offs. 
The problem is of course to construct the 
decision problem in such a way that it is 
not a heavy task for a decisionmaker to 
reveal his preferences. This will require 
the use of interactive techniques, so that 
in that case the abovementioned MO-models 
have to be adjusted for and extended with 

interactive procedures (see section 4). 
This holds also true for quantitative 

and qualitative MO-models (see Van Delft 
and Nijkamp 119771), for deterministic 
and stochastic models (see Nijkamp 119781), 
and for static and dynamic models. For 
the moment, the conclusion can be drawn 

that there is a set of modern MO-models 
which are appropriate to attack decision 
problems with multiple objectives, 
diverging interests, conflicting priorities 
or incommensurable objectives. 

3. MULTIPLE GOAL PROGRAMMING AND 
MANAGERIAL DECISION-MAKING 

In this section we will make a plea for 
multiple goal programming as an important 
tool in managerial decision-making. 
Furthermore, we will mention some appli- 
cations of multiple goal programming in 
the field of business and managerial 
economics reported thus far. Before 
concentrating on this specific technique 
one may wonder whether multidimentional 
optimization (MO-)methods have to be used 
anyway in the sphere of managerial 
decisions. Many answers can and actually 
have been given. In general the accent in 
these answers depends on the theory at hand 
to describe the firm and its objectives. 
On the one hand there are advocates of 
the classical theory of the firm, who 
consider the enterprise as an holistic 
entity striving for the maximization of the 
wealth of the firm's owner(s) (which may be 
interpreted in several ways - see for 
instance Philippatos 119731). On the other 

hand, there are 'behavioral' theories of 
the firm (March & Simon 119581 and Cyert 
& March 119631 should be mentioned), in 
which the firm is conceived of as an 
'organization' in which 'participants' 
cooperate to 'satisfy' the firm's objectives, 
consisting of the collection of the parti- 
cipants' objectives, thus ensurifg the 
continued existence of the firm . 

I) In broad lines we agree with these 
behavioral theories. In our opinion, the 
firm is an (open) system in which parti- 
cipants cooperate. In their organiza- 
tional coherence the participants provide 
the firm's cabinet of instruments, which 
can be employed in many directions. A 
continuous need of compromises between 
the participants determines the way in 
which the firm's instruments are 
employed. In this process the partici- 
pants may use both passive and active 
means. 



Besides these two lines of thought, many 
other theories have been developed (see for 

a survey e.g. McGuire (19641). Although 
several empirical studies have been carried 
out (see for instance Johnsen 119691 and 
Bilkey (3973(), many questions regarding 
business goals remain unsolved. However, 
whatever view on the firm's objectives 
will proof to be correct, in our view MO- 
methods are useful in managerial decision- 
making. This is clear for the case in 
which the firm is striving for multiple 
objectives, but even a single-objective 
(e.g. profit maximizing) firm may use 
these methods. For instance, in the latter 
case the constituents of 'profit' can be 
embodied in a M.O.-model, in order to 
create the possibility to 'translate' the 
profit goal into various organizational 
subgoals. Furthermore, M.O.-models can be 
used to investigate the influence of 
restrictions imposed by the environment 
of the firm on the firm's possibilities 
to maximize its profit function. 

In our opinion, 'multiple goal program- 
ming' is one of the most valuable techniques 
within the class of multidimensional 
programming methods. However, it is not a 
generally accepted technique. Opponents 
often mention as a disadvantage that the 
method requires a considerable amount of 
prior information on the decision-maker's 
preferences. As will be shown in the next 
section this difficulty can be side-stepped 
when an interactive variant of the method 
is used.In this section we confine our- 
selves to mention some of the advantages 
of multiple goal programming. (A more de- 
tailed discussion of multiple goal 
programming is given by Nijkamp and Spronk 
119771). 

Multiple goal programming is appropriate 
for decision situations in which multiple, 
possibly incompatible, goals fight for the 
use of the firm's resources. These goals 
are formulated as goal levels 'aspired' 
by the decision-maker. Weights may be 
assigned to the various deviational 
variables (both under- and overattainments 
of the aspired goal levels). The weighted 
combination is then minimized in order to 
satisfy the goals 'as close as possible'. 
Within this framework, multiple goal 
programming has the possibility to include 
'preemptive priority factors', which may 
be used when one goal has to be fulfilled 
before even thinking of another. 

