Brief communication

HLA-DRB1*0403 is associated with dominant protection against IDDM in the general Dutch population and subjects with high-risk DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 genotype

Insulin-dependent (Type 1) diabetes mellitus (IDDM) is a genetically controlled T-cell mediated autoimmune disease in which the insulin-producing β-cells in pancreatic islets of Langerhans are irreversibly destroyed (1). Although the genetic association is diverse (2), the major histocompatibility complex (MHC) region on chromosome 6 is most strongly associated with both susceptibility and protection to IDDM. This region, designated IDDM-1, has at least two separate regions that are associated with predisposition (3). The consensus is that combinations of HLA-DR en -DQ alleles or haplotypes, rather than particular alleles or loci confer the highest genetic risk to IDDM (4–7). Recently, subtyping of HLA-DRB1*04 identified the HLA-DRB1*0403 allele to be associated with protection in Caucasoids with the highest risk heterzygous genotype DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 (8). Some studies confirmed this finding, but other reports were not consistent with a dominantly protective trait. Here we report the frequency of HLA-DRB1*0403 in a large cohort (n=200) of Dutch patients with IDDM, their first-degree family members (n=370), and random controls (n=420) of the general population in the Netherlands. We found that HLA-DRB1*0403 is strongly associated with dominant protection against development of IDDM in unrelated subjects, even in the context of the highest risk HLA-DQ phenotypes and HLA-DR4-DQB1*0302 (P<0.0001).

Key words: insulin-dependent diabetes mellitus; HLA-DRB1*0403; autoimmune disease; susceptibility

Acknowledgments:
We thank the regional pediatricians for supply of blood samples of families with type 1 diabetes patients. This study was supported by the Diabetes Fonds Nederland. Dr. Roep was supported by the Royal Academy of Arts and Sciences, The Netherlands.

Authors’ affiliations:
B.O. Roep1, R. Schipper1, W. Verduyn1, G.J. Bruining2, G.M.Th. Schreuder1, R.R.P. de Vries1
1Department of Immunohaematology & Blood Bank, Leiden University Medical Centre, Leiden, The Netherlands.
2Sophia Children’s Hospital, Rotterdam, The Netherlands.

Correspondence to:
Dr. B.O. Roep
Department of Immunohaematology & Blood Bank
Leiden University Medical Center
P.O.Box 9600
2300 RC Leiden
The Netherlands
Tel: +31 71 5263869
Fax: +31 71 5216751
e-mail: broep@pobox.leidenuniv.nl
Roep et al: HLA-DRB1*0403

Table 1

<table>
<thead>
<tr>
<th></th>
<th>HLA-DRB1*0403-positive</th>
<th>HLA-DRB1*0403-negative</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDDM patients</td>
<td>0</td>
<td>200</td>
<td>0.02</td>
</tr>
<tr>
<td>General population</td>
<td>10</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>High-risk HLA-DR/DQ phenotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDDM patients</td>
<td>0</td>
<td>120</td>
<td>0.000081</td>
</tr>
<tr>
<td>General population</td>
<td>8</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>HLA-DRB104-DQB10302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDDM patients</td>
<td>0</td>
<td>141</td>
<td>0.000087</td>
</tr>
<tr>
<td>General population</td>
<td>8</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Families with IDDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDDM patients</td>
<td>0</td>
<td>200</td>
<td>Not significant</td>
</tr>
<tr>
<td>Parents</td>
<td>1</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Siblings</td>
<td>2</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

trends towards decreased prevalence of DRB1*0403 in IDDM patients have also been reported (4, 12, 13). In some cases, the lack of significance may be explained by the limited numbers of subjects studied.

We here report the frequency of HLA-DRB1*0403 in a large cohort (n=200) of Dutch patients with IDDM that were collected consecutively upon diagnosis by pediatricians in the southwestern part of The Netherlands (Table 1). This frequency was compared to the frequency of HLA-DRB1*0403 in random controls (n=420) of the general population in The Netherlands (Table 1) (14). HLA-DRB1, DQA1 and DQB1 polymorphism was tested by polymerase chain reaction using sequence-specific oligonucleotide probes (PCR-SSOP) on locus specifically amplified DNA (15).

Our results confirm the findings in Belgium, Sweden and Sardinia showing a dominant strong protective association. We extended our analyses to high-risk subjects and first-degree relatives of the IDDM patients studied here. Even in subjects with the highest genetic risk HLA-DR/DQ phenotypes (DR3-DQA1*0501-DQB1*0201 homozygotes, DR3-DQA1*0501-DQB1*0201/DR1- or DR10-DQA1*0101-DQB1*0501, DR4-DQA1*0301-DQB1*0302/DR1- or DR10-DQA1*0101-DQB1*0501, DR4-DQA1*0301-DQB1*0302/DR6-DQA1*0102-DQB1*0604, DR4-DQA1*0301-DQB1*0302/DR8-DQA1*0401-DQB1*0402) and subjects with the predisposing high-risk HLA-DRB1*04-DQB1*0302 haplotype we found that HLA-DRB1*0403 was associated with dominant protection against development of IDDM. In families of our IDDM patients, DRB1*0403 had never been inherited by diabetic offspring, while two non-diabetic siblings of IDDM patients inherited this allele (not significant (NS)).

HLA-DRB1*0406, which only differs from HLA-DRB1*0403 by codon 37 (Ser) that does not affect the peptide binding motif of the DR molecule (7), was not found in either patients or controls. Interestingly, HLA-DRB1*0407, which codes for a DR molecule that differs from that of HLA-DRB1*0403 by a single amino acid residue on position 86 of the β-chain, did not display dominant protection (1/114 IDDM patients vs. 8/420 control subjects; NS). In Belgian subjects, the DRB1*0407 allele concerted dominant protection in DR3/4-positive Caucasoids, while in DQ2/8-positive subjects it was not significantly associated with protection to IDDM (8). HLA-DRB1*0407 codes for a DR molecule that differs from that of DRB1*0403 in peptide binding motif in the first pocket only (large aromatic residues in stead of Val, Ile or Leu) (7).

We conclude that in the Dutch population, HLA-DRB1*0403 is strongly associated with dominant protection against development of IDDM, even in the context of the highest risk HLA-DQ phenotype.
References

