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Abstract

This paper develops one possible argument why auctioning licenses to op-
erate in an aftermarket may lead to higher prices in the aftermarket compared
to a more random allocation mechanism. Key ingredients in the argument
are differences in firms’ risk attitudes and the fact that future market prof-
its are uncertain so that winning an auction is like winning a lottery ticket.
If one license is auctioned, auctions select the firm that is least risk averse.
This is what we call the risk attitude effect. Firms that are less risk averse
tend to set higher prices (or higher quantities in case quantity is the decision
variable) in the marketplace than an average firm. When multiple licenses
are auctioned, this conclusion gets strengthened when there is a differenti-
ated Bertrand oligopoly in the marketplace. In case of Cournot competition,
a strategic effect works against the risk attitude effect so that under certain
conditions the more risk averse firms will be selected leading (again) to higher

market prices.
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1 Introduction

In recent years, governments throughout the world have extensively used auction
formats to allocate to private enterprises licenses to operate in a market. This use of
the auction format is to a large extent due to the success of the FCC auctions held in
the first part of the 1990s and the attention that was drawn to these auctions by the
large sums of money that were generated. After the FCC auctions, auctions have been
used or have been considered to allocate, for example, 2G and 3G mobile telephony
frequencies around the world, commercial radio frequencies and petrol stations. One
element that all these examples have in common is that after the auction is held,
firms operate in a market to sell their services to consumers (or to advertisers, in
the case, of commercial radio). Moreover, while bidding in the auctions, there is
considerable uncertainty about future demand. Winning such auctions is, therefore,
very much like winning a lottery ticket: the costs are clear, but the revenues are
highly uncertain.

Another element that most of these auctions have in common is the heated debates
at the time the auction is prepared and held about the question whether it is in the
interest of consumers that licenses are auctioned. Private enterprises consistently
argue that the fee that has to be paid during an auction to obtain the license, is
reflected in the market prices that these same enterprises later charge to consumers.*
The more is money that is paid during an auction, the higher are future consumer
prices. Economic theorists, on the other hand, have consistently argued that the
fees paid to obtain a license are sunk costs and should have no effect on the prices
that are later charged in the market (cf., Binmore and Klemperer 2002, Van Damme
2002). In the same vein, they argue that the views expressed by these enterprises may
simply stem from the firms’ own interests not to have to bid (and pay) in auctions.?
Nevertheless, there is now experimental evidence that auctions may have a positive
impact on market prices (Offerman and Potters, 2000).

In this paper, we look at the relation between auctions and prices in the after-
market more closely. We will argue by means of a theoretical model that the sunk
cost argument need not hold if bidders are risk averse and, more importantly, it does
not hold if firms differ in their risk attitude. Of course, the usual assumption made
in the literature is that firms are risk neutral, but relatively recent empirical studies
in finance indicate that firms may indeed be risk-averse, or at least that their be-
havior is such that it is as if they were risk averse. Nance et al. (1993) and Geczy
(1997), among others, argue that firms hedge against different types of exogenous

uncertainties such as the volatility of exchange rates. They show that this is because

!Governments have also been worried about the possible effect on consumer prices; see e.g.
European Commission (1994).

2There are some, see, e.g., McMillan (1994), arguing that if firms have to pay large sums of
money, they may face an increase in the cost of obtaining capital, which may slow down innovation.



firms face non-linear tax systems or because they are liquidity constraint. In a study
on the behavior of the gold mining industry, Tufano (1996) argues that delegation of
control to a risk-averse manager, whose behavior is linked to the firm’s performance,
may cause the firm to take actions in a risk-averse manner even if owners themselves
are not risk-averse. As delegation of control differs between firms and as the payment
structure of managers differs from firm to firm, firms may very well act as if their
attitude towards risk differs significantly from one to the other.

We will consider three different types of aftermarkets: monopoly, differentiated
Bertrand oligopoly and Cournot oligopoly. Depending on whether the government
issues one or multiple licenses, one of these market forms may apply. In the monopoly
set-up, i.e., if only one license is auctioned and future demand (and profit) is uncer-
tain, auctions tend to select the bidder that is least risk averse and this firm chooses
higher levels of its decision variable than an average firm as it concentrates more
on the good states of demand. This is what we will call the risk attitude effect.
Whether market prices are higher or lower because of auctions depend on whether
the monopoly firm in the market is a price or a quantity setter. Price setting firms
that win auctions, tend to set higher prices than a randomly selected firm. Quantity
setting firms that win auctions, tend to set higher quantities than a randomly selected
firm, resulting in lower expected market prices. Thus, the main idea incorporated
in the paper is a selection argument: auctions select firms that do not set average
market prices.

It is well-known that under general forms of risk aversion, the sunk cost argument
may not hold. In particular, in a risky environment individual players with the same
utility function may make different choices depending on how wealthy they are. The
sunk cost argument continues to hold, however, for risk-averse players when this risk
attitude is characterized by constant absolute risk aversion (CARA). It has been
argued that as auctions force firms to pay considerable amounts of money for their
licenses, auctions may force firms to behave differently in the marketplace (see, e.g.,
MacMillan (1994) and footnote 2). As we want to concentrate on the selection aspect
of auctions and not on the possible consequence of the fact that paying money for
the license makes a firm poorer, we consider firms having CARA utility functions.

One other substantive question that may arise is whether the selection effect
analyzed here has only short-term or also long-term implications. The answer depends
on the way the model is interpreted. If a firm’s quantity choice is interpreted as a
capacity choice in the sense of Kreps and Scheinkman (1983) and if capacities have to
be chosen before the uncertainty is realized, then it is clear that the selection effect has
long-term consequences: a less-risk averse firm wins the auction and chooses a higher
level of capacity, implying lower prices over a long period of time. In case the firms
are price setters, the answer depends on whether the uncertainty about demand is

quickly resolved or not. If demand remains uncertain for a long time, possibly because



new types of demand shocks keep on arising, there are also long-term effects in case
of price setting.

Next, we investigate whether these ideas are robust to settings where more li-
censes are auctioned and strategic effects may interfere with the risk attitude effect.
This leads to the analysis of differentiated Bertrand oligopoly and Cournot oligopoly.
A first point to note here is that in the oligopoly case the price that is paid to obtain
a license effects the choice of a firm’s market strategy through its expectation about
the risk attitudes of other players even if firms have CARA utility functions. This
considerably complicates the analysis of the oligopoly cases and that is why we re-
strict the analysis of the oligopoly cases to situations where there is relatively little
uncertainty concerning future profits. Under differentiated Bertrand oligopoly, the
strategic effect strengthens the risk attitude effect. The main reason is that with
strategic complements every firm in the aftermarket benefits from a rival firm setting
higher prices, i.e., from the presence of a more risk-neutral firm. Therefore, the least
risk-averse firms make a higher expected profit in the aftermarket than any other
combination of firms. Combined with the fact that for a given distribution of profits
their certainty equivalent, and therefore their willingness to pay, is higher these least
risk-averse firms will win any type of auction and they will set higher prices than a
randomly drawn sample of firms will do.