Several empirical findings from 
decision-making practice are, in our 
opinion, rather convincing to demonstrate 
the practical usefulness of multiple goal 
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programming. As mentioned by several 

writers, the method corresponds fairly well 

to the results of the behavioral theory 
of the firm. In practice, decision-makers 
are aiming at various goals, formulated as 
aspiration levels. The intensity with which 

the goals are strived for may vary from goal 

to goal - in other words - different 

'weigh s' 
21 

may be assigned to different 

goals . The use of aspiration levels in 

decision-making is also reported by 
theorists from other fields, as for instance 
psychology (see for a short overview 
Monarchi et al 119761). In the same way, 
also preemptive priorities are known in 
real life problems. Support for this in 
fact lexicographic viewpoint is provided 
by Fishburn 119741 and Monarchi et al 119761. 
A more concrete example of the corres- 
pondence of multiple goal programming and 

practice is provided by Ijiri 119651, who 
views multiple goal programming as an 
extension of break-even analysis, which 

is widely used in business practice. 
The above plea for multiple goal program- 

ming is of a somewhat theoretical nature. 
Of course, the operational usefulness of 
multiple goal programming can only be 
shown in practice. Although it is a rela- 
tively 'young' method, many applications 
have been reported in literature. To give 
an idea, we have listed some of these 
applications, especially in the fields of 
business and managerial economics. Because 
we only want to give a general view of the 
potential of goal programming, we merely 
mention the subjects of application as 
reported thusfar, together with the names 
of the writers involved. For more detailed 
discussions we refer to the original 
articles and to the reviews of Charnes & 
Cooper 119751, Lane Il97Oj, and Kornbluth 
(1973j. 

In 1955 Charnes, Cooper and Ferguson 
presented the earliest example of goal 
programming. In their article (19551, an 
archetype of the goal programming model 
is formulated in order to estimate 
executive compensation. Related applications 
concern personnel recruitment - Charnes, 
Cooper, Niehaus & Stedry 1 19691- and 
manpower planning - Charnes, Cooper & 
Niehaus 119691.Goal programming may also be 

2) As shown by Lane / 19701, the corres- 
pondence of the behavioral theory and 
multiple goal programming is not com- 
plete, because the latter gives a 
specific interpretation of 'satisfying 
goals as close as possible' (see Lane, 
pp. 57-60). 
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used in strategic and aggregate planning, 
as demonstrated by Goodman /I9741 and 
JZiskelginen 11969{, 119721. Traditional 
operational research problems, such as 
the location and the transportation problem, 
were discussed by Ignizio 1'9761. In the 
field of marketing there is a case study 
of Lee & Nicely974b while there are 
articles on sales effort allocation by Lee 
& Bird /19701and on media planning by 
Charnes C.S. 119681. 
Management accounting and control has been 
attacked by Ijiri 119651, Charnes, Cooper 
and Ijiri 119631 and Killough & Souders 
119731. Within this domain special attention 
has been paid to the decentralization 
problem by Ruefli 19691and Charnes, Glower 
and Kortanek 11967 . Many applications can 
be found in finance. Salkin & Jones formu- 
lated a model for merger strategy / 19721. 
Sartoris and Spruill used noal programming 
for working capital management 119?41. . 
Lee and Lerro develoDed a model for 
portfolio selection 119731 and together 
with McGinnis t!iey worked on tax switching 
for commercial banks 119711. Concluding 
this cataloque, we mention the subject 
which has been mother goal programming's 
darling. This subject, capital budgeting, 
was discussed by Bronsema & Tempelaar 119741, 
Callahan 139731, Chateau 1975 , Forsyth 
1969 

1 1 

, Hawkins & Addams I ( 1974 ) Ignizio 
1976 , Lane 11970/, Lee & Lerro 119741, 

Lee & Jaaskelainen [I9781 and Osteryoung 

119731. Although we do not pretend to have 
been complete (references not mentioned 
here will be gladly received), we think the 
above list gives a good impression of the 
enormous potential of goal programming. 

