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Abstract

The common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays.
Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when
developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using
semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram,
thereby making computation time almost independent of the number of SNPs. Furthermore, the algorithm is effective in
low-MAF situations. Comparisons between SCALA and CRLMM on HapMap genotypes show very reliable calling of single
arrays. Some heterozygous genotypes from HapMap are called homozygous by SCALA and to lesser extent by CRLMM too.
Furthermore, HapMap’s NoCalls (NN) could be genotyped by SCALA, mostly with high probability. The software is available
as R scripts from the website www.math.leidenuniv.nl/,rrippe.
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Introduction

Genotyping algorithms for SNP chips can be partitioned

roughly into two classes: 1) those that call genotypes for individual

SNPs for a set of arrays and 2) those that call all SNPs for a single

array. The first approach is the common one: for each SNP it

collects pairs of fluorescence intensities for all arrays and applies a

clustering algorithm. This is known as multi-array genotyping. In

principle it has the advantage of being able to account for SNP-to-

SNP variation. However, the number of available data points is

limited to the number of samples: fewer data generally yield less

reliable results. The latter problem is especially troubling if the

SNP has a very low minor allele frequency (MAF), the minor allele

being the one that has the lowest frequency in a given population.

Low MAFs are known to have a detrimental effect on downstream

analyses. Tabangin et al. [1] describe the latter for genome-wide

association scans, but their results extend to other areas as well.

Therefore, HapMap [2,3] only targets MAFs of 5% and higher.

In case of low MAF, there are very few or even no observations

in some clusters. Figure 1 compares four SNPs. In the top row we

clearly see three genotype clusters, which is not the case in the

bottom row. There the panel at the left shows just a single cluster,

while the third cluster in the right panel contains only one

observation. A data transformation similar to that used in Illumina

Beadstudio was applied. In this transformation the two signals for

the two alleles are first transformed to polar coordinates (w,r) and

displayed on modified scales: 2w=p and log10 (r). For the set of

CEU samples on HapMap we find that respectively 13, 25 and

62% of the SNPs show 1, 2 or three genotypes,

It is clear that based on these 90 samples from the Central

European (CEU) population, genotype calls for some SNPs can

hardly be made effectively without the use of external information.

For these reasons, common calling algorithms like BirdSeed [4]

require 100 or more samples with known genotypes to train the

model, while BRLMM-P and CRLMM [5,6] require both a large

number of samples as well as presence of all three genotypes AA,

AB and BB. Still these methods have to accept a ‘No Call’ for

some SNPs, due to high uncertainty.

A second approach is to cluster all SNPs on single arrays, using

a mixture model. ALCHEMY [7] does de novo calling for small sets

of samples. For each allele it introduces one-dimensional mixtures

of normal distributions, one component for noise (when the allele

is absent) and the other for the signal (when the allele is present).

Wright et al. [7] work in the context of rice genotyping. They give

an instructive overview of the problems connected with per-SNP

genotyping, one of them being the absence of heterozygous

genotypes, due to inbreeding.

Along similar lines, MAMS [8] combines multi-SNP and multi-

array genotyping. A first step performs model-based clustering on

all SNPs in a single array and a second step applies multi-array

refinement of selected SNPs with unique hybridization properties

(different from most SNPs). Mixtures of two-dimensional normal

distributions are used. This is a time-consuming process, so

sampling is used to get acceptable processing times. GenoSNP [9]

is a mixture-based single-array genotyping algorithm for Illumina

chips. All algorithms have in common that they use parametric

models, i.e. normal distributions, for the mixture components. We

propose a mixture of semi-parametric log-concave two-dimen-

sional densities. We describe a fast algorithm and show its

performance on HapMap data.

We find it convenient to transform the allele channel signals to

s~log(azb) and r~log(a=b) where a and b are fluorescence
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signals for allele A and B respectively (logs are to base 10). After

this transformation (see Figure 2), three horizontal clusters are

present, which correspond to the three possible genotypes. In

Figure 3 results of the transformation are shown for two typical

Affymetrix SNP6.0 (HapMap) arrays. The plots show a strong

symmetry along the horizontal zero axis; this is to be expected,

because Affymetrix uses a one-color fluorescence technology. In

contrast, Illumina arrays, based on two different fluorescent dyes

show a strong asymmetry as shown in Figure 3 for two typical

Illumina HumanHap 550 arrays (source: department of Epidemi-

ology, Erasmus Medical Center, Rotterdam, The Netherlands).

