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Abstract

This paper develops one possible argument why auctioning licenses to op-

erate in an aftermarket may lead to higher prices in the aftermarket compared

to a more random allocation mechanism. Key ingredients in the argument

are di¤erences in �rms� risk attitudes and the fact that future market prof-

its are uncertain so that winning an auction is like winning a lottery ticket.

If one license is auctioned, auctions select the �rm that is least risk averse.

This is what we call the risk attitude e¤ect. Firms that are less risk averse

tend to set higher prices (or higher quantities in case quantity is the decision

variable) in the marketplace than an average �rm. When multiple licenses

are auctioned, this conclusion gets strengthened when there is a di¤erenti-

ated Bertrand oligopoly in the marketplace. In case of Cournot competition,

a strategic e¤ect works against the risk attitude e¤ect so that under certain

conditions the more risk averse �rms will be selected leading (again) to higher

market prices.
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1 Introduction

In recent years, governments throughout the world have extensively used auction

formats to allocate to private enterprises licenses to operate in a market. This use of

the auction format is to a large extent due to the success of the FCC auctions held in

the �rst part of the 1990s and the attention that was drawn to these auctions by the

large sums of money that were generated. After the FCC auctions, auctions have been

used or have been considered to allocate, for example, 2G and 3G mobile telephony

frequencies around the world, commercial radio frequencies and petrol stations. One

element that all these examples have in common is that after the auction is held,

�rms operate in a market to sell their services to consumers (or to advertisers, in

the case, of commercial radio). Moreover, while bidding in the auctions, there is

considerable uncertainty about future demand. Winning such auctions is, therefore,

very much like winning a lottery ticket: the costs are clear, but the revenues are

highly uncertain.

Another element that most of these auctions have in common is the heated debates

at the time the auction is prepared and held about the question whether it is in the

interest of consumers that licenses are auctioned. Private enterprises consistently

argue that the fee that has to be paid during an auction to obtain the license, is

re�ected in the market prices that these same enterprises later charge to consumers.1

The more is money that is paid during an auction, the higher are future consumer

prices. Economic theorists, on the other hand, have consistently argued that the

fees paid to obtain a license are sunk costs and should have no e¤ect on the prices

that are later charged in the market (cf., Binmore and Klemperer 2002, Van Damme

2002). In the same vein, they argue that the views expressed by these enterprises may

simply stem from the �rms�own interests not to have to bid (and pay) in auctions.2

Nevertheless, there is now experimental evidence that auctions may have a positive

impact on market prices (O¤erman and Potters, 2000).

In this paper, we look at the relation between auctions and prices in the after-

market more closely. We will argue by means of a theoretical model that the sunk

cost argument need not hold if bidders are risk averse and, more importantly, it does

not hold if �rms di¤er in their risk attitude. Of course, the usual assumption made

in the literature is that �rms are risk neutral, but relatively recent empirical studies

in �nance indicate that �rms may indeed be risk-averse, or at least that their be-

havior is such that it is as if they were risk averse. Nance et al. (1993) and Geczy

(1997), among others, argue that �rms hedge against di¤erent types of exogenous

uncertainties such as the volatility of exchange rates. They show that this is because

1Governments have also been worried about the possible e¤ect on consumer prices; see e.g.
European Commission (1994).

2There are some, see, e.g., McMillan (1994), arguing that if �rms have to pay large sums of
money, they may face an increase in the cost of obtaining capital, which may slow down innovation.
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�rms face non-linear tax systems or because they are liquidity constraint. In a study

on the behavior of the gold mining industry, Tufano (1996) argues that delegation of

control to a risk-averse manager, whose behavior is linked to the �rm�s performance,

may cause the �rm to take actions in a risk-averse manner even if owners themselves

are not risk-averse. As delegation of control di¤ers between �rms and as the payment

structure of managers di¤ers from �rm to �rm, �rms may very well act as if their

attitude towards risk di¤ers signi�cantly from one to the other.

We will consider three di¤erent types of aftermarkets: monopoly, di¤erentiated

Bertrand oligopoly and Cournot oligopoly. Depending on whether the government

issues one or multiple licenses, one of these market forms may apply. In the monopoly

set-up, i.e., if only one license is auctioned and future demand (and pro�t) is uncer-

tain, auctions tend to select the bidder that is least risk averse and this �rm chooses

higher levels of its decision variable than an average �rm as it concentrates more

on the good states of demand. This is what we will call the risk attitude e¤ect.

Whether market prices are higher or lower because of auctions depend on whether

the monopoly �rm in the market is a price or a quantity setter. Price setting �rms

that win auctions, tend to set higher prices than a randomly selected �rm. Quantity

setting �rms that win auctions, tend to set higher quantities than a randomly selected

�rm, resulting in lower expected market prices. Thus, the main idea incorporated

in the paper is a selection argument: auctions select �rms that do not set average

market prices.

It is well-known that under general forms of risk aversion, the sunk cost argument

may not hold. In particular, in a risky environment individual players with the same

utility function may make di¤erent choices depending on how wealthy they are. The

sunk cost argument continues to hold, however, for risk-averse players when this risk

attitude is characterized by constant absolute risk aversion (CARA). It has been

argued that as auctions force �rms to pay considerable amounts of money for their

licenses, auctions may force �rms to behave di¤erently in the marketplace (see, e.g.,

MacMillan (1994) and footnote 2). As we want to concentrate on the selection aspect

of auctions and not on the possible consequence of the fact that paying money for

the license makes a �rm poorer, we consider �rms having CARA utility functions.

One other substantive question that may arise is whether the selection e¤ect

analyzed here has only short-term or also long-term implications. The answer depends

on the way the model is interpreted. If a �rm�s quantity choice is interpreted as a

capacity choice in the sense of Kreps and Scheinkman (1983) and if capacities have to

be chosen before the uncertainty is realized, then it is clear that the selection e¤ect has

long-term consequences: a less-risk averse �rm wins the auction and chooses a higher

level of capacity, implying lower prices over a long period of time. In case the �rms

are price setters, the answer depends on whether the uncertainty about demand is

quickly resolved or not. If demand remains uncertain for a long time, possibly because
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new types of demand shocks keep on arising, there are also long-term e¤ects in case

of price setting.

Next, we investigate whether these ideas are robust to settings where more li-

censes are auctioned and strategic e¤ects may interfere with the risk attitude e¤ect.

This leads to the analysis of di¤erentiated Bertrand oligopoly and Cournot oligopoly.

A �rst point to note here is that in the oligopoly case the price that is paid to obtain

a license e¤ects the choice of a �rm�s market strategy through its expectation about

the risk attitudes of other players even if �rms have CARA utility functions. This

considerably complicates the analysis of the oligopoly cases and that is why we re-

strict the analysis of the oligopoly cases to situations where there is relatively little

uncertainty concerning future pro�ts. Under di¤erentiated Bertrand oligopoly, the

strategic e¤ect strengthens the risk attitude e¤ect. The main reason is that with

strategic complements every �rm in the aftermarket bene�ts from a rival �rm setting

higher prices, i.e., from the presence of a more risk-neutral �rm. Therefore, the least

risk-averse �rms make a higher expected pro�t in the aftermarket than any other

combination of �rms. Combined with the fact that for a given distribution of pro�ts

their certainty equivalent, and therefore their willingness to pay, is higher these least

risk-averse �rms will win any type of auction and they will set higher prices than a

randomly drawn sample of �rms will do.