The analysis is more complicated in case of Cournot oligopoly. In this case, the
risk attitude effect and the strategic effect work in opposite directions. The main
reason is that with strategic substitutes every firm in the aftermarket suffers from a
rival firm choosing higher quantities, i.e., from the presence of a less risk-averse firm.
It remains true that for a given set of other players in the aftermarket, a firm that is
relatively less risk averse makes more profits than a relatively more risk-averse firm.
However, it may well be that two or more less risk-averse firms make less profits and as
a consequence have a smaller willingness to pay for the licenses when they know they
compete with each other in the aftermarket than more risk-averse firms. Depending
on who will win the licenses, expected market prices will be lower or higher than the
prices when firms are selected randomly. We show by appealing to special cases that
both the risk attitude effect and the strategic effect may dominate. For example, in
case of inelastic demand, a relatively large number of licenses being auctioned and a
slight positive correlation between players’ types, there exists a unique equilibrium
in which the bids firms make increase in the degree of risk-aversion and the most risk-
averse firms secure the licenses leading to lower quantity choices and higher market
prices.

The paper borrows from the early literature on price and quantity setting behavior
of a risk-averse monopolist (cf., Baron, 1971 and Leland, 1972). One important result
of these papers is that a price setting risk-averse monopolist behaves differently from

a quantity setting risk-averse monopoly. Moreover, Baron (1971) shows that the more



risk averse a price setting monopolist the lower the price it sets. On the other hand,
the more risk averse a quantity setting monopolist the lower the quantity it sets. This
in turn implies that for each state of demand, market prices tend to be higher! The
intuition behind these two results is that the more risk averse a firm the more it pays
attention to the outcomes if demand is low. If demand is low, a firm sets relatively low
prices or low quantities, whatever is its choice variable. These results have recently
been generalized to the case of market competition (see, Asplund, 2001).

The paper is, of course, also related to the rapidly growing literature on auctions.
There is a literature on the way risk aversion effects bidders’ behavior in auctions (see,
Krishna 2002, for an overview). Eso and White (2004) analyze the bidding behavior
of risk-averse bidders in an affiliated valuation model where the influence of exogenous
uncertainty on a player’s valuation is independent of the private signals received. Our
model may be considered in this light if one interprets risk attitudes as private signals.
An important difference® between our paper and Eso and White (2004) is, however,
that the influence of exogenous uncertainty about demand on a player’s valuation is
not independent of the private signal (the firm’s risk attitude). There is also a growing
literature studying the strategic interaction between bidding in auctions and firms’
behavior in the aftermarket (see, e.g., Binmore and Klemperer, 2002, Goeree, 2003,
Janssen 2005, different papers in Janssen 2004, Jehiel and Moldovanu (1996a, 1996b,
2001) and Klemperer 2002a, 2002b). This paper is the first to consider the importance
of differences in risk attitude for the interaction between auctions and aftermarkets.
It turns out that these differences imply externalities between the players so that,
for example, in the case of multiple licenses, a player’s willingness-to-pay depends
on his expectation about who else will win a license. These externalities may imply
that there exist equilibria where players with higher willingness-to-pay do not win a
license.

The rest of the paper is organized as follows. Section 2 deals with the case
where monopoly rights are allocated. Section 3 first analyzes the case where multiple
licenses are auctioned in a uniform price multi-unite auction in general terms. In
two subsections, we then discuss price setting behavior in a differentiated Bertrand
model and quantity setting behavior in Cournot competition. Section 4 analyses a

multi-unit pay-your-bid auction. Section 5 concludes.

2 The Monopoly Setting

Consider a monopolistic market with uncertain demand, where the monopoly profit
7 (s,u) depends on the monopolist’s choice of the strategic variable s and the un-

certainty u. The strategic variable s can be interpreted in many different ways, but

3This difference is further detailed at the end of Section 2.



two common interpretations are that of price strategy and/or of quantity or capacity
strategy. If the firm chooses price, then s = p and the firm fulfills a random demand
q (p,u). If the firm chooses quantity, then s = ¢ and the price consumers pay for this
quantity is p (¢, u) and the firm accepts to sell its pre-determined quantity ¢ at this
random price. The uncertainty is represented by a random variable u which is distrib-
uted according to the distribution function F, with support ¢.* As usual, we assume
that 7 (s,u) is twice differentiable and strictly concave in s such that the profit-
maximizing output always exists and is unique. With respect to the uncertainty, we
follow Leland (1972) and assume that the Principle of Increased Uncertainty (PIU)
holds, i.e., marginal revenue is increasing in u, i.e., 75, > 0. Moreover, we assume
that 7 (0,u) = 0, i.e., the profit function is continuous in the sense that the pay-off
of not winning the auction, which is equal to 0, equals the pay-off of winning the
auction and setting the strategic variable equal to 0. It follows that m, > 0. All
these conditions are satisfied in many instances that are commonly considered. For
example, if demand is linear and given by p = a — nq and we look at a quantity
setting monopolist, then the assumptions are satisfied when either « is an arbitrary
increasing function of u, « (u), or 7 is an arbitrary decreasing function of u, i (u). For
an appropriate change in parameters, the conditions also hold true for a price-setting
monopolist.

Access to the market is limited to the firm that has obtained the single license
to operate in the market. The government considers two allocation mechanisms: a
lottery where the licenses are randomly given to a firm and an auction where the
highest bidding firm wins the license. To fix attention, we think of the auction as
being an English auction, but the main ingredient that is important is that firms with
higher valuations win the auction, i.e., bidding in the auction can be characterized
by an increasing bid function (B(v), where v represents firm’s willingness to pay
(specified in more detail below). A firm’s actual bid is denoted by b. Even if a lottery
is chosen as allocation mechanism, the winners have to pay a certain sum of money
for the license.