For this reason we limit concentrate on Affymetrix arrays.

Results

In this section we compare genotype calls from SCALA,

GenoSNP and CRLMM with the consensus genotypes from

HapMap. We explore call differences and evaluate SNPs that are

not called by CRLMM and HapMap in terms of SCALA calls.

We exclude the copy number probes. Our model has three clusters

and so implicitly assumes normal DNA without copy number

changes and null alleles.

We use probe set averages of the Affymetrix SNP6.0 CEL-files

from the CEU population, CUPID set. To start the EM algorithm

the data are split on the basis of log(b=a). The splitting levels can

be inferred visually from a few representative arrays and kept

fixed. See the examples in Figure 2. We use 20.2 and 0.2, but

these values are not very critical.

Call agreements
Here we compare genotype calls from SCALA to those from

HapMap. Our algorithm fits a mixture of three densities and

computes for each SNP its probability of belonging to each of

them. The largest of the three probabilities determines the

assigned genotype. Figure 4 presents its cumulative distribution

for typical arrays from Affymetrix and Illumina, showing that the

classification probability is always large than 50%. It is possible to

introduce a threshold and assign NN (NoCall) to the SNPs that

score a maximum probability below it. However, we lack a

principle for choosing a threshold, so we simply accept the

classification. Note that, because all three probabilities are stored,

any threshold can easily be applied later.

Figure 1. Multi-array genotyping for four separate SNPs in a sample Affymetrix 100 k Hind set from the CEU HapMap population.
Top row: a clear three genotype division without minor allele frequency problem. Bottom row: genotype clusters with minor allele frequency
problems.
doi:10.1371/journal.pone.0046267.g001
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Figure 2. Illustration of signal transformation. Signal a (b) represents allele A (B). The left panel shows the signals on linear scales. The middle
panel shows the same signals on logarithmic scale. The right panel shows transformed signals to s~log(azb) on the x-axis and r~log(b=a) on the y-
axis.
doi:10.1371/journal.pone.0046267.g002

Figure 3. Single HapMap Affymetrix 100 k Hind samples (NA06985, NA07055 from left to right) in top panels, typical Illumina
(HumanHap 550) arrays in bottom panels. SNPs are shown for chromosome 1.
doi:10.1371/journal.pone.0046267.g003
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Figure 5 shows that pmax is not influenced strongly by the MAF.

Here MAF is computed from the CEU sample of arrays.

Table 1 shows, as an example, the cross-table for chromosome 1

on array NA06985. SCALA and HapMap completely agree on

the AA and BB genotypes. For the (HapMap) heterozygotes there

is an 8.4% disagreement; this is 2.7% of the SNPs not classified as

NN.

HapMap is the best we have to judge genotype calling

algorithms, but it is not a gold standard. To put this in perspective,

we study a small example, summarized in Table 2 and Figure 6.

The data are for chromosome 1 on an Affymetrix 100 k Hind

array (NA06991), and the number of disagreements is so small that

we can clearly present the individual cases graphically.

Figure 6 shows all SNPs as a gray density cloud [10], with the

disagreements between SCALA and HapMap overlayed. After

fitting the semi-parametric mixture we can compute and plot the

maximum classification probability for each bin of the histogram.

This is done in Figure 7, where the dark regions indicate low

classification performance of SCALA. Again the disagreements are

overlayed.

The message of Figure 7 seems to be the following. The BB

genotype calls of SCALA all lie in the relatively high-probability

region of the top cluster. We would accept these calls. The SCALA

AA calls lie predominantly in the dark valley between the bottom

and middle cluster. Essentially no verdict is possible here. The

majority of HapMap NNs lie in high-probability regions, so it is

surprising that they have not been called.

To understand this better, we have plotted in Figure 8 all arrays

for each HapMap NN on array NA06991, using our choice of

transformed fluorescence intensities. The symbols and colors

represent the SCALA calls. Array NA06991 is represented by

large diamonds with black borders. In the majority of cases one

would expect a multi-array algorithm to work well, so it is

surprising to see that no calls have been made by HapMap.

