Mining frequent itemsets in memory-resident databases

Wim Pijls, Jan C. Bioch
Department of Computer Science, Erasmus University,
P.O.Box 1738, 3000 DR Rotterdam, The Netherlands.
e-mail {pijls,bioch} @few.eur.nl

Abstract

Due to the present-day memory sizes, a memory-resident database has become a
practical option. Consequently, new methods designed to mining in such databases are
desirable.

In the case of disk-resident databases, breadth-first search methods are commonly used.
We propose a new algorithm, based upon depth-first search in a set-enumeration tree.
For memory-resident databases, this method turns out to be superior to breadth-first
search.

Keywords Frequent itemsets, Association rules, Datamining

1 Introduction

Finding frequent itemsets in large amounts of data has become a major research issue over
the past few years. Most algorithms assume that the database is stored on disk. Main
memory in a computer (also called primary memory as opposed to secondary memory de-
noting disk memory) is getting larger and larger. In a present-day PC, 128 Mb has become
a common size. Even 256 Mb is no longer exceptional. Many data sets arising in practice
fit into such amounts of memory. Several papers utilize the synthetic data sets from [1],
which were proposed there as suitable benchmarks for data mining algorithms. Those data
sets also easily fit into the today’s main memories. Given the large memory sizes, it makes
sense to construct algorithms which exploit the features of memory-resident databases. In
this paper, we propose algorithms which are effective under the assumption the database is
stored into a two-dimensional array, in which every entry can be retrieved quickly.

Frequent itemsets. Frequent itemsets are needed to formulate association rules, a central
task in the present-day practice of data mining and knowledge discovery. Association rules
are applied for instance in the analysis of basket data. A stereotypical form of an association
rule derived from basket data is: 740% of the customers who buy product X and Y also buy
product Z”. In algorithms for discovering association rules, the quest for frequent itemsets
is the major task, which largely determines the efficiency of the algorithm. Establishing
association rules is a straightforward action afterwards. In this paper, we therefore restrict
ourselves to finding frequent itemsets.

Mining frequent itemsets was applied first to transaction data. Of course, the application
area is much larger. Frequent items are also relevant in insurance data, census data, medical
data etc. They also arise as patterns in episodes[10]. We discuss our theory in terms of

Mining Frequent Itemsets in Memory-Resident Databases

Wim Pijls and Jan C. Bioch

ERIM REPORT SERIES RESEARCH IN MANAGEMENT

ERIM Report Series reference number

ERS-2000-53-LIS

Publication

December 2000

Number of pages

9

Email address first author

Pijls@few.eur.nl

URL (electronic version)

Address

Erasmus Research Institute of Management (ERIM)

Rotterdam School of Management / Faculteit Bedrijfskunde

Erasmus Universiteit Rotterdam
PoBox 1738

3000 DR Rotterdam, The Netherlands
Phone: # 31-(0) 10-408 1182

Fax: # 31-(0) 10-408 9640
Email: info@erim.eur.nl
Internet: www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS

Abstract Due to the present-day memory sizes, a memory-resident database has become a practical
option. Consequently, new methods designed to mining in such databases are desirable.
In the case of disk-resident databases, breadth-first search methods are commonly used. We
propose a new algorithm, based upon depth-first search in a set-enumeration tree. For memory-
resident databases, this method turns out to be superior to breadth-first search.

Library of Congress 5001-6182 Business

Classification 5201-5982 Business Science

(Lce) HD 66.2 Data processing

Journal of Economic M Business Administration and Business Economics

Literature M 11 Production Management

(JEL) R4 Transportation Systems
C89 Data Collection and Data Estimation Methodology; Computer

Progrmams: Other

European Business Schools | 85A Business General

Library Group 260 K Logistics

(EBSLG) 240 B Information Systems Management
240 F Data processing

Gemeenschappelijke Onderwerpsontsluiting (GOO)

Classification GOO 85.00 Bedrijfskunde, Organisatiekunde: algemeen
85.34 Logistiek management
85.20 Bestuurlijke informatie, informatieverzorging
54.64 Gegevenshanken