4. MULTIPLE GOAL PKOGPu4MMING WITHIN AN 
INTERACTIVE FFQ&lEWORK 

4.1. Multiple Goal Programming : 
Pro and Contra 

Multiple goal programing, mainly developed 
by Charnes & Cooper, was one of the earliest 
practicable techniques in multiple criteria 
decision-making 3). We believe goal pro- 
gramming still to be one of the stronger me- 
thods available. As claimed in the preceding 

section, its use of aspiration levels and 
preemptive priorities closely corresponds 
to decision-making in practice. 

An important drawback of multiple goal 
programming is its need for fairly 

3) An extensive survey of multiple goal 
programming and decision-making is given 
in Nijkamp and Spronk ( 19771 . 

detailed a priori information on the 
decision-maker's preferences. Goal program- 
ming asks the definition of aspiration 
levels, the division into preemptive 
priority classes and the assessment of 
weights within these classes. We agree with 
those scholars advocating interactive 
approaches to the multiple goal problem 
(cf. section 2). Unfortunately, most of the 
usual interactive approaches lack some of 
the advantages of 'traditional' multiple 
goal programming, such as for instance the 
possibility to include preemptive priorities. 
Furthermore multiple goal programming can 
handle situations of satisficing behavior 
(see section 3) in contrast with most 
existing interactive methods. This situation, 
combined with the repeatedly shown power 
of the traditional approach to include 
piecewise linear functions (cf. Charnes & 
Cooper [19771), justifies the effort to 
seek for an interactive variant of the 
traditional approach. 

Recently, interactive methods have 
become rather popular in decision analyses. 
These methods are based on a mutual and 
successive interplay between a decision- 
maker and an expert (or analyst). 
These methods do neither require an explicit 
representation or specification of the 
decision-maker's preference function nor 
an explicit quantitative representation 
of trade-offs among conflicting objectives. 
Obviously, the solution of a decision 
problem requires the decision-maker to 
provide information about his priorities 
regarding alternative feasible states, but 
in normal interactive procedures only a 
set of achievement levels (or 'satisficing' 
levels) for the various objectives have to 
be specified in a stepwise manner. The task 
of the analyst is to provide all relevant 
information especially concerning permis- 
sible values of the criteria and about 
reasonable compromise solutions. 

By means of interactive decision-methods 
a decision-maker may get more closely 
involved in evaluation problems, while he 
also obtains more insight in the trade-offs 
among different criteria. The feed-back 
process inherent in interactive decision- 
methods leads to a closer co-operation 
between decision-maker and analyst. There- 

fore, interactive decision-methods can be 
regarded as an operational application 
of learning theory (cf. also Atkinson et al. 
/ 19651, Golledge 119691, and Hilgard and 
Bower 119691). 

Interactive decision-methods have also 
been applied in the field of goal 
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programming, although the number of its 
applications is rather limited so far. 
In this section a sample of interactive 
goal programming methods will be mentioned 
(cf. also Nijkamp and Spronk 119781). 
One of the first interactive goal program- 
ming methods was proposed by Dyer /I9721 for 
the one-sided variant of goal programming. 
Dyer's approach relates interactive proce- 
dures to gradient methods. Another 
contribution was provided by Fichefet 119741, 
who links an interactive min-max model 
(see subsection 2.2) called STEM to the 
solution of goal programming problems. 
This is done by means of a parametric linear 
program and a game procedure. A rather 
practical procedure is contained in 
Monarchi et al. 119751, although it yields 
the problem of a possibly large number of 
iterations. The same holds for a similar 

approach provided by Price / 19761. 

4.2. Interactive Multiple Goal Programming. 
In this subsection we present the general 

lines of a new, interactive variant of 

multiple goal programming (I.M.G.P.). 
A more detailed description is given in 
a subsequent report (Nijkamp and Spronk 

119781). 
I.M.G.P. is capable of including all 

advantages of multiple goal programming. 
For instance, preemptive priorities and 
piecewise linear functions can be handled 
in a straightforward way. Furthermore, the 

interactive process imitates practice in 
formulating aspiration levels, assessing 
priorities, seeking for a solution and 
readjustment of the aspiration levels. 
The method needs no more a priori informa- 
tion on the decision-maker's preference 
structure than other interactive multi- 
objective programming models. However, all 
available a priori information can be in- 
cornorated within the Drocedure. 