Multi-array plots per SNP are useful, but unfortunately but their

number is too large to handle. We present a selection from the two

extremes of the spectrum from high to low quality. The average of

pmax per SNP, over arrays, is a reasonable indicator of calling

quality. Figure 9 shows the six best SNPs, with averages between

0.9902 and 0.994, while Figure 10 shows the six worst SNPs, with

averages between 0.5187 and 0.5804. Based on these plots one

would expect equally good results for the high-quality SNPs from

multi-chip and single-chip algorithms. But a part of the low-quality

SNPs we see three clusters and multi-chip genotyping looks

feasible. The SCALA genotypes only partially agree with our

visual impression of the clusters.

To provide a more general indication, we have calculated cross-

tables as in Table 1 for all chromosomes on all 70 arrays in the

SNP6.0 CUPID set for SCALA (Table 3) and for CRLMM

(Table 4). Both tables are normalized to make column totals equal

to 100%.

We have also compared SCALA performance to the GenoSNP

algorithm for Illumina arrays. The results on previously mentioned

arrays from the Erasmus Medical Center, provided in Table 5,

illustrate the power of the universal genotyping approach in

SCALA. Equivalent performance is obtained using Illumina arrays

from [11].

In summary we found that overall agreement between SCALA

and HapMap is comparable to that of CRLMM. However, for the

AB calls from HapMap we see differences in the direction of both

AA and BB labels, for both SCALA and CRLMM, where the

differences for SCALA were about twice as large, up to 4.99% of

all HapMap ABs. However, after visual inspection of their location

in their single array genotype clustering, for a large number of

these differences it seems almost strange that they were called AB

by HapMap: they lie in or close to the AA or BB cluster in the

single array. In addition we found that for many genotypes that

were not called in HapMap, probably due to problems with minor

allele frequencies or low call probabilities we could call those SNPs

with a probability larger than 0.95 in most cases. Further visual

Figure 4. Cumulative distribution of the classification proba-
bility for typical Affymetrix and Illumina arrays. With a mixture of
three components the minimum value that can be observed is 1/3.
doi:10.1371/journal.pone.0046267.g004

Figure 5. Two-dimensional histogram of pmax and MAF.
doi:10.1371/journal.pone.0046267.g005
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inspection revealed that those SNPs lie close to the center of one of

the three clusters in a single array setting.

Discussion

We presented a fast novel approach to call SNP genotypes in

individual arrays using semi-parametric log-concave mixtures.

To assess performance we compared genotype calls from a

multi-array method (CRLMM) and from our single-array method

(SCALA) to a set of consensus genotypes from HapMap. The

number of agreements and differences in terms of homo- and

heterozygous calls showed that SCALA can be used to call

genotypes efficiently and effectively. Even SNPs that were not

genotyped in HapMap can be genotyped with reasonable certainty

using a single chip. We also evaluated performance against the

single-array algorithm GenoSNP, dedicated to Illumina chips.

Strong agreement was found. We conclude that our approach can

handle a variety of platforms and cluster shapes.

The semi-parametric densities in the model can adapt there

shape easily and automatically to a variety of cluster shapes. We

did not observe cases where our model did not work well. So we

did have no need for a ‘‘catch-all’’ component like in GenoSNP, a

uniform density to handle observations that fall out of the three

main clusters. It would be little work to ad such a component to

SCALA.

The logistic advantages of singe-chip genotyping are large. Each

array can be processed as soon as it becomes available; there is no

need to wait until a large enough number has been collected. This

is especially relevant when developing (new) chips for new or

existing organisms. Quality control is also improved. It is easy to

judge the estimated mixtures visually, using plots as in Figure 11.

Table 1. Cross-tabulation of SCALA genotype calls (rows) and HapMap genotypes (columns) for chromosome 1 on array NA06989
(CUPID_p_HapMapPT06_GenomeWideSNP_6_A01_183598.CEL).

AA AB BB NN

AA 19029 633 0 97

AB 0 16820 0 139

BB 0 911 19326 110

doi:10.1371/journal.pone.0046267.t001

Figure 6. Example of SCALA call disagreements with HapMap for chromosome 1 on Affymetrix 100 k Hind array NA06991. Some
Hapmap AB genotypes called as AA (red squares) or BB (green triangles) by SCALA. HapMap NN calls (circles) can be genotyped with high (open,
pw0:95) or low (filled, pv~0:95) probability.
doi:10.1371/journal.pone.0046267.g006
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Methods

In this section we describe how we fit a mixture of three two-

dimensional semi-parametric log-concave densities to transformed

fluorescence signals, as illustrated in Figure 3 [12]. In the case of

an Affymetrix array the signals are summaries of probe sets, so we

do not try to exploit any patterns in the signals from the individual

probes. The reason is simple: we have no need for it. To avoid

scatter plots showing three solid black clusters, we use data from

one chromosome. This is only for illustrational purposes; it should

be understood that all SNPs on one array are genotyped at the

same time. Figure 12 illustrates the genotype cluster separation

and their shapes for a selection of chromosomes as well the shapes

for the complete array. As can be seen, they are very similar.