Firms differ in their attitude towards risk. We assume that all firms are to a
certain degree risk-averse, but some firms are more so than others. To make this
more precise, we assume that a firm ¢ has a strictly increasing and concave utility
function, denoted by U; (7), U! > 0 and U/’ < 0, and U, (0) is normalized to 0. A
firm’s attitude towards risk is represented in the standard way by the Arrow-Pratt
measure of absolute risk aversion —U/’/U;. To make comparisons between firms’ risk
attitudes feasible, we require that a firm’s attitude towards risk can be captured

by a single parameter. For easy reference we will use the symbol r; to denote the

4Due to the fact that we can work with arbitrary profit functions, we can safely assume without
loss of generality that v is uniformly distributed over the range [—1,1]. In the oligopoly section, we
will use this to make the expressions easier to handle.



parameter measuring the risk attitude of firm ¢ and we assume that the individual
signals (risk attitudes) are drawn from a common distribution F' with support [r,7],
r > 0. A player’s risk attitude is private information to the player. Moreover, it is
well-known that the sunk cost argument does not hold under general forms of risk
aversion. As we want to concentrate in this paper on a pure selection argument, we
concentrate on the case where the amount of money paid during the auction does not
affect aftermarket behavior. This is the case when firms have a constant absolute risk
aversion (CARA). Under CARA, the more risk averse a firm, the higher r;, = —U/" /U]
is.

If a firm ¢ with a risk attitude x secures the license at a price w and sets a level

s of the choice variable in the aftermarket, its expected utility is given by

W (s,w,z) = EU; (7 (s,u) —w) = /Ui (7 (s,u) —w) dF,.

As a firm that has not been successful in obtaining a license will make zero profit
in the aftermarket, the firm i’s maximum willingness to pay v (z) for the license is
implicitly determined by the following equation:

W (s*,v(x),z) = mng (s,v(x),x) = msaxEuUi (m(s,u) —v(x))=0, (1)
i.e., v(x) is the certainty equivalent of the random profit = (s*,u), where s* is the
optimal choice of the firm’s decision variable s.

An interesting observation about this definition of a player’s valuation is in place.
Under a general form of risk aversion, the optimal value s* a player chooses in the
aftermarket and, therefore, the profit it makes, depends on the amount it has paid in
the auction, s* = s* (w,z). Thus, a player’s expected utility from winning a license

and paying a price w equals to
W (s" (w,z),w,z) = E,U; (7 (s" (w,z) ,u) —w). (2)

and we arrive at the unusual situation that the expected value of the license depends

on the price a player paid! Taking the derivative of (2) with respect to w gives

@W(s (w,z) ,w,x) =Wy (s ,w,az)%—l—Ww(s , W, T) .

The first term here equals to zero due to the first order condition in maximization of

(1), whereas the second term is strictly negative as
W, (8%, w,2) = —E, U] (7 (s*,u) —w) < 0.

This implies that even for non-CARA utility functions the solution of equation (1)



for v (z) is unique and thus, that the valuation v (x) is properly defined.

Using the above notation and assumptions, one is able to arrive at the first set
of results. We will prove the claim that auctions lead to either higher market prices
(in case of price setting) or to lower market prices (in case of quantity setting) in
two steps. First, we show that in the market environment, a less risk-averse firm will
set a higher value of s. Second, we show that less risk-averse firms have a higher
willingness to pay so that an auction selects the firm that is least risk averse among

the firms that participate.

Proposition 1 Under CARA, the less risk averse the monopolist is, the higher the
value of s* it will choose, i.e., 0s*/0x < 0. Moreover, a price that a winning firm

paid in an auction does not affect s*, i.e., ds* /0w = 0.

Proof. Maximizing W (s, w,z) w.r.t. s yields the necessary first-order condition
0=W,(s*w,z)=E, (ms (s*,u) Ul (7 (s*,u) —w)) . (3)

Differentiating this equation w.r.t. w yields the following expression for ds*/dw:

_ _ _ -0
dw ’

0s* ds* Wsw (s w,2)  —axW (s*,w,x)
ow W (s*,w, ) W (s*,w, )

x
as because of CARA the numerator equals to zero while the denominator is strictly

negative.
In order to show that ds*/0z < 0 we first evaluate W, (s*, w, x):

W,, = E, (wsw> = B, (menUl (1 — w)) = By (1] (u, 7)) < 0,

t
where J (t,z) = [7(s*,u)U! (7 (s*,u) —w)du. The first equality follows from
1

CARA, the second equality is obtained by integrating in parts. It follows from the
PIU that J (—1,z) = J(1,z) = 0 and J (¢,z) < 0 for all ¢t € o, which together with
7, > 0 implies the last inequality. Differentiating (3) but now w.r.t. z yields the

Js* _[(ds” B _Ww <0
or  \dx w N W s ‘

desired inequality:

In accordance with Proposition 1 the optimal level of the strategic variable can
be written as s* (z). If the strategic variable is price, the Proposition says that less
risk-averse firms will set higher prices. If the strategic variable is quantity or capacity,

the Proposition says that less risk-averse firms will set higher quantities, leading to



lower market prices. We next analyze which of the players an auction mechanism

selects.

Proposition 2 A firm’s valuation is a strictly decreasing function of its risk attitude,
ie., dv/dx <0.

Proof. v (z) is defined by (1). It is well-known (see, e.g., Mas-Colell et al. (1995,
p. 191)) that this implies that a strictly less risk-averse player strictly prefers the
same lottery, therefore W, < 0. Differentiating W (s* (z),v (x),x) = 0 w.r.t. x and
taking into account (3) yields

dv_ W,
de W,
as W, = —E, (U] (7 (s*,u) —v)) <0. =

Proposition 2 tells us that in auctions that select the player with the highest
willingness to pay, the least risk-averse player among all those who participate in the
auction is selected.

One question that arises is whether commonly held auctions such as the English
auction will select the player with the highest willingness-to-pay also in the present
context. The next proposition answers this question. The proposition tells us that
the standard result from auction theory with independent valuations, namely the
equivalence between a second-price sealed-bid auction and an English auction, also
holds in the present situation. Hence, in an English auction, the player with the
highest valuation will win the auction and has to pay the valuation of the player who
is least risk-averse of the remaining players. Moreover, Proposition 3 argues that the
winning bidder is better off in a situation of uncertain market conditions than in a

situation of certain demand.

Proposition 3 The English auction and the second-price sealed-bid auction are strate-
gically equivalent and the dominant bidding strategy in the latter (and the stopping
rule in the former) is simply B (v) = v. The winning bidder receives a lower surplus
in case of certain demand than in case of uncertain demand where the uncertainty
takes the form of a mean-preserving spread of the certain demand case. The seller is

worse off when auctioning at a moment demand is uncertain.

Proof. The proof that a second-price sealed-bid auction in the present context
has a dominant strategy equilibrium with §(v) = v exactly follows the standard
argument and is therefore omitted (see, e.g., Krishna, 2002). The fact that the
English auction is strategically equivalent simply follows from the fact that even if
the risk attitudes of individual players are correlated, this is a private value auction

where a firm ¢’s valuation depends only on its own risk type. Thus, the players have

9



nothing to learn from each other’s bidding behavior (or from the moment a player
stops bidding) in an English auction.
When demand is certain, i.e., when u = ug is commonly known, all players have

in fact the same valuation, which is then given by
max U; (7 (s, ug) — v;) = 0.