0: Step 

First identify the goal variables w.(x), 
i=l ,...,m as linear or piecewise likear 
functions of 5, the vector of instrumental 
variables x 
to be 

,,x2,...,xn. 
concave in x. 

We assume the w;(x) 
Then specify the 

feasible set R, which is assumed to be 
convex and within which an optimal 
solution must be found. When the decision- 
maker's preferences could be described by 
a preference function f (note however, that 
we do not make any attempt in this direc- 
tion) this function should be a concave 
function of both w.(x) I=1 m and 
X., 1=l,...,n. 
dkfined by: 

An AptiAal sA;;;ion is then 

(4.1) Max f = f{wi(x),i=l,..,m),subject to 

x B R. _ 

To simplify this brief exposition, we 
assume further 

(4.2) (af/awi) > 0 for i=l,...,m, 

so that we presuppose a higher value of 
each of the goal variables is preferred to 
a lower value of (the same) goal variable 4). 

Step 1. 
Next maximize successively each of the m 
goal variables w.(x) separately and denote 
the maxima by w?iand the m corresponding 
combinations ofithe instrumental variables 

by x", i=l,...,m. 
It T!+ not possible to find a feasible value 
of w.(x) which exceeds w?. On the other hand, 
it ii not necessary to afcepf a value of 
w;(z) which is lower than $'in , defined as: 

(4.3) wpin = Miny=, t Wi($)i, 

the lowest value of w.(x) resulting from 
the successive maximiiations of the goal 
variables. In I.M.G.P. we define a 
'solution' S as a vector of minimum values 
imposed on each of the goal variables. 
Therefore, it is clear that a final solution 
S" must be found between the 'ideal' (but 
mostly infeasible) solution I, and the 
'pessimistic' solution 2, which are defined 
respectively as: 

(4.4) J = [WY , w; ,...., wz] and 

2 = rw;in, ,;i* )..., wii"] 

To facilitate the notation we have included 
the optimistic solution I and the pessimis- 
tic solution Q in the (2-x m) 'potence 
matrix' P. - 
Step 2. 
For each goal variable w.(x), the decision- 
maker may have defined a:pTration levels 
w.., j=2,... 
p*Jperty 

,ki-I; with the following 

(4.5) w;in < w. ~2 < wi3 <...i Wik 
i-l 

< w; 

4) In the full description of I.M.G.P. it is 
shown that cases in which af/aw. is 
negative and cases in which f ii not a 
monotone function of the wi(x) can also 
be included. 
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Furthermore we define 

(4.6) wil = wTin and 

w. = w. 
lk. 1 

1 

In the following steps these goal values _ 
are used in constructing trial solutions S. 
which have to be evaluated by the decision: 
maker. Because proposed goal levels are 
sometimes considered as being too high, 
we need the auxiliary vector 6, whose 
elements A., j=l ,...,m correspond to the 
m goal varjables. We define 6. as the dif- 
ference of the lowest level o$ w.(x) being 
rejected by the decision-maker add-the 
highest level of w.(x) being accepted 
thus far. At the first stage of the proce- 
dure, no proposal have been made and 
consequently, no goal level has been 
rejected. Therefore we put 6. = 0 for 
j=l ,...,m during the first s ep. i 
Step 3. 
Definethe starting solution as: 

(4.7) s, = [WI], w2] ,..., w,,] , 

which is thus equal to the pessimistic 
solution defined in (4.4). 
Present this solution together with the 
potence matrix P. to the decision-maker. 
Step 4 L 

1 

If the proposed solution is satisfactory 
for the decisionmaker, one may accept 
it; if not, continue with step 5. Define 

R. as the subset of R defined by the goal 
lkvels in S.. 
step 5. -I 
The decision-maker then has to answer the 
following question: "Given the provisional 
solution S , which goal variable should be 
improved first?" 5) 

Step 6. 
Let us assume that the decision-maker wants 
to augment the j'th goal variable. Then 
construct a new trial solution ^s. which 
differs with respect to S. only-ii];ar as 
the value of the j'th goTI variable is 
concerned(denoted by w,(x)- and w.(x) 
respectively). J --Si+] J -Si 

5) After step 9 we discuss the case in 
which the decision-maker wants to raise 
more than one goal variable at the same 
time. 