Keywords GOO Bedrijfskunde / Bedrijfseconomie
Bedrijfsprocessen, logistiek, management informatiesystemen
Data mining, Algoritmen

Free keywords Frequent itemsets, association rules, datamining

Data set Array representation

Nrs. items A B C D E F
1 ABEF 1171 1 0 0 1 1
2 BCD 210 1. 1 1 0 0
3 ABEF 311 1 0 0 1 1
4 ABCF 411 1 1 0 0 1
5 ABCEF 511 1 1 0 1 1
6 CDEF 6/0 0 1 1 1 1

Frequent itemsets with minsup= 3

support ‘ frequent itemsets
5| B, F
4| A, AB, AF, ABF, BF, C, E, EF
3 | AE, ABE, ABEF, AEF, BC, BE, BEF, CF

Figure 1: An example of a data set along with its frequent itemsets.

transaction data. An example of transaction data is shown in Figure 1. There are six trans-
actions (with numbers 1 to 6) and six items (denoted by the letters A to F). A transaction
T is said to support an itemset I, if set I is included in 7. The support of an itemset [
is defined as the number of transactions supporting I. An itemset is called frequent, if the
support of I surpasses a given minimum value (the so-called minimum support, abbreviated
as minsup). In the example of Figure 1 we have minsup = 3. As said earlier, the goal of this
paper is to develop algorithms intended to discover frequent itemsets in memory-resident
databases.

Previous work. The algorithms for finding frequent itemsets may be divided into two
kinds: bottom-up and top-down algorithms respectively. In a bottom-up algorithm the
candidate itemsets are examined from small to large. On the other hand, a top-down algo-
rithm starts with a large candidate set, which is reduced step by step until a frequent set
has been found. Almost every bottom-up algorithm is a variant of Apriori. Some instances
of this family are Apriori[l, 2] (the seminal instance of this family), AprioriTid [1, 2], DIC
[6], DHP [8], Max-Miner [5]. The latest one searches for maximal frequent item sets whereas
the former ones look for all frequent itemsets. A number of top-down instances is presented
n [11]. Another top-down instance is Pincer search[7].

In this paper, we only consider bottom-up algorithms. Almost every above bottom-up
algorithm applies breadth-first search. However, our focus is on depth-first search. This
search method was ignored in data mining so far, since it is not appropriate in the case
of disk-resident databases. An algorithm based upon depth-first search will be presented,
which surpasses its breadth-first counterpart. Since top-down algorithms aim at finding
only maximal frequent items set (finding all frequent itemsets is performed in a subsequent
phase), those algorithms are left out of consideration.

[B]E[F]

[CIE[F] [F]

Figure 2: An example of a trie (without support counts).

Overview. In Section 2, we discuss a framework, from which a breadth-first and depth-first
search algorithm can be derived. The breadth-first instance is similar to Apriori. In Section
3 we elaborate on the depth-first instance, presenting a new datamining algorithm. Section
4 gives the results of the experiments. Concluding remarks are included in Section 5.

2 A framework based upon a trie

The best-known algorithm for finding frequent patterns is Apriori [1]. In the originating
paper, a hash tree, a tree with a hash table in each node, was proposed to represent item-
sets. We utilize a different data structure which replaces the hash nodes by completely
filled arrays with dynamic length. This data structure is equivalent to a trie[3]. In the
context of frequent itemsets a trie was applied before in [4]. It stores the full collection of
frequent patterns in an efficient and compact way. Figure 2 shows an example of a trie. This
trie represents the frequent itemsets of Figure 1 (without mentioning the support counts).
Each path from an entry in the root to an entry in another node corresponds to a frequent
itemset. So AEF, AE and A are denotations for paths as well as for frequent itemsets. The
property that any heading subpattern in a frequent pattern is frequent as well, makes a trie
a proper data structure for storing frequent patterns.

The entries (or cells) in a node of a trie are mostly called buckets, as is also the case for a
hash-tree. Each bucket can be identified with its path to the root and hence with an itemset.

A search framework to look for frequent itemsets is the following code. In the current
section, we will discuss later a bread-first instance of this framework. In Section 3, a depth-
first instance is discussed.