Hence, a player’s valuation in this case is vf = max 7 (s, ug), which is independent
of ¢. This implies that the winning player has tc‘)9 pay an amount equal to his own
valuation so that his surplus equals to 0.

We next show that if demand is uncertain, all players’ valuations are lower. This
can be shown using a similar argument as used in Proposition 2. If we denote by v}' the
valuation of player i in case of uncertain demand, then it follows 0 = EU;(7 (s*,u) —
vi'). If the player chooses the same s* under certain demand as the optimal s* under
uncertain demand, it is well-known that a risk-averse player prefers the certain profits.
As the player can choose a different optimal level of s under certain demand, it follows
that v; > v}

As Proposition 2 says that in case of uncertain demand if j is strictly less risk-
averse than ¢, then v; > v;, it follows that the player with the highest valuation wins
the auction and gets a positive surplus as it pays the price of the second highest
valuation, which is strictly less. The seller gets lower revenue for two reasons: firstly,
all valuations are lower and, secondly, the revenue it gets is lower than the valuation

of the winning bidder. =

Proposition 3 sheds some interesting light on the type of auction that is considered
in this paper. The valuation of a player v depends on the player’s risk attitude r and
on the nature of market uncertainty, which we summarize by a symbol €2, and can be
expressed as follows: v (r, 2). Regarding r as a signal the individual receives about his
valuation of the object, this dependence makes clear that the model does not fit the
general interdependent value model (see, Milgrom and Weber, 1982) that is standard
in auction theory. The main difference is that in our model a player’s valuation does
not depend on the risk attitude of the other players. This also explains (unlike the
interdependent value model) the strategic equivalence of the second-price sealed-bid
auction and the English auction in the present context. The structure of v (r, Q)
also makes clear the difference with the model by Eso and White (2004). In their
model, the influence of exogenous uncertainty on a player’s valuation is independent
of the influence of the private signals received. The combined influence of players’
risk attitudes and the nature of market uncertainty makes that on one extreme end
(when there is no market uncertainty) the present model just represents a simple
common valuation auction, while at another extreme (when there is a lot of market

uncertainty), the model is very much like a typical auction model with independent

10



private valuations.

Taken together, the propositions prove one of the central claims of this paper,
namely that typical auctions such as the English auction, select the player that is
least risk-averse and that in case the decision variable is price, this player chooses a

higher prices than a randomly selected firm.

3 The Oligopoly Setting: Uniform Price Auction

In many real-world cases, governments do not allocate a single license, but instead
also rely on competitive forces in the marketplace by allocating as many licenses
as is technically feasible. In case of the European UMTS-auctions, for example,
governments have allocated between 4 and 6 licenses. In this section we will analyze
whether the results of the previous section also hold true when the government decides
to allocate n > 1 licenses. To this end, we first analyze a general model of oligopoly
competition when goods are horizontally differentiated, and then we look at the
specific features of price and quality competition in the aftermarket.

We will retain all the assumptions made in the previous section, if possible. The
only element that needs to be changed is the profit function 7. Assuming that
apart from their risk attitudes, all firms are identical and denoting by s; a level of
the strategic variable chosen by a firm ¢ = 1,...,n allows us to write its profit as
7 (84, 5_i,u), where s_; represents level of s chosen by all the other firms and the
function 7 is symmetric in all s; for j # ¢. For a short notation, we denote the
partials of 7 as follows: m; = dn/0s; and 7; = 0w /0s;,j # i. By indices i, j, k we
will denote firms that won the auction whereas by index [ we will refer to the firms
that lost the auction, 7.e., that did not obtain a license.

In order to ensure the existence, uniqueness and stability of a Nash equilibrium in
the aftermarket we assume that m;; < 0 and 7, ; € (m,i, —ﬁm,i), see Dixit (1986).
When 0 < 7;; < —ﬁmﬂ- strategic variables s; are strategic complements (Bertrand
competition), whereas m;; < m;; < 0 corresponds to strategic substitutes (Cournot
competition), see Bulow et al. (1985).

In Section 2 we have shown that under CARA the auction price does not affect
the monopoly behavior in the aftermarket. In oligopoly settings this is not generally
true any longer. Indeed, despite the fact that an amount w;, which a CARA firm
7 has paid for the license, does not directly affect an optimal strategic choice s; for
giwen values of competitors’ s_;, it affects the distribution of their risk attitudes, and
hence, their choices of s_;, and, therefore, affects the optimal value of s; indirectly.
Hence, a proper definition of valuations is not guaranteed even for CARA utility
functions. In order to keep the analysis tractable, we will restrict ourselves to the
case of a small amount of uncertainty. Thus, we put u = ae, where o > 0 and ¢ is

uniformly distributed over the range [—1,1], and consider a limit case when o — 0
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(see also footnote 4).

Suppose that a firm ¢ with risk type  wins the auction and gets a license at price
w. If risk types of all winning firms and the amounts they paid for the licenses had
been revealed before the firms make their choices of s;, that is under full information
about risk types and prices, then the second stage Nash equilibrium strategic variable
s7 would have been a function of all r; and wj, i.e., s} = s* (x,w,r_;,w_;). Just before
this information were available to firm ¢, its expected utility would have been given
by

W (w,z) = E (BU; (7 (s}, s, u) —w) |L),

where I; is the information firm ¢ has about risk types and auction prices of all the
other winning firms. If, on the other hand, neither risk types, nor auction bids, nor
the amounts others paid for the licenses are revealed before the firms make their
choices of s;, that is when they have no information about risk types and prices,
then the second stage Nash equilibrium strategic variable s} would be a function of
x and w only, i.e., s = s* (z,w). The expected utility of firm ¢ in this case is given
by the same expression
W (w,z) = E (B,U; (7 (s}, 8%, u) —w) |L),

with the important difference being the arguments the Nash equilibrium choices s*
depend on.

In the sequel we assume that the only information that is available to any winning
firm i is its risk type x and the auction price w it has paid for the license,’ that is,
the no information case. However, as we will see, in the second-order approximation
both functions s* (z,w,r_;,w_;) and s* (x,w) are linear and the expected utilities
W (w, 2) and W™ (w, z) coincide! Hence, firms’ bidding behavior is not affected by
the informational assumption, although their strategic market behavior is affected.®

Suppose that a firm ¢ with risk type x wins an auction and gets a license at
price w. In a symmetric Nash equilibrium, each of the other winning firms j chooses
s = s* (rj, w;). Thus, for any given values (r;, w;) of all competitors, if firm i chooses

s;, its conditional expected utility is

—~

w (Sia T, W—4, W, .I) = EUUZ <7T (Si> s* (T*ia w*i) 7u) - w) ) (4)

5The reason a firm’s bid is not included in I; is that it provides no extra information to firm i as
a firm ¢’s bid is fully determined by its type x.