The analysis is more complicated in case of Cournot oligopoly. In this case, the

risk attitude e¤ect and the strategic e¤ect work in opposite directions. The main

reason is that with strategic substitutes every �rm in the aftermarket su¤ers from a

rival �rm choosing higher quantities, i.e., from the presence of a less risk-averse �rm.

It remains true that for a given set of other players in the aftermarket, a �rm that is

relatively less risk averse makes more pro�ts than a relatively more risk-averse �rm.

However, it may well be that two or more less risk-averse �rms make less pro�ts and as

a consequence have a smaller willingness to pay for the licenses when they know they

compete with each other in the aftermarket than more risk-averse �rms. Depending

on who will win the licenses, expected market prices will be lower or higher than the

prices when �rms are selected randomly. We show by appealing to special cases that

both the risk attitude e¤ect and the strategic e¤ect may dominate. For example, in

case of inelastic demand, a relatively large number of licenses being auctioned and a

slight positive correlation between players�types, there exists a unique equilibrium

in which the bids �rms make increase in the degree of risk-aversion and the most risk-

averse �rms secure the licenses leading to lower quantity choices and higher market

prices.

The paper borrows from the early literature on price and quantity setting behavior

of a risk-averse monopolist (cf., Baron, 1971 and Leland, 1972). One important result

of these papers is that a price setting risk-averse monopolist behaves di¤erently from

a quantity setting risk-averse monopoly. Moreover, Baron (1971) shows that the more

4



risk averse a price setting monopolist the lower the price it sets. On the other hand,

the more risk averse a quantity setting monopolist the lower the quantity it sets. This

in turn implies that for each state of demand, market prices tend to be higher! The

intuition behind these two results is that the more risk averse a �rm the more it pays

attention to the outcomes if demand is low. If demand is low, a �rm sets relatively low

prices or low quantities, whatever is its choice variable. These results have recently

been generalized to the case of market competition (see, Asplund, 2001).

The paper is, of course, also related to the rapidly growing literature on auctions.

There is a literature on the way risk aversion e¤ects bidders�behavior in auctions (see,

Krishna 2002, for an overview). Eso and White (2004) analyze the bidding behavior

of risk-averse bidders in an a¢ liated valuation model where the in�uence of exogenous

uncertainty on a player�s valuation is independent of the private signals received. Our

model may be considered in this light if one interprets risk attitudes as private signals.

An important di¤erence3 between our paper and Eso and White (2004) is, however,

that the in�uence of exogenous uncertainty about demand on a player�s valuation is

not independent of the private signal (the �rm�s risk attitude). There is also a growing

literature studying the strategic interaction between bidding in auctions and �rms�

behavior in the aftermarket (see, e.g., Binmore and Klemperer, 2002, Goeree, 2003,

Janssen 2005, di¤erent papers in Janssen 2004, Jehiel and Moldovanu (1996a, 1996b,

2001) and Klemperer 2002a, 2002b). This paper is the �rst to consider the importance

of di¤erences in risk attitude for the interaction between auctions and aftermarkets.

It turns out that these di¤erences imply externalities between the players so that,

for example, in the case of multiple licenses, a player�s willingness-to-pay depends

on his expectation about who else will win a license. These externalities may imply

that there exist equilibria where players with higher willingness-to-pay do not win a

license.

The rest of the paper is organized as follows. Section 2 deals with the case

where monopoly rights are allocated. Section 3 �rst analyzes the case where multiple

licenses are auctioned in a uniform price multi-unite auction in general terms. In

two subsections, we then discuss price setting behavior in a di¤erentiated Bertrand

model and quantity setting behavior in Cournot competition. Section 4 analyses a

multi-unit pay-your-bid auction. Section 5 concludes.

2 The Monopoly Setting

Consider a monopolistic market with uncertain demand, where the monopoly pro�t

� (s; u) depends on the monopolist�s choice of the strategic variable s and the un-

certainty u. The strategic variable s can be interpreted in many di¤erent ways, but

3This di¤erence is further detailed at the end of Section 2.
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two common interpretations are that of price strategy and/or of quantity or capacity

strategy. If the �rm chooses price, then s = p and the �rm ful�lls a random demand

q (p; u). If the �rm chooses quantity, then s = q and the price consumers pay for this

quantity is p (q; u) and the �rm accepts to sell its pre-determined quantity q at this

random price. The uncertainty is represented by a random variable u which is distrib-

uted according to the distribution function Fu with support �.4 As usual, we assume

that � (s; u) is twice di¤erentiable and strictly concave in s such that the pro�t-

maximizing output always exists and is unique. With respect to the uncertainty, we

follow Leland (1972) and assume that the Principle of Increased Uncertainty (PIU)

holds, i.e., marginal revenue is increasing in u, i.e., �s;u > 0. Moreover, we assume

that � (0; u) = 0, i.e., the pro�t function is continuous in the sense that the pay-o¤

of not winning the auction, which is equal to 0, equals the pay-o¤ of winning the

auction and setting the strategic variable equal to 0. It follows that �u > 0. All

these conditions are satis�ed in many instances that are commonly considered. For

example, if demand is linear and given by p = � � �q and we look at a quantity
setting monopolist, then the assumptions are satis�ed when either � is an arbitrary

increasing function of u, � (u), or � is an arbitrary decreasing function of u, � (u). For

an appropriate change in parameters, the conditions also hold true for a price-setting

monopolist.

Access to the market is limited to the �rm that has obtained the single license

to operate in the market. The government considers two allocation mechanisms: a

lottery where the licenses are randomly given to a �rm and an auction where the

highest bidding �rm wins the license. To �x attention, we think of the auction as

being an English auction, but the main ingredient that is important is that �rms with

higher valuations win the auction, i.e., bidding in the auction can be characterized

by an increasing bid function �(v), where v represents �rm�s willingness to pay

(speci�ed in more detail below). A �rm�s actual bid is denoted by b. Even if a lottery

is chosen as allocation mechanism, the winners have to pay a certain sum of money

for the license.

Firms di¤er in their attitude towards risk. We assume that all �rms are to a

certain degree risk-averse, but some �rms are more so than others. To make this

more precise, we assume that a �rm i has a strictly increasing and concave utility

function, denoted by Ui (�), U 0i > 0 and U 00i < 0, and Ui (0) is normalized to 0. A

�rm�s attitude towards risk is represented in the standard way by the Arrow-Pratt

measure of absolute risk aversion �U 00i =U 0i : To make comparisons between �rms�risk
attitudes feasible, we require that a �rm�s attitude towards risk can be captured

by a single parameter. For easy reference we will use the symbol ri to denote the

4Due to the fact that we can work with arbitrary pro�t functions, we can safely assume without
loss of generality that u is uniformly distributed over the range [�1; 1]. In the oligopoly section, we
will use this to make the expressions easier to handle.
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parameter measuring the risk attitude of �rm i and we assume that the individual

signals (risk attitudes) are drawn from a common distribution F with support [r; r],

r > 0. A player�s risk attitude is private information to the player. Moreover, it is

well-known that the sunk cost argument does not hold under general forms of risk

aversion. As we want to concentrate in this paper on a pure selection argument, we

concentrate on the case where the amount of money paid during the auction does not

a¤ect aftermarket behavior. This is the case when �rms have a constant absolute risk

aversion (CARA). Under CARA, the more risk averse a �rm, the higher ri = �U 00i =U 0i
is.