If 6. = 0 no proposed value of w.(x) has 
been'rejected thus far, by whichJwe can 
propose the next higher aspiration level 
listed in step 2. If 6. > 0, a value of 
w.(x) which exceeds th4 current solution 

b3 an amount 6. has been rejected by the 
decision-maker? 
In this case, define: 6) 

(4.8) w.(x)- = 
J - Si+l 

When a provisional value for w.(x) has been 
calculated in one of both abovJ mentioned 
ways, we introduce the restriction: 

(4.9) Wj(X) 2 W.(X)” 
J -?;+I 

and proceed to step 7. 
step 7. 
Jointhe restriction formulated in step 6 
or in step 9 to the set of restrictions 
describing region R.. Next calculate a new 
potence matrix, likk in step 2, but subject 
to the new set of restrictions. Label this 
potence matrix Bicl. 
Step 8. 
Confront the decision-maker with S. and 
z. on one hand and with P. and 
&z'other hand. The shifts in the 

-'P. on 
1+1 

potence matrix can be viewed as a 
'sacrifice' for reaching the proposed 
solution. If the decision-maker judges this 

sacrifice G be justified, accept the 
proposed solution by putting %+] = zi+] 
and P. = P. 
Furth%ore, 

1t1' 
ln the computer algorithm 

(see figure 4.1), put 6: = f.sj. (which 
is only relevant for fi.? 0). If the 
decision-maker consideJs the saczfice 
unjustified, the proposed value of w.(x) 
is obviously too high. Therefore, drdp-the 
constraint added in step 7 and proceed to 
step 9. 
step 9. 
We now know that w.(x) 

J -Si 
is too low and 

that w.(x)- 
J-S 

is too high in the decision- 
__i=] 

maker's view. By definition, we thus may 
set 6. equal to the difference between 
theseJtwo values. A new 

Si+] 
is then calculated7Tr~Go~~:i~~~~~ 

6) At this moment, the decision-maker may 

wish to define a new aspiration level. 
In our opinion, it is wise to give him 

explicitly the opportunity to do SO. 
7) Also in this case the decisionmakerhim- 

self may wish to define a new aspiration 
level. 
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When the decision-maker is not able to 
indicate which single goal variable should 

(4.10) w.(x)- :. J -zi+] = "j'~'TSi + &j 
be argumented, we assume he is at least 
capable of defining a set of goal variables 
whose values need to be augmented. In this 

like in step 6 "e add the restriction that case, the procedure must be modified 

w.(x) must equal or exceed the new proposal slightly. This is shown in figure 4.1 

v a- lue and go to step z in order to calculate where we give a flow chart of the procedure. 

a new potence matrix Pi+,. 

Figure 4.1 A flow chart of the extended interactive procedure 

(0) 

(1) 

(2) 

Identify the instruments, the goal 
variables and the feasible region. 1 

Calculate the potence matrix P, 

+ 
Collect a priori information about 
the decision-maker's preferences. 

Define 6, = 0 for j = l,...,m. 

(3) 

i=- 

(4) 

(6) 
list in (2) all 
aspirationlevels 
that have become 

Calculate the potence matrix Fi+1 
I+ 

Does the decisionTaker consider the 
1 

si+, = 5. 

t 

_lCl yes 

t 

change from S. to S. to be acceptable 
to justify tKi cha~~~'from P; to P;+, ? 

P. =P 
1+1 i+l 

_ . 

(or iii+, is empty) 

Present the starting solution zl,and 
the potence matrix P, to the decision- 
maker. 

1 
Is the proposal solution satisfactory ? 

no 

Let the decision-maker indicate which 
goal variables should be augmented. 

Calculate the proposal solution sic,. 