(1) T := any trie of itemsets;
(2) count(T);
(3) stop := false;
(4) while not stop do
(5) T :=T;
(6) T := an expansion of T';
(7). C:=T\T'; /*C is the set of candidates */
(6) count(C);
(8) if every expansion of T contains
only infrequent itemsets then stop := true;

(9) procedure count(C);

(10) for every transaction T do

(11) for every itemset I € C do

(12) if T supports I then I.count++;

We assume, that it can easily be determined whether the criterion in line 8 is fulfilled. For
example, if every expandable bucket in the trie corresponds to an infrequent itemset, the
criterion is fulfilled.

The support of an itemset I is commonly stored into the bucket corresponding to I. To
count the support of the candidates, a database pass is made. See line 9 through 12. As
mentioned before, we assume memory-resident databases. The database is stored into a two-
dimensional boolean array. The most obvious storage method is one byte per array entry.
However, even one bit per entry turns out to be feasible. Further, we can choose between
horizontal and vertical lay-out respectively. In the code of count the database is processed
transaction by transaction. So, we assume a so-called horizontal lay-out, as opposed to
vertical lay-out. In the former the entries of each transaction are stored contiguously,
whereas the latter stores the entries of each item contiguously. In line 12 of the above
code, backtracking is applied to inspect each path P corresponding to an itemset I of C.
Inspecting a path P is aborted as soon as an item 4 with ¢ outside 7" is found.

Breadth-First We implemented a breadth-first instance, which is similar to Apriori[l, 2].
Like Apriori, our algorithm builds the trie levelwise: the frequent k-itemsets with k& =
1,2,3,... are found successively. T is initialized as the collection of all 1-itemsets. After
the k-th iteration of the main loop T' contains all frequent k-itemsets (itemsets of length
k) along with their support. In the (k + 1)-th iteration, 7" is extended to a trie T". The
buckets in T\T" (T without T") are new and make up the candidate set C'. Each candidate I
represents a (k + 1)-itemset. Our algorithm differs from Apriori in that it has just one data
structure to represent itemsets. In the original Apriori version, the candidates are stored
into a so-called hash-tree, a data structure equivalent to a trie. Moreover, apart from a
hash tree, Apriori maintains a list of frequent itemsets. This list was used to perform a join
operation resulting into new candidates and to retrieve subsets of candidates.

3 The depth-first instance

The depth-first instance of the framework proceeds as follows. In a preprocessing step, the
support of each single item is counted and the infrequent items are eliminated. Let the

frequent items be denoted by 1,19, ...,4,. Next, the following code is executed.

(1) T := the trie including only bucket i,;

(2) for m :=n —1 downto I do

(8) T :=T;

(4) T := T with iy, added to the left and
a copy of T appended to iy,;

(5) C:=T\T' (=the subtrie rooted in iy,);

(6) count(C);

(7) delete the infrequent itemsets from T';

On termination, 7" exactly contains the frequent itemsets. How the algorithm works, is
illustrated in Figure 3 using the data set of Figure 1. The single items surpassing the mini-
mum support are 47 = A,49 = B,i3 = C,i4 = E and i5 = F. Figure 3 shows the shape of T
composed in each iteration of the while loop. Also the infrequent itemsets to be deleted at
the end of each iteration are mentioned. At the start of the m-th iteration, the root of trie
T consists of the 1-itemsets 4,41, ... ,%,. (We denote a 1-itemset by the name of the single
item.) By the statement in line 3, this trie may also be referred to as 7. A new trie T is
composed including the buckets iy, iy t1,---,%, in the root and a copy of T (the former
value of T') appended to i,,. The new candidate set C' makes up a subtrie consisting of i,,
and a copy of T" appended to i,,. In Figure 3, the candidate set C is in the left part of
each trie and this set is drawn in bold. Notice that the final shape of the trie (after deleting
infrequent itemsets) agrees with Figure 2.

The number of iterations in the for loop is equal to the number of frequent 1-itemsets.
When the for loop parameter is equal to m, the column corresponding to the m-th item
in the database array is passed. Consequently the new algorithm is not tractable, if the
database under consideration is not in memory.