If a �rm i with a risk attitude x secures the license at a price w and sets a level

s of the choice variable in the aftermarket, its expected utility is given by

W (s; w; x) � EuUi (� (s; u)� w) =
Z
�

Ui (� (s; u)� w) dFu.

As a �rm that has not been successful in obtaining a license will make zero pro�t

in the aftermarket, the �rm i�s maximum willingness to pay v (x) for the license is

implicitly determined by the following equation:

W (s�; v (x) ; x) � max
s
W (s; v (x) ; x) = max

s
EuUi (� (s; u)� v (x)) = 0, (1)

i.e., v (x) is the certainty equivalent of the random pro�t � (s�; u), where s� is the

optimal choice of the �rm�s decision variable s.

An interesting observation about this de�nition of a player�s valuation is in place.

Under a general form of risk aversion, the optimal value s� a player chooses in the

aftermarket and, therefore, the pro�t it makes, depends on the amount it has paid in

the auction, s� = s� (w; x). Thus, a player�s expected utility from winning a license

and paying a price w equals to

W (s� (w; x) ; w; x) = EuUi (� (s
� (w; x) ; u)� w) . (2)

and we arrive at the unusual situation that the expected value of the license depends

on the price a player paid! Taking the derivative of (2) with respect to w gives

d

dw
W (s� (w; x) ; w; x) =Ws (s

�; w; x)
ds�

dw
+Ww (s

�; w; x) .

The �rst term here equals to zero due to the �rst order condition in maximization of

(1), whereas the second term is strictly negative as

Ww (s
�; w; x) = �EuU 0i (� (s�; u)� w) < 0.

This implies that even for non-CARA utility functions the solution of equation (1)
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for v (x) is unique and thus, that the valuation v (x) is properly de�ned.

Using the above notation and assumptions, one is able to arrive at the �rst set

of results. We will prove the claim that auctions lead to either higher market prices

(in case of price setting) or to lower market prices (in case of quantity setting) in

two steps. First, we show that in the market environment, a less risk-averse �rm will

set a higher value of s. Second, we show that less risk-averse �rms have a higher

willingness to pay so that an auction selects the �rm that is least risk averse among

the �rms that participate.

Proposition 1 Under CARA, the less risk averse the monopolist is, the higher the
value of s� it will choose, i.e., @s�=@x < 0. Moreover, a price that a winning �rm

paid in an auction does not a¤ect s�, i.e., @s�=@w = 0.

Proof. Maximizing W (s; w; x) w.r.t. s yields the necessary �rst-order condition

0 = Ws (s
�; w; x) = Eu (�s (s

�; u)U 0i (� (s
�; u)� w)) . (3)

Di¤erentiating this equation w.r.t. w yields the following expression for @s�=@w:

@s�

@w
=

�
ds�

dw

�
x

= �Ws;w (s
�; w; x)

Ws;s (s�; w; x)
=
�xWs (s

�; w; x)

Ws;s (s�; w; x)
= 0,

as because of CARA the numerator equals to zero while the denominator is strictly

negative.

In order to show that @s�=@x < 0 we �rst evaluate Ws;x (s
�; w; x):

Ws;x = Eu

�
�s
@U 0i (� � w)

@x

�
= �Eu (�s�U 0i (� � w)) = Eu (�uJ (u; x)) < 0,

where J (t; x) =
tR
�1
�s (s

�; u)U 0i (� (s
�; u)� w) du. The �rst equality follows from

CARA, the second equality is obtained by integrating in parts. It follows from the

PIU that J (�1; x) = J (1; x) = 0 and J (t; x) � 0 for all t 2 �, which together with
�u > 0 implies the last inequality. Di¤erentiating (3) but now w.r.t. x yields the

desired inequality:
@s�

@x
=

�
ds�

dx

�
w

= �Ws;x

Ws;s

< 0.

In accordance with Proposition 1 the optimal level of the strategic variable can

be written as s� (x). If the strategic variable is price, the Proposition says that less

risk-averse �rms will set higher prices. If the strategic variable is quantity or capacity,

the Proposition says that less risk-averse �rms will set higher quantities, leading to
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lower market prices. We next analyze which of the players an auction mechanism

selects.

Proposition 2 A �rm�s valuation is a strictly decreasing function of its risk attitude,
i.e., dv=dx < 0.

Proof. v (x) is de�ned by (1). It is well-known (see, e.g., Mas-Colell et al. (1995,
p. 191)) that this implies that a strictly less risk-averse player strictly prefers the

same lottery, therefore Wx < 0. Di¤erentiating W (s� (x) ; v (x) ; x) = 0 w.r.t. x and

taking into account (3) yields

dv

dx
= �Wx

Ww

< 0,

as Ww = �Eu (U 0i (� (s�; u)� v)) < 0.

Proposition 2 tells us that in auctions that select the player with the highest

willingness to pay, the least risk-averse player among all those who participate in the

auction is selected.

One question that arises is whether commonly held auctions such as the English

auction will select the player with the highest willingness-to-pay also in the present

context. The next proposition answers this question. The proposition tells us that

the standard result from auction theory with independent valuations, namely the

equivalence between a second-price sealed-bid auction and an English auction, also

holds in the present situation. Hence, in an English auction, the player with the

highest valuation will win the auction and has to pay the valuation of the player who

is least risk-averse of the remaining players. Moreover, Proposition 3 argues that the

winning bidder is better o¤ in a situation of uncertain market conditions than in a

situation of certain demand.

Proposition 3 The English auction and the second-price sealed-bid auction are strate-
gically equivalent and the dominant bidding strategy in the latter (and the stopping

rule in the former) is simply � (v) = v. The winning bidder receives a lower surplus

in case of certain demand than in case of uncertain demand where the uncertainty

takes the form of a mean-preserving spread of the certain demand case. The seller is

worse o¤ when auctioning at a moment demand is uncertain.

Proof. The proof that a second-price sealed-bid auction in the present context
has a dominant strategy equilibrium with � (v) = v exactly follows the standard

argument and is therefore omitted (see, e.g., Krishna, 2002). The fact that the

English auction is strategically equivalent simply follows from the fact that even if

the risk attitudes of individual players are correlated, this is a private value auction

where a �rm i�s valuation depends only on its own risk type. Thus, the players have
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nothing to learn from each other�s bidding behavior (or from the moment a player

stops bidding) in an English auction.

When demand is certain, i.e., when u = u0 is commonly known, all players have

in fact the same valuation, which is then given by

max
s
Ui (� (s; u0)� vi) = 0.

Hence, a player�s valuation in this case is vci = max
s

� (s; u0), which is independent

of i. This implies that the winning player has to pay an amount equal to his own

valuation so that his surplus equals to 0.

We next show that if demand is uncertain, all players�valuations are lower. This

can be shown using a similar argument as used in Proposition 2. If we denote by vui the

valuation of player i in case of uncertain demand, then it follows 0 = EUi(� (s�; u)�
vui ). If the player chooses the same s

� under certain demand as the optimal s� under

uncertain demand, it is well-known that a risk-averse player prefers the certain pro�ts.