If 6. ; 0, w.(x).. 
J J -?;+I 

= w.(x) 
J - s. 

+ 1.6. 
-1 J 

Let the decision-maker indicate which 
of the proposed values should be reduced. 

+ 
For all j, for which the proposal 
value w.(x) 

J -Si+l 
must be reduced, 

define 6j = w.(x)- 
J -Si+l 

- wj (x), 
-i 

and redefine 

W.(X)" :. J -zi+l = "j(X)S. + 
6 

1 
j 
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5. SOME EXAMPLES 
In this section we discuss two simple 
examples in which I.M.G.P. is used. The 
first, described in subsection 5.1, is 
concerned with the choice of an 'optimal' 
production combination of two product 
varieties out of an infinite number of 
alternatives (continuous case). 
In subsection 5.2 we show that I.M.G.P., 
with some minor modifications, can be used 
in making an optimal choice out of a 
finite number of alternatives (discrete 
case). The example describes a simple 
location problem. Of course, many other 
applications can be proposed (for the 
next future we have planned to investigate 
the use of I.M.G.P. in capital budgeting, 
both theoreticaly and empiricaly). In our 
opinion many problems which have been 
attacked by traditional goal programming 
can be handled by I.M.G.P. as well. To 
give an idea of its potential, we refer 
to subsection 3.1 in which we listed some 
applications of traditional goal program- 
ming in business and managerial economics, 
as reported in the literature. 

5.1. An Example in Production Planning 

A brick factory can produce two brick 
varieties, but due to the limited capacity 
of machines, brick-kiln and drying-room 
and to the limited availability of skilled 
personnel, these products cannot be 
fabricated in any desired combination. We 
show the region of feasible production 
combinations in figure 5.1, where x and x 
stand for the quantity produced of 

I 2 

variety I and variety 2 respectively (both 
in millions). For the planning period con- 
cerned management cannot define a profit 
function (let aside another preference 
function) in terms of x and x 
very uncertain conditioI]ls of 

due to 
t e market 2 

and due to problems in the factory, where 
a recently installed machine causes many 
difficulties. Therefore management wants 
to consider both x 

1 
and x 

We thus have: 
2 as goal variables. 

(5.1) W](Xl' x2) = x I and W2(X,'X2) = x2 

Although the maximum production of variety 
I is equal to 9,000,OOO it is the 'trouble 
machine' causing difficulties when the 
productlon of x, is raised over 7,000,OOO 
units. In fact this machine runs best when 
approx. 6,000,OOO units are produced with 
it. On the other hand, the factory has 
contracts to deliver 4,000,OOO units of 

variety 1. Although this variety has been 
estimated as less profitable than variety 
2, management wants to meet the contractual 
obligations because the customers concerned 
also buy a lot of variety 2 and offer a 
promising buying potential in the near 
future. Thus the preferences for w,(x) 
seem to be monotone non-decreasing for 
w,(x) = x, 5 6,000,OOO and monotone non- 
increasing for ~~(5) 
Therefore it is 

= x, L 6,000,OOO. 
reasonable to consider 

W* = 6,000,OOO as an aspiration level for 1 
w1 (5) 3 together with w,(x) = 4,000,OOO as 
the aspired level defined above. There are 
no problems at all in the production of 
the fairly profitable second variety. 
Management wants to produce as much as 
possible of this second variety (thus 

ma iw2(xl,x2)1. 

Figure 5.1 

The feasible region R of the production 
combinations (the pessimistic and ideal 
starting solutions are indicated by SI 

and I,) 

(x 106) 
IO 

T 
x2 

0 12 3 4 5 6 7 8 9 IO 

xl- 

(x 105 

;;J;w;~~~)=is maximized, we have,w; = 9 
2. The latter value 1s that of 

because in the subset of the feasible 
rAgioA R satisfying w (x) 2 9 - E (05~(9), 
there is at least one*point for which 

wl($ L 2. Thus, no matter what is the 
mlnlmal value for w2(z! required by the 
decision-maker, there 1s always a solution 
for which at the same time w,(z) Z 2. By 
setting w,(x) equal to the most desired 



production volume w (x) = wl = 6, the value 
of w2($ becomes w ts = 

Therefor: - 

8, which is at the 
same tune (by simi ar reasoning) the value 
of w?'" . , we must find a final 
solution in which 2 ~w,!x) ~6 and 
8 iw (x)(9, Together with the information 
prove ed by the management we thus can list .$ - 
(step 2) the following aspiration levels. 
For w (x) the values 2, 4 and 6; for w,(x) 
the vilG;_,s 8 and 9. The first potence 
natrix can be written as: 