For the search framework of Section 2, the performance of an instance may be measured
by the number of inspections into the two-dimensional array A representing the database.
Consider the procedure count in lines 9 through 12 in the code of Section 2. Given a trans-
action 7" and an candidate itemset I, the path corresponding to I is walked through as
long as this path contains items included in 7. For the items ¢ on this path, the cell at the
intersection of row 7" and column ¢ in array A is inspected. Such an action counts as one
inspection.

In the breadth-first version, the trie is built up layer by layer, as discussed in Section 2.
A new layer of buckets means a new set C of candidates. Each ancestor bucket of a new
candidate I in C corresponds to a frequent subset of 1. When the procedure count is exe-
cuted for a new layer, each ancestor bucket of any candidate [is visited as many times as
its count value. Each such visit entails one inspection. In fact, in each ancestor bucket of
any candidate I, the support is re-counted. In the depth-first instance on the other hand,
every bucket or itemset I is counted once, and a bucket is not re-visited after completion of
its support count. Hence, we will see in Section 4, that depth-first has considerably fewer
inspections than breadth-first.

The depth-first version has a preprocessing step which counts the support for each single
item, before executing the above code. After the preprocessing step, the items may be

i3=C
CE and CEF are infrequent
and hence deleted
io =B
BCF is infrequent
and hence deleted
11 = A

[BICIE[F] [C|E]F

ABC, AC and ACF are infrequent
and hence deleted

Figure 3: Illustrating the Depth-first algorithm

re-ordered. The most favorable execution time is achieved, if we order the items from right
to left by decreasing frequency. This result can be explained as follows. If a bucket in the
trie has a support s, then each child bucket is visited s times. In a child bucket the same
phenomenon holds. Therefore, it is better to have low support at the top of the deeper side
(to the left) of the trie and hence, high support at the top of the shallow part (to the right).

4 Experimental work

We applied the depth-first (DF) and the breadth-first (BF) algorithm to the synthetic
databases simulating retail transaction data, as described in [1, 2]. These datasets are used
as benchmarks in most papers dealing with frequent itemsets. The parameters for generating
a synthetic database are the number of transactions D (in thousands), the average transac-
tion size T and the average length I of maximal frequent itemsets. The number of maximal
frequent itemsets was set at L = 2000 and the number of items was set at N = 1000,
following the design in [1, 2, 8, 9]. The experiments were conducted at a Pentium-1 ma-
chine with 128 Mb memory at 166Mz, running Windows N'T. The programs were developed
under the Borland C++ 5.02 environment, but are also usable with the GNU C++ compiler.

We found out that execution times with bitwise storage hardly differ from times with byte-
wise storage. For reasons of space efficiency, each program involved in the experiments
below applies bitwise storage of the two-dimensional database array.

The execution times in seconds for four data sets defined in [1] are displayed in the tables.
For the data sets D100T2016 and D100T2014, four minsup-values (ranging from .5% to 2%)
are applied. See Figure 4.

5% | 1% | 1.5% | 2%
D100T2016 | DF || 273 | 121 78| 65
BF || 561 | 191 134 98
D100T2014 | DF || 219 | 128 88 | 72
BF || 455 | 260 142 | 104

Figure 4: Examining D = 100 and T' = 20 with I =6 and I = 4.

The outcome of the examination of the sets D100T10I4 and D100T5I2 is shown in Fig-
ure 5. Those sets do not contain any frequent k-itemsets with k& > 1 if a minsup value > 1%
is taken. Therefore, minsup values > 1% have been omitted in the table.

25% | 5% | .15% | 1%
D100T1014 | DF 99| 71 o4 | 47
BF 277 | 165 88 | 69
D100T5I2 | DF o1 | 37 29| 25
BF 109 | 66 o4 | 39

Figure 5: Examining D100T10I4 and D100T5I2.

In both above figures, the depth-first algorithm turns out to be superior to breadth-first.
As the minsup is lower (and hence the workload is greater), the discrepancy is larger. The
transition from depth-first to breadth-first reduces the execution time to about 50% in case
of low minsup values and to about 70% in case of higher minsup values.