As the player can choose a di¤erent optimal level of s under certain demand, it follows

that vci > v
u
i .

As Proposition 2 says that in case of uncertain demand if j is strictly less risk-

averse than i, then vj > vi, it follows that the player with the highest valuation wins

the auction and gets a positive surplus as it pays the price of the second highest

valuation, which is strictly less. The seller gets lower revenue for two reasons: �rstly,

all valuations are lower and, secondly, the revenue it gets is lower than the valuation

of the winning bidder.

Proposition 3 sheds some interesting light on the type of auction that is considered

in this paper. The valuation of a player v depends on the player�s risk attitude r and

on the nature of market uncertainty, which we summarize by a symbol 
, and can be

expressed as follows: v (r;
). Regarding r as a signal the individual receives about his

valuation of the object, this dependence makes clear that the model does not �t the

general interdependent value model (see, Milgrom and Weber, 1982) that is standard

in auction theory. The main di¤erence is that in our model a player�s valuation does

not depend on the risk attitude of the other players. This also explains (unlike the

interdependent value model) the strategic equivalence of the second-price sealed-bid

auction and the English auction in the present context. The structure of v (r;
)

also makes clear the di¤erence with the model by Eso and White (2004). In their

model, the in�uence of exogenous uncertainty on a player�s valuation is independent

of the in�uence of the private signals received. The combined in�uence of players�

risk attitudes and the nature of market uncertainty makes that on one extreme end

(when there is no market uncertainty) the present model just represents a simple

common valuation auction, while at another extreme (when there is a lot of market

uncertainty), the model is very much like a typical auction model with independent
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private valuations.

Taken together, the propositions prove one of the central claims of this paper,

namely that typical auctions such as the English auction, select the player that is

least risk-averse and that in case the decision variable is price, this player chooses a

higher prices than a randomly selected �rm.

3 The Oligopoly Setting: Uniform Price Auction

In many real-world cases, governments do not allocate a single license, but instead

also rely on competitive forces in the marketplace by allocating as many licenses

as is technically feasible. In case of the European UMTS-auctions, for example,

governments have allocated between 4 and 6 licenses. In this section we will analyze

whether the results of the previous section also hold true when the government decides

to allocate n > 1 licenses. To this end, we �rst analyze a general model of oligopoly

competition when goods are horizontally di¤erentiated, and then we look at the

speci�c features of price and quality competition in the aftermarket.

We will retain all the assumptions made in the previous section, if possible. The

only element that needs to be changed is the pro�t function �. Assuming that

apart from their risk attitudes, all �rms are identical and denoting by si a level of

the strategic variable chosen by a �rm i = 1; : : : ; n allows us to write its pro�t as

� (si; s�i; u), where s�i represents level of s chosen by all the other �rms and the

function � is symmetric in all sj for j 6= i. For a short notation, we denote the

partials of � as follows: �i � @�=@si and �j � @�=@sj; j 6= i. By indices i, j, k we
will denote �rms that won the auction whereas by index l we will refer to the �rms

that lost the auction, i.e., that did not obtain a license.

In order to ensure the existence, uniqueness and stability of a Nash equilibrium in

the aftermarket we assume that �i;i < 0 and �i;j 2
�
�i;i;� 1

n�1�i;i
�
, see Dixit (1986).

When 0 < �i;j < � 1
n�1�i;i strategic variables si are strategic complements (Bertrand

competition), whereas �i;i < �i;j < 0 corresponds to strategic substitutes (Cournot

competition), see Bulow et al. (1985).

In Section 2 we have shown that under CARA the auction price does not a¤ect

the monopoly behavior in the aftermarket. In oligopoly settings this is not generally

true any longer. Indeed, despite the fact that an amount wi, which a CARA �rm

i has paid for the license, does not directly a¤ect an optimal strategic choice si for

given values of competitors�s�i, it a¤ects the distribution of their risk attitudes, and

hence, their choices of s�i, and, therefore, a¤ects the optimal value of si indirectly.

Hence, a proper de�nition of valuations is not guaranteed even for CARA utility

functions. In order to keep the analysis tractable, we will restrict ourselves to the

case of a small amount of uncertainty. Thus, we put u = �", where � > 0 and " is

uniformly distributed over the range [�1; 1], and consider a limit case when � ! 0

11



(see also footnote 4).

Suppose that a �rm i with risk type x wins the auction and gets a license at price

w. If risk types of all winning �rms and the amounts they paid for the licenses had

been revealed before the �rms make their choices of sj, that is under full information

about risk types and prices, then the second stage Nash equilibrium strategic variable

s�i would have been a function of all rj and wj, i.e., s
�
i = s

� (x;w; r�i; w�i). Just before

this information were available to �rm i, its expected utility would have been given

by

W FI (w; x) = E
�
EuUi

�
�
�
s�i ; s

�
�i; u

�
� w

�
jIi
�
,

where Ii is the information �rm i has about risk types and auction prices of all the

other winning �rms. If, on the other hand, neither risk types, nor auction bids, nor

the amounts others paid for the licenses are revealed before the �rms make their

choices of sj, that is when they have no information about risk types and prices,

then the second stage Nash equilibrium strategic variable s�i would be a function of

x and w only, i.e., s�i = s
� (x;w). The expected utility of �rm i in this case is given

by the same expression

WNI (w; x) = E
�
EuUi

�
�
�
s�i ; s

�
�i; u

�
� w

�
jIi
�
,

with the important di¤erence being the arguments the Nash equilibrium choices s�

depend on.

In the sequel we assume that the only information that is available to any winning

�rm i is its risk type x and the auction price w it has paid for the license,5 that is,

the no information case. However, as we will see, in the second-order approximation

both functions s� (x;w; r�i; w�i) and s� (x;w) are linear and the expected utilities

W FI (w; x) andWNI (w; x) coincide! Hence, �rms�bidding behavior is not a¤ected by

the informational assumption, although their strategic market behavior is a¤ected.6

Suppose that a �rm i with risk type x wins an auction and gets a license at

price w. In a symmetric Nash equilibrium, each of the other winning �rms j chooses

s�j = s
� (rj; wj). Thus, for any given values (rj; wj) of all competitors, if �rm i chooses

si, its conditional expected utility is

cW (si; r�i; w�i; w; x) � EuUi (� (si; s� (r�i; w�i) ; u)� w) , (4)

5The reason a �rm�s bid is not included in Ii is that it provides no extra information to �rm i as
a �rm i�s bid is fully determined by its type x.

6There is an intermediate case where the bids rather than risk types are observed after the auction.
In this case, bidding behavior were a¤ected as �rms would be willing to signal by submitting higher
bids. This signalling behaviour is di¢ cult to analyze in details. In a monotone bidding equilibrium,
however, �rms�strategic market behavior would not have been a¤ected as they could have inverted
bids back into risk types. Thus, in this intermediate case bidding behaviour is a¤ected, but market
behavior is not.

12



where s� (r�i; w�i) represents choices of the other (n� 1) �rms. The unconditional
expected utility W of �rm i is an expectation of cW :

W (si; w; x) � E
�cW (si; r�i; w�i; w; x) jIi

�
.

In other words, based on w and x, �rm i estimates a joint distribution of (rj; wj)

of all its competitors. In the rest of this paper we consider two commonly consid-

ered auction formats: a multi-unit uniform (n+ 1)st price auction (i.e., a multi-unit

generalization of the second price auction) and a pay-your-bid auction (i.e., a multi-

unit generalization of the �rst price auction). In both cases, the joint distribution

of (rj; wj) conditional on (x;w) degenerates to a one-dimensional distribution. In a

uniform (n+ 1)st price auction, where all n highest bids win the auction and pay the

same price which is equal to the (n+ 1)st highest bid, the marginal distribution of

wj is degenerate as Pr (wj = w) = 1. On the other hand, in a pay-your-bid auction,

where the n highest bids win the auction and each winning �rm pays a price that is

equal to the amount it has bid, the conditional distribution (rjjwj) is degenerate as
Pr (rj = yjwj = b (y)) = 1, where b is a monotone equilibrium bidding function.

In the rest of this section we analyze the multi-unit uniform (n+ 1)st price auction,

and we use a superscript (II) to indicate that this is a generalization of the second-

price auction. In this auction format,7 all winning �rms pay the same price w and

the conditional expected utility of �rm i is

W (II) (si; w; x) = E
�cW (si; r�i; w; w; x) jI(II)i

�
,

where information I(II)i that is available to �rm i consists of the following: ri = x,

b(II) (rj) > w, b(II) (rl) � w, where b(II) is a monotone equilibrium bidding function.

Maximizing W (II) w.r.t. si yields the following �rst-order condition that s� (x;w)

function has to satisfy:

W (II)
si

(s� (x;w) ; w; x) = 0. (5)

One may see that the main di¢ culty in using (5) for investigating the properties of

the function s� (x;w) is thatW (II)
si depends on (x;w) not only directly throughcW , but

also indirectly through I(II)i . Even if the signals, i.e., risk attitudes, are statistically

independent, I(II)i still depends on w. This is the main reason why we consider a limit

case � ! 0. Without uncertainty, i.e., if � = 0, the aftermarket game has a unique

and stable Nash equilibrium s(0) that satis�es �i
�
s(0); s

(0)
�i ; 0

�
= 0. In equilibrium all

�rms get the same pro�t �
�
s(0); s

(0)
�i ; 0

�
and, therefore, bid this amount in an auction

and get zero utility.

7In case of statistically independent signals, the analysis below also holds true for a multi-unit
version of the English ascending auction.
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In the following proposition we analyze the market stage Nash equilibrium func-

tion s� (x;w) for small values of �. From this moment on we will drop the arguments

that the pro�t function � and all its derivatives depend on, and we implicitly assume

that they are evaluated at the point
�
s(0); s

(0)
�i ; 0

�
.

Proposition 4 In the second-order approximation s� (x;w) can be written as

s� (x;w) = s(0) +
�
A(0) + A(1)x+ A(2)E

�
rjjIIIi

��
�2,

where

A(0) = � �i;u;u
6 (�i;i + (n� 1)�i;j)

, A(1) =
(�i;i + (n� 2)�i;j)�i;u�u

3 (�i;i � �i;j) (�i;i + (n� 1)�i;j)
< 0,

A(2) = � (n� 1)�i;j�i;u�u
3 (�i;i � �i;j) (�i;i + (n� 1)�i;j)

.

Proof. We begin with the �rst-order approximation s� (x;w) = s(0)+s(1) (x;w)�
and show that s(1) (x;w) = 0. To this end we write the �rst order approximation of

�i (s
�; s� (r�i; w) ; u) as �i (s�; s� (r�i; w) ; u) = �i + �

(1)
i �, where

�
(1)
i = �i;is

(1) (x;w) + �i;j
X
j 6=i

s(1) (rj; w) + �i;u".

Then, cWi (s
�; r�i; w; w; x) can be written as

cWi = Eu (�i (s
�; s� (r�i; w) ; u)U

0
i (� (s

�; s� (r�i; w) ; u)� w))

= Eu

  
�i;is

(1) (x;w) + �i;j
X
j 6=i

s(1) (rj; w) + �i;u"

!
U 0i (� � w)

!
�

=

 
�i;is

(1) (x;w) + �i;j
X
j 6=i

s(1) (rj; w)

!
U 0i (� � w)�.

Therefore, in the �rst-order approximation equation (5) reads as

�i;is
(1) (x;w) + �i;j

X
j 6=i

E
�
s(1) (rj; w) jI(II)i

�
= 0. (6)

For another �rm j equation (6) becomes

�i;is
(1) (rj; w) + �i;j

X
k 6=j

E
�
s(1) (rk; w) jI(II)j

�
= 0.

Taking an expectation of this equation conditional on I(II)i and using the law of
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iterative expectation yields

(�i;i + (n� 2)�i;j)E
�
s(1) (rj; w) jI(II)i

�
+ �i;js

(1) (x;w) = 0. (7)

Plugging E
�
s(1) (rj; w) jI(II)i

�
from (7) into (6) leads to

(�i;i � �i;j) (�i;i + (n� 1)�i;j)
(�i;i + (n� 2)�i;j)

s(1) (x;w) = 0.

Hence, s(1) (x;w) = 0.

As s(1) (x;w) = 0, in the second-order approximation s� (x;w) = s(0)+s(2) (x;w)�2

and �i (s�; s� (r�i; w) ; u) can be written as �i (s�; s� (r�i; w) ; u) = �i;u"� + �
(2)
i �

2

where

�
(2)
i = �i;is

(2) (x;w) + �i;j
X
j 6=i

s(2) (rj; w) +
1

2
�i;u;u"

2.

In a similar way one obtains the following approximations:

� (s�; s� (r�i; w) ; u) = � + �u"�,

U 0i (� (s
�; s� (r�i; w�i) ; u)� w) = U 0i (� � w) (1� �ux"�) .

Plugging the above approximations for � and U 0i into (5) and dropping all terms that

are o (�2), we see that the �rst-order term vanishes, as it must do, and equating the

second-order term to zero yields the following second order approximation of (5):

�i;u;u � 2�i;u�ux+ 6�i;is(2) (x;w) + 6�i;j
X
j 6=i

E
�
s(2) (rj; w) jI(II)i

�
= 0.

In a similar way, as in the �rst-order approximation, the above equation reduces to

s(2) (x;w) = A(0) + A(1)x+ A(2)E
�
rjjI(II)i

�
,

where A(0), A(1) and A(2) are de�ned as in the proposition. It also follows that

E
�
s(2) (rj; w) jI(II)i

�
= A(0) � �i;jA

(1)x

(�i;i + �i;j (n� 2))
�
�i;iA

(2)E
�
rjjI(II)i

�
(n� 1)�i;j

, (8)

which will be used in the next proposition.

There are two ways a risk type a¤ects market behavior. First, it directly in�uences

the strategic variable s through A(1), which is what we call the risk attitude e¤ect.

This e¤ect, just like in the monopoly settings, manifests that a more risk-averse

�rm chooses a lower level of s. The other e¤ect, which we call the strategic e¤ect,

in�uences s indirectly through the fact that a change in a player�s risk attitude a¤ects
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the player�s expectations about other �rms�risk types either because these types are

not independently distributed or because of the indirect e¤ect through the price paid

for the license during the auction. This last, indirect, e¤ect also holds true when types

are statistically independently distributed. The sign of this strategic e¤ect depends

on the exact correlation structure and on the sign of A(2).

In the second-order approximation, Nash equilibrium pro�t of �rm i is given by

� (s� (x;w) ; s� (r�i; w�i) ; u) = � + �u"� +

 
�j
X
j 6=i

s(2) (rj; w) +
1

2
�u;u"

2

!
�2.

Now we are going to analyze the equilibrium bidding behavior. As there is no �rst-

order term in s� (x;w), there is no �rst-order term in the bidding function b(II) (x)

either. Hence, we write the bidding function as b(II) (x) = �+ b(II);(2) (x)�2 and w =

b(II) (z) = �+b(II);(2) (z)�2. Expected utilitycW �
s�
�
x; b(II) (z)

�
; r�i; b

(II) (z) ; b(II) (z) ; x
�

in the second order approximation then becomes

cW = U 0i (0)

 
�j
X
j 6=i

s(2) (rj; w) +
1

6

�
�u;u � x (�u)2

�
� b(II);(2) (z)

!
�2.

Hence, the conditional expected utility, being written as a function of (x; z), is

[V (II) (x; z) = W (II)
�
s�
�
x; b(II) (z)

�
; b(II) (z) ; x

�
(9)

= U 0i (0)

 
(n� 1)�jE

�
s(2)jI(II)i

�
+
�u;u � x (�u)2

6
� b(II);(2) (z)

!
�2.

The unconditional (ex-ante) expected utility of a �rm i having a risk attitude x and

bidding b (y) is:

V (II) (x; y) =

Z
b(II)(z)<b(II)(y)

[V (II) (x; z) dG,

where z is a risk attitude of a �rm which submits the (n+ 1)st-highest bid and

G (z j x) is the conditional distribution function of z. We explore the conditions under
which a decreasing and/or an increasing equilibrium exist. In the �rst (second) case,

�rms bid higher (lower) the less risk-averse they are.

In Proposition 5, we �rst present a general condition under which an increasing

and a decreasing equilibrium exist. Subsequently, we will look at the case of Bertrand

and Cournot competition to give the proposition below more economic content. Let

H(�) (z; x) � E (rjjri = x; rj < z; rl � z) ,
H(+) (z; x) � E (rjjri = x; rj > z; rl � z) .

In other words, H(�) (H(+)) is an expectation of risk attitudes of (n� 1) winning
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�rms j conditional on these risk attitudes being below (above) z, the risk attitudes of

all the other (N � n) loosing �rms l are above (below) z and the risk attitude of �rm
i itself being x. In case the signals ri are a¢ liated (including the case of statistically

independent signals), both partials of H(�) (x; z) are non-negative (see, e.g., Krishna,

2002, pp. 272)

Proposition 5 Let

B(0) =
1

6

�
�u;u �

(n� 1)�j�i;u;u
(�i;i + �i;j (n� 1))

�
,

B(1) =
�u
6

�
2 (n� 1)�j�i;j�i;u

(�i;i � �i;j) (�i;i + �i;j (n� 1))
+ �u

�
,

B(2) =
(n� 1)�j�i;i�i;u�u

3 (�i;i � �i;j) (�i;i + �i;j (n� 1))
, and

v(�) (z; x) = B(0) �B(1)x+B(2)H(�) (z; x)

(i) A decreasing bidding equilibrium b(II) (x) = �+ v(�) (x; x)�2 exists, if, and only if

max
�
v(�)x (x; x) ; v(�)x (x; x) + v(�)z (x; x)

	
< 0. (10)

There is at most one decreasing equilibrium.

(ii) An increasing bidding equilibrium b(II) (x) = � + v(+) (x; x)�2 exists, if and

only if

min
�
v(�)x (x; x) ; v(�)x (x; x) + v(�)z (x; x)

	
> 0. (11)

There is at most one increasing equilibrium.

Proof. Let a �rm i has a risk attitude x and submits a bid b(II) (y) where b(II) is
a strictly decreasing bidding function. In equilibrium, it must be that

x = argmax
y

V (II) (x; y) .

The �rst and the second order conditions for a decreasing equilibrium are:

[V (II) (x; x) = 0, [V (II)z (x; x) > 0.

Using (9) and (8) we rewrite the �rst order condition as

b(II);(2) (x) = (n� 1)�jE
�
s(2)
�
rj; b

(II) (x)
�
jI(II)i

�
+
1

6

�
�u;u � x (�u)2

�
= v(�) (x; x) .

Hence, an equilibrium bidding function must be

b(II) (x) = � + v(�) (x; x)�2,
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such that in equilibrium:

[V (II) (x; z) = U 0i (0)
�
v(�) (z; x)� v(�) (z; z)

�
�2.

However, it determines a unique decreasing equilibrium if and only if it is a decreasing

function and such that [V (II)z (x; x) > 0. The �rst condition requires v(�)x (x; x) +

v
(�)
z (x; x) < 0. The second condition can be transformed as follows:

0 < [V (II)z =
d[V (II) (x; x)

dx
�[V (II)x (x; x) = �[V (II)x = �U 0i (0) v(�)x (z; x)�2,

that is v(�)x (z; x) < 0. Combining them together yields the necessary and su¢ cient

condition for a decreasing equilibrium is

max
�
v(�)x (x; x) ; v(�)x (x; x) + v(�)z (x; x)

	
< 0.

In a similar way, one gets the necessary and su¢ cient condition for an increasing

equilibrium.

One may see that now the functions v(�) (z; x) represent a valuation function,

i.e., a certainty equivalent of the market-stage game, of a �rm i, which has a risk

type x and pays an auction price determined by a �rm j of type z. When x = z,

i.e., both �rms i and j have the same risk type and compete for only one remaining

license, they bid their values v(�) (z; z), hence, the auction price w must be equal to

v(�) (z; z). Then, the existence condition v(�)x (x; x) < 0 (v(+)x (x; x) > 0) requires that

if a risk type of �rm i marginally di¤ers from z such that x < z (x > z), then �rm

i must have a valuation v(�) (z; x) that is strictly higher than the valuation of �rm

j, which is v(�) (z; z), so that �rm i bids higher than v(�) (z; z) and wins the license.

The other existence condition v(�)x (x; x)+v
(�)
z (x; x) < 0 (v(+)x (x; x)+v

(+)
z (x; x) > 0)

then guarantees that the actual bid of �rm i v(�) (x; x) is indeed higher than the

bid of �rm j, v(�) (z; z). Finally, if one of the conditions (10) and (11) is violated,

then the functions v(�) (z; x) do not represent a �rm�s maximum willingness to pay

because there will be a risk type x such that if a �rm of this type x bids an amount

v(�) (x; x), it is strictly better o¤ with an auction price w > v(�) (x; x) rather than

w < v(�) (x; x). In this case the valuation is improperly de�ned.

It is interesting to observe that the ex-post valuations of �rms depend not only

on their own signals, but also on those of their rivals. Still, the model is di¤erent

from a standard interdependent valuation model. The main reason is that in the

standard interdependent valuation model, a player�s valuation depends on the signals

of all players participating in the auction, whereas in our model, a player�s valuation

depends only on the signals of all winning �rms, who are endogenously determined.

We will now investigate the implications of the above general proposition in case
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of price and quality setting market behavior when the signals players receive about

their risk attitudes are a¢ liated.

3.1 Bertrand Competition

Under Bertrand competition, it is clear that both �i;j and �j are positive and, there-

fore, B(1) and B(2) as de�ned in Proposition 5 are such that B(1) > 0 and B(2) < 0.

As both partials of H(�) (x; z) are non-negative if the signals are a¢ liated, the equi-

librium existence conditions (10) and (11) reduce to

B(1)

B(2)
< H(�)

x (x; x) ,

for the decreasing equilibrium and to

B(1)

B(2)
> H(+)

x (x; x) +H(+)
z (x; x) ,

for the increasing equilibrium.

As in the case of Bertrand competition, B(1)=B(2) < 0, it immediately follows

that the decreasing equilibrium always exists, whereas the increasing equilibrium

never exists. This result is summarized in the corollary below.

Corollary 6 If n licenses are auctioned and aftermarket behavior is characterized by
di¤erentiated Bertrand competition and �rms� risk attitudes are a¢ liated, then the

least risk-averse players will win the auction.

Thus, the result of the monopoly price setting case analyzed in Section 2 general-

izes to the case of price setting behavior in an oligopoly context: the least risk-averse

�rms are selected and they set higher aftermarket prices.

3.2 Cournot Competition

Under Cournot competition both �i;j and �j are negative and, therefore, B(1) > 0

and B(2) > 0. With a¢ liated signals, the equilibrium existence conditions (10) and

(11) reduce to
B(1)

B(2)
> H(�)

x (x; x) +H(�)
z (x; x) ,

for the decreasing equilibrium and to

B(1)

B(2)
< H(+)

x (x; x) ,

for the increasing equilibrium.
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Unlike the case of Bertrand competition, these conditions do not lead to a situation

that can be easily characterized. The main reason is that in this case the strategic

e¤ect and the risk attitude e¤ect work in opposite directions. In general, four di¤erent

cases are possible: (i) only a decreasing equilibrium exists, (ii) only an increasing

equilibrium exists, (iii) no monotonic equilibrium exists and (iv) both equilibria

exists. Below we consider some special cases and show that certainly the �rst three

situations can occur in economically relevant environments.

(i) If
B(1)

B(2)
> max

�
H(�)
x (x; x) +H(�)

z (x; x) ; H(+)
x (x; x)

	
,

then only a decreasing equilibrium exists. This situation occurs, e.g., if the strategic

e¤ect is very small and market demand of �rm i is almost independent of the quantity

set by �rm j, i.e., if �j is very close to zero. This implies that the monopoly result

for quantity setting generalizes to a "neighborhood of the monopoly case", namely

where �rms almost have "local" monopolies. Another case where this situation of the

existence of only a decreasing equilibrium occurs, is if marginal pro�t �i is almost

independent of u, such that �i;u is very close to zero and uncertainty about market

conditions does not e¤ect the level of the strategic variable �rms choose.

(ii) If
B(1)

B(2)
< min

�
H(�)
x (x; x) +H(�)

z (x; x) ; H(+)
x (x; x)

	
, (12)

then only an increasing equilibrium exists. The following example represents a case

where this condition is satis�ed. Let the inverse market demands be given by pi =�
qi +

P
j 6=i qj

�� 1
e
, where e is the price elasticity of demand, and let �rms�uncertain

marginal costs be given by c � u. One can easily verify that with n licenses, the
unique Cournot-Nash equilibrium in case of no uncertainty, i.e., � = 0, is given by

q(0) =
1

n

�
ne� 1
nec

�e
.

This equilibrium is stable if ne > 1 and quantities are strategic substitutes provided

ne� 1 > e. Evaluation of the partial derivatives of � = (pi � c+ u) qi yields

B(1)

B(2)
=
(3n� 1) (ne� 1� e) + 1 + e
2 ((2n� 1) (ne� 1� e) + n) .

Now it is seen that when e ! 1= (n� 1), B(1)=B(2) converges to 1
2(n�1) . Hence, for

a given structure of strictly positively a¢ liated signals, if the number of licenses is

su¢ ciently large, condition (12) is satis�ed and only an increasing equilibrium exists.

What happens in this example is that when demand becomes relatively inelastic,

a small change in output has a relatively large impact on price. This means that a

�rm�s market pro�t is highly sensitive to the output chosen by the competitors and
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thus, that a given �rm strongly prefers to compete with the more risk-averse �rms.

This strategic e¤ect gets stronger the more �rms there are in the marketplace.

(iii) Finally, if

H(+)
x (x; x) <

B(1)

B(2)
< H(�)

x (x; x) +H(�)
z (x; x) ,

then no monotonic equilibrium exists. This happens, for example, when signals are

statistically independent, such that H(�)
x (x; x) = 0, and the corresponding density

function rapidly increases. For example, if we take the following distribution function

F (x) =

�
x� r
r � r

�

,

with 
 > 0, thenH(�) (x; z) = E (rjr < r < z) andH(�)
z (x; z) = 
= (1 + 
). Thus, for

any market structure that satis�es B(1)=B(2) 2 (0; 1) (see, e.g., the example analyzed
under (ii)) there exists a value of 
 such that 0 < B(1)=B(2) < 
= (1 + 
) and no

monotonic equilibrium exists.8

Summarizing, we conclude that if �rms set market prices, the risk attitude e¤ect

is reinforced by the strategic e¤ect and, like in the case of a single license (monopoly),

the least risk-averse �rms win the auction and, as a result, set higher prices than a

randomly selected group of �rms. If, however, �rms set quantities, the strategic e¤ect

o¤sets the risk attitude e¤ect and it may happen that the equilibrium allocation of

licenses is reversed: the most risk-averse �rms win the auction and set higher prices

than a randomly selected group of �rms.

4 The Oligopoly Setting: Pay-Your-Bid Auction

In a pay-your-bid auction, n highest bids win the auction and each winning �rm

pays a price that is equal to the amount it has bid, i.e., wi = b
(I)
i . Therefore, the

conditional expected utility of �rm i, provided it has a risk type x, submits a bid b(I)

and wins the auction is given by

W (I) (si; b; x) � E
�cW �

si; r�i; b
(I) (r�i) ; b; x

�
jI(I)i

�
,

where b(I) (x) is a monotone equilibrium bidding function and the information I(I)i
that is available to �rm i consists of the following: ri = x, b(I) (z) < b, b(I) (rj) >

b(I) (z), b(I) (rl) � b(I) (z), and z is a risk type that submitted the (n+ 1)st-highest

8In the case of linear uncertain demand of the form p = 1 + u �
P
qj , it is easily seen that

B(1)=B(2) = 3n�1
4(n�1) so that B

(1)=B(2) 2 (0; 1) for any n � 4.
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bid. The superscript (I) refers to the fact that we consider a multi-unit generalization

of the �rst-price sealed-bid auction.

It is easily seen that behavior of �rms in the aftermarket is characterized by the

very same proposition 4, if we take into account di¤erences in information that �rms

have in these two auction formats. In contrast to the uniform (n+ 1)st price auction,

in a pay-your-bid auction, under CARA prices paid in an auction do not a¤ect a

market behavior. This is so because a price that a �rm i paid for a license, does

not provide any information about distributions of the other competitors�risk types.

Hence, the second stage Nash equilibrium strategic variable depends, in fact, only on

the risk type x, that is

s� (x) = s(0) +
�
A(0) + A(1)x+ A(2)E

�
rjjI(I)i

��
�2.

In order to analyze the equilibrium bidding behavior, we assume that a �rm i with a

risk type x bids an amount b(I) (y), i.e., as if it were of a type y. In the second-order

approximation b(I) (x) = � + b(I);(2) (x)�2. Plugging this together with the above

expression for s� (x) into (4) yields the following second-order approximation for a

�rm i�s expected utility:

[W (I) = U 0i (0)

 
�j
X
j 6=i

s(2) (rj) +
�u;u � x (�u)2

6
� b(I);(2) (y)

!
�2.

If a �rm i knew z, then for this given value of z �rm i would get the following

conditional expected utility

dV (I) (x; y; z) = E
�
[W (I)

�
si; r�i; b

(I) (r�i) ; b
(I) (y) ; x

�
jI(I)i ; z

�
= U 0i (0)

�
B(0) �B(1)x+B(2)E

�
rjjI(I)i ; z

�
� b(I);(2) (y)

�
�2

= U 0i (0)
�
v(�) (z; x)� b(I);(2) (y)

�
�2,

where, as before, +/- corresponds to a decreasing/increasing equilibrium and v(�) (z; x)

is the corresponding valuation function de�ned in Proposition 5. Without knowing

z, �rm i takes into account that z is a random variable that follows a distribution

G (z j x) with support (x; r) for a decreasing bidding equilibrium and with support

(r; x) for an increasing bidding equilibrium. Then, the unconditional (ex-ante) ex-

pected utility of a �rm i having a risk attitude x and bidding b(I) (y) is:

V (I) (x; y) =

Z
b(I)(z)<b(I)(y)

dV (I) (x; y; z) dG (z j x) .
It is important to note that if risk types are a¢ liated, then z and x are a¢ liated as
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well, such that @G (z j x) =@x < 0, @� (z j x) =@x < 0, @� (z j x) =@x < 0, where

� (z j x) � g (z j x)
1�G (z j x) , and � (z j x) �

g (z j x)
G (z j x)

are the conditional hazard rate of z (the nth lowest type amongst N � 1 remaining
�rms) and the conditional reverse hazard rate of z (the nth highest type amongstN�1
remaining �rms), and g (z j x) is the corresponding conditional distribution density
function of z. In the following proposition we use the properties of the functions g,

G, � and � in order to establish existence conditions for decreasing and increasing

bidding equilibria.

Proposition 7 Let

L(�) (z; x) � exp

0@� zZ
x

� (t j t) dt

1A and L(+) (z; x) � exp

0@� xZ
z

� (t j t) dt

1A .
(i) If condition (10) is satis�ed, then there exists a unique decreasing bidding equilib-

rium b(I) (x) = � + b(I);(2) (x)�2, where

b(I);(2) (x) = v(�) (x; x) +

rZ
x

�
v(�)x (z; z) + v(�)z (z; z)

�
L(�) (z; x) dz.

(ii) If condition (11) is satis�ed, then there exists a unique increasing bidding equi-

librium b(I) (x) = � + b(I);(2) (x)�2, where

b(I);(2) (x) = v(+) (x; x)�
xZ
r

�
v(+)x (z; z) + v(+)z (z; z)

�
L(+) (z; x) dz.

Proof. We begin with a decreasing equilibrium. In equilibrium the unconditional
expected utility V (I) (x; y) is maximized at y = x, hence, the �rst-order condition is

V
(I)
y (x; x) = 0, that is

0 = �U 0i (0)�2 (1�G (x j x))
��
v(�) (x; x)� b(I);(2) (x)

�
� (x j x) + db

(I);(2)

dx

�
.

The solution to this di¤erential equation that satis�es the initial condition b(I);(2) (r) =

v(�) (r; r) is

b(I);(2) (x) = v(�) (x; x) +

rZ
x

�
v(�)x (z; z) + v(�)z (z; z)

�
L(�) (z; x) dz.
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The derivative of b(I);(2) (x) can then be written as

db(I);(2)

dx
= � (x j x)

rZ
x

�
v(�)x (z; z) + v(�)z (z; z)

�
L(�) (z; x) dz < 0,

such that b(I);(2) (x) is a decreasing function indeed. The second-order condition

requires that

0 > V (I)y;y (x; x) = �V (I)y;x (x; x)

=
@

@x

0@dV (I) (x; y; y) g (y j x)� rZ
y

d
V
(I)
y (x; y; z) dG (z j x)

1A
= U 0i (0)�

2 (1�G (y j x))
 
@
�
v(�) (y; x)� b(I);(2) (y)

�
� (z j x)

@x

!
y=x

,

0 > � (x j x) v(�)x (y; x) +
�
v(�) (x; x)� b(I);(2) (x)

� @� (y j x)
@x

.

Hence, the second-order condition is always satis�ed under the conditions of the

proposition and b(I) (x) = � + b(I);(2) (x)�2 de�nes a unique decreasing bidding equi-

librium.

In a similar way, one proves the su¢ ciency of condition (11) for an increasing

equilibrium.

It is important to note that the necessary and su¢ cient conditions for an increasing

or decreasing equilibrium to exist in a uniform price auction are su¢ cient but not

necessary for the existence of similar equilibria in a pay-your-bid auction. In fact,

the necessary existence conditions for a pay-your-bid auction are weaker than (10)

or (11). Therefore, it might happen that there is an equilibrium in a pay-your-bid

auction whereas a uniform price auction does not have monotone bidding equilibria.

Once again, we conclude that the selection arguments that are valid in the monopoly

settings may fail if �rms compete in quantities and if the strategic e¤ect dominates

the risk attitude e¤ect. In the latter case, the most risk-averse �rms win the auction

and they set higher prices than a randomly selected group of �rms.

5 Conclusion

In this paper, we have considered a selection argument to connect the auctioning of

licenses with the choice of market prices in the aftermarket. Crucial to the argument

is that �rms may di¤er in their attitude towards risk and that �rms with di¤erent

risk attitudes behave di¤erently in the marketplace. To this end, we have considered

three prototypes of market structures: monopoly, di¤erentiated Bertrand competition
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and Cournot competition. In the monopoly situation, we have argued that auctions

select the least risk-averse player (the risk attitude e¤ect) and that this player chooses

higher prices (quantities) than a randomly chosen player will do.

This general argument cannot easily be fully generalized to the case where multiple

licenses are auctioned as the price that is paid to obtain a license e¤ects the choice

of a �rm�s market strategy through its expectation about the risk attitudes of other

players. We, therefore, restrict the analysis of the two oligopoly cases to situations

where uncertainty is relatively small. In this case, the monopoly argument about

price setting behavior is robust to allowing for competition in the market place.

In particular, in case of di¤erentiated Bertrand competition, the least risk-averse

�rms will win the auction and set higher prices than a randomly selected group of

�rms. The monopoly argument about quantities is, however, not robust to allowing

for competition in the marketplace. In particular, as �rms have a preference for

competing with the most risk-averse players, the strategic e¤ect counteracts the risk

attitude e¤ect and in certain cases may even dominate the risk attitude e¤ect. One

such a case is when demand is relatively inelastic and small changes in output have

large e¤ects on price. In this case, more risk-averse bidders will bid more than less

risk-averse bidders in case the risk attitudes of �rms are strictly positively a¢ liated

and the number of licenses is relatively large. This leads to higher market prices than

when �rms were selected in a more random fashion.
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