(5.2) P, = 16 9 1 12 8 
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In the third step the first solution (S,) 
is set equal to the pessimistic solutizn ($) 
and presented to the decision-maker, 
together with the potence matrix P,. The 
pessimistic starting solution &G],and the 
ideal solution I are indicated in figure 
5.1. This soluti& has to be evaluated by 
the decision-maker and subsequently 
integrated in the model. The successive 
steps in this hypothetical example are 
shown in the following table and illustrated 
in figure 5.2. 

Table 5.1 Successive (proposal) solutions and the opinion of the decision-maker. 

STEP(S) 

2,3 

637 

6,7 

997 

637 

(PROPOSAL) (PROPOSAL) 

SOLUTION POTENCF MATRIX 

TO BE EVALUATED 

5, = [5, 8.251 c4 = 5 8.25 

L 1 5 8.25 

STEP(S) 
---------- _--------- 

495 

8 

435 

8 

4 

EVALUATION 

S1 not satifactory, 
raise value g (x) _ 

shifts in_P justified, 
set S 

-2 
= 2, and P2 = p2 

s2 not satisfactory, 
raise value g,(x) 

shifts in P not 
justified, lower 

value g,(x) 

shifts in-P justified, 
set S 

-3 
= z3 and P3 = P3 

S3,n0t satisfactory, 
raise value of g,(x) 

shifts in P justified* 
set SI, = $, and PL, = PL, 

end of orocedure 
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Figure 5.2 All solutions from the starting solution up to and 

including the final solution. 

2 3 

- xI 

5.2. A Simple Location Problem 
An enterprise is planning to build a new 
factory for the production of storage- 
batteries. There are twenty candidates for 
the location of this new factory. Each 
alternative has been described in terms 
of its contributions to the goal variables 
which management considers to be relevant 
in this situation. These goal variables are: 

wl = 

w2 = 

w3 = 

w4 = 

w5 = 

capacity of the factory the annual 
number of units produced (in millions). 
Between certain limits, management 
wants to have a capacity, which is as 
large as possible. 

costs of establishing the new factory 
(purchase of land and cost of construc- 
tion). Of course management wants a 
value of this variable which is as low 
as possible. 
score for the quality of the facilities 
provided by the local government 
(subsidies, advice, licences). These 
scores are presented on an ordinal 
scale of increasing priority:--,-,O,+, 
++. The element -- represents a 
strongly negative outcome for the 
local facilities concerned, whereas 
the element ++ represents a strongly 
positive outcome. 
score for the possibilities to attract 
skilled labour. (again represented on 
an ordinal scale with --,-,O,+,++) 
score for the quality of the trans- 
portation network to be used by the 

4 5 6 

factory (again represented on an 
ordinal scale with --,-,O,+,++) 

w6 
= estimated size of the total local 
market (measured in millions of units 
sold per year). Of course, management 
prefers a more voluminous market to 
a smaller one. 

w7 
= score for the possibilities to enter 

the local market. (again represented 
on an ordinal scale with --,-,O,+,++). 

The 'industrial profiles' (see Paelinck 
and Nijkamp 119761) of the 20 possible 
locations are given in table 5.2. In 
contrast with the example in the preceding 
subsection we now have a discrete decision 
situation, i.e. only a limited number of 
alternatives are available to the decision- 
maker. Although this situation is in 
conflict with the requirement that the 
feasible region R should be convex, I.M.G.P. 
can be employed, be it with one modification. 
That is, ’ WV” must now be defined as the 
minimum value of g. listed for all available 
alternatives. (If R is convex, w. can be 
defined as the minimum value of &. listed 
for the respective maxima of the ioal 
variables w., i=l,...,m). Under this 
condition, *he first potence matrix can be 
written as: 