We describe in some detail how to fit a mixture of log-concave

densities in one dimension, borrowing from [13]. Then we sketch

the procedure in two dimensions.

To compute a smooth density for a one-dimensional data set,

we first construct a histogram with many bins, say n~100. Let yi

denote the count in bin i of the histogram and let ui be the bin

midpoint, with i~1, . . . , n. The vector of counts is denoted by

y~fyig. We write the expected count in bin i as mi, and assume

that the counts have a Poisson distribution. To be sure that only

positive expectations can occur, we work with g~log(m). The

vector g is constructed as a sum of B-splines:

gi~log(mi)~
Xc

j~1

bj(ui)hj or g~Bh, ð1Þ

where B~½bij �~½bj(ui)� is an (n|c) B-spline basis, with c, the

number of bases, relatively large, say 20. Here, hj is the coefficient

for each individual basis j.
Assuming a Poisson distribution for the counts, we maximize the

penalized log-likelihood

l�~
Xn

i~1

(yi log mi{mi){l
Xc

j~1

(D3hj)
2=2: ð2Þ

The second term is a penalty on the third-order differences of the

coefficients. The parameter l is used to tune smoothness. The

larger l, the stronger the influence of the penalty and the smoother

the estimated density. This is the P-spline approach, advocated by

[14,15]. They also show that, with third-order differences in the

penalty,
P

i yii
k~

P
i mi i

k, for k~0, 1, and 2. This so-called

conservation of moments means that, for all values of l,P
i mi~

P
i yi, and that means and variance computed from m

are equal to those computed from y. The latter property is very

important, because it prevents the non-parametric density estimate

m to deviate much from the observations. Most smoothers do not

have this property; the variance of the estimated density increases

with the smoothness. For components of mixtures this is an

undesirable property.

Smoothness is tuned with the parameter l. There are ways to

optimize it in a data-driven way, using AIC, but in our application

we trust our visual instinct. Here, we decide visually, because in

practice we see that any reasonable amount of smoothing results in

the same calls. The amount of smoothing mostly determines visual

appeal. The third order differences also have the effect that for

larger values of l the vector q tends towards a quadratic series,

because for such a series third order differences vanish and the

penalty is zero. Unless the series of counts y has a manifest J, U, or

L shape, q will approach a mountain parabola and the estimated

density will show a unimodal log-concave shape. This is a desirable

property for components of the mixtures we consider.

Setting the derivative of l� equal to zero gives

B0(y{m)~lD0Dh, ð3Þ

where D is a matrix of contrasts such that Dq~D3q. Linearization

of (3) leads to

(B0 ~WWBzlD0D)h~B0 ~WW~zz, ð4Þ

where z~gz ~WW{1(y{m) is the working variable, g~Bh, and

W~diag(m); ~hh, ~mm are approximations to the solution of (4). This

system is iteratively solved until convergence, which usually is

quick (less than ten iterations).

To estimate a mixture with three smooth components, we use

the familiar EM (expectation-maximization) algorithm. Two steps

are repeated until convergence: 1) split the counts y into three

Table 2. Cross-tabulation of SCALA genotype calls (rows) and
HapMap genotypes (columns) for chromosome 1 in
Affymetrix 100 k Hind: NA06991.

AA AB BB NN

AA 837 12 0 3

AB 0 731 0 9

BB 0 13 826 5

doi:10.1371/journal.pone.0046267.t002

Figure 7. Example of SCALA call disagreements with HapMap
for chromosome 1 on Affymetrix 100 k Hind array NA06991,
now overlayed on the maximum of three cluster probabilities
for each bin in the histogram. Hapmap AB genotypes called as AA
(red squares) lie in a low maximum probability region of the array, while
BB (green triangles) by SCALA do so only for a part. HapMap NN calls
(circles) can be genotyped with high (open, pw0:95) or low (filled,
pv~0:95) probability. The latter mostly lie in the low probability
regions as well.
doi:10.1371/journal.pone.0046267.g007
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vectors of pseudo-counts, proportional to the current estimate of

the mixture components; 2) apply smoothing to the pseudo-counts.