In Section 3, we introduced the number of inspections as a standard for the performance of
the instances of the framework. We measured the number of inspections during the afore-
mentioned experiments. The results are shown in Figure 6. Each value denotes the number
of inspections expressed in millions. Clearly, depth-first surpasses breadth-first. This has
already been argued theoretically in Section 3.

5% 1% | 1.5% | 2%
D100T2016 | DF 804 | 427 | 301 | 234
BF | 1036 | 670 | 503 | 401
D100T2014 | DF 731 | 464 | 315 | 251
BF 956 | 701 521 | 429
25% | .50% | .75% | 1%
D100T1014 | DF 295 | 226 172 | 142
BF ovT | 427 | 327 | 282
D100T5I2 | DF 139 86 93| 35
BF 281 | 206 161 | 139

Figure 6: The number of array inspections.

5 Concluding remarks

Since main memories are very large nowadays and bitwise storage of the boolean database
array turns out to be feasible, one may assume memory-resident data-bases in many practi-
cal cases. We have applied a depth-first algorithm to memory-resident databases. (Applying
this algorithm to a database on disk is not a practical option.) It evidently surpasses the
classical algorithms adapted to memory-resident databases. Moreover, it is transparent and
easy to implement. Hence, it should be considered promising.

References

[1] R. Agrawal, and R. Srikant, Fast Algorithms for Mining Association Rules, Pro-
ceedings of the 20th Int’l Conference on Very Large Databases, Santiago, Chili,
September 1994.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A.I. Verkamo, Fast Discov-
ery of Association Rules, Chapter 12 in: U.M Fayyad et al. (eds.), Advances in
Knowledge Discovery and Data Mining, AAAI/MIT Press, pp. 307-328, 1996.

[3] A. V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, pp.
163-169, ISBN 0-201-00023-7, Addison-Wesley Publishing Company, 1983.

[4]

A. Amir, R. Feldman and R. Kashi, A New and Versatile Method for Association
Generation, in: Principles of Data Mining and Knowledge Discovery, Proceedings of
the First European Symposium, (PKDD’97) Trondheim Norway, pp. 221-231, 1997.

R. J. Bayardo Jr., Efficiently Mining Long Patterns from Databases, in Proceedings
of the ACM SIGMOD Conference on Management of Data, Seattle, pp. 85-93, 1998.

S. Brin, R. Motwani, J. Ullman and S. Tsur, Dynamic Itemset Counting and Implica-
tion Rules for Market Basket Data in: Proceedings of the 1997 SIGMOD Conference
of Management of Data, pp.255-264.

D. Lin and Z.M. Kedem, Pincer Search, A New Algorithm for Discovering the Maz-
imum Frequent Set, in: Proceedings of the Sixth European on Extending Database
Technology, pp. 105-119, 1998.

J.S. Park, M.-S. Chen and P.S. Yu, An Effective Hash Based Algorithm for Min-
ing Association Rules, in: Proceedings of the 1995 SIGMOD Conference on the
Management of Data, pp. 175-186.

A. Savasere, E. Omiecinsky and S. Navathe, An efficient algorithm for Mining As-
sociation rules in Large Databases, in: Proceedings of the 21st Conference on Very
Large Databases. pp. 432-444. 1995.

H. Toivonen, Discovery of frequent patterns in large data collections, Ph.D. Thesis.
Report A-1996-5, University of Helsinki, Department of Computer Science, Novem-
ber 1996.

M.J. Zaki, S. Parthasarathy, M. Ogihara and W. Li, New Algorithms for Fast Dis-
covery of Association Rules, in: Proceedings of the Third International Conference
on Knowledge Discovery in Databases and Data Mining, pp. 283-286, 1997.

