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Abstract

Consider the portfolio problem of choosing the mix between stocks and bonds

under a downside risk constraint. Typically stock returns exhibit fatter tails than

bonds corresponding to their greater downside risk. Downside risk criteria like

the safety …rst criterion therefore often select corner solutions in the sense of a

bonds only portfolio. This is due to a focus on the asymptotically dominating

…rst order Pareto term of the portfolio return distribution. We show that if

second order terms are taken into account, a balanced solution emerges. The

theory is applied to empirical examples from the literature.
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1 Introduction

Consider the portfolio problem of choosing the mix between a stock index and

a government bond index. The mean variance criterion selects non-zero propor-

tions of each as long as stocks have higher expected returns and higher variance.

Investors nevertheless in addition often worry about the downside risk features

of their portfolio, witness the popularity of policies with put protection that

lock in gains, portfolio insurance, capital bu¤ers at pension funds, Value at

Risk (VaR) exercises at banks, etc. It is a fact that asset return distributions

exhibit fat tails, i.e. are asymptotic to a Pareto distribution. Typically stocks

exhibit fatter tails than bonds, i.e. have smaller hyperbolic Pareto coe¢cient,

corresponding to the greater downside risk of stocks. Downside risk criteria like

the safety …rst criterion therefore often select corner solutions in the sense of a

bonds only portfolio. This is due to a focus on the tail of the asset return dis-

tributions whereby only the asymptotically dominating …rst order Pareto term

is taken into account. In this note we show that if the second order terms are

considered as well, a more balanced solution emerges. The theory is applied to

examples from the literature.

Portfolio risk and its upside potential are in an important way driven by

the ‘abnormal’ returns emanating from heavy-tailed distributed asset returns.

Therefore the …nancial industry often employs so called downside risk measures

to characterize the asset and portfolio risk, since it is widely recognized that

large losses are more frequent than a normal distribution based statistic like the

standard deviation suggests. A formal portfolio selection criterion which incor-
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porates the concern for downside risk is the safety …rst criterion, see Roy (1952)

and Arzac and Bawa (1977). The paper by Gourieroux, Laurent and Scail-

let (2000) analyzes the sensitivity of VaR with respect to portfolio allocation,

which is essentially the same problem as portfolio selection with the safety …rst

criterion. Gourieroux et al. (2000) show how to check for the convexity of the

estimated VaR e¢cient portfolio set. Jansen, Koedijk and de Vries (2000) apply

the safety …rst criterion and exploit the fact that returns are fat-tailed. They

propose a semi-parametric method for modeling tail events and use extreme

value theory to measure the downside risk. This method was subsequently used

by Susmel (2001) in an application involving Latin American stock markets.

If one selects assets on the basis of the tail properties of the return distri-

bution, there is a tendency to end up with a corner solution whereby the asset

with the highest tail coe¢cient (thinnest tail) is selected, see e.g. Straetmans

(1998, ch.5), Jansen et al. (2000), Hartmann, Straetmans and de Vries (2000)

and Poon, Rockinger and Tawn (2003). This follows from Geluk and de Haan

(1987), who show that a convolution of two regularly varying variables produces

a random variable which has the same tail properties as the fattest tail of the

two convoluting variables, i.e. the fattest tail (lowest tail coe¢cient) dominates.

In case the tails are equally fat, the scales of the two random variables has to be

added. In this paper we show how to extend the …rst order convolution result

to a second order asymptotic expansion. Whereas in the …rst order convolution

result only the fattest of the two tails plays a role, in the second order expan-

sion often both tails play a role. We show that with a second order expansion
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of the downside risk, the portfolio solution yields a balanced solution, i.e. both

assets are held in non-zero proportion, whereas the …rst order expansion selects

the corner solution. In the empirical application, we follow up on Jansen et al.

(2000) and Susmel (2001), who apply the safety …rst criterion to a number of

portfolio problems. In several cases Jansen et al. (2000) end up with a corner

solution. We calculate the downside risk using the second order expansion and

show how this implies a move towards the interior.

2 Extreme Value Theory

The fat tail property is one of the salient features of asset returns. This can

be modeled by letting the tail of the distribution be governed by a power law,

instead of an exponential rate. Technically speaking, suppose that the returns

are i.i.d. and have tails which vary regularly at in…nity. This entails that to a

…rst order

f g = ¡ +
¡ ¡ ¢

as ! 1 where 0 0 A more detailed parametric form for the

tail probability can be obtained by taking a second order expansion at in…nity.

There are only two non-trivial expansions (de Haan and Stadtmüller, 1996).

The …rst expansion has a second order term which also declines hyperbolically

f g = ¡ £
1 + ¡ +

¡ ¡ ¢¤
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as !1 where 0 0 0 and is a real number. This expansion

applies to the non-normal sum-stable, Student-t, Fréchet, and other fat tailed

distributions. The other non-trivial expansion is

f g = ¡ [1 + log + (log )]

which is not considered in this paper1.

We assume that the tails of two assets are di¤erent but symmetric, and vary

regularly at in…nity. Consider the following second order expansion,

f 1 g = f 1 ¡ g = 1
¡ 1

£
1 + 1

¡ 1 +
¡ ¡ 1

¢¤
(1)

f 2 g = f 2 ¡ g = 2
¡ 2

£
1 + 2

¡ 2 +
¡ ¡ 2

¢¤
(2)

as ! 1 We assume 2 1 · 2. The assumption of 2 1 implies that

at least the mean and variance exist, which seems to be the relevant case for

…nancial data. Portfolios are essentially (weighted) sums of di¤erent random

variables. We therefore investigate the tail probability of the convolution 1 +

2. The case of equal tail indices 1 = 2 is known from Feller (1971, ch.

VIII). In this case f 1 + 2 g = ( 1 + 2) ¡ 1+ ( ¡ 1) as ! 1.

When the tail indices are unequal we have the following results.

Theorem 1 Suppose that the tails of the distributions of 1 and 2 satisfy

(1) and (2). Moreover, assume 2 1 2 so that [ ] and [ 2] are

1The slow decay of the second order term makes this class su¢ciently di¤erent from the
other class. The inclusion of this class would make our paper overly long.
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bounded. When 1 and 2 are independent, the asymptotic 2-convolution up

to the second order terms is

(I) if 2 ¡ 1 min( 1 1)

then f 1 + 2 g = 1
¡ 1 + 2

¡ 2 + ( ¡ 2)

(II) if 1 2 ¡ 1 and 1 1

then f 1 + 2 g = 1
¡ 1 + 1 1 [ 2]

¡ 1¡1 + ( ¡ 2)

(III) if 1 2 ¡ 1 and 1 1

then f 1 + 2 g = 1
¡ 1 + 1 1

¡ 1¡ 1 +
¡ ¡ 1¡ 1

¢
(IV) if 2 ¡ 1 = 1 1

then f 1 + 2 g = 1
¡ 1 + f 2 + 1 1 [ 2]g ¡ 2 + ( ¡ 2)

(V) if 2 ¡ 1 = 1 1

then f 1 + 2 g = 1
¡ 1 + f 2 + 1 1g ¡ 2 + ( ¡ 2)

(VI) if 2 ¡ 1 = 1 = 1

then f 1 + 2 g = 1
¡ 1 + f 2 + 1 1 [ 2] + 1 1g ¡ 2 +

( ¡ 2)

Proof. We only provide the proof of the upper tail case. The proof for

the lower tail case only requires a small modi…cation of this proof. Parts of

the proof are similar in spirit as the proof in Dacarogna, Müller, Pictet and de

Vries (2001, Lemma 4). It is an extension of Feller’s original convolution result

for regularly varying distributions. We divide the area over which we have to

integrate into …ve parts and ; where f g = f 1 + 2 ·

1 ¡2 2 2g, f g = f 1 · 2 2 · 2g, f g = f 1 + 2 ·

1 · ¡2 2 2g, and where f g and f g are the counterparts of
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f g and f g respectively. By integration we …nd f g, f g, and f g

The integrals are provided in Appendix A. Adding up and ignoring the terms

which are of smaller order, like ¡2 1 , we …nd that

f 1 + 2 g t 1¡ [ f g+ f g+ f g]

t 1
¡ 1 + 1 1

¡ 1¡ 1 + 2
¡ 2 + 2 2

¡ 2¡ 2

+ 1 1 [ 2]
¡ 1¡1 + 1 1 ( 1 + 1) [ 2]

¡ 1¡ 1¡1

+ 2 2 [ 1]
¡ 2¡1 + 2 2 ( 2 + 2) [ 1]

¡ 2¡ 2¡1

+ 1
( 1 + 1) 1

2

£
2
2

¤ ¡ 1¡2

+ 2
( 2 + 1) 2

2

£
2
1

¤ ¡ 2¡2

By considering the di¤erent parameter con…gurations (I) - (VI), we obtain the

results of Theorem 1.

What is the relevance of this theorem for portfolio selection? Suppose that

portfolio selection is done on the basis of the concern for the downside risk,

safety-…rst criterion using this convolution result. By mapping negative returns

into the positive quadrant, this theorem applies to the left tail with a little

modi…cation. Let denote the loss returns on two independent project. Under

this criterion the problem is to minimize f 1+(1¡ ) 2 g at some large

loss levels by choosing the asset mix . Suppose only the …rst order terms

of tail probability f g = ¡ are taken into account. Then for large

loss levels one choose = 0 if 1 2 This corner solution is driven by

evaluation of the safety …rst criterion in the limit (where only the …rst order
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term is relevant). In practice what counts are very high, but …nite loss levels.

Thus a second order expansion in which the second order term still plays a role

has practical relevance. To this end we can use the Theorem 1.

Consider …rst the case III above. Since asset 1 dominates the …rst two

terms in the loss probability, one is still better of by putting all eggs in one

basket. Turn to case I. If one would focus on the …rst term only, i.e. only taking

the limit as ! 1 into consideration, then again only asset two is selected.

At any …nite loss level , this solution is, however, suboptimal. Given that

f 1 + 2 g ¼ 1
¡ 1 + 2

¡ 2 in case I, one should take both assets

into account and diversify away from the corner solution. This lowers the loss

probability f 1 + 2 g at any …nite loss level . This idea is put on a

…rm footing in the next section by investigating the convexity properties of the

solutions.

3 The Sensitivity and Convexity of VaR

The aim of this section is to analyze the sensitivity of VaR with respect to

portfolio allocation. Gourieroux et al. (2000) derive analytical expression for

the …rst and second derivatives of the VaR in a general framework, and state

su¢cient conditions for the VaR e¢cient portfolio set to be convex. Gourieroux

et al. (2000) also provide explicit expression for the …rst and second derivatives

in case of the normal distribution. Here we provide explicit expressions for the

class of fat tailed distributions. Moreover, we show how to ensure an interior
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solution under which the VaR is convex with respect to the portfolio weight. If a

risk measure is a convex function of the portfolio allocation, it induces portfolio

diversi…cation. From this we can ensure that an interior solution to the safety

…rst problem exists. While Gourieroux et al. (2000) show the convexity of the

VaR-e¢cient portfolio set in general, they do not give conditions to ensure an

interior solution for the optimal allocation.

First, we derive analytical expression of derivatives of the tail probability at

a given quantile in the heavy tail context. This allows us to discuss the convexity

properties of VaR. We consider two …nancial assets whose returns at time are

denoted by = 1 2 We suppress time indices whenever this is not confusing.

The return at of a portfolio with allocation is then 1 + (1¡ ) 2 For a

loss probability level the Value at Risk, ( ) is de…ned by:

f 1 + (1¡ ) 2 ( )g =

In practice, VaR is often computed under the normality assumption for returns.

Recently, semi-parametric approaches have been developed, which are based

on the extreme value approximation to the tail probability like in the previous

section. We compute the …rst and second derivatives of the probability with

respect to portfolio allocation under this approximation. Under the safety …rst

rule an investor speci…es a low threshold return and selects the portfolio of

assets which minimizes the probability of a return below this threshold.
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3.1 Convexity of the Tail Probability

Suppose the tails of the distributions of 1 and 2 satisfy (1) and (2). We obtain

the …rst and second derivatives in the proof to Lemma 1. We …rst investigate

the case I from the convolution Theorem 1.

Lemma 1 Under assumptions of Theorem 1 and if 2¡ 1 min( 1 1), there

exists a ¤ 2 (0 1) for given large 0 such that

f ¤
1 + (1¡ ¤) 2 g · f 1 + (1¡ ) 2 g

for any 0 · · 1 The equality holds only when = ¤

Proof. From Theorem 1, the asymptotic 2-convolution up to the second

order terms is

f 1 + (1¡ ) 2 g ¼ 1
1
¡ 1 + (1¡ ) 2

2
¡ 2

= ( )

for given large 0 We show the function of ( ) has a minimum for some

2 (0 1). The slope of this function with respect to is

( )
= 1

1¡1
1
¡ 1 ¡ 2 (1¡ ) 2¡1

2
¡ 2
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for large 0 Thus slopes at the endpoints are

( )
¯̄̄̄
=0

= ¡ 2 2
¡ 2 0

and

( )
¯̄̄̄
=1

= 1 1
¡ 1 0

for large 0 The slope of this function increases monotonically since the

second order derivative of this function is

2 ( )
2

= ( 1 ¡ 1) 1
1¡2

1
¡ 1 + ( 2 ¡ 1) 2 (1¡ ) 2¡2

2
¡ 2

which is positive for all 0 · · 1 provided = min f 1 2g 1

In the proof of the Lemma 1 we show the convexity of 1
1
¡ 1+(1¡ ) 2

2
¡ 2 .

Note that this expression is only asymptotic to f 1 + (1¡ ) 2 g as

! 1. Therefore f ¤
1 + (1¡ ¤) 2 g will typically be close to

zero but not be exactly equal to zero.

Remark 1 The Lemma 1 implies that if one constructs a portfolio which mini-

mizes the probability of extreme negative returns, one has to assign some weight

to the asset with the fatter tail.

Remark 2 Under conditions (II) and (III) from Theorem 1 , Lemma 1 has

trivial solutions such as ¤ = 0 or ¤ = 1 depending on the conditions of

parameters.

Remark 3 With conditions (IV), (V) and (VI) from Theorem 1, Lemma 1
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has non-trivial solution such that ¤ 2 (0 1) provided the parameters satisfy

additional conditions. We illustrate the case of condition (IV) as an example.

Under the condition (IV), 2 ¡ 1 = 1 1 then f 1 + (1¡ ) 2 g ¼
1

1
¡ 1 +(1¡ ) 2

2
¡ 2 + 1

1 1 [(1¡ ) 2] ¡ 2 ´ ( ) The slope

of this function is

( )
= 1¡1

1 1
¡ 1 ¡ (1¡ ) 2¡1

2 2
¡ 2

+
¡

1¡1
1 ¡ 1 ( 1 + 1)

¢
1 1 [ 2]

¡ 2

For the corner solution excluding the asset 1 with the heaviest tail

( )
¯̄̄̄
=0

= ¡ 2 2
¡ 2 0

for large 0 On the other hand, if the following condition is satis…ed for

large 0

( )
¯̄̄̄
=1

= 1 1
¡ 1 ¡ 1 1 [ 2]

¡ 2 0

then there exists a non-trivial solution under the condition (IV), too. The last

condition will be satis…ed if [ 2] . That is, [ 2] must not be too large

for the given a …nite loss level . This holds certainly as long as the expected

return is positive (since the [ 2] 0, recall that a positive re‡ects a loss).
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3.2 Convexity of VaR

We now turn around the question from the previous section, and ask whether

the VaR at a given probability level is convex. If the VaR criterion is used as

the risk measure for judging the portfolio, and if we can show that the VaR

is a convex function of the portfolio allocation, then there is an incentive for

portfolio diversi…cation under the VaR objective.

Lemma 2 Under assumptions of Theorem 1 and if 2 ¡ 1 min( 1 1) con-

sider the downside risk level

f 1 + (1¡ ) 2 g = 1
1
¡ 1

·
1 +

(1¡ ) 2
2

1 1

¡ 2+ 1 + ( ¡ 2+ 1)

¸

and de…ne the VaR implicitly as follows f 1 + (1¡ ) 2 ( )g =

. By De Bruijn’s theory on asymptotic inversion

( ) =
1

1
1

¡ 1

1

"
1 +

(1¡ ) 2

2

2

1
2 1

1

2¡ 1
1 + (1)

#

for any 0 1

Proof. Directly follows from de Bruijn’s inverse in Theorem 1.5.13 of Bing-

ham, Goldie and Teugels (1987).

For the given loss probability we can …nd an allocation which minimizes

the VaR risk.

Lemma 3 Under assumptions of Theorem 1 and if 2¡ 1 min( 1 1), there
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exist ¤ 2 (0 1) for given probability level ¹ such that

( ¤ ¹) · ( ¹)

for any 0 1 The equality holds only when = ¤

Proof. For a given probability level ¹, the …rst derivative of the VaR is

( ¹)
=

1

1
1 ¹¡

1

1 ¡ ¡1
1

1¡ 2
1

1 2¹
2¡ 1¡1

1

n
2 (1¡ ) 2¡1 1¡ 2

+( 2 ¡ 1) (1¡ ) 2 ¡ 2
ª

From this, it follows that

( ¹)
¯̄̄̄
=1

=
1

1
1 ¹¡

1

1 0

Moreover, multiplying the derivative by 2 and evaluating the resulting ex-

pression at = 0 gives

2
( ¹)

¯̄̄̄
=0

= ¡ ¡1
1

1¡ 2
1

1 2¹
2¡ 1¡1

1 ( 2 ¡ 1) 0

The second-order derivative at = ¤ with respect to the portfolio allocation

is:
2 ( ¹)

2
=

2 ( 2 ¡ 1)
1

1¡ 2
1

1 2¹
2¡ 1¡1

1
¡3
µ
1 ¡ 1

¶
2¡2

which is strictly positive for 2 (0 1) under the stated assumptions. Together

these derivatives imply there is an interior minimum.
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It follows that the VaR is convex in the portfolio mix if the distribution of

returns have tails which vary regularly at in…nity. The VaR criterion thus in-

duces diversi…cation, even though it penalizes asset returns which have a higher

asymptotic downside risk than others. Under the stated conditions in Lemma

3, the optimal choice includes the riskier asset for the limited downside risk

portfolio.

4 Revisit to Jansen et al. (2000)

We now demonstrate the relevance of the above second order expansion by

revisiting applications from the literatures. It will be shown how the second

order theory modi…es the portfolio selected if one only relies on the …rst order

theory. An example is a study of the safety …rst criterion by Jansen et al.

(2000). We …rst brie‡y review the safety …rst criterion and then present our

portfolio choices.

4.1 Safety-…rst portfolio

Portfolio selection is based on a trade-o¤ between expected return and risk. The

risk in the safety-…rst criterion, initially proposed by Roy (1952) and Arzac and

Bawa (1977), is evaluated by the probability of failure. A lexicographic form of

the safety …rst principle is:

max ( ) lexicographically,
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subject to P
+ =

where = 1 if = fP +1 + · g · , and = 1 ¡ otherwise.

Furthermore let = [
P

+1] + , denotes the initial market values

of asset at time , is the initial wealth level of the investor, denotes the

amount of lending or borrowing ( 0 represents lending), is the risk-free

gross rate of return, denotes the weight of invested amount in the risky asset

, is the disaster level of wealth, and gives the maximal acceptable probability

of this disaster.

Arzac and Bawa (1977) showed that the safety …rst problem can be separated

into two problems: First, the risk averse safety-…rst investor maximizes the ratio

of the risk premium to the return opportunity loss that he is willing to incur

with probability that is

max

¡
¹ ¡ ¢

( ¡ ( ))

where =
P

+1

P
are the gross returns, ¹ = ( ) and ( ) is a

quantile (loss level) such that there is % probability of returns less than or equal

to this value, that is, the VaR. In the second stage the investor determines the

scale of the risky portfolio and the amount borrowed from the budget constraint;

¡ =
¡
( )¡

For further details on this part, we refer to Arzac and Bawa (1977).
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4.2 Empirical illustrations

We re-calculate the optimum portfolio weights for the examples in Jansen et al.

(2000) which resulted in a corner solution. By using Lemma 1 and the parameter

estimates from Jansen et al. (2000) we obtain an interior solution when we apply

the second order theory. The problem consists in choosing between investing

in a mutual fund of bonds or a mutual fund of stocks over the period 1926.01

- 1992.12 with 804 monthly observations of a US bond index and a US stock

index (from the CRSP database). We also present, separately, an analysis of the

two French stocks Thomson-CSF and L’Oreal, covering 546 daily observations,

studied both by Jansen et al. (2000) and Gourieroux et al. (2000).

The Table 1 reproduces the summary statistic and tail indices from Jansen

et al. (2000). For US assets the tail index is calculated for the lower tails of the

distribution of monthly stock and bond returns. For the daily returns of the

two French stocks the calculations combined the data from the upper and lower

tails upon the assumption of tail symmetry.

From Table 1 we see that the …rst order tail indices di¤er. In Jansen et al.

(2000) for the case of the two French stocks the safety …rst criterion allocates all

wealth to L’Oreal which has the higher tail index. For the US assets, note that

with = 1 and and a risk level = 0 000625 all wealth is allocated to the low

risk (higher tail index) bond. Our solutions using the second order approach

will be di¤erent.

We verify whether the conditions for an interior solution from Lemma 1 do

apply. Without loss of generality, we set US stock and Thomson-CSF as 1
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We calculate the second order tail index, 1 by using the estimates from Table

1. One can calibrate the values of the second order coe¢cient from Table 1 as

follows. A consistent estimator for the ratio between the …rst and second order

tail indices is

d =
ln ^

2 ln ¡ 2 ln ^

where is the number of observations, is the window size for the estimation of

the tail index, see Danielsson et al. (2000). By Proposition 1.7 from Geluk and

de Haan (1987) on the properties of regularly varying functions we have that

ln ^
ln ! 2

1+2 in probability as ! 1 Then we use the fact that ^ ! 1

in probability, where ^ is a consistent estimator of Thus, for the US assets,

1 = 0 809 and 2 ¡ 1 = 0 311 in case of the two French stocks, 1 = 1 657

and 2 ¡ 1 = 0 459 Thus both cases satisfy the conditions of Lemma 1.

To determine the portfolio mix, we follow the same procedure as in Jansen et

al. (2000). We …rst calculate the VaR quantiles for each hypothetical portfolio2.

These are reported in Table 2. The investor can borrow or lend at the risk-free

rate , and maximizes
¡
¹ ¡ ¢

( ¡ ( )). The safety-…rst investor speci…es

the desired probability level; the calculations are done for two choices of

= 0 0025 and = 0 000625. Two interest rates are used, = 1 and

2We can calculate = 1 2 used in Jansen et al. (2000) by using

=
( )

where ( ) is the -th largest observation. Then we plug those values in Lemma 1, and
solve the following approximation

1
1
¡ 1 + (1¡ ) 2

2
¡ 2 ¼

to get the value for the given value of and

18



= 1 00303 (the latter corresponds to an annual rate of 3.7%, which equals the

average returns on the US Treasury bills over 1926-1992). The mean return ¹

is taken from Table 2 by weighting the mean returns on the two assets with

the indicated portfolio mix. Optimal portfolios in Table 3 are marked with an

asterisk. In all four con…gurations considered, the optimal portfolio contains

20% stocks and 80% bonds. Figure 1 illustrates the portfolio choice problem,

plotting the mean return versus VaR for portfolios of stocks and bonds when

= 1 003 For the case = 1 and = 0 000625 Jansen et al.(2000) select a

corner solution with 100% bonds. In our procedure, however, stocks are still

part of the portfolio.

Empirical analyses of the daily data on the two French stocks are presented

in Tables 2 and Table 4. Figure 2 illustrates that the limited downside risk

portfolio selection criterion chooses a portfolio with 30% of Thomson-CSF stocks

and 70% of L’Oreal stocks, not the corner solution as in Jansen et al. (2000).

To conclude, if we take into account the second order terms, solutions are

often bounded away from the 100% bond portfolio in the example of US assets,

while if only the …rst order terms are taken into account, a corner solution is

repeatedly selected. This may make the portfolio overly conservative, giving up

quite a bit of upside potential.

We brie‡y examine another example from the literature. Susmel (2001) in-

vestigates the diversi…cation opportunities which the Latin American emerging

markets o¤er to a US safety …rst investor. From the portfolio choice problem

between an equally weighted Latin American Index and US index, the optimal
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investment in the Latin American Index is 15% in Susmel’s (2001) paper. In-

stead of an equally weighted Latin American Index, we analyze the optimum

portfolio weight for each pair of US and Argentina, US and Brazil, US and Chile,

US and Mexico respectively. One can verify that the conditions of Lemma 1

are satis…ed for all Latin American stocks combined with US from the estimates

in Table 4 of Susmel (2001). Using the same procedure as before, we calculate

optimal weights for each pair. For the case of = 1 and = 0 00289 (1 346)

we …nd only portfolio weights 1% 2% 5% and 2% For the case of = 1 and

= 0 001445 (0 5 346), we …nd only 1% 1% 4% and 2% portfolio weightings.

These low proportions of Latin American stocks are due to the much higher tail

risk (low tail indices) compared to the US.3 Since the estimated tail indices of

US and Latin American markets are very di¤erent, from 3.2 to 1.8 » 2.1 the

portfolio selection problems have near corner solutions for all cases.

5 Conclusion

We consider the portfolio problem of choosing the mix between stocks and bonds.

Investors often worry about the downside risk features of their portfolio. It is

a fact that asset return distributions exhibit fat tails, i.e. are asymptotic to

a Pareto distribution. Typically stocks exhibit fatter tails than bonds corre-

sponding to the greater downside risk of stocks. Downside risk criteria like

3Susmel (2001) proceeds along a di¤erent line and selects much higher proportions. The
reason is that Susmel (2001) estimates di¤erent tail indices for each portfolio combination.
This approach, however, biases the tail indices upward (causing understimation of the risk).
This further clari…ed in the Appendix B.
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the safety …rst criterion therefore often select corner solutions in the sense of a

bonds only portfolio. This is due to a focus on the tail of the asset return dis-

tributions whereby only the asymptotically dominating …rst order Pareto term

is taken into account.We extend the …rst order convolution result to a second

order asymptotic expansion. Whereas in the …rst order convolution result only

the fattest of the two tails plays a role, in the second order expansion often the

tails of both assets play a role. We suggest that with a second order expansion

of the downside risk, the portfolio solution may yield a balanced solution, i.e.

both assets are held in non-zero proportion, whereas the …rst order expansion

selects the corner solution.

In the empirical application, we follow up on Jansen et al. (2000), who apply

the safety …rst criterion to a number of portfolio problems. In the cases where

Jansen et al. (2000) give a corner solution, our procedure still selects both

assets for incorporation in the limited downside risk portfolio. We also brie‡y

addressed another example from the literature.

In this paper and the related literatures, the independence between assets

was assumed, which is not completely realistic for …nancial assets. This assump-

tion can be weakened. For instance, we can allow cross-sectional dependency by

using Capital Asset Pricing Model (CAPM) from …nance. Then we can divide

the risk of assets into the market risk component and the idiosyncratic risk.

Such an extension is under current development.
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6 Appendix A

For the calculation of f 1 + 2 · g we divide the area over which we have

to integrate into …ve parts and ; where f g = f 1 + 2 ·

1 ¡2 2 2g, f g = f 1 · 2 2 · 2g, f g = f 1 + 2 ·

1 · ¡2 2 2g, and where f g and f g are the counterparts of

f g and f g respectively. We start by f g:

f g = f 1 ·
2

2 ·
2
g = f 1 ·

2
g f 2 ·

2
g

t 1¡ 1

³
2

´¡ 1 ¡ 1 1

³
2

´¡ 1¡ 1 ¡ 2

³
2

´¡ 2 ¡ 2 2

³
2

´¡ 2¡ 2

as !1 The terms which are of smaller order, like ¡2 = ¡2minf 1 2g, can

be ignored throughout this proof. The probability f g takes more e¤ort

f g = f 1 + 2 · 1 ¡
2

2
2
g

=

Z 2

¡ 2

h
2( ¡ )¡ 2

³
2

´i
1( )

=

Z 2

¡ 2
2( ¡ ) 1( ) ¡

Z 2

¡ 2
2

³
2

´
1( )

= ¡

where (¢) and (¢) denote respectively the density function and distribution

function of . For integral note that a second order Taylor approximation

gives

( ¡ )¡ t ¡ + ¡ ¡1 +
( + 1)

2
¡ ¡2 2
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Hence, for large

t [1¡ 2
¡ 2 ¡ 2 2

¡ 2¡ 2 ]

Z 2

¡ 2
1( )

¡ [ 2 2
¡ 2¡1 + ( 2 + 2) 2 2

¡ 2¡ 2¡1]
Z 2

¡ 2
1( )

¡ ( 2 + 1) 2

2
2
¡ 2¡2

Z 2

¡ 2

2
1( )

t
£
1¡ 2

¡ 2 ¡ 2 2
¡ 2¡ 2

¤ ·
1¡ 2 1

³
2

´¡ 1 ¡ 2 1 1

³
2

´¡ 1¡ 1
¸

£
2 2

¡ 2¡1 + ( 2 + 2) 2 2
¡ 2¡ 2¡1¤ · [ 1]¡ 2 1

1 ¡ 1 1

³
2

´¡ 1+1
¸

¡ ( 2 + 1) 2

2
2
¡ 2¡2 £

2
1

¤

And for part

= 2

³
2

´Z 2

¡ 2
1( )

t
·
1¡ 2

³
2

´¡ 2 ¡ 2 2

³
2

´¡ 2¡ 2
¸ ·
1¡ 2 1

³
2

´¡ 1 ¡ 2 1 1

³
2

´¡ 1¡ 1
¸

Combine the two parts to obtain f g

f g = ¡

t ¡ 2
¡ 2 ¡ 2 2

¡ 2¡ 2

+ 2

³
2

´¡ 2

+ 2 2

³
2

´¡ 2¡ 2 ¡ 2 2
¡ 2¡1 [ 1]

¡ ( 2 + 1) 2

2
2
¡ 2¡2 £

2
1

¤
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The probability f g is

f g = f 1 + 2 · 1 · ¡
2

2
2
g

=

Z ¡ 2

¡1

h
2( ¡ )¡ 2

³
2

´i
1( )

=
¡ ¡2 ¢

Similar expressions hold for f g and f g

7 Appendix B

Suppose that the tails of the distributions of satisfy f g = ¡ £
1 + ¡ +

¡ ¡ ¢¤
as !1 where 0 0 0 and is a real number. The asymptotic

bias for the Hill estimaor d1 is

hd1 ¡ 1
i
=

¡
( + )

¡ +
¡ ¡ ¢

as !1 in Goldie and Smith (1987) For the portfolio from Case I in Theorem

1, the aymptotic bias of the Hill estimator is

³d1 ´
= ¡(1¡ ) 2

1

1

2

( 2 ¡ 1)

1 2

¡( 2¡ 1) +
³
¡( 2¡ 1)

´

where

¡(1¡ ) 2

1

1

2

( 2 ¡ 1)

1 2

¡( 2¡ 1) 0

which proves the upward bias in the tail estimator ^
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Table 1: Summary statics and Estimates of tail indices

US bonds and stocks French stocks
Corporate bonds Stocks Thomson-CSF L’Oreal

Mean 0.004445 0.007943 0.0000495 0.0005861
s.d. 0.019782 0.055702 0.01261 0.01129

Skewness 0.746 -0.488 -0.239 0.061
Kurtosis 10.027 9.888 4.114 4.311
No. Obs 804 804 546 546

16 13 21 13
( ) -0.03843 -0.13150 0.0275 0.0285

2.932 2.601 4.370 4.829
1 2 -0.125 -0.460 -0.063 -0.056

Note: Table 1 and Table 2 are from Jansen et al. (2000). US bond index and a
US stock index (1926.01 - 1992.12), Thomson-CSF and L’Oreal, 546 daily
observations. ( ¡ ) denote the -th lowest observation for US assets, the
-th largest absolute observation for French stocks, respectively. denotes

VaR level corresponding to the probability

Table 2: Estimated VaR levels corresponding to the stated probabilities

Portfolio of two assets US bonds and stocks French stocks
Probabilities 0.0025 0.000625 0.0018

(2/804) (0.5/804) (1/546)
100% Asset 2 -0.2695 -0.4593 -0.0487
90% Asset 2 -0.2426 -0.4134 -0.0438
80% Asset 2 -0.2157 -0.3675 -0.0390
70% Asset 2 -0.1888 -0.3217 -0.0344
60% Asset 2 -0.1622 -0.2763 -0.0309a

50% Asset 2 -0.1361 -0.2316 -0.0305*
40% Asset 2 -0.1113 -0.1887 -0.0338
30% Asset 2 -0.0896 -0.1505 -0.0389
20% Asset 2 -0.0752 -0.1236 -0.0443
10% Asset 2 -0.0721* -0.1163* -0.0499
0% Asset 2 -0.0780a -0.1251a -0.0554

Note: The values in parentheses denote the expected number of occurrences.
Asset 2 for the US case is US stocks and Asset 2 for the French case is the
stock of L’Oreal. * indicates the minimum VaR level among available choices
on basis of the second order theory, while a indicates the portfolio weight with

the minimum VaR level from Jansen et al. (2000).
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Table 3: Portfolio selection for monthly US stocks and bonds

Portfolio ( ) ( ¡ ) ( ¡ ) ( ¡ ) ( ¡ )
= 1 = 1 00303

Portfolio selection with = 0 0025
100% Stock 1-0.2695 0.02947 0.01802
90% Stock 1-0.2426 0.03130 0.01858
80% Stock 1-0.2157 0.03359 0.01927
70% Stock 1-0.1888 0.03650 0.02014
60% Stock 1-0.1622 0.04034 0.02126
50% Stock 1-0.1361 0.04550 0.02274
40% Stock 1-0.1113 0.05252 0.02462a

30% Stock 1-0.0896 0.06133 0.02661
20% Stock 1-0.0752 0.06844* 0.02704*
10% Stock 1-0.0721 0.06648a 0.02348
0% Stock 1-0.0780 0.05701 0.01747

Portfolio selection with = 0 000625
100% Stock 1-0.4593 0.01729 0.01063
90% Stock 1-0.4134 0.01838 0.01096
80% Stock 1-0.3675 0.01971 0.01137
70% Stock 1-0.3217 0.02143 0.01190
60% Stock 1-0.2763 0.02369 0.01258
50% Stock 1-0.2316 0.02675 0.01349
40% Stock 1-0.1887 0.03097 0.01468a

30% Stock 1-0.1505 0.03653 0.01606
20% Stock 1-0.1236 0.04162* 0.01670*
10% Stock 1-0.1163 0.04125 0.01480
0% Stock 1-0.1251 0.03553a 0.01104

Note: * indicates optimal portfolio among available choices on basis of the
second order theory, while a indicates the optimal choice from Jansen et al.

(2000).
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Table 4: Portfolio selection for daily French stocks

Portfolio ( ) ( ¡ ) ( ¡ )
= 1

100% L’Oreal 1-0.048650 0.01209a

90% L’Oreal 1-0.043786 0.01218
80% L’Oreal 1-0.038953 0.01226
70% L’Oreal 1-0.034358 0.01241*
60% L’Oreal 1-0.030859 0.01211
50% L’Oreal 1-0.030450 0.01037
40% L’Oreal 1-0.033801 0.00778
30% L’Oreal 1-0.038869 0.00542
20% L’Oreal 1-0.044338 0.00352
10% L’Oreal 1-0.049873 0.00210
0% L’Oreal 1-0.055415 0.00088

Note: * indicates optimal portfolio among available choices on basis of the
second order theory, while a indicates the optimal choice from Jansen et al.

(2000). Portfolio selection is done with = 0 0018
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Figure 1. US stock and bond index
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Figure 2. French stocks
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