A formal proof of convergence would require that we show that

the penalized log-likelihood increases with each iteration. We did

not try that. A hand-waving argument is that the M-step (fitting

the semi-parametric component densities, using estimated weights)

and the E-step (estimating the weights from the densities) are

identical to the steps for fitting a discrete mixture of parametric

densities, for which proofs of the convergence (to possibly a local

maximum) of the EM method are available. In our experience we

see that, given reasonable starting values, convergence is quick and

reliable. It is easy to check results visually, showing contours of the

densities and coloring dots according to their membership

probabilities. Decent starting estimates for the components are

needed. We will describe them for our application in what follows.

In two dimensions we use the same idea as described above, but

now a two-dimensional histogram is formed, and the log of a

density is formed by a sum of tensor products of B-splines. We

sketch the adaptations that have to be made. Let Y~fyihg be an

n1|n2 matrix of counts in a two-dimensional n1|n2 histogram.

The center of bin (i,h) is given by (ui, vh). The expected values are

modeled by sums of tensor product B-splines. Two bases are

computed, B1, with c1 columns, based on u and B2, with c2

columns, based on v. The bases are combined with a c1|c2

Figure 8. 17 NN calls from HapMap as shown in Figure 5 plotted in single-SNP multi-array orientation. For at least 10 out of 17 we
clearly see lack of one or more genotype clusters. NoCalls from HapMap for array NA06991 are overlayed with tilted squares and black borders. From
both single- and multi-array genotyping point of view they seem to have a clear classification.
doi:10.1371/journal.pone.0046267.g008
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Figure 9. A selection of 6 SNPs with a high average classification probability, after single-chip genotyping, over all arrays.
doi:10.1371/journal.pone.0046267.g009

Figure 10. A selection of 6 SNPs with a low average classification probability, after single-chip genotyping, over all arrays.
doi:10.1371/journal.pone.0046267.g010
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matrix H of coefficients, and the matrix of expected values is

computed as

M~exp(B1HB2
0): ð5Þ

Like in the one-dimensional case, a penalized Poisson log-

likelihood is optimized. The penalty is more complex, because

both rows and columns of H are penalized. If DDX DDF indicates the

Frobenius norm of the matrix X , i.e. the sum of the squares of its

elements, the penalty is

Pen~l1DDD1HDDF=2zl2DDHD2
0DDF=2, ð6Þ

where D1 and D2 are matrices of the proper dimensions

(c1{3|c1 and c2{3|c2) that form third differences.

One could vectorize Y , M and H and form the Kronecker

product of B2 and B1 to mold the equations into a matrix-vector

shape. It is, however, very inefficient to do this. Instead, we use the

fast GLAM (generalized linear array model) algorithm [16],

leading to enormous savings in time and memory use. The details

are a bit involved, so we skip them here.

Our model is flexible enough to adapt to the quite different

cluster shapes of different microarray platforms. Figure 11 shows

results for an Affymetrix and for an Illumina array. Left panels

show the raw observations, middle panels shows the density

contours after estimation. The cluster contours represent the data

well. The right panels show the smooth histograms in a 3D

representation. Note how in the Illumina panel the density

between the clusters is zero, while in the Affymetrix panel it is not.

This can be seen in the genotyping probabilities as well, as

discussed below.

The mixture components give three expected values for bin (i,h)
of the histogram: mih1, mih2 and mih3. From these numbers follow,

after division by their sum, three membership probabilities. The

largest of the three, which we indicate by p̂pih points to which

cluster all the observations in the bin should be assigned. The

distribution of p̂p over all bins is a good indicator of classification

confidence. Ideally all p̂p should be very close to one. Of course,

strong confidence does not automatically mean good precision;

that can only be assessed by comparison to a standard, as is done

in the Results section.

Figure 4 shows the cumulative distributions of p̂p for the two

arrays that we used as examples in Figure 11. Apparently the

Illumina array generates more confidence. Keeping in mind the

concentrated clusters in Figure 11 this is not a surprise.