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

Publications in the Report Series Research” in Management

Impact of the Employee Communication and Perceived External Prestige on Organizational Identification
Ale Smidts, Cees B.M. van Riel & Ad Th.H. Pruyn
ERS-2000-01-MKT

Critical Complexities, from marginal paradigms to learning networks
Slawomir Magala
ERS-2000-02-ORG

Forecasting Market Shares from Models for Sales
Dennis Fok & Philip Hans Franses
ERS-2000-03-MKT

A Greedy Heuristic for a Three-Level Multi-Period Single-Sourcing Problem
H. Edwin Romeijn & Dolores Romero Morales
ERS-2000-04-LIS

Integer Constraints for Train Series Connections
Rob A. Zuidwijk & Leo G. Kroon
ERS-2000-05-LIS

Competitive Exception Learning Using Fuzzy Frequency Distribution
W-M. van den Bergh & J. van den Berg
ERS-2000-06-LIS

Start-Up Capital: Differences Between Male and Female Entrepreneurs, ‘Does Gender Matter?’
Ingrid Verheul & Roy Thurik
ERS-2000-07-STR

The Effect of Relational Constructs on Relationship Performance: Does Duration Matter?
Peter C. Verhoef, Philip Hans Franses & Janny C. Hoekstra
ERS-2000-08-MKT

Marketing Cooperatives and Financial Structure: a Transaction Costs Economics Analysis
George W.J. Hendrikse & Cees P. Veerman
ERS-2000-09-ORG

*

ERIM Research Programs:

LIS Business Processes, Logistics and Information Systems

ORG Organizing for Performance

MKT Decision Making in Marketing Management

F&A Financial Decision Making and Accounting

STR Strategic Renewal and the Dynamics of Firms, Networks and Industries

A Marketing Co-operative as a System of Attributes: A case study of VTN/The Greenery International BV,
Jos Bijman, George Hendrikse & Cees Veerman
ERS-2000-10-ORG

Evaluating Style Analysis
Frans A. De Roon, Theo E. Nijman & Jenke R. Ter Horst
ERS-2000-11-F&A

From Skews to a Skewed-t: Modelling option-implied returns by a skewed Student-t
Cyriel de Jong & Ronald Huisman
ERS-2000-12-F&A

Marketing Co-operatives: An Incomplete Contracting Perspective
George W.J. Hendrikse & Cees P. Veerman
ERS-2000-13- ORG

Models and Algorithms for Integration of Vehicle and Crew Scheduling
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans
ERS-2000-14-LIS

Ownership Structure in Agrifood Chains: The Marketing Cooperative
George W.J. Hendrikse & W.J.J. (Jos) Bijman
ERS-2000-15-ORG

Managing Knowledge in a Distributed Decision Making Context: The Way Forward for Decision Support Systems
Sajda Qureshi & Vlatka Hlupic
ERS-2000-16-LIS

Organizational Change and Vested Interests
George W.J. Hendrikse
ERS-2000-17-ORG

Strategies, Uncertainty and Performance of Small Business Startups
Marco van Gelderen, Michael Frese & Roy Thurik
ERS-2000-18-STR

Creation of Managerial Capabilities through Managerial Knowledge Integration: a Competence-Based Perspective
Frans A.J. van den Bosch & Raymond van Wijk
ERS-2000-19-STR

Adaptiveness in Virtual Teams: Organisational Challenges and Research Direction
Sajda Qureshi & Doug Vogel
ERS-2000-20-LIS

Currency Hedging for International Stock Portfolios: A General Approach
Frans A. de Roon, Theo E. Nijman & Bas J.M. Werker
ERS-2000-21-F&A

Transition Processes towards Internal Networks: Differential Paces of Change and Effects on Knowledge Flows at
Rabobank Group

Raymond A. van Wik & Frans A.J. van den Bosch

ERS-2000-22-STR

Assessment of Sustainable Development: a Novel Approach using Fuzzy Set Theory
A.M.G. Cornelissen, J. van den Berg, W.J. Koops, M. Grossman & H.M.J. Udo
ERS-2000-23-LIS

Creating the N-Form Corporation as a Managerial Competence
Raymond vanWijk & Frans A.J. van den Bosch
ERS-2000-24-STR

Competition and Market Dynamics on the Russian Deposits Market
Piet-Hein Admiraal & Martin A. Carree
ERS-2000-25-STR

Interest and Hazard Rates of Russian Saving Banks
Martin A. Carree
ERS-2000-26-STR