6There is an intermediate case where the bids rather than risk types are observed after the auction.
In this case, bidding behavior were affected as firms would be willing to signal by submitting higher
bids. This signalling behaviour is difficult to analyze in details. In a monotone bidding equilibrium,
however, firms’ strategic market behavior would not have been affected as they could have inverted
bids back into risk types. Thus, in this intermediate case bidding behaviour is affected, but market
behavior is not.
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where s* (r_;, w_;) represents choices of the other (n — 1) firms. The unconditional

expected utility W of firm ¢ is an expectation of W
W(s;,w,z) =E <W (84, T, W_j, W, T) |IZ> .

In other words, based on w and x, firm 7 estimates a joint distribution of (r;,w,)
of all its competitors. In the rest of this paper we consider two commonly consid-
ered auction formats: a multi-unit uniform (n + 1)* price auction (i.e., a multi-unit
generalization of the second price auction) and a pay-your-bid auction (i.e., a multi-
unit generalization of the first price auction). In both cases, the joint distribution
of (rj,w;) conditional on (z,w) degenerates to a one-dimensional distribution. In a
uniform (n + 1)St price auction, where all n highest bids win the auction and pay the
same price which is equal to the (n + 1) highest bid, the marginal distribution of
w; is degenerate as Pr (w; = w) = 1. On the other hand, in a pay-your-bid auction,
where the n highest bids win the auction and each winning firm pays a price that is
equal to the amount it has bid, the conditional distribution (7;|w,) is degenerate as
Pr(r; = ylw; = b(y)) = 1, where b is a monotone equilibrium bidding function.

In the rest of this section we analyze the multi-unit uniform (n + 1)* price auction,
and we use a superscript (/7) to indicate that this is a generalization of the second-
price auction. In this auction format,” all winning firms pay the same price w and
the conditional expected utility of firm i is

W(II) (Siv w, ‘T) - E (I//-V\ (82', r—,w,w, ZE) |IZ(II)> )
where information Ii(H) that is available to firm 4 consists of the following: r; = z,
b (r;) > w, b4 (1)) < w, where bUD is a monotone equilibrium bidding function.
Maximizing W) w.r.t. s; yields the following first-order condition that s* (z,w)
function has to satisfy:

WD (s* (z,w),w,z) = 0. (5)

Si

One may see that the main difficulty in using (5) for investigating the properties of

the function s* (z, w) is that WS(I D depends on (z, w) not only directly through /W, but

also indirectly through [i(H)

7D

. Even if the signals, i.e., risk attitudes, are statistically
independent, still depends on w. This is the main reason why we consider a limit
case @ — 0. Without uncertainty, i.e., if a = 0, the aftermarket game has a unique
and stable Nash equilibrium s that satisfies 7, (s(o) s 0) = (. In equilibrium all

y 9 —7
firms get the same profit ™ (s(o), s(_oi) , 0) and, therefore, bid this amount in an auction

and get zero utility.

"In case of statistically independent signals, the analysis below also holds true for a multi-unit
version of the English ascending auction.
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In the following proposition we analyze the market stage Nash equilibrium func-
tion s* (z, w) for small values of . From this moment on we will drop the arguments
that the profit function 7 and all its derivatives depend on, and we implicitly assume
that they are evaluated at the point (5(0 (0) 0)

Proposition 4 In the second-order approximation s* (x,w) can be written as

s (z,w) = O + (AQ + AWz + AP E (r)|1]7)) o2,

where
40 T uyu AW (i + (0 —2) T j) TiuTu <0,
6 (77'1'7@‘ + (TL — 1) 7'('1'7]') 3 (7'('@'71' — 7Ti7j) (7'('@‘71‘ -+ (n — 1) 7Ti7j)
40 - (n—1)m; ;7T uTy

3 (7'('1"2‘ — 7Tz',j) <7Ti’2‘ + (n — 1) 7Ti,j> '

Proof. We begin with the first-order approximation s* (z, w) = s +sW (2, w) a
and show that s (z,w) = 0. To this end we write the first order approximation of

(1)

i (8%, % (ro,w) ,u) as m; (s*, s (r_;,w) ,u) = m; + 7, ’«, where

7T()—7T”S( :vw —|—7T”ZS 7"], +7TW€
J#i

Then, W, (s*,r_;, w,w,x) can be written as

—

VVZ‘ = (Wi (S*v s* (r—ia ’LU) >u) Uz/ (7T (S*a s* (r—i7w) vu) - w))

E,
= E, <<7Ti,i5( T,w —i—m;ZS 7"3, +7Tw€> UZ-' (7r—w)> «

JF

= (Wi,is( T, W +7T”ZS (rj,w ) N —w)a.

J#i
Therefore, in the first-order approximation equation (5) reads as
78 (2, w) + m,jZE (3(1) (rj,w) |Ii(H)> = 0. (6)
J#i
For another firm j equation (6) becomes
7Tm'8( (rj,w) + WZJZE < (7, w ][(H ) = 0.
k#j

(11)

Taking an expectation of this equation conditional on /;”"’ and using the law of
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iterative expectation yields
(mig+(n—2)m ;) E (s(l) (r;, w) |]Z.(H)> + ;580 (2,w) = 0. (7)

Plugging £ (3(1) (r;,w) |IZ»(H)) from (7) into (6) leads to

(i — miy) (Mg + (0 — 1) i 5) s

(mii + (n—2) ;) (z,w) = 0.

Hence, sV (z,w) = 0.

As s (z,w) = 0, in the second-order approximation s* (z,w) = s +s® (2, w) a?

and ; (s*,s* (r_;,w),u) can be written as m; (s*,s* (r_;,w),u) = m o + 7TZ(»2)042
where )
7r§2) = 71;.:8% (z,w) + 7r,-7st(2) (rj,w) + iﬂi,u,u52~
J#
In a similar way one obtains the following approximations:
(s, s" (ro;,w),u) = T+ meEaq,
Ul (m(s*,8" (rj,w_y),u) —w) = U (r—w)(l—m,zea).