The semi-parametric mixture model has a number of param-

eters that can be chosen by the user. For the histogram we advise a

100 by 100 grid. The domain of the histogram is covered by bases

of 10+3 cubic B-splines (the additional three are for extra

boundary splines). For the smoothing parameter we choose

l~10. Our tests indicate that larger numbers of either bins or

basis functions only increase computing time, but do not provide

different calls. Furthermore, the algorithm is relatively insensitive

to imperfect amounts of smoothing, as long as three more or less

smooth densities are obtained.

To start the EM algorithm, we split the data in three groups by

a very simple procedure. In the plot of log(a=b) vs log(azb) two

horizontal lines are used to create three sectors (AA, AB and BB).

This gives the pseudo-counts for the first round of density

estimation. The positions of the separating lines are not very

critical.

On a Core2 duo, level 2 cache 512 mb, 4 GB memory on a 64

bit OS, it takes around 20 seconds to call genotypes for a single

Affymetrix SNP6.0 CEL file. This computation time includes

building the histogram. Approximately the same time is needed for

other arrays, almost independent of the number of SNPs, because

the data are first summarized by a two-dimensional histogram.

The latter is not a costly affair. We compared four strategies on

one million pairs of uniformly distributed numbers (in parentheses

times in seconds):

– a loop over all observations (5.4);

– a compiled version of the loop, using cmpfun (1.2);

– using the function table() (5.6);

– using a feature of the sparse matrix package package spam

(0.31).

To put these numbers in perspective: the singular value

decomposition of a 1000 by 1000 matrix takes 7.1 seconds on

this computer. The memory footprint is small: it is far less than

what is needed the one million pairs of fluorescence intensities for

one chip.

Our genotyping algorithm has been implemented in R [17] as

part of a larger software system, called SCALA.

Table 3. Call agreement between SCALA (rows) and HapMap
(columns), aggregated over all chromosomes in 70 arrays
from the HapMap SNP6.0 CUPID set.

AA AB BB NN

AA 99.97 4.99 0.00 13.5

AB 0.03 90.11 0.00 69.1

BB 0.00 4.90 100.00 17.4

Numbers in percentages of HapMap genotypes; columns add up to 100%.
doi:10.1371/journal.pone.0046267.t003

Table 4. Call agreement between CRLMM (rows) and
HapMap (columns), aggregated over all chromosomes in 70
arrays from the HapMap SNP6.0 CUPID set.

AA AB BB NN

AA 100.00 2.85 0.00 19.2

AB 0.00 94.52 0.00 59.8

BB 0.00 2.59 100.00 21.0

Numbers in percentages of HapMap genotypes; columns add up to 100%.
doi:10.1371/journal.pone.0046267.t004

Table 5. Call agreement between SCALA (rows) and
GenoSNP (columns), aggregated over all chromosomes in 20
arrays from the Erasmus Medical Center.

AA AB BB NN

AA 99.96 0.86 0.00 27.5

AB 0.04 98.52 0.02 49.1

BB 0.00 0.62 99.98 23.4

Numbers in percentages of GenoSNP genotypes; columns add up to 100%.
doi:10.1371/journal.pone.0046267.t005
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Figure 11. Top row: a typical Affymetrix SNP6.0 array. Bottom row: a typical IIlumina HumanHap550 array. Left panels : a random selection of
3500 SNPs on chromosome 1 plotted as dots. Middle panels: observations and contour lines of semi-parametric mixture components. Normalized
contours (mode set to 1) are shown at [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8]. Right panels: a 3D perspective of the smoothed densities.
doi:10.1371/journal.pone.0046267.g011

Figure 12. Genotype clusters in HapMap sample NA06985 (Affymetrix 100 k Hind enzyme only) for five individual chromosomes and
genotype clusters over all chromosomes (bottom right panel). There is only a difference in SNP density, but not in scale or cluster separation.
doi:10.1371/journal.pone.0046267.g012
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Supporting Information

Appendix S1 We describe the translation step to match
HapMap genotype calls to the SCALA {AA, AB, BB}
format. We compare genotype calls to those of Phase III. We

only compare calls to SNPs that have matching ‘RSid’s. almost

half of the total. We disregard the four allelotypes (A,C,G,T) and

refer to homozygous genotypes as AA or BB and the heterozygous

as AB. Since genotype calls AA from either method are highly

unlikely to be mistaken for BB, we can apply the above forced

classification from the HapMap homozygous genotype calls into

homozygous calls from SCALA.

(PDF)
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