The Evolution of the Russian Saving Bank Sector during the Transition Era
Martin A. Carree
ERS-2000-27-STR

Is Polder-Type Governance Good for You? Laissez-Faire Intervention, Wage Restraint, And Dutch Steel
Hans Schenk
ERS-2000-28-ORG

Foundations of a Theory of Social Forms
Laszl6 Pélos, Michael T. Hannan & Glenn R. Carroll
ERS-2000-29-ORG

Reasoning with partial Knowledge
L&szI6 Pélos & Michael T. Hannan
ERS-2000-30-ORG

Applying an Integrated Approach to Vehicle and Crew Scheduling in Practice
Richard Freling, Dennis Huisman & Albert P.M. Wagelmans
ERS-2000-31-LIS

Informants in Organizational Marketing Research: How Many, Who, and How to Aggregate Response?
Gerrit H. van Bruggen, Gary L. Lilien & Manish Kacker
ERS-2000-32-MKT

The Powerful Triangle of Marketing Data, Managerial Judgment, and Marketing Management Support Systems
Gerrit H. van Bruggen, Ale Smidts & Berend Wierenga
ERS-2000-33-MKT

The Strawberry Growth Underneath the Nettle: The Emergence of Entrepreneurs in China
Barbara Krug & L&szlo P4lds
ERS-2000-34-ORG

Consumer Perception and Evaluation of Waiting Time: A Field Experiment
Gerrit Antonides, Peter C. Verhoef & Marcel van Aalst
ERS-2000-35-MKT

Trading Virtual Legacies
Slawomir Magala
ERS-2000-36-ORG

Broker Positions in Task-Specific Knowledge Networks: Effects on Perceived Performance and Role Stressors in
an Account Management System

David Dekker, Frans Stokman & Philip Hans Franses

ERS-2000-37-MKT

An NPV and AC analysis of a stochastic inventory system with joint manufacturing and remanufacturing
Erwin van der Laan
ERS-2000-38-LIS

Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms
Shan-Hwei Nienhuys-Cheng, Wim Van Laer, Jan Ramon & Luc De Raedt
ERS-2000-39-LIS

Classification and Target Group Selection bases upon Frequent Patterns
Wim Pijls & Rob Potharst
ERS-2000-40-LIS

New Entrants versus Incumbents in the Emerging On-Line Financial Services Complex
Manuel Hensmans, Frans A.J. van den Bosch & Henk W. Volberda
ERS-2000-41-STR

Modeling Unobserved Consideration Sets for Household Panel Data
Erjen van Nierop, Richard Paap, Bart Bronnenberg, Philip Hans Franses & Michel Wedel
ERS-2000-42-MKT

The Interdependence between Political and Economic Entrepeneurship
ERS-2000-43-ORG
Barbara Krug

Ties that bind: The Emergence of Entrepreneurs in China
Barbara Krug
ERS-2000-44-ORG

What's New about the New Economy? Sources of Growth in the Managed and Entrepreneurial Economies
David B. Audretsch and A. Roy Thurik
ERS-2000-45-STR

Human Resource Management and Performance: Lessons from the Netherlands
Paul Boselie, Jaap Paauwe & Paul Jansen
ERS-2000-46-ORG

Average Costs versus Net Present Value: a Comparison for Multi-Source Inventory Models
Erwin van der Laan & Ruud Teunter
ERS-2000-47-LIS

A Managerial Perspective on the Logic of Increasing Returns
Erik den Hartigh, Fred Langerak & Harry Commandeur
ERS-2000-48-MKT

Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments
Magne Setnes & Uzay Kaymak
ERS-2000-49-LIS

The Mediating Effect of NPD-Activities and NPD-Performance on the Relationship between Market Orientation
and Organizational Performance

Fred Langerak, Erik Jan Hultink & Henry S.J. Robben

ERS-2000-50-MKT

Extended Fuzzy Clustering Algorithms
Uzay Kaymak & Magne Setnes
ERS-2000-51-LIS

Sensemaking from actions: Deriving organization members’ means and ends from their day-to-day behavior
ERS-2000-52-MKT
Johan van Rekom, Cees B.M. van Riel & Berend Wierenga