Plugging the above approximations for 7 and U] into (5) and dropping all terms that
are o (a?), we see that the first-order term vanishes, as it must do, and equating the

second-order term to zero yields the following second order approximation of (5):

T — 2T uTu@ + 6,83 (2, w) + 67ri,jZE <s(2) (rj,w) |IZ-(H)> = 0.
i

In a similar way, as in the first-order approximation, the above equation reduces to
s (z,w) = AQ 4+ AWz 4 APE (rj|Ii(H)) ,
where A©, A® and A® are defined as in the proposition. It also follows that

A®) ‘ (11))
E (5(2) (7,,' 'LU) ’]—(II)> _ A(O) . Wi,jA(l)fL' B 7T7,,2A E (TJ|IZ (8)
g ' (i +mi (n—2)) (n—1)m, ’

which will be used in the next proposition. m

There are two ways a risk type affects market behavior. First, it directly influences
the strategic variable s through A which is what we call the risk attitude effect.
This effect, just like in the monopoly settings, manifests that a more risk-averse
firm chooses a lower level of s. The other effect, which we call the strategic effect,

influences s indirectly through the fact that a change in a player’s risk attitude affects
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the player’s expectations about other firms’ risk types either because these types are
not independently distributed or because of the indirect effect through the price paid
for the license during the auction. This last, indirect, effect also holds true when types
are statistically independently distributed. The sign of this strategic effect depends
on the exact correlation structure and on the sign of A,

In the second-order approximation, Nash equilibrium profit of firm 7 is given by

7 (s" (z,w), s (roj,w_;),u) =7+ mea + <7szg(2) (rj, w) + %ﬂ%u@) ol
J#i
Now we are going to analyze the equilibrium bidding behavior. As there is no first-
order term in s* (x,w), there is no first-order term in the bidding function b!) (1)
either. Hence, we write the bidding function as b/?) (z) = 7 +b01)?) (1) o and w =
bUD (2) = m+bUD?) () a?. Expected utility W (5% (2, 09D (2)) ,r_y, 0D (2) 09D (2) , x)

in the second order approximation then becomes

—~ 1
W =U/(0) <71st(2) (rj,w) + 6 (T — (7ru)2) — U2 (z)) a?.

J#i
Hence, the conditional expected utility, being written as a function of (z, z), is

—

VD (2,2) = WD (5" (x,b(H) (2)) ,bUD (2) ) 9)

2
U; (0) ((n —1)m,E (5(2)|Ii(m) + W — pUID@ (z)) o’

The unconditional (ez-ante) expected utility of a firm ¢ having a risk attitude  and
bidding b (y) is:

VD () = / VD (2, 2) dC,
BN (2)<bUD ()

where z is a risk attitude of a firm which submits the (n + 1)*-highest bid and
G (z | =) is the conditional distribution function of z. We explore the conditions under
which a decreasing and/or an increasing equilibrium exist. In the first (second) case,
firms bid higher (lower) the less risk-averse they are.

In Proposition 5, we first present a general condition under which an increasing
and a decreasing equilibrium exist. Subsequently, we will look at the case of Bertrand

and Cournot competition to give the proposition below more economic content. Let

H (z,2) = E(rjlri=x,r; <z,m>2),

HY (z,x) = E(rjlri=a,7;> 2,1 < 2).
In other words, H™) (H™)) is an expectation of risk attitudes of (n — 1) winning
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firms j conditional on these risk attitudes being below (above) z, the risk attitudes of
all the other (N — n) loosing firms [ are above (below) z and the risk attitude of firm
i itself being x. In case the signals r; are affiliated (including the case of statistically
independent signals), both partials of H®) (x, z) are non-negative (see, e.g., Krishna,
2002, pp. 272)

Proposition 5 Let

BO _— 1 <7Tuu - (n— 1) 7T ) ’
6 ' (71'2‘71‘-{-7'(2'7]‘ (n— 1))

B _ Tu ( 2(n— 1) mmi i i )
6 \(mii—miy) (miz+mijn—1) )’

B® _ (n — 1) 770 i T and
3(mii—miy) (Mg +mij(n—1))

v® (z2,2) = BO - BWz 4+ BOH® (2 1)

(i) A decreasing bidding equilibrium b (z) = 7+ v (z,7) o? ewists, if, and only if

max {v{7 (z,7), 07 (z,2) + 07 (z,2)} < 0. (10)

There is at most one decreasing equilibrium.

2

(ii) An increasing bidding equilibrium b0 (z) = 7 + v (2, 2) o? ewists, if and

only if
min {vg([) (z,2),07) (z,2) + 07 (x, z)} > 0. (11)

There is at most one increasing equilibrium.

Proof. Let a firm 4 has a risk attitude 2 and submits a bid b") (y) where b!) is

a strictly decreasing bidding function. In equilibrium, it must be that

z = argmaxVD (z,y).
v

The first and the second order conditions for a decreasing equilibrium are:
VUD (z,x) =0, VUD,_ (z,2) > 0.

Using (9) and (8) we rewrite the first order condition as

1
pUD)(2) (z) = (n—1)mE <S(2) (Tj7 pD) (m)) |I¢(H)> + . (WM — (7Tu)2) — ) (z,).

Hence, an equilibrium bidding function must be

b (z) = 7 + 0 (z, ) o,
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such that in equilibrium:

—

VUD (z,z) = U] (0) (v(_) (z,x) — ) (z, z)) a?.

However, it determines a unique decreasing equilibrium if and only if it is a decreasing
function and such that VUD_ (x,x) > 0. The first condition requires o) (2, 2) +

o) (z,z) < 0. The second condition can be transformed as follows:

0< ‘7(I\I)z = @ — \7(1\1)3, (x,x) = —‘7(1\1):5 = U/ (0)v7) (2,2) a?,
that is v (z,z) < 0. Combining them together yields the necessary and sufficient
condition for a decreasing equilibrium is

max {vé’) (z,2), 07 (z,2) + 07 (x, z)} < 0.
In a similar way, one gets the necessary and sufficient condition for an increasing

equilibrium. m

One may see that now the functions v*) (z,x) represent a valuation function,
i.e., a certainty equivalent of the market-stage game, of a firm 4, which has a risk
type x and pays an auction price determined by a firm j of type z. When z = z,
i.e., both firms ¢ and j have the same risk type and compete for only one remaining
license, they bid their values v*) (2, ), hence, the auction price w must be equal to
v®) (2, 2). Then, the existence condition i) (x,z) <0 (vg(f) (x,x) > 0) requires that
if a risk type of firm ¢ marginally differs from z such that z < z (x > z), then firm
i must have a valuation v*) (z, ) that is strictly higher than the valuation of firm
4, which is v™) (2, 2), so that firm i bids higher than v*) (2, z) and wins the license.
The other existence condition v\~ (x,x) ol (z,x2) <0 (U;(QL) (z,2) +ol?) (z,x) > 0)
then guarantees that the actual bid of firm i v*) (x,z) is indeed higher than the
bid of firm j, v™*) (2, 2). Finally, if one of the conditions (10) and (11) is violated,
then the functions v™) (2, ) do not represent a firm’s maximum willingness to pay
because there will be a risk type = such that if a firm of this type = bids an amount
v (z,2), it is strictly better off with an auction price w > v™®) (z, ) rather than
w < v (z, 7). In this case the valuation is improperly defined.

It is interesting to observe that the ex-post valuations of firms depend not only
on their own signals, but also on those of their rivals. Still, the model is different
from a standard interdependent valuation model. The main reason is that in the
standard interdependent valuation model, a player’s valuation depends on the signals
of all players participating in the auction, whereas in our model, a player’s valuation
depends only on the signals of all winning firms, who are endogenously determined.

We will now investigate the implications of the above general proposition in case
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of price and quality setting market behavior when the signals players receive about
their risk attitudes are affiliated.

3.1 Bertrand Competition

Under Bertrand competition, it is clear that both 7; ; and 7; are positive and, there-
fore, B and B® as defined in Proposition 5 are such that B® > 0 and B® < 0.
As both partials of H®) (z, 2) are non-negative if the signals are affiliated, the equi-
librium existence conditions (10) and (11) reduce to
1
B (

< H

B (2, 2),

for the decreasing equilibrium and to

B

B > 7 (@,2) + HE (2,2),

for the increasing equilibrium.
As in the case of Bertrand competition, B /B® < 0, it immediately follows
that the decreasing equilibrium always exists, whereas the increasing equilibrium

never exists. This result is summarized in the corollary below.

Corollary 6 Ifn licenses are auctioned and aftermarket behavior is characterized by
differentiated Bertrand competition and firms’ risk attitudes are affiliated, then the

least risk-averse players will win the auction.

Thus, the result of the monopoly price setting case analyzed in Section 2 general-
izes to the case of price setting behavior in an oligopoly context: the least risk-averse

firms are selected and they set higher aftermarket prices.

3.2 Cournot Competition

Under Cournot competition both 7;; and 7, are negative and, therefore, BW >0
and B® > 0. With affiliated signals, the equilibrium existence conditions (10) and
(11) reduce to

for the increasing equilibrium.
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Unlike the case of Bertrand competition, these conditions do not lead to a situation
that can be easily characterized. The main reason is that in this case the strategic
effect and the risk attitude effect work in opposite directions. In general, four different
cases are possible: (i) only a decreasing equilibrium exists, (i) only an increasing
equilibrium exists, (i77) no monotonic equilibrium exists and (i) both equilibria
exists. Below we consider some special cases and show that certainly the first three
situations can occur in economically relevant environments.

(3) If

B

Vel > max {Hé_) (z,2) +H) (z,2), HP (x,:zc)} ,
then only a decreasing equilibrium exists. This situation occurs, e.g., if the strategic
effect is very small and market demand of firm 7 is almost independent of the quantity
set by firm j, i.e., if 7; is very close to zero. This implies that the monopoly result
for quantity setting generalizes to a "neighborhood of the monopoly case", namely
where firms almost have "local" monopolies. Another case where this situation of the
existence of only a decreasing equilibrium occurs, is if marginal profit 7; is almost
independent of u, such that m;, is very close to zero and uncertainty about market
conditions does not effect the level of the strategic variable firms choose.

(i) If

B
5@ < min {7 (v,2) + H (v, 2) , HD (v,2)}, (12)
then only an increasing equilibrium exists. The following example represents a case

where this condition is satisfied. Let the inverse market demands be given by p; =
1

(qi + Z#i qj> °, where e is the price elasticity of demand, and let firms’ uncertain
marginal costs be given by ¢ — u. One can easily verify that with n licenses, the

unique Cournot-Nash equilibrium in case of no uncertainty, ¢.e., « = 0, is given by

qm)::1.<ne__1)e_
n nec

This equilibrium is stable if ne > 1 and quantities are strategic substitutes provided

ne — 1 > e. Evaluation of the partial derivatives of m = (p; — ¢ + u) ¢; yields

BY  Bn—-1)(ne—1—-¢e)+1+e

B®  2(2n—1)(ne—1—¢€)+n)

Now it is seen that when e — 1/ (n — 1), B /B® converges to ﬁ Hence, for
a given structure of strictly positively affiliated signals, if the number of licenses is
sufficiently large, condition (12) is satisfied and only an increasing equilibrium exists.

What happens in this example is that when demand becomes relatively inelastic,
a small change in output has a relatively large impact on price. This means that a

firm’s market profit is highly sensitive to the output chosen by the competitors and
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thus, that a given firm strongly prefers to compete with the more risk-averse firms.
This strategic effect gets stronger the more firms there are in the marketplace.
(74) Finally, if

B
H (z,2) < @ < H ) (z,2)+ HO (z,2),
then no monotonic equilibrium exists. This happens, for example, when signals are
statistically independent, such that 2052 (x,z) = 0, and the corresponding density

function rapidly increases. For example, if we take the following distribution function

y
r—r
F = —
0= (221
withy > 0, then H(7) (z,2) = E (r|r < r < z) and HY (x,2) =~/ (1 +~). Thus, for
any market structure that satisfies B /B® € (0,1) (see, e.g., the example analyzed
under (77)) there exists a value of v such that 0 < BM/B® < ~/(1+~) and no

monotonic equilibrium exists.®

Summarizing, we conclude that if firms set market prices, the risk attitude effect
is reinforced by the strategic effect and, like in the case of a single license (monopoly),
the least risk-averse firms win the auction and, as a result, set higher prices than a
randomly selected group of firms. If, however, firms set quantities, the strategic effect
offsets the risk attitude effect and it may happen that the equilibrium allocation of
licenses is reversed: the most risk-averse firms win the auction and set higher prices

than a randomly selected group of firms.

4 The Oligopoly Setting: Pay-Your-Bid Auction

In a pay-your-bid auction, n highest bids win the auction and each winning firm
pays a price that is equal to the amount it has bid, .e., w; = bEI). Therefore, the
conditional expected utility of firm 4, provided it has a risk type z, submits a bid ()

and wins the auction is given by
WO (si,b,2) = B (W (5,60 (r-0) b,) [17),

where b) () is a monotone equilibrium bidding function and the information [i(I)
that is available to firm i consists of the following: r; = z, b) (2) < b, b¥D (r;) >

b (2), b (1) < b0 (2), and z is a risk type that submitted the (n + 1)*-highest

8In the case of linear uncertain demand of the form p = 1 + u — > qj, it is easily seen that
BW/BR) = % so that B /B®) € (0,1) for any n > 4.
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bid. The superscript (I) refers to the fact that we consider a multi-unit generalization
of the first-price sealed-bid auction.

It is easily seen that behavior of firms in the aftermarket is characterized by the
very same proposition 4, if we take into account differences in information that firms
have in these two auction formats. In contrast to the uniform (n 4 1)* price auction,
in a pay-your-bid auction, under CARA prices paid in an auction do not affect a
market behavior. This is so because a price that a firm ¢ paid for a license, does
not provide any information about distributions of the other competitors’ risk types.
Hence, the second stage Nash equilibrium strategic variable depends, in fact, only on

the risk type x, that is
s* (z) = s© + < A0 4 AW, 4 A@F <Tj| ff”)) o2,

In order to analyze the equilibrium bidding behavior, we assume that a firm ¢ with a
risk type z bids an amount b(") (y), i.e., as if it were of a type y. In the second-order

approximation b (z) = 7 + )@ () 2.

Plugging this together with the above
expression for s* (z) into (4) yields the following second-order approximation for a

firm ¢’s expected utility:

— _ 2
W = Ul (0) (szs(m (r;) + Tuw =2 (Ta)” _ yn.(2) (y)> o,

J#

If a firm ¢ knew 2, then for this given value of z firm ¢ would get the following

conditional expected utility

—

v (l‘, Y, Z) = K (W (81', r_;, b(I) (7171') , b(I) (y) ,x) ‘[(1)7 Z)

= U/(0) (B<0> — BWy 4+ BOE (rjuf”, z) IORC) (y)> o?
= U (0) (v (z,2) =D () o?,

(]

where, as before, 4 /- corresponds to a decreasing /increasing equilibrium and v* (z, z)
is the corresponding valuation function defined in Proposition 5. Without knowing
z, firm 7 takes into account that z is a random variable that follows a distribution
G (z | x) with support (z,7) for a decreasing bidding equilibrium and with support
(r,x) for an increasing bidding equilibrium. Then, the unconditional (ez-ante) ex-

pected utility of a firm 4 having a risk attitude z and bidding b\ (y) is:

VOg) = [ VD) d6: o).

b1 (2) <bD) (y)

It is important to note that if risk types are affiliated, then z and = are affiliated as
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well, such that G (z | z) /0x < 0, OA(z | x) /Ox < 0, Do (z | ) /0x < 0, where

Az | x) %, and o (z | x) =

are the conditional hazard rate of z (the n'* lowest type amongst N — 1 remaining
firms) and the conditional reverse hazard rate of z (the n* highest type amongst N —1
remaining firms), and ¢ (z | z) is the corresponding conditional distribution density
function of z. In the following proposition we use the properties of the functions g,
G, A and o in order to establish existence conditions for decreasing and increasing

bidding equilibria.

Proposition 7 Let

L) (z,2) = exp —/)\ (t|t)dt ]| and L'V (z,2) = exp —/a (t|t)dt

(i) If condition (10) is satisfied, then there exists a unique decreasing bidding equilib-

rium b0 (z) = 7 + bD-@) (2) o?, where
b D@ () = o) (2, 2) + / (Ua(:) (z,2) +v{7 (2, 2)) L (z,2) dz.

(i) If condition (11) is satisfied, then there exists a unique increasing bidding equi-
librium b (z) = 7 + bD-@ (2) a2, where
T
b3 () = o) (2, 2) — / (vSP (2, 2) +v{P) (2,2)) L) (2, 2) dz.
Proof. We begin with a decreasing equilibrium. In equilibrium the unconditional

expected utility V) (z,y) is maximized at y = x, hence, the first-order condition is
Vy(l) (z,z) =0, that is

(1),(2)
0=-U/(0)a*(1 -G (z|x)) ((v(_) (v,2) = D@ (@) A (x| 2) + ab ) :

dz

The solution to this differential equation that satisfies the initial condition 6(")-(?) (7) =

() (7,7) is

b D@ () = v (2, 2) + / (v (2,2) + 0l (2,2)) LO) (2, 7) dz.
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The derivative of b)) (1) can then be written as

A0 y
= Az | ) / (U;_) (z,2) + 07 (2, z)) L) (z,2)dz <0,
T

such that b)) (z) is a decreasing function indeed. The second-order condition

requires that

0 > VU (z,2)=-VD (z,2)

y’r

= 2w~ [l eyd6e 1
v (y, z) — b2 ol
— Ul(0)a*(1- Gy ) (a( w.a) OB )] >> ,

oAy | )

0 > Al )l (o) + (o) (@) - 0O (2)) 2L

Hence, the second-order condition is always satisfied under the conditions of the
proposition and b) (z) = 7 + b2 () o defines a unique decreasing bidding equi-
librium.

In a similar way, one proves the sufficiency of condition (11) for an increasing

equilibrium. m

It is important to note that the necessary and sufficient conditions for an increasing
or decreasing equilibrium to exist in a uniform price auction are sufficient but not
necessary for the existence of similar equilibria in a pay-your-bid auction. In fact,
the necessary existence conditions for a pay-your-bid auction are weaker than (10)
or (11). Therefore, it might happen that there is an equilibrium in a pay-your-bid
auction whereas a uniform price auction does not have monotone bidding equilibria.

Once again, we conclude that the selection arguments that are valid in the monopoly
settings may fail if firms compete in quantities and if the strategic effect dominates
the risk attitude effect. In the latter case, the most risk-averse firms win the auction

and they set higher prices than a randomly selected group of firms.

5 Conclusion

In this paper, we have considered a selection argument to connect the auctioning of
licenses with the choice of market prices in the aftermarket. Crucial to the argument
is that firms may differ in their attitude towards risk and that firms with different
risk attitudes behave differently in the marketplace. To this end, we have considered

three prototypes of market structures: monopoly, differentiated Bertrand competition
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and Cournot competition. In the monopoly situation, we have argued that auctions
select the least risk-averse player (the risk attitude effect) and that this player chooses
higher prices (quantities) than a randomly chosen player will do.

This general argument cannot easily be fully generalized to the case where multiple
licenses are auctioned as the price that is paid to obtain a license effects the choice
of a firm’s market strategy through its expectation about the risk attitudes of other
players. We, therefore, restrict the analysis of the two oligopoly cases to situations
where uncertainty is relatively small. In this case, the monopoly argument about
price setting behavior is robust to allowing for competition in the market place.
In particular, in case of differentiated Bertrand competition, the least risk-averse
firms will win the auction and set higher prices than a randomly selected group of
firms. The monopoly argument about quantities is, however, not robust to allowing
for competition in the marketplace. In particular, as firms have a preference for
competing with the most risk-averse players, the strategic effect counteracts the risk
attitude effect and in certain cases may even dominate the risk attitude effect. One
such a case is when demand is relatively inelastic and small changes in output have
large effects on price. In this case, more risk-averse bidders will bid more than less
risk-averse bidders in case the risk attitudes of firms are strictly positively affiliated
and the number of licenses is relatively large. This leads to higher market prices than

when firms were selected in a more random fashion.
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