(5.3) P, = 30 20 ++ ++ ++ 50 ++ 

]] 50 -- -- -- 5 -- 1 
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and the first solution as 

(5.4) s, = [11,50,--,--,--, 5,--l 

(5.5) y2 = [11,50, -, -,--9 5,--l 

As can be seen in table 5.2 the profile 
numbers 2,8,10 and 18 do not meet these 

Assume management's first wishes are that requirements. The accompanying potence 

the quality of the local governmental matrix is 

facilities are not too low (~3 2 -) and 
that there are not too many problems in (5.6) 
attracting labour (~4 2 -). We then have: 

F2 = 

i 

30 20 ++ ++ ++ 50 ++ 

11 48 - - -- 5 -- 1 

Table 5. Profiles of the location alternatives 

PROFILE (SCORING) VALUES OF THE GOAL VARIABLES 

NUMBER 

1 30 48 

2 29 50 

3 28 44 

4 27 40 

5 26 41 

6 25 46 

7 24 40 

8 23 43 

9 22 38 

10 21 37 

11 20 35 

12 19 41 

13 18 36 

14 17 32 

15 16 28 

16 15 25 

17 14 26 

18 13 24 

19 12 23 

20 11 20 

0 

0 

++ 

0 

+ 

_- 

0 

+ 

0 

0 

0 

0 

_- 

+ 

0 

_- 

+ 

++ 

0 

0 

++ 

+ 

+ 

-- 

+ 

+ 

+ 

0 

0 

0 

++ 

++ 

+ 

+ 

++ 

+ 

-- 

+ 

++ 

0 

++ 

+ 

0 

++ 

+ 

_- 

+ 

0 

++ 

+ 

0 

35 

20 

40 

15 

50 

5 

5 

5 

5 

10 

45 

15 

20 

30 

40 

25 

IO 

25 

5 

10 

++ 

-- 

+ 

++ 

++ 

0 

-- 

+ 

++ 

+ 

0 

++ 

+ 

0 

+ 

+ 

(PROPOSAL) SOLUTIONS 
BY WHICH PROFILES 
ARE REJECTED 
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As can be read from ^p and table 5.2 we 
have, by rejecting prgfile number 2, 
rejected the factory with the highest 
construction costs. Therefore we define 

(5.7) s2 = [ 11,48, -, -,--, 5,--j 

and P, = G, 
L i 

Management wants next a capacity of at 
least 20 million units per year to meet the 
export orders (wl 5 20). For the same 
reason, it would like to have the best 
possible transportation facilities 

(w 
5 
2 ++). We thus get 

(5.8) J3 = [20,48, -, -,++, 5,--1 

As can be seen in table 5.2, there is only 
one profile (number 6) 
solution, by which the 
reduces to 

(5.9) ?3 = 

[ 

25 46 - 

25 46 - 

Management judges this 
heavy and wonders what 

left in this 
potence matrix 

- ++ 5 -- 1 - ++ 5 -- 

loss in potence too 
the effect is of a 

less perfect transportation system. The 
model then proposes the following solution: 

(5.10) $3 = [:!0,48, -, -, 0, 5,--l 

There are more profiles left in this 
solution, viz. the numbers 1,3,5,6 and 7. 
The potence matrix can be written as: 

(5.11) B, = 

[ 

30 40 + ++ ++ 40 ++ 

24 48 - - 0 5 -- 1 

Management thinks the proposal is good 
enough to justify the shifts in the 
potence matrix, by which we can formulate: 

(5.12) 23 = [24,48, -, -, 0, 5,--l 

and P 
3 

= F3 

In the following step transportation is 
required to be slightly better and the 
possibility to enter the local market 
must be 'not too bad' (w 
This solution is judged Foz'fL;weigh' the 
shifts in the potence matrix. Then the 
fourth solution is determined as 

for which the fifth and sixth profiles are 
still feasible. Finally management wants 
too face a local market which exceeds the 
5 million units sales in 24 . Consequently, 
the final solution becomes 

(5.14) s5 = [ 26,41, -, 0, +,50, +] 

which is the fifth profile